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Abstract

In this paper we study holomorphic Legendrian curves in the standard holomorphic
contact structure on C2n+1 for any n ∈ N. We provide several approximation and
desingularization results which enable us to prove general existence theorems, settling
some of the open problems in the subject. In particular, we show that every open
Riemann surface M admits a proper holomorphic Legendrian embedding M ↪→ C2n+1,

and we prove that for every compact bordered Riemann surface M =
◦
M ∪ bM there

exists a topological embedding M ↪→ C2n+1 whose restriction to the interior is a

complete holomorphic Legendrian embedding
◦
M ↪→ C2n+1. As a consequence, we

infer that every complex contact manifold W carries relatively compact holomorphic
Legendrian curves, normalized by any given bordered Riemann surface, which are
complete with respect to any Riemannian metric on W .

1. Introduction and main results

Let W be a complex manifold of odd dimension 2n + 1 > 3. A holomorphic vector subbundle
L ⊂ TW of complex codimension one in the tangent bundle TW defines a holomorphic contact
structure on W if every point p ∈W admits an open neighborhood U ⊂W such that L |U = ker τ
is defined by a holomorphic 1-form τ on U satisfying

τ ∧ (dτ)n = τ ∧ dτ ∧ n times· · · ∧ dτ 6= 0 everywhere on U.

This nondegeneracy condition depends only on the subbundle L and not on the particular
choice of the local defining 1-form. The pair (W,L ) is called a complex contact manifold. When
L = ker τ for a globally defined holomorphic 1-form τ on W , we shall write (W, τ) instead
of (W,L ). A contact subbundle L is maximally nonintegrable, meaning that it has no integral
complex submanifolds (i.e., tangent to L ) of dimension greater than n. In fact, local holomorphic
vector fields tangent to L , along with their first-order commutators, span TW at every point.
Although the geometry of smooth contact manifolds is a classical subject with a large literature
devoted to it (we refer e.g. to Geiges’ surveys [Gei08, Gei12] and the references therein), many
important questions remain open in the holomorphic case.

The most basic example of a complex contact manifold is the complex Euclidean space C2n+1

endowed with the standard holomorphic contact form

η = dz +

n∑
j=1

xj dyj . (1.1)
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Here, (x1, y1, . . . , xn, yn, z) denote the complex coordinates on C2n+1. By Darboux’s theorem
(see Theorem A.2 in the Appendix A), every complex contact manifold (W 2n+1,L ) is locally
contactomorphic to (C2n+1, η), meaning that in a neighborhood of any point p ∈ W there are
local holomorphic coordinates (x1, y1, . . . , xn, yn, z) in which L = ker η.

Let (W,L ) be a complex contact manifold of dimension 2n+1. A holomorphic map F : M →

W from a complex manifold M is said to be L -Legendrian if

dFp(TpM) ⊂ LF (p) holds for all points p ∈M.

If L = ker τ for a contact 1-form τ , then the above condition is equivalent to

F ∗τ = 0.

This condition is independent of the local parametrization of M and hence can be treated in
local holomorphic coordinates on M . If F is nondegenerate (i.e., an immersion at a generic point
of M), then dimCM 6 n since L is maximally nonintegrable. (When dimM < n, such maps are
often referred to as isotropic; we prefer to use the term Legendrian even in this subcritical case.)
The case when M is compact and W is the projective space CP2n+1, endowed with the contact
form obtained by projectivizing the standard symplectic form of C2n+2 (see § 2.1), has been a
major focus of interest in the theory. An important result in this subject is that every compact
Riemann surface embeds as a complex Legendrian curve in CP3 (see Bryant [Bry82, Theorem G]
and Segre [Seg26]). On the other hand, when M is an open Riemann surface, an L -Legendrian
holomorphic map F : M → W is called an L -Legendrian curve; if (W,L ) = (C2n+1, η) then we
shall just say that F is a Legendrian curve in C2n+1. The latter are complex analogues of real
Legendrian curves in R2n+1 which play a major role in differential geometry.

The aim of this paper is a systematic investigation of holomorphic Legendrian curves in
C2n+1 for any n ∈ N. In particular, we settle some general questions raised by Alarcón and
Forstnerič in [AF14, p. 740], as well as a couple of other well-known open problems in the
theory. Moreover, as we shall see later in this introduction, our results also find applications to
holomorphic Legendrian curves in an arbitrary complex contact manifold.

The following first main result of the paper concerns the existence of properly embedded
Legendrian curves in the standard contact manifold (C2n+1, η).

Theorem 1.1 (Runge approximation by proper Legendrian embeddings). Let M be an open
Riemann surface and K ⊂M be a smoothly bounded compact domain in M whose complement
has no relatively compact connected components. Then every holomorphic Legendrian curve
F : K → C2n+1 (n ∈ N) can be approximated as closely as desired in the C 1(K)-topology by
proper holomorphic Legendrian embeddings F̃ : M ↪→ C2n+1. Furthermore, given a pair of indices
{i, j} ⊂ {1, 2, . . . , 2n+ 1} with i 6= j, we may choose F̃ = (F̃1, F̃2, . . . , F̃2n+1) as above such that
(F̃i, F̃j) : M → C2 is a proper map.

Theorem 1.1 shows in particular that every open Riemann surface properly embeds into C3

as a complex Legendrian curve. This result, which is analogous to Bryant’s embedding theorem
for compact Riemann surfaces as complex Legendrian curves in CP3 (see [Bry82, Theorem G]
and [Seg26]), has been a long-standing open problem in complex contact geometry.

Theorem 1.1 is a particular case of Theorem 5.1, where the latter result also ensures
approximation of Mergelyan type on certain admissible subsets (see § 4 for definitions and
preliminary results). The key ingredients in the proof of Theorem 5.1 are a Mergelyan theorem
for Legendrian curves (see Lemma 4.3) and a general position theorem ensuring that every
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holomorphic Legendrian curve K → C2n+1, where K is as in Theorem 1.1, may be approximated
in the C 1(K)-topology by holomorphic Legendrian embeddings K ↪→ C2n+1 (see Lemma 4.4).
The methods of proof exploit the classical Runge and Mergelyan approximation theorems for
holomorphic functions on open Riemann surfaces and the construction of period-dominating
sprays of Legendrian curves. Further, to ensure the general position result, we use the classical
proof of the transversality theorem due to Abraham [Abr63]. Similar techniques have been
developed by the authors in the theories of minimal surfaces in the real Euclidean space RN
(N > 3), null holomorphic curves in CN , and, more generally, holomorphic immersions of open
Riemann surfaces into CN which are directed by Oka conical subvarieties (see [AL12, AL13,
AL14, AF14, AL15, AFL16c, AFL16b, AFL16a] and the references therein). The main difference
here is that the holomorphic distribution controlling Legendrian curves depends on the base
point, and this requires a novel approach. Finally, with Lemmas 4.3 and 4.4 in hand, Theorem 5.1
follows by a standard recursive argument.

Our second main theorem concerns the existence of complete bounded Legendrian curves
with Jordan boundaries in the contact manifold (C2n+1, η) (cf. (1.1)) for any n ∈ N.

Theorem 1.2 (Complete Legendrian curves with Jordan boundaries). Let M be a compact
bordered Riemann surface with nonempty boundary bM . Every Legendrian curve F : M →

C2n+1 (n ∈ N) of class A 1(M) can be approximated uniformly on M by continuous injective

maps F̃ : M ↪→ C2n+1 whose restriction to the interior
◦
M = M\bM is a complete holomorphic

Legendrian embedding
◦
M ↪→ C2n+1.

Recall that a compact bordered Riemann surface is the same thing as a smoothly bounded
compact domain in an open Riemann surface (see § 2.2 for a precise definition). An immersion
ϕ : R → CN of a smooth open surface R into CN is said to be complete if the Riemannian metric
on R induced by the Euclidean metric of CN via ϕ is complete.

The existence of complete bounded holomorphic Legendrian curves in C2n+1 for any n ∈ N
is derived from Theorem 1.2; this settles the question posed by Mart́ın et al. [MUY14, p. 314].
Theorem 1.2 is also connected to the problem, raised by Yang in 1977 (see [Yan77a, Question
II] and [Yan77b]), about the existence of complete bounded immersed or embedded complex
submanifolds of a complex Euclidean space. For recent advances and a history of this problem,
we refer to the papers by Alarcón and Forstnerič [AF13], Alarcón and López [AL16], Globevnik
[Glo15], and Alarcón et al. [AGL16].

The proof of Theorem 1.2 requires, in addition to the above mentioned approximation and
desingularization results given by Lemmas 4.3 and 4.4, to approximately solve certain Riemann–
Hilbert type boundary value problems for Legendrian curves in C2n+1; see Lemma 3.2 and
Theorem 3.3.

The analogues of Theorem 1.2 have already been established for complex curves in Ck
(k > 2), minimal surfaces in RN (N > 3), and null holomorphic curves in CN (N > 3); see
Alarcón et al. [ADFL15b, Theorems 1.1 and 1.6] and also [AF15, ADFL15a] where approximate
solutions to Riemann–Hilbert problems for minimal surfaces and null curves are provided. With
the Mergelyan theorem, the desingularization theorem, and the Riemann–Hilbert method for
Legendrian curves in hand, the proof of Theorem 1.2 is an adaptation of [ADFL15b, proof of
Theorem 1.1]. For this reason, and with simplicity of exposition in mind, we provide the details
only in the case when M is the closed unit disk D ⊂ C (see Theorem 6.2); the proof of the
general case is a simple adaptation of this special case as in the cited works. An important
ingredient in the proof is the observation that almost every affine complex hyperplane of C2n+1
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contains properly embedded Legendrian curves C ↪→ C2n+1 passing through any given point in
the hyperplane (see Proposition 6.1).

As a consequence of Theorem 1.2 and Darboux’s theorem for complex contact manifolds
(see Theorem A.2), we obtain the following existence result for complete, relatively compact,
Legendrian curves in an arbitrary complex contact manifold.

Corollary 1.3. Let (W,L ) be a complex contact manifold. Given any compact bordered
Riemann surface M , there exists a continuous injective map M ↪→ W whose restriction to
◦
M is a holomorphic Legendrian embedding that is complete with respect to every Riemannian
metric on W .

Proof. Let dimW = 2n + 1 > 3. By Darboux’s theorem (see Theorem A.2), every point of W
has a neighborhood U ⊂ W and holomorphic coordinates Φ = (x1, y1, . . . , xn, yn, z) on U such
that L |U = ker Φ∗(η), where η is the standard contact form given by (1.1). Let V b U be a
relatively compact domain. Theorem 1.2 provides a continuous injective map F0 : M → Φ(V ) ⊂
C2n+1 whose restriction to

◦
M is a holomorphic η-Legendrian embedding which is complete with

respect to the Euclidean metric g0 := |dz|2 +
∑n

j=1(|dxj |2 + | dyj |2) on C2n+1. As a consequence,

F := Φ−1 ◦ F0 : M → W is L -Legendrian. Further, since V is compact, the restriction to V of
any Riemannian metric g on W is comparable to Φ∗(g0|Φ(V )), and hence, F | ◦

M
is complete with

respect to any such g. This completes the proof. 2

The paper includes an Appendix A in which we collect some results concerning holomorphic
contact and symplectic forms and structures; in particular, the Darboux theorems. These results
are well known in the real case, but their complex analogues do not seem easily available in the
literature. The proofs in the holomorphic case follow those for the smooth case rather closely,
and we do not claim any originality on them.

Our results open several natural new questions and possible directions of future investigation.
Explicitly, we pose the following problems.

Problem 1.4. Assume that W is a complex manifold of dimension n > 4 and L ⊂ TW is a
completely nonintegrable holomorphic subbundle of dimension m with 2 6 m 6 n− 2 (i.e., the
repeated commutators of holomorphic vector fields tangent to L span TW ). Does Corollary 1.3
hold in this setting, i.e., does every bordered Riemann surface admit a bounded complete
holomorphic map (immersion, embedding) to W which is tangent to L ?

Problem 1.5. It has recently been shown by the second named author that for any n > 3 there
exists a holomorphic contact structure on C2n+1 which is Kobayashi hyperbolic, and in particular
is not globally contactomorphic to the standard one (see [For17]). Are there infinitely many,
or perhaps even uncountable many pairwise nonequivalent complex contact structures on C3?
(Eliashberg showed that on R3 there exist countably many different isotopy classes of smooth
contact structures [Eli89, Eli93].)

Problem 1.6. Does the analogue of Theorem 1.1 hold for maps of bordered Riemann surfaces
into an arbitrary Stein contact manifold (W,L )?

An even more ambitious problem is to develop methods for constructing higher-dimensional
complex Legendrian submanifolds in complex contact manifolds. (We refer to Landsberg and
Manivel [LM07] for examples of compact Legendrian submanifolds in the projective space CP2n+1

endowed with the standard contact structure.) One of the main questions in this direction is the
following.
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Problem 1.7. Let Xn be an n-dimensional Stein manifold for some n > 1. (Recall that
1-dimensional Stein manifolds are open Riemann surfaces.) Does X admit a proper holomorphic
contact map (immersion, embedding) into to the standard complex contact manifold (C2n+1, η)?

2. Preliminaries

2.1 The standard holomorphic contact structure on C2n+1

Let η denote the contact form (1.1) on the Euclidean space C2n+1 for some n ∈ N. Its differential

dη =
n∑
j=1

dxj ∧ dyj

is the standard holomorphic symplectic form on C2n
x1,y1,...,xn,yn , and

η ∧ (dη)n = n! dx1 ∧ dy1 ∧ · · · ∧ dxn ∧ dyn ∧ dz

is a multiple of the standard holomorphic volume form on C2n+1. Note that (C2n+1, η) is
contactomorphic to the restriction of the holomorphic contact structure L on the projective
space CP2n+1 obtained by projectivizing the standard symplectic holomorphic structure (C2n+2,
α) given by the symplectic form α =

∑n
i=0 dxi∧dyi. Explicitly, for every complex line Cv ⊂ C2n+2

representing a point [v] ∈ CP2n+1 we let Lv = {[w] ∈ CP2n+1 : 〈α, v ∧ w〉 = 0}.
Let us write ∂/∂xj = ∂xj and similarly for the other coordinates on C2n+1. Note that

L = ker η is a trivial bundle that is spanned at each point by the holomorphic vector fields

∂xj , ∂yj − xj∂z, j = 1, . . . , n. (2.1)

Furthermore, we have that

〈η, ∂z〉 = 1 and ∂z c dη = 0 (2.2)

where c denotes the interior product:

〈∂z c dη, V 〉 = 〈dη, ∂z ∧ V 〉 for any vector field V.

Hence, ∂z is the Reeb vector field of the contact manifold (C2n+1, η) (cf. (A.5)). On C3 with
complex coordinates x, y, z we have

η = dz + x dy, η ∧ dη = dx ∧ dy ∧ dz.

The projection (x, y, z) 7→ (y, z) is called the front projection and (x, y, z) 7→ (x, y) is the Lagrange
projection.

Note that the holomorphic distribution L = ker η ⊂ TC2n+1 is completely noninvolutive. In
fact, we have that [∂xj , ∂yj − xj∂z] = −∂z and the vector fields (2.1) together with ∂z clearly
span TC2n+1. It follows that the real and imaginary parts of these vector fields, along with their
commutators, span TC2n+1 over R.

The following observation will be important at several points of our argumentation.

Remark 2.1. For each j ∈ {1, . . . , n}, the holomorphic automorphism of C2n+1 given by

Φj(x1, y1, . . . , xn, yn, z) = (x′1, y
′
1, . . . , x

′
n, y
′
n, z
′),
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where (x′j , y
′
j) = (xj ,−yj), (x′i, y

′
i) = (xi, yi) for all i 6= j, and z′ = z + xjyj , is an involution

satisfying

Φ∗jη = dz + yj dxj +
∑
i 6=j

xi dyi.

More precisely, setting ηj = dz + yj dxj +
∑

i 6=j xi dyi, we have Φ∗jη = ηj , and hence the contact

manifolds (C2n+1, ker η) and (C2n+1, ker ηj) are contactomorphic and Φj is a contactomorphism
between them. In particular, Φj maps η-Legendrian curves to ηj-Legendrian curves and vice
versa. Thus, the role of the variables xj and yj can be interchanged in many arguments.

2.2 Riemann surfaces and mapping spaces
For n ∈ N we denote by | · | the Euclidean norm in Cn. Given a topological space L and a map
f : L → Cn we denote by ‖f‖0,L := sup{|f(u)| : u ∈ L} the supremum norm of f .

Let M be an open Riemann surface. Given a subset K ⊂M , we denote by O(K) the algebra
of all holomorphic functions on open neighborhoods of K in M , where we identify any pair of
functions which agree on some neighborhood of K. In particular, O(M) denotes the algebra of
all holomorphic functions M → C.

If K is a smoothly bounded compact domain in M and r ∈ Z+ = {0, 1, 2, . . .}, we denote
by C r(K) the algebra of all r times continuously differentiable complex-valued functions on K
and by A r(K) the subalgebra of C r(M) consisting of all functions that are holomorphic in the

interior
◦
K = K\bK. We denote by ||f ||r,K the standard C r norm of a function f ∈ C r(K), where

the derivatives are measured with respect to a Riemannian metric on M ; the precise choice of
the metric will not be important for our purposes. We shall use the same notation for maps
f = (f1, . . . , fn) : K → Cn with fj ∈ C r(K) for j = 1, . . . , n.

A compact bordered Riemann surface is a compact Riemann surface M with nonempty
boundary ∅ 6= bM ⊂ M consisting of finitely many pairwise disjoint smooth Jordan curves.

The interior
◦
M = M\bM of such M is called a bordered Riemann surface. It is classical that

every compact bordered Riemann surface M is diffeomorphic to a smoothly bounded compact
domain in an open Riemann surface M̂ , and so the function spaces A r(M), r ∈ Z+, are defined
as above.

2.3 Sprays of holomorphic maps
We shall frequently use the notion of a holomorphic spray of maps X → Y between a pair of
complex manifolds. This is simply a holomorphic map F : X ×W → Y , where W is a connected
domain in a Euclidean space CN containing the origin. We often consider Fw = F (· , w) : X → Y
as a family of holomorphic maps depending holomorphically on the parameter w ∈W . The map
F0 = F (· , 0) is called the core of the spray. The spray is said to be dominating at a point x ∈ X
if the map w 7→ F (x,w) ∈ Y has maximal rank equal to dimY at w = 0; if this holds at every
point of X then the spray is said to be dominating (on X).

Sprays are a useful tool in linearization problems. In particular, in this paper we use period
dominating sprays in order to control periods of holomorphic maps from Riemann surfaces in
approximation problems; see (3.7) where this notion is first introduced. For a more complete
information on holomorphic sprays and their applications we refer the reader to [For11].

3. The Riemann–Hilbert method for Legendrian curves

We shall write D = {ζ ∈ C : |ζ| < 1} and T = bD = {ζ ∈ C : |ζ| = 1}.
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Lemma 3.1. For every holomorphic disk F = (x, y, z) : D → C2n+1 the map

F̃ (ζ) =

(
x(ζ), y(ζ), z(ζ)−

∫ ζ

0
F ∗η

)
, ζ ∈ D (3.1)

is a holomorphic Legendrian disk. In particular, for every holomorphic disk F : D → C2n+1 there
exists a Legendrian disk F̃ : D → C2n+1 satisfying

||F̃ − F ||0,D 6 sup
|ζ|<1

∣∣∣∣∫ ζ

0
F ∗η

∣∣∣∣.
Proof. We have (F̃ ∗η)(ζ) = z′(ζ) dζ − (F ∗η)(ζ) +

∑n
j=1 xj(ζ)y′j(ζ) dζ = 0. 2

The following lemma provides approximate solutions to the Riemann–Hilbert problem for
holomorphic Legendrian disks.

Lemma 3.2. Assume that f = (x, y, z) : D → C2n+1 is a holomorphic Legendrian disk of class
A 1(D), and for every u ∈ T the map

D 3 v 7−→ F (u, v) = (X(u, v), Y (u, v), Z(u, v)) ∈ C2n+1

is a Legendrian disk of class A 1(D) depending continuously on u ∈ T and such that F (u, 0) = f(u)
holds for all u ∈ T. Given numbers ε > 0 and 0 < ρ0 < 1, there exist a number ρ′ ∈ [ρ0, 1) and a
holomorphic Legendrian disk G : D → C2n+1 such that G(0) = f(0) and the following conditions
hold:

(i) sup{|G(u)− f(u)| : |u| 6 ρ′} < ε;

(ii) dist(G(u), F (u,T)) < ε for all u ∈ T; and

(iii) dist(G(ρu), F (u,D)) < ε for all u ∈ T and all ρ ∈ [ρ′, 1).

If in addition I is a proper closed segment in the circle T and F (u, v) = f(u) for all u ∈ T\I and
v ∈ D, then for every open neighborhood U of I in D we may choose G as above such that it
also satisfies the following condition:

(iv) G is ε-close to f in the C 1 topology on D\U .

Proof. For simplicity of notation we shall consider the case n = 1; the same proof will apply also
for n > 1.

Since we are looking for Legendrian disks G : D → C3 satisfying certain approximate
conditions in relationship to f and F , we may assume by approximation that all our holomorphic
Legendrian disks are defined on a fixed open neighborhood of D. Indeed, for f just use Mergelyan’s
approximation for x and y and define z in a neighborhood of D accordingly; for the boundary
disks proceed likewise but using the parametric version of Megelyan’s theorem. For (u, v) ∈ T×D
we have

X(u, v) =
∑
j>0

aj(u)vj ,

Y (u, v) =
∑
k>0

bk(u)vk,

Z(u, v) =
∑
n>0

cn(u)vn,
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where the coefficients aj , bk, and cn are continuous functions of u ∈ T and we have

a0(u) = x(u), b0(u) = y(u), c0(u) = z(u).

The Legendrian condition for the map v 7→ F (u, v) (with a fixed u ∈ T) says that Zv +XYv = 0,
where the subscript denotes the partial derivative with respect to the indicated variable. From
the power series expansions for X and Y we obtain

XYv =
∑
j>0

ajv
j ·
∑
k>1

bkkv
k−1 =

∑
n>1

( ∑
j+k=n

kajbk

)
vn−1.

Comparison with

Zv =
∑
n>1

cnnv
n−1

gives the equations

cn = − 1

n

∑
j+k=n

kajbk, n = 1, 2, . . . .

By approximation we may assume that there are only finitely many nonzero coefficients aj , bk
and hence cn, i.e., the Legendrian curves v 7→ F (u, v) are polynomial in v ∈ C of bounded degree
independent of u ∈ T. Furthermore, we may approximate each of the coefficients aj and bk (which
are continuous functions on T) by a rational function with the only pole at 0. In view of the
above formulas for the coefficients cn of Z these also become rational functions on C with the
only pole at 0. We denote the resulting functions and maps by the same letters. Note that this
gives a family of polynomial Legendrian curves F (u, · ) = (X(u, · ), Y (u, · ), Z(u, · )) : C → C3 for
u ∈ C\{0} which are Laurent polynomials in the variable u. In particular, we have that

Zv(u, v) +X(u, v)Yv(v, u) = 0, u ∈ C\{0}, v ∈ C. (3.2)

Let N0 be the biggest degree of pole of any of these coefficients at 0. For any N ∈ N with N > N0

the map FN : C → C3 given by

FN (u) = (XN (u), YN (u), ZN (u)) := F (u, uN ) = (X(u, uN ), Y (u, uN ), Z(u, uN ))

is a holomorphic polynomial with FN (0) = f(0). It is well known that for sufficiently big N ∈ N
the map FN satisfies properties (i)–(iv) in the lemma (see e.g. [DF12, Lemma 3.1]).

Although the maps FN obtained in this way need not be Legendrian, we shall now show that
for all sufficiently big N ∈ N the map FN is as close as desired uniformly on D to a Legendrian
disk G = GN = (XN , YN , Z̃N ) : D → C3 of the form given by Lemma 3.1; this will complete the
proof. To this end we estimate the expression

F ∗Nη = dZN +XN dYN .

We have that

d

du
Z(u, uN ) = Zu(u, uN ) + Zv(u, u

N )NuN−1,

X(u, uN )
d

du
Y (u, uN ) = X(u, uN )(Yu(u, uN ) + Yv(u, u

N )NuN−1).

By adding these two equations and taking into account the condition Zv + XYv = 0 for the
Legendrian disk v 7→ F (u, v) we obtain

F ∗Nη/du = Zu + ZvNu
N−1 +XYu +XYvNu

N−1 = Zu +XYu.
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From the power series expansions of F = (X,Y, Z) we get

(Zu +XYu)(u, uN ) =
∑
n>0

c′n(u)unN +
∑
j>0

aj(u)ujN ·
∑
k>0

b′k(u)ukN

=
∑
n>1

(
c′n(u) +

∑
j+k=n

aj(u)b′k(u)

)
unN .

The term with n = 0 in the above sum equals c′0 +a0b
′
0 = z′+xy′ = 0 since the curve f = (x, y, z)

is Legendrian, and hence it drops out from the sum.
Recall that each of the coefficients aj , bk and cn is Laurent polynomial of the form P (u, 1/u)

where P is a holomorphic polynomial on C2. The same is then true for their derivatives, and
hence for the coefficients c′n +

∑
j+k=n ajb

′
k in the above expansion of Zu +XYu. Let N1 be the

maximal power of 1/u that appears in any of these finitely many coefficients. If N > N1 then the
function (Zu + XYu)(u, uN ) is a polynomial in u whose lowest order term is uN−N1 or higher.

Note that
∫ ζ

0 u
N−N1 du = ζN−N1+1/(N −N1 + 1) which converges to zero uniformly on the disk

|ζ| 6 1 when N → ∞. Since we have finitely many such terms in the sum, it follows that the
integral ∫ ζ

0
F ∗Nη =

∫ ζ

0
(Zu +XYu)(u, uN ) du

converges to zero uniformly on D as N → +∞. Furthermore, if the last assumption in the
lemma holds then we can perform the same construction on a somewhat bigger compact simply

connected domain D ⊂ C containing the disk D such that I ⊂ bD and D\U ⊂
◦
D; the C 0-estimate

on D ∼= D then yields C 1 estimate on D\U in view of the Cauchy estimates. Finally, setting

Z̃N (ζ) = ZN (ζ) −
∫ ζ

0 F
∗
Nη (cf. Lemma 3.1) gives a sequence of holomorphic Legendrian maps

GN = (XN , YN , Z̃N ) : C → C3 satisfying the conclusion of Lemma 3.2. 2

We now prove the analogous result for any bordered Riemann surface.

Theorem 3.3. Assume that M is a compact bordered Riemann surface, I ⊂ bM is an arc which
is not a boundary component of M , f = (x, y, z) : M → C2n+1 is a Legendrian map of class
A 1(M), and for every point u ∈ bM the map

D 3 v 7−→ F (u, v) = (X(u, v), Y (u, v), Z(u, v)) ∈ C2n+1

is a Legendrian disk of class A 1(D), depending continuously on u ∈ bM , such that F (u, 0) = f(u)
for all u ∈ bM and F (u, v) = f(u) for all u ∈ bM\I and v ∈ D. Given a number ε > 0 and a
neighborhood U ⊂ M of the arc I, there exist a holomorphic Legendrian map H : M → C2n+1

and a neighborhood V b U of I with a smooth retraction ρ : V → V ∩bM such that the following
conditions hold:

(i) sup{|H(u)− f(u)| : u ∈M\V } < ε;

(ii) dist(H(u), F (u,T)) < ε for all u ∈ bM ; and

(iii) dist(H(u), F (ρ(u),D)) < ε for all u ∈ V .

Proof. For simplicity of notation we consider the case n = 1; the same proof applies in general
by considering x and y as vector-valued functions and writing x dy =

∑n
i=1 xi dyi.

We may assume that M is connected. Choose a smoothly bounded simply connected domain
D ⊂ U (a disk) such that D is a neighborhood of the closed arc I. By denting bM slightly inward
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along a neighborhood of I we can find a smoothly bounded compact domain M ′ ⊂M such that
M = M ′ ∪D and the following separation condition holds:

M ′\D ∩D\M ′ = ∅. (3.3)

Thus, (M ′, D) is a Cartan pair (cf. [For11, Definition 5.7.1]).

Let C1, . . . , C` ⊂
◦
M ′ be closed curves forming a basis of the homology group H1(M ′;Z) ∼=

H1(M ;Z) = Z` such that the union
⋃`
j=1Cj is Runge in M . Consider the period map

P = (P1, . . . ,P`) : A 1(M)2
→ C`

whose jth component equals

Pj(x, y) =

∫
Cj

x dy, x, y ∈ A 1(M). (3.4)

Note that P(x, y) = 0 if and only if the 1-form x dy is exact, and this holds if and only if (x, y)
is the Lagrange projection of a Legendrian curve f = (x, y, z) : M → C3.

We shall first assume that the second component y of f is not constant; then y|Cj is not

constant for any j = 1, . . . , ` by the identity principle. By the Runge property of
⋃`
j=1Cj

there exist holomorphic functions g1, . . . , g` on M such that for every j, k = 1, . . . , ` the number∫
Cj
gk dy ≈ δj,k is close to 1 if j = k and to 0 if j 6= k. (Here, δj,k is the Kronecker symbol. We first

construct smooth functions gk on
⋃`
j=1Cj such that

∫
Cj
gk dy = δj,k and then use Mergelyan’s

theorem to approximate them by holomorphic functions on M .) Let ζ = (ζ1, . . . , ζ`) ∈ C`.
Consider the function x̃ : M × C` → C given by

x̃(u, ζ) = x(u) +
∑̀
k=1

ζk gk(u), u ∈M, ζ ∈ C`. (3.5)

Note that for all j, k ∈ {1, . . . , `} we have

∂

∂ζk

∣∣∣∣
ζ=0

∫
Cj

x̃(· , ζ) dy =

∫
Cj

gk dy ≈ δj,k. (3.6)

If the above approximations are close enough then

∂

∂ζ

∣∣∣∣
ζ=0

P(x̃(· , ζ), y) : C` −→ C` is an isomorphism. (3.7)

If this holds, then the map (3.5) is called a period dominating holomorphic spray with the core
x̃(· , 0) = x.

Assume now that (x, y) ∈ A 1(M)2 is the Lagrange projection of the given Legendrian map
f = (x, y, z) : M → C3; hence P(x, y) = 0. By the inverse function theorem there is a ball rB ⊂ C`
around the origin such that the map rB 3 ζ 7→ P(x̃(· , ζ), y) ∈ C` is biholomorphic onto its image
(a neighborhood of 0 ∈ C`). Fix a point u0 ∈ D and consider the function z̃ : D × C` → C of
class A 1(D × C`) given by

z̃(u, ζ) = z(u0)−
∫ u

u0

x̃(· , ζ) dy, u ∈ D, ζ ∈ C`.
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Recall that z is the third component of the Legendrian map f = (x, y, z) : M → C3 and the
integral is taken over any path in the disk D. Note that z̃(· , 0) = z|D since x̃(· , 0) = x and

dz = −x dy. Let f̃ : D × C` → C3 be the family of Legendrian disks

D 3 u 7→ f̃(u, ζ) = (x̃(u, ζ), y(u), z̃(u, ζ)) ∈ C3 (3.8)

depending holomorphically on ζ ∈ C`. (The second component y is independent of the

parameter ζ.) Note that f̃(u, 0) = f(u) for u ∈ D.
For each point u ∈ bD ∩ bM and for every ζ ∈ C` we let

D 3 v 7→ F̃ (u, v, ζ) = (X̃(u, v, ζ), Ỹ (u, v, ζ), Z̃(u, v, ζ)) ∈ C3

be the Legendrian disk of class A 1(D) given by

X̃(u, v, ζ) = X(u, v) + x̃(u, ζ)− x(u),

Ỹ (u, v, ζ) = Y (u, v),

Z̃(u, v, ζ) = z̃(u, ζ)−
∫ t=v

t=0
X̃(u, t, ζ) dỸ (u, t).

When ζ = 0, we have X̃(u, v, 0) = X(u, v), Ỹ (u, v, 0) = Y (u, v) and hence

Z̃(u, v, 0) = z(u)−
∫ v

0
X(u, · ) dY (u, · ) = Z(u, v),

so we see that F̃ (u, v, 0) = F (u, v) is the given Legendrian disk in the theorem. Furthermore,
setting v = 0 we have

F̃ (u, 0, ζ) = f̃(u, ζ), u ∈ bD ∩ bM, ζ ∈ C`.

Finally, for every point u ∈ bD ∩ bM\I and for all ζ ∈ C` we have

F̃ (u, v, ζ) = F̃ (u, 0, ζ) = f̃(u, ζ), v ∈ D,

so F̃ (u, · , ζ) is the constant disk. We extend F̃ to all points u ∈ bD by setting

F̃ (u, v, ζ) = f̃(u, ζ) for all u ∈ bD\I, v ∈ D and ζ ∈ C`.

Note that f̃(· , ζ) : D → C3 and F̃ (u, · , ζ) : D → C3 are families of holomorphic Legendrian maps,
depending continuously on u ∈ bD (this only pertains to F̃ ) and holomorphically on ζ ∈ C`, which
satisfy the assumptions of Lemma 3.2 on the disk D ∼= D. Hence there is a family of Legendrian
disks G̃(· , ζ) : D → C3 satisfying the approximation conditions in Lemma 3.2 with respect to the

central Legendrian disk f̃(· , ζ) and the family of Legendrian disks F̃ (u, · , ζ) over the boundary
point u ∈ bD. It is easily seen from the proof of Lemma 3.2 that the family G̃(· , ζ) may be chosen
to depend holomorphically on ζ ∈ C`, and the estimates in the lemma can be made uniform for
all points ζ in any given bounded domain in C`, in particular, on the ball rB ⊂ C`.

Let V ⊂ D\M ′ be a small neighborhood of the arc I ⊂ bD. By condition (iv) in Lemma 3.2

we may assume that G̃(· , ζ) is as close as desired to f̃(· , ζ) in the C 1 norm on the set D\V , and
hence on M ′ ∩D ⊂ D\V . In particular, given δ > 0 we may assume that

||G̃(· , ζ)− f̃(· , ζ)||1,M ′∩D < δ, ζ ∈ rB.

We shall write G̃ = (G̃1, G̃2, G̃3).
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Recall that the first component of f̃ (see (3.8)) is the function x̃ (cf. (3.5)) which is defined
on all of M . By solving a Cousin-I problem with bounds on the Cartan pair (M ′, D) we glue x̃
and G̃1 and obtain a function H1(· , ζ) : M → C of class A 1(M), holomorphic in ζ, such that for
all ζ ∈ rB we have

||H1(· , ζ)− x̃(· , ζ)||1,M ′ < Cδ, ||H1(· , ζ)− G̃1(· , ζ)||1,D < Cδ,

where the constant C only depends on the Cartan pair (M ′, D). This is accomplished by first
patching the two functions smoothly, using the separation condition (3.3), and then correcting
the C 1-small error by solving the ∂-equation with C 1-estimates on the bordered Riemann surface
M . The variable ζ is treated as a parameter. This is standard; see e.g. [For11, proof of Lemma
8.5.2] and use C 1 estimates instead of C 0 estimates.

Likewise, we can glue the second component ỹ = y ∈ A 1(M) of f̃ with the function G̃2(· , ζ)
into a function H2(· , ζ) : M → C of class A 1(M), holomorphic in ζ, such that for all ζ ∈ rB we
have the estimates

||H2(· , ζ)− y||1,M ′ < Cδ, ||H2(· , ζ)− G̃2(· , ζ)||1,D < Cδ.

From the above estimates on M ′ and the fact that
⋃`
j=1Cj ⊂ M ′ it follows that the

period map ζ 7→ P(H1(· , ζ), H2(· , ζ)) (cf. (3.4)) approximates the biholomorphic period map
ζ 7→ P(x̃(· , ζ), ỹ(· , ζ)) uniformly on the ball ζ ∈ rB. Assuming that δ > 0 is chosen small enough,
it follows that there is a point ζ ′ ∈ rB near the origin such that

P(H1(· , ζ ′), H2(· , ζ ′)) = 0. (3.9)

For this value of ζ ′ we obtain a Legendrian curve

H = (H1(· , ζ ′), H2(· , ζ ′), H3) : M → C3

whose third component equals

H3(u) = z(u0)−
∫ u

u0

H1(· , ζ ′) dH2(· , ζ ′), u ∈M.

The integral is independent of the choice of the path in M since by (3.9) all the periods over
closed curves in M vanish. (Note however that we do not get a Legendrian curve for parameter
values ζ 6= ζ ′ since the period condition (3.9) fails.) It follows from the construction that H
satisfies the conclusion of Theorem 3.3 provided that the approximations made in the proof were
close enough. This completes the proof under the assumption that the second component y of f
is nonconstant.

Assume now that y = y0 is constant. If the first component x is nonconstant, we consider a
spray of the form (3.5) over the second component:

ỹ(p, ζ) = y0 +
∑̀
k=1

ζk gk(p), p ∈M, ζ = (ζ1, . . . , ζ`) ∈ C`,

where the functions g1, . . . , g` ∈ O(M) are chosen such that∫
Cj

x dgk = −
∫
Cj

gk dx ≈ δj,k.
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This ensures that the period map ζ 7→ P(x, ỹ(· , ζ)) has maximal rank at ζ = 0, so we can proceed
as before, keeping the component x fixed during the proof.

Finally, if x = x0 and y = y0 are both constant, then any perturbation of either x or y
integrates to a Legendrian curve which brings us back to the second case considered above.
Of course we must also adjust the Legendrian disks F (u, · ) (u ∈ bM) accordingly so that the
condition F (u, 0) = f(u) is satisfied. 2

4. Mergelyan approximation by embedded Legendrian curves

In this section we prove an approximation result of Runge–Mergelyan type for Legendrian curves
by holomorphic Legendrian embeddings; see Lemma 4.4 below. This is an important step in the
proof of Theorem 5.1 given in the following section.

Recall that a compact set K in a complex manifold M is said to be O(M)-convex, or
holomorphically convex, or Runge in M , if for every point p ∈ M\K there exists f ∈ O(M)
with |f(p)| > maxK |f |. If M is an open Riemann surface, then a compact subset K ⊂ M is
Runge if and only if M\K has no relatively compact connected components in M .

Definition 4.1. A compact subset S of an open Riemann surface M is said to be admissible if
S = K ∪ Γ, where K =

⋃
Dj is a union of finitely many pairwise disjoint, compact, smoothly

bounded domains Dj in M and Γ =
⋃

Γi is a union of finitely many pairwise disjoint smooth
arcs or closed curves that intersect K only in their endpoints (or not at all), and such that their

intersections with the boundary bK are transverse. Note that
◦
S =

◦
K.

Given an admissible set S = K ∪ Γ ⊂M , we shall use the notation

A r(S) = {f ∈ C r(S) : f | ◦
K
∈ O(

◦
K)}, r ∈ Z+. (4.1)

The natural topology on A r(S) ⊂ C r(S) coincides with the C r(K) topology on the subset K,
while on each of the arcs Γi ⊂ Γ we use the C r-norm of the function measured with respect
to a fixed regular parametrization of Γi. Note that an admissible set S is Runge in M if and
only if the inclusion map S ↪→ M induces an injective homomorphism H1(S;Z) ↪→ H1(M ;Z)
of the first homology groups. If that is the case, the classical Mergelyan approximation theorem
(see [Mer51]) ensures that every function f ∈ A r(S) (r ∈ Z+) can be approximated in the
C r(S)-topology by functions holomorphic on M . When there is no place for ambiguity, we shall
simply write A r(S) for A r(S)n, n ∈ N.

Let f : S → C be a function of class A 1(S). Fix a holomorphic 1-form θ vanishing nowhere

on M and consider the continuous map f̂ : S → C given by:

– f̂ = df/θ on
◦
K;

– f̂(α(t)) = (f ◦ α)′(t)/θ(α(t), α̇(t)) for any smooth regular path α in M parametrizing a
connected component Γi of Γ.

Clearly, f̂ is a well-defined map of class A 0(S). By definition, we set

df := f̂ θ, f ∈ A 1(S). (4.2)

Obviously, f̂ depends on the choice of θ but df does not. If f ∈ O(S) then df (4.2) agrees with
the restriction of the exterior differential of f to the points of S, i.e., d(f |S) = (df)|S . Conversely,

every pair (θ, f̂), where θ is a holomorphic 1-form vanishing nowhere on M and f̂ : S → C is
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a function of class A 0(S) such that
∫
γ f̂ θ = 0 for all closed curves γ ⊂ S, determines a function

f : S → C of class A 1(S), with df = f̂ θ, by the formula

f(p) =

∫ p

f̂ θ, p ∈ S.

Definition 4.2. Let S = K ∪Γ be a compact admissible set in an open Riemann surface M . A
map f = (x1, y1, . . . , xn, yn, z) : S → C2n+1 of class A 1(S) is a generalized Legendrian curve if
f∗η = 0, where η is the standard contact form (1.1); that is to say, if

dz +

n∑
j=1

xj dyj = 0 everywhere on S.

As a preliminary step in the proof of Lemma 4.4, we show the following approximation result
which will be very useful in subsequent applications.

Lemma 4.3. Let S = K∪Γ be an admissible subset in an open connected Riemann surface R (see
Definition 4.1) such that S is a deformation retract of R, and let f = (x1, y1, . . . , xn, yn, z) : S →

C2n+1 be a generalized Legendrian curve (see Definition 4.2). Then f may be approximated

in the C 1(S)-topology by holomorphic Legendrian curves f̃ : R → C2n+1 such that f̃ has no
constant component function.

Furthermore, assume that for some σ ∈ {1, . . . , 2n+ 1} the following hold.

(i) The σth component of f is nonconstant and holomorphic on R.

(ii) If σ = 2n + 1 then there is i ∈ {1, . . . , n} such that xi and yi are not constant on any
component of K, xi has no zeros in Γ, and yi has no critical points in Γ.

Then the approximating Legendrian curves f̃ : R → C2n+1 can be chosen such that the σth
component of f̃ agrees with the σth component of f .

Proof. Since S is a deformation retract of R, we have that R is of finite topological type and S
is connected and Runge in R. Without loss of generality, we can assume that K 6= ∅. Indeed,
otherwise S = Γ consists of a single closed curve or Jordan arc. Then we choose a small smoothly
bounded close disk K in R such that S′ = K ∪ Γ is admissible and connected, and K ∩ S is a
single Jordan arc. Approximating f by a generalized Legendrian curve S′ → C2n+1 reduces the
proof to the case when K 6= ∅.

Assume as we may that K 6= ∅. It follows that every component of Γ (hence of S) meets K.
Let C1, . . . , C` ⊂ S be closed curves forming a basis of the homology group H1(S;Z) =Z` (` ∈ Z+)
such that the union

⋃`
k=1Ck is Runge in R. By our assumptions on S, we may ensure that each

curve Ck, k = 1, . . . , `, contains a subarc C̃k lying in
◦
K.

The argument at the end of the proof of Theorem 3.3 and Remark 2.1 enable us to assume
without loss of generality that y1 is not constant on any component of K. Let

P = (P1, . . . ,P`) : A 1(S)2n
→ C`

be the period map (3.4) with the components

Pk(g1, h1, . . . , gn, hn) =

∫
Ck

n∑
j=1

gj dhj , k = 1, . . . , `.
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Let us construct a spray x̃1(· , ζ) : S → C of the form

x̃1(u, ζ) = x1(u) +
∑̀
k=1

ζk gk(u), u ∈ S, ζ ∈ C`, (4.3)

(cf. (3.5)) with the core x̃1(· , 0) = x1 (the first component of f), depending holomorphically
on ζ ∈ C`, such that the ζ-derivative of the period map P(x̃1(· , ζ), y1, . . . , xn, yn) at ζ = 0 is
an isomorphism (cf. (3.7)). We proceed as follows. Since y1 is holomorphic and nonconstant
on each component of K, we may first construct smooth functions gk on C, with support on

C̃k ⊂
◦
K, defining the spray x̃1(· , ζ) on C and then, by Mergelyan theorem, assume that each

gk is holomorphic on R (recall that C is Runge in R). This ensures the existence of the desired
spray on S, the domain of definition of x1.

Next, we approximate (x1, y1, . . . , xn, yn) ∈ A 1(S)2n in the C 1(S)-norm by a holomorphic
map (x′1, y

′
1, . . . , x

′
n, y
′
n) ∈ O(R)2n such that

∑n
j=1 x

′
j dy

′
j does not vanish everywhere on R and

all the component functions x′1, y
′
1, . . . , x

′
n, y
′
n are nonconstant. For that, recall that S is Runge

in R and apply Mergelyan approximation with jet-interpolation. Let x̃′1 : R × C` → C be the
spray (4.3) obtained by replacing the core x1 by x′1:

x̃′1(u, ζ) = x′1(u) +
∑̀
k=1

ζk gk(u), u ∈ R, ζ ∈ C`. (4.4)

If the approximations are close enough, then the period map P(x̃′1(· , ζ), y′1, . . . , x
′
n, y
′
n) is so close

to P(x̃1(· , ζ), y1, . . . , xn, yn) that there is a point ζ ′ ∈ C` close to 0 for which

P(x̃′1(· , ζ ′), y′1, . . . , x′n, y′n) = 0.

This means that x̃′1(· , ζ ′) dy′1 +
∑n

j=2 x
′
j dy

′
j is an exact holomorphic 1-form on R. Pick an initial

point u0 ∈
◦
K and define the holomorphic function z′ ∈ O(R) by

z′(u) = z(u0)−
∫ u

u0

(
x̃′1(· , ζ ′) dy′1 +

n∑
j=2

x′j dy
′
j

)
, u ∈ R.

Clearly, the map f̃ = (x̃′1(· , ζ ′), y′1, . . . , x′n, y′n, z′) : R → C2n+1 is then a holomorphic Legendrian
curve approximating f in the C 1(S)-topology and having no constant component function
provided that ζ ′ is close enough to 0 ∈ C`. This proves the first part of the lemma.

For the second part, let σ ∈ {1, . . . , 2n+ 1} and assume that conditions (i) and (ii) hold. By
Remark 2.1 we may assume that σ ∈ {2, 2n+ 1}.

Case 1: Assume that σ = 2. In this case, the argument above works with the only difference
that when approximating (x1, y1, . . . , xn, yn) ∈ A 1(S)2n in the C 1(S)-norm by a holomorphic
map (x′1, y

′
1, . . . , x

′
n, y
′
n) ∈ O(R)2n, we choose y′1 = y1. Take into account that, in this case, y1 is

holomorphic and nonconstant on R by assumption (i), and so neither the argument at the end
of the proof of Theorem 3.3 nor Remark 2.1 are required.

Case 2: Assume that σ = 2n+1. By condition (ii) and Remark 2.1 we may assume that x1 and y1

are not constant on any component of K, x1 has no zeros in Γ, and y1 has no critical points in Γ.
Denote by 0 the subset of A 1(S)2n consisting of those maps (a1, a2, b2, . . . , an, bn, w) : S → C2n
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(note that b1 is omitted) such that, for some (and hence for any) holomorphic 1-form θ vanishing
nowhere on R, the map

1

a1θ

(
dw +

n∑
j=2

aj dbj

)
: S → C

is well defined and of class A 0(S) (see (4.1) and (4.2)). The fact that f is a generalized Legendrian
curve implies that (x1, x2, y2, . . . , xn, yn, z) ∈ 0. Consider the period map

P = (P1, . . . ,P`) : 0 → C`

with the components

Pk(a1, a2, b2, . . . , an, bn, w) =

∫
Ck

1

a1

(
dw +

n∑
j=2

aj dbj

)
, k = 1, . . . , `.

We shall now construct a spray x̃1(· , ζ) : S → C of the form

x̃1(u, ζ) = x1(u)e
∑`
l=1 ζl gl(u), u ∈ S, ζ ∈ C`, (4.5)

where gl ∈ O(R) for all l ∈ {1, . . . , `}, with the core x̃1(· , 0) = x1, depending holomorphically
on ζ ∈ C`, such that the ζ-derivative of the period map P(x̃1(· , ζ), x2, y2, . . . , xn, yn, z) at ζ = 0
is an isomorphism. (Note that (x̃1(· , ζ), x2, y2, . . . , xn, yn, z) ∈ 0 for all ζ ∈ C` since (x1, x2,

y2, . . . , xn, yn, z) ∈ 0 and e
∑`
l=1 ζlgl has no zeros.) We proceed as follows. Note that, for such

a spray,

∂

∂ζl

∣∣∣∣
ζ=0

∫
Ck

1

x̃1(·, ζ)

(
dz +

n∑
j=2

xj dyj

)
= −

∫
Ck

gl
x1

(
dz +

n∑
j=2

xj dyj

)
=

∫
Ck

gl dy1.

As above, since C̃k ⊂
◦
K and y1 is holomorphic and nonconstant on every component of K,

we may first construct smooth functions gl on C, with support on C̃k, defining the spray x̃1(· , ζ)
on C, such that ∫

Ck

gl dy1 ≈ δl,k.

(Recall that δl,k is the Kronecker symbol.) By the Mergelyan theorem, we may assume that each
gl is holomorphic on R. As above, this guarantees the existence of the desired spray x̃1(· , ζ) on S.
We next approximate (x1, x2, y2, . . . , xn, yn) ∈ A 1(S)2n−1 in the C 1(S)-norm by a holomorphic
map (x′1, x

′
2, y
′
2, . . . , x

′
n, y
′
n) ∈ O(R)2n−1 such that the following hold.

(a) Each component function x′1, x
′
2, y
′
2, . . . , x

′
n, y
′
n is nonconstant.

(b) The zeros of x′1 in R are those of x1 in S (which lie in K, see assumption (ii)), with the
same order; in particular, x′1 has no zeros in R\K.

(c) The 1-form dz+
∑n

j=2 x
′
j dy

′
j does not vanish identically on R, but it does vanish at the zeros

of dz+
∑n

j=2 xj dyj = −x1 dy1 in K, with the same order. (Observe that, by assumption (ii),
x1 dy1 does not vanish identically on K and has no zeros in Γ.)

To ensure these conditions we make use of Mergelyan approximation with jet interpolation.
Let x̃′1 : R× C` → C be the spray (4.5) obtained by replacing the core x1 by x′1:

x̃′1(u, ζ) = x′1(u)e
∑`
l=1 ζl gl(u), u ∈ R, ζ ∈ C`. (4.6)
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Since (x1, x2, y2, . . . , xn, yn, z) ∈ 0, conditions (b) and (c) above guarantee that

1

x̃′1(·, ζ)

(
dz +

n∑
j=2

x′j dy
′
j

)
is holomorphic on R for all ζ ∈ C`. (4.7)

As above, if the approximations are close enough, there is a point ζ ′ ∈ C` close to 0 for which

P(x̃′1(· , ζ ′), x′2, y′2, . . . , x′n, y′n, z) = 0. Thus, choosing an initial point u0 ∈
◦
K and defining

y′1(u) = y1(u0)−
∫ u

u0

1

x̃′1(·, ζ ′)

(
dz +

n∑
j=2

x′j dy
′
j

)
, u ∈ R,

it follows from (4.7) that y′1 : R → C is holomorphic and, in view of conditions (a) and (c), the
map

f̃ = (x̃′1(· , ζ ′), y′1, . . . , x′n, y′n, z) : R → C2n+1

is a holomorphic Legendrian curve satisfying the conclusion of the lemma, provided that the
approximations are sufficiently close. 2

Lemma 4.4. Let M be a compact bordered Riemann surface. Every Legendrian curve f : M →

C2n+1 (n ∈ N) of class A 1(M) may be approximated in the C 1(M)-topology by Legendrian

embeddings f̃ : M ↪→ C2n+1 of class A 1(M) having no constant component function.

Proof. We assume that n = 1; the same proof applies in general. We may also assume without
loss of generality that M is connected.

Let R be an open Riemann surface containing M as a smoothly bounded compact domain
which is a deformation retract of R. By Lemma 4.3 we may assume that f is a holomorphic
Legendrian curve on R having no constant component function. Write f = (x, y, z) : R → C3.

The proof will proceed in two steps. In the first step we shall approximate f in the C 1(M)-
topology by a Legendrian immersion R → C3 whose (x, y)-projection is an immersion R → C2.
In the second step we shall show how to remove double points on M of the new Legendrian
immersion and hence obtain a Legendrian embedding M ↪→ C3. If the approximation in both
steps is close enough then the resulting Legendrian embedding will have no constant component
function.

Let C1, . . . , C` ⊂
◦
M be closed curves forming a basis of the homology group H1(M ;Z) = Z`

such that the union
⋃`
k=1Ck is Runge in

◦
M , hence in R. Let

P = (P1, . . . ,P`) : A 1(M)2
→ C`

be the period map (3.4) with the components

Pk(g, h) =

∫
Ck

g dh, g, h ∈ A 1(M), k = 1, . . . , `.

For the first step of the proof, let u1, u2, . . . be the zeros of dy in R. We shall approximate x
in the C 1(M)-norm by a function x′ ∈ O(R) such that

dx′(uj) 6= 0 for j = 1, 2, . . . and P(x′, y) = 0. (4.8)
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The first condition ensures that the map (x′, y) : R → C2 is an immersion, and the second one
that x′ dy is an exact 1-form on R. Choosing an initial point u0 ∈M and setting

z′(u) = z(u0)−
∫ u

u0

x′ dy, u ∈ R (4.9)

we shall obtain a desired Legendrian immersion f ′ = (x′, y, z′) : R → C3.
We now explain how to find the function x′ ∈ O(R) satisfying (4.8). Choose a function

h ∈ O(R) such that for every j = 1, 2, . . . we have dh(uj) = 0 if dx(uj) 6= 0 and dh(uj) 6= 0 if
dx(uj) = 0; the existence of such a function is ensured, for instance, by the theorem of Gunning
and Narasimhan (see [GN67]). Then, for every δ ∈ C\{0} the function xδ := x + δh ∈ O(R)
satisfies

dxδ(uj) 6= 0, j = 1, 2, . . . . (4.10)

Hence, (xδ, y) : R → C2 is an immersion. We need to correct xδ in order to achieve the
period vanishing condition in (4.8). To this end, choose the curves C1, . . . , C` above such that
C :=

⋃`
k=1Ck does not contain any of the critical points u1, u2, . . . of y. Let x̃(· , ζ) : R → C

(ζ ∈ C`) be the spray (3.5) with the core x̃(· , 0) = x, where the functions gk ∈ O(R) are chosen
such that the derivative of the period map P(x̃(· , ζ), y) at ζ = 0 (see (3.7)) is an isomorphism
and dgk(uj) = 0 for all k = 1, 2, . . . , ` and j = 1, 2, . . . . Let x̃δ(· , ζ) : R → C be the holomorphic
spray

x̃δ(u, ζ) = xδ(u) +
∑̀
k=1

ζk gk(u), u ∈ R, ζ ∈ C`.

If xδ is sufficiently close to x on the compact set C (which can be achieved by choosing |δ| > 0
small enough), then the period map P(x̃δ(· , ζ), y) is close to P(x̃(· , ζ), y). If the approximation
is close enough, the implicit function theorem furnishes a point ζδ ∈ C` near 0 such that
P(x̃δ(· , ζδ), y) = 0 and limδ→0 ζδ = 0. Fix such δ and set x′ = x̃δ(· , ζδ) ∈ O(R); hence the 1-form
x′ dy is exact on R. Since dgk(uj) = 0, we also have that dx′(uj) = dxδ(uj) 6= 0 for all j = 1, 2, . . .
(cf. (4.10)), so (x′, y) : R → C2 is an immersion. Finally, defining the function z′ ∈ O(R) by
(4.9) we obtain a Legendrian immersion f ′ = (x′, y, z′) : R → C3 which approximates f in the
C 1(M)-norm. This concludes the first step of the proof.

It remains to show that a holomorphic Legendrian immersion f : M → C3 can be
approximated in the C 1(M)-norm by holomorphic Legendrian embeddings f̃ : M → C3. We
shall follow the idea in [AFL16c, proof of Theorem 4.1] where the analogous result was shown
for holomorphic null curves in Cn for n > 3; a similar idea was also used in [AF14, proof of
Theorem 2.4] to find conformal minimal embeddings of open Riemann surfaces into Rn for any
n > 5.

To a map f : M → C3 we associate the difference map δf : M ×M → C3 defined by

δf(u, v) = f(v)− f(u), u, v ∈M.

Clearly, f is injective if and only if

(δf)−1(0) = DM := {(u, u) : u ∈M}.

Assuming that f is an immersion, there is an open neighborhood U ⊂ M ×M of the diagonal
DM such that δf does not assume the value 0 ∈ C3 on U\DM .

Assume that f : M → C3 is a holomorphic Legendrian immersion. We shall approximate f in
the C 1(M)-norm by a holomorphic Legendrian immersion f̃ : M → C3 whose difference map δf̃
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is transverse to the origin 0 ∈ C3 on M ×M\U . Since dimM ×M = 2 < 3 = dimC3, this will

imply that δf̃ does not assume the value zero on M×M\U , so f̃(u) 6= f̃(v) if (u, v) ∈M×M\U .

If on the other hand (u, v) ∈ U\DM , then f̃(u) 6= f̃(v) provided that f̃ is close enough to f ;

hence the map f̃ is an embedding.
To find such f̃ , it suffices to construct a holomorphic map H : M × CN → C3 for some big

integer N ∈ N satisfying the following properties for some r > 0.

(a) H(· , 0) = f .

(b) The map H(· , ξ) : M → C3 is a holomorphic Legendrian immersion for every ξ ∈ rB, where
B is the unit ball in CN .

(c) The difference map δH : M ×M × rB → C3, defined by

δH(u, v, ξ) = H(v, ξ)−H(u, ξ), u, v ∈M, ξ ∈ rB,
is a submersive family of maps on M ×M\U , in the sense that

∂ξ|ξ=0 δH(u, v, ξ) : CN → C3 is surjective for every (u, v) ∈M ×M\U. (4.11)

Assume for a moment that such H exists. By compactness of M×M\U it follows from (4.11)
that the partial differential ∂ξ(δH) is surjective on (M ×M\U)× r′B for some 0 < r′ 6 r. Hence
the map δH : (M ×M\U)× r′B → C3 is transverse to any submanifold of C3, in particular, to
the origin 0 ∈ C3. By Abraham’s reduction to Sard’s theorem [Abr63] (see also [For11, § 7.8] and
the references therein for the holomorphic case) it follows that for a generic choice of ξ ∈ r′B the
difference map δH(· , · , ξ) is transverse to 0 ∈ C3 on M×M\U , and hence it omits the value 0 by
dimension reasons. Choosing ξ sufficiently close to 0 ∈ CN we obtain a holomorphic Legendrian
embedding f̃ = H(· , ξ) : M → C3 close to f in the C 1(M)-norm.

The main point is to find for any given point (p, q) ∈ M ×M\U a spray H as above, with
N = 3, such that (4.11) holds at (u, v) = (p, q). Since the submersivity of the differential is an
open condition and M ×M\U is compact, we obtain a spray H that is submersive at all points
of M×M\U by composing finitely many such sprays as explained in [AFL16c, proof of Theorem
4.1] or [AF14, proof of Theorem 2.4].

Fix a pair of distinct points p 6= q in M . Choose a smooth embedded arc E ⊂M connecting p
to q. As above, there exist smooth closed curves C1, . . . , C` ⊂M forming a basis of the homology
group H1(M ;Z) = Z` such that (

⋃`
k=1Ck) ∩ E = ∅ and (

⋃`
k=1Ck) ∪ E is Runge in M . Given a

number µ > 0, we choose holomorphic functions g1, . . . , g`, h1, h2 ∈ O(M) satisfying the following
conditions:

(i)
∫
Cj
gk dy ≈ δj,k for all j, k = 1, . . . , `;

(ii) |gk(u)| < 1 for all u ∈ E and k = 1, . . . , `;

(iii) h1(p) = 0, h1(q) = 1, h2(p) = h2(q) = 0;

(iv)
∫
E h2 dy = −1;

(v) |hj(u)| < µ and |dhj(u)| < µ for all u ∈
⋃`
k=1Ck and j = 1, 2.

Functions with these properties are easily found by first constructing suitable smooth functions

on the curves (
⋃`
k=1Ck) ∪ E and applying Mergelyan’s approximation theorem.

Let ξ = (ξ1, ξ2, ξ3) ∈ C3 and ζ = (ζ1, . . . , ζ`) ∈ C`. Consider the following sprays of
holomorphic functions of u ∈M :

x̃(u, ξ, ζ) = x(u) + ξ1h1(u) + ξ3h2(u) +
∑̀
k=1

ζk gk(u), (4.12)
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ỹ(u, ξ) = y(u) + ξ2h1(u). (4.13)

Note that x̃(u, 0, 0) = x(u) and ỹ(u, 0) = y(u). Condition (i) ensures that

∂

∂ζ

∣∣∣∣
ζ=0

P(x̃(· , 0, ζ), ỹ(· , 0)) : C` −→ C` is an isomorphism.

Therefore, by the implicit function theorem, the period vanishing equation

P(x̃(· , ξ, ζ), ỹ(· , ξ)) =

(∫
Ck

x̃(· , ξ, ζ) dỹ(· , ξ)
)
k=1,...,`

= 0 (4.14)

(which holds at ξ = 0 and ζ = 0) can be solved in the form ζ = ρ(ξ), where ρ is a holomorphic
map from a neighborhood of 0 ∈ C3 to a neighborhood of 0 ∈ C` with ρ(0) = 0. We must estimate
the differential dρ(ξ) at ξ = 0. Differentiating (4.14) gives in view of ζ = ρ(ξ) and the chain rule
that

∂

∂ζ

∣∣∣∣
ζ=0

P(x̃(· , 0, ζ), ỹ(· , 0))· dρ(0) = − ∂

∂ξ

∣∣∣∣
ξ=0

P(x̃(· , ξ, 0), ỹ(· , ξ)).

From (4.12), (4.13) and condition (v) on h1 and h2 we see that the right-hand side of the above
equation is of size O(µ). Indeed, its components are integrals over the curves C1, . . . , C` of terms
which involve at least one of the functions h1, h2 or dh1; these are of size O(µ) by condition (v).
Since the first term on the left-hand side is close to the identity, we get

|dρ(0)| = O(µ). (4.15)

Define the holomorphic spray z̃(· , ξ) with the core z̃(· , 0) = z on M by

z̃(u, ξ) = z(p)−
∫ t=u

t=p
x̃(t, ξ, ρ(ξ)) dỹ(t, ξ), u ∈M. (4.16)

Note that the integral is independent of the choice of the path from p to u. It follows that the
spray H(· , ξ) : M → C3 defined by

H(u, ξ) = (x̃(u, ξ, ρ(ξ)), ỹ(u, ξ), z̃(u, ξ)), u ∈M,

consists of Legendrian maps and is holomorphic with respect to ξ ∈ C3 near the origin. Obviously,
H satisfies properties (a) and (b). It remains to see that it also satisfies property (c), i.e.,

∂ξ|ξ=0 δH(p, q, ξ) : C3
→ C3 is an isomorphism. (4.17)

Condition (iii) on h1 and h2 implies that

∂

∂ξ

∣∣∣∣
ξ=0

δx̃(p, q, ξ, 0) = (1, 0, 0),
∂

∂ξ

∣∣∣∣
ξ=0

δỹ(p, q, ξ, 0) = (0, 1, 0). (4.18)

We claim that the following estimates hold:

∂

∂ξ

∣∣∣∣
ξ=0

δx̃(p, q, ξ, ρ(ξ)) = (1, 0, 0) +O(µ), (4.19)

∂

∂ξ

∣∣∣∣
ξ=0

δỹ(p, q, ξ, ρ(ξ)) = (0, 1, 0) +O(µ), (4.20)
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∂

∂ξ3

∣∣∣∣
ξ=0

δz̃(p, q, ξ) = 1 +O(µ). (4.21)

The first two follow directly from the definitions of x̃ and ỹ (see (4.12) and (4.13)) and taking
into account (4.15) and (4.18). To get (4.21), note that (4.16) implies

δz̃(p, q, ξ) = −
∫ t=q

t=p
x̃(t, ξ, ρ(ξ)) dỹ(t, ξ)

where the integral is taken over the arc E. From conditions (ii), (iv), (4.12), (4.13) and (4.15)
we infer that

∂

∂ξ3

∣∣∣∣
ξ=0

δz̃(p, q, ξ) = −
∫
E
h2 dy −

∫
E

∑̀
k=1

∂ρk
∂ξ3

(0) gk dy = 1 +O(µ)

which establishes (4.21). Choosing the constant µ > 0 small enough, we see from (4.19), (4.20)
and (4.21) that (4.17) holds. By what has been said before, this shows that f can be approximated
on M by Legendrian embeddings. 2

5. Approximation by proper holomorphic Legendrian embeddings

Given n ∈ N and σ ∈ {1, . . . , n} we denote by πσ : Cn → C the coordinate projection

πσ(z1, . . . , zn) = zσ.

If n > 1 and ς ∈ {1, . . . , n}\{σ}, we write

πσ,ς = (πσ, πς) : Cn → C2.

In this section we prove the following main theorem of the paper.

Theorem 5.1. Let S = K ∪Γ be an admissible subset in an open connected Riemann surface R
(see Definition 4.1), and let f : S → C2n+1 be a generalized Legendrian curve (see Definition 4.2).
Also choose two distinct numbers σ, ς ∈ {1, . . . , 2n + 1}. Then f may be approximated in the

C 1(S)-topology by holomorphic Legendrian embeddings f̃ : R ↪→ C2n+1 such that the projection
πσ,ς ◦ f : R → C2 is a proper map.

The next result will be the key to obtain the properness condition in Theorem 5.1.

Lemma 5.2. Let M1 and M2 be smoothly bounded compact domains in an open Riemann surface

R such that M1 ⊂
◦
M2 and M1 is a strong deformation retract of M2. Choose two distinct numbers

σ, ς ∈ {1, . . . , 2n+ 1} (n ∈ N), let f : M1 → C2n+1 be a Legendrian curve of class A 1(M1), and
assume that

max{|πσ ◦ f |, |πς ◦ f |} > µ on bM1 (5.1)

for some µ > 0. Then f may be approximated in the C 1(M1)-topology by holomorphic Legendrian

embeddings f̃ : M2 → C2n+1 enjoying the following properties:

(i) max{|πσ ◦ f̃ |, |πς ◦ f̃ |} > µ+ 1 on bM2;

(ii) max{|πσ ◦ f̃ |, |πς ◦ f̃ |} > µ on M2\
◦
M1.
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Figure 5.1. Sets in the proof of Lemma 5.2.

Proof. Let α1, . . . , αk (k ∈ N) be pairwise disjoint smooth Jordan curves which are the connected
components of bM1. Likewise, let β1, . . . , βk be the pairwise disjoint smooth Jordan curves in

bM2, labeled so that M2\
◦
M1 consists of k closed annuli A1, . . . , Ak with boundaries bAl = αl∪βl,

l = 1, . . . , k; take into account that M1 is a strong deformation retract of M2. Since max{|πσ ◦f |,
|πς ◦ f |} > µ on bM1 (cf. (5.1)), there exist an integer m > 2 and compact connected subarcs
{αl,a : a ∈ Zm = Z/mZ} of αl for l = 1, . . . , k such that the following conditions hold.

(A1)
⋃
a∈Zm αl,a = αl.

(A2) The arcs αl,a−1 and αl,a meet at a point pl,a and are otherwise disjoint for all a ∈ Zm,
whereas αl,a ∩ αl,a′ = ∅ provided that a′ /∈ {a− 1, a, a+ 1} ⊂ Zm.

(A3) The set I := {1, . . . , k} × Zm splits into two disjoint subsets Iσ and Iς such that

|πc ◦ f | > µ on αl,a for all (l, a) ∈ Ic, c ∈ {σ, ς}.

(Either of the sets Iσ or Iς could be empty.)

Choose a family of pairwise disjoint smooth Jordan arcs γl,a ⊂M2\
◦
M1, (l, a) ∈ I, such that

pl,a ∈ bM1 is an endpoint of γl,a, the other endpoint of γl,a, which will be called ql,a, lies in bM2,

and γl,a\{pl,a, ql,a} ⊂
◦
M2\M1. Moreover, we choose the arcs γl,a ⊂ M2\

◦
M1 for (l, a) ∈ I such

that the set

S := M1 ∪
( ⋃

(l,a)∈I

γl,a

)
(5.2)

is admissible in R (see Definition 4.1). Note that the set Al\(αl ∪ βl ∪ (
⋃
a∈Zm γl,a)) consists of

m pairwise disjoint open disks; we denote by Ωl,a the one whose closure contains αl,a, (l, a) ∈ I.
We also set βl,a := βl ∩ Ωl,a for all (l, a) ∈ I, and hence Ωl,a is bounded by the arcs αl,a, γl,a,
γl,a+1, and βl,a. (See Figure 5.1.)

In the first step we extend the map f : M1 → C2n+1 to a generalized Legendrian curve
ĝ : S → C2n+1 (see Definition 4.2) such that:

– |πc ◦ ĝ| > µ on γl,a ∪ αl,a ∪ γl,a+1 for all (l, a) ∈ Ic, c ∈ {σ, ς};
– min{|πc(ĝ(ql,a))|, |πc(ĝ(ql,a+1))|} > µ+ 1 for all (l, a) ∈ Ic, c ∈ {σ, ς}.

To construct such extensions we just use property (A3) and the fact that every compact path in
C2n+1 may be uniformly approximated by Legendrian paths (see Theorem A.6). Lemma 4.3 then
provides a holomorphic Legendrian curve g : M2 → C2n+1 with no constant component function
and satisfying the following conditions:

1966

https://doi.org/10.1112/S0010437X1700731X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X1700731X


Holomorphic Legendrian curves

(B1) the map g approximates f in the C 1(M1)-topology;

(B2) |πc ◦ g| > µ on γl,a ∪ αl,a ∪ γl,a+1 for all (l, a) ∈ Ic, c ∈ {σ, ς};
(B3) min{|πc(g(ql,a))|, |πc(g(ql,a+1))|} > µ+ 1 for all (l, a) ∈ Ic, c ∈ {σ, ς}.

Let Ω ⊂M2 be a compact domain meeting the following requirements.

– S ⊂ Ω and S ∩ bΩ = {ql,a : (l, a) ∈ I}.
– The set bΩ ∩ βl consists of m pairwise disjoint compact arcs {λl,a : a ∈ Zm} such that

λl,a ⊂ βl,a−1 ∪ βl,a and ql,a is in the relative interior of λl,a for all a ∈ Zm, l = 1, . . . , k.

– The set Al\Ω consists of m pairwise disjoint, smoothly bounded, simply connected compact

domains Υl,a, a ∈ Zm, l = 1, . . . , k. Up to relabeling, we assume that Υl,a ⊂ Ωl,a for all

(l, a) ∈ I. Note that Υl,a ∩ (γl,a ∪ αl,a ∪ γl,a+1) = ∅.

Furthermore, in view of properties (B2) and (B3), continuity of g enables us to choose Ω

sufficiently close to S such that the following properties hold:

(C1) |πc ◦ g| > µ on Ωl,a\Υl,a for all (l, a) ∈ Ic, c ∈ {σ, ς};
(C2) |πc ◦ g| > µ+ 1 on (λl,a ∪ λl,a+1) ∩ βl,a for all (l, a) ∈ Ic, c ∈ {σ, ς}.

Assume that Iσ 6= ∅; otherwise Iς = I 6= ∅ and we reason in a symmetric way. For each

(l, a) ∈ Iσ pick an arc δl,a ⊂ Ωl,a\Υl,a with an endpoint in the relative interior of αl,a, the other

endpoint in Υl,a\βl,a, and otherwise disjoint from Υl,a ∪ bΩl,a. (See Figure 5.1.) Moreover, we

choose the family of arcs δl,a, (l, a) ∈ Iσ, such that the set

Sσ := S ∪
( ⋃

(l,a)∈Iς

Ωl,a

)
∪
( ⋃

(l,a)∈Iσ

δl,a ∪Υl,a

)
is admissible in R (5.3)

(see (5.2)) and

no component function of g has a zero or a critical point in
⋃

(l,a)∈Iσ

δl,a. (5.4)

The latter condition is easy to fulfil since g is holomorphic and has no constant component

function. Notice that Sσ ⊂M2 is a deformation retract of M2. Set

Kσ :=
◦
Sσ, Γσ := Sσ\Kσ =

⋃
(l,a)∈Iσ

δl,a

(cf. Definition 4.1). Let us prove the following claim.

Claim 5.3. There exists a generalized Legendrian curve h̃σ : Sσ → C2n+1 satisfying the following

properties:

(D1) h̃σ = g on S ∪ (
⋃

(l,a)∈Iς Ωl,a);

(D2) πσ ◦ h̃σ = πσ ◦ g|Sσ ;

(D3) |πς ◦ h̃σ| > µ+ 1 on Υl,a for all (l, a) ∈ Iσ;

(D4) if σ = 2n+ 1, then π1 ◦ h̃σ and π2 ◦ h̃σ are constant on no component of Kσ, π1 ◦ h̃σ has

no zeros in Γσ, and π2 ◦ h̃σ has no critical points in Γσ.
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Proof. If 2n + 1 /∈ {σ, ς} then, by Remark 2.1, we may assume that σ = 1; note that the
transformation in that remark preserves the norm of the first 2n components. Thus, it suffices to
discuss the cases (σ, ς) ∈ {1} × {1, . . . , 2n} and (σ, ς) ∈ ({1, 2} × {2n+ 1})∪ ({2n+ 1} × {1, 2}).
Write g = (a1, b1, . . . , an, bn, w).

Case 1: (σ, ς) ∈ {1} × {1, . . . , 2n}. Let g′ = (a′1, b
′
1, . . . , a

′
n, b
′
n, w

′) : S1 → C2n+1 be any map of
class A 1(S1) (see (4.1)) satisfying the following conditions:

(a) g′ = g on S ∪ (
⋃

(l,a)∈Iς Ωl,a);

(b) a′1 = a1|S1 ;

(c) |πς ◦ g′| > µ+ 1 on Υl,a for all (l, a) ∈ I1.

The existence of such a map is trivial. In principle, g′ does not need to be Legendrian. Choose

an initial point u0 ∈
◦
M1 and define w′′ : S1 → C by w′′ = w′ = w on S ∪ (

⋃
(l,a)∈Iς Ωl,a) and

w′′(u) = w(u0)−
∫ u

u0

n∑
j=1

a′j db
′
j , u ∈ S1.

Conditions (a) and (b), together with the facts that g is a Legendrian curve and the set

S1

∖(
S ∪

( ⋃
(l,a)∈Iς

Ωl,a

))
=

⋃
(l,a)∈I1

δl,a ∪Υl,a

is simply connected, ensure that w′′ is well defined and of class A 1(S1). Thus, conditions (a),

(b), and (c) guarantee that the map h̃1 := (a′1, b
′
1, . . . , a

′
n, b
′
n, w

′′) : S1 → C2n+1 is a generalized
Legendrian curve satisfying properties (D1), (D2), and (D3). Property (D4) is vacuous in this
case.

Case 2: (σ, ς) = (1, 2n + 1). Choose any map g′ = (a′1, b
′
1, . . . , a

′
n, b
′
n, w

′) : S1 → C2n+1 of class
A 1(S1) with the following properties:

(a) g′ = g on S ∪ (
⋃

(l,a)∈I2n+1
Ωl,a);

(b) a′1 = a1|S1 ;

(c) |w′| > µ+ 1 on Υl,a for all (l, a) ∈ I1;

(d) dw′ +
∑n

j=2 a
′
j db
′
j vanishes nowhere on

⋃
(l,a)∈I1 δl,a and its zeros on

⋃
(l,a)∈I1 Υl,a are those

of a′1 = a1, with the same order.

The existence of such g′ is clear; for property (d) take into account (5.4). Now choose an initial

point u0 ∈
◦
M1 and define b′′1 : S1 → C by b′′1 = b′1 = b1 on S ∪ (

⋃
(l,a)∈I2n+1

Ωl,a) and

b′′1(u) = b1(u0)−
∫ u

u0

dw′ +
∑n

j=2 a
′
j db
′
j

a′1
, u ∈ S1;

recall that, by (5.4) and property (b), a′1 has no zeros in
⋃

(l,a)∈I1 δl,a. It follows that the map h̃1 :=

(a′1, b
′′
1, . . . , a

′
n, b
′
n, w

′) : S1 → C2n+1 is a generalized Legendrian curve satisfying properties (D1),
(D2), and (D3); property (D4) is again vacuous.

Case 3: (σ, ς) = (2, 2n + 1). Choose any map g′ = (a′1, b
′
1, . . . , a

′
n, b
′
n, w

′) : S2 → C2n+1 of class
A 1(S2) enjoying the following properties:

(a) g′ = g on S ∪ (
⋃

(l,a)∈I2n+1
Ωl,a);

(b) b′1 = b1|S2 ;
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(c) |w′| > µ+ 1 on Υl,a for all (l, a) ∈ I2;

(d) dw′ +
∑n

j=2 a
′
j db
′
j vanishes nowhere on

⋃
(l,a)∈I2 δl,a and its zeros on

⋃
(l,a)∈I2 Υl,a are those

of db′1 = db1, with the same order.

Now choose an initial point u0 ∈
◦
M1 and define a′′1 : S2 → C by a′′1 = a′1 = a1 on S ∪

(
⋃

(l,a)∈I2n+1
Ωl,a) and

a′′1(u) = −
dw′ +

∑n
j=2 a

′
j db
′
j

db′1
, u ∈ S1.

The map h̃2 := (a′′1, b
′
1, . . . , a

′
n, b
′
n, w

′) : S2 → C2n+1 is a generalized Legendrian curve satisfying

Claim 5.3.

Case 4: (σ, ς) = (2n + 1, 1). Pick a map g′ = (a′1, b
′
1, . . . , a

′
n, b
′
n, w

′) : S2n+1 → C2n+1 of class

A 1(S2n+1) meeting the following requirements:

(a) g′ = g on S ∪ (
⋃

(l,a)∈I1 Ωl,a);

(b) w′ = w|S2n+1 ;

(c) |a′1| > µ+ 1 on Υl,a for all (l, a) ∈ I2n+1 and a′1 vanishes nowhere on
⋃

(l,a)∈I2n+1
(δl,a∪Υl,a);

(d) dw′ +
∑n

j=2 a
′
j db
′
j has no zeros on

⋃
(l,a)∈I2n+1

δl,a.

Also, pick an initial point u0 ∈
◦
M1 and define b′′1 : S2n+1 → C as in Case 2. Thus, the map

h̃2n+1 := (a′1, b
′′
1, . . . , a

′
n, b
′
n, w

′) : S2n+1 → C2n+1 satisfies the claim. Notice that requirements (c)

and (d) imply property (D4).

Case 5: (σ, ς) = (2n + 1, 2). Take a map g′ : S2n+1 → C2n+1 of class A 1(S2n+1) meeting the

following requirements:

(a) g′ = g on S ∪ (
⋃

(l,a)∈I2 Ωl,a);

(b) w′ = w|S2n+1 ;

(c) |b′1| > µ+1 on Υl,a for all (l, a) ∈ I2n+1 and db′1 vanishes nowhere on
⋃

(l,a)∈I2n+1
(δl,a∪Υl,a);

(d) dw′ +
∑n

j=2 a
′
j db
′
j has no zeros on

⋃
(l,a)∈I2n+1

δl,a.

Fix a point u0 ∈
◦
M1 and define a′′1 : S2n+1 → C as in Case 3. Again, the map h̃2n+1 :=

(a′′1, b
′
1, . . . , a

′
n, b
′
n, w

′) : S2n+1 → C2n+1 meets all the requirements. As in the previous case,

requirements (c) and (d) ensure property (D4). 2

With Claim 5.3 in hand, and since g has no constant component function, we may apply

Lemmas 4.3 and 4.4 to obtain a holomorphic Legendrian embedding hσ : M2 ↪→ C2n+1 with the

following properties:

(E1) hσ approximates h̃σ in the C 1(Sσ)-topology;

(E2) πσ ◦ hσ = πσ ◦ g.

Thus, in view of properties (D3) and (D1), if the approximation in property (E1) is close enough,

we have that:

(E3) |πς ◦ hσ| > µ+ 1 on Υl,a for all (l, a) ∈ Iσ;

(E4) hσ has no constant component function.
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We claim that if Iς = ∅, then f̃ := hσ satisfies the conclusion of Lemma 5.2. Indeed,
properties (B1) and (E1) ensure that f̃ approximates f in the C 1(M1)-topology. If on the other
hand Iς = ∅, then Iσ = I and hence

bM2 ⊂
( ⋃

(l,a)∈Iσ

Υl,a

)
∪
( ⋃

(l,a)∈Iσ

λl,a

)

and

M2\
◦
M1 =

( ⋃
(l,a)∈Iσ

Υl,a

)
∪
( ⋃

(l,a)∈Iσ

Ωl,a\Υl,a

)
.

Thus, properties (C2), (E2), and (E3) give condition (i), whereas properties (C1), (E2), and (E3)
guarantee condition (ii).

Assume now that Iς 6= ∅. As above, for each (l, a) ∈ Iς , we take an arc δl,a ⊂ Ωl,a\Υl,a with
an endpoint in the relative interior of αl,a, the other endpoint in Υl,a\βl,a, and otherwise disjoint
from Υl,a ∪ bΩl,a, such that the set

Sς := S ∪
( ⋃

(l,a)∈Iσ

Ωl,a

)
∪
( ⋃

(l,a)∈Iς

δl,a ∪Υl,a

)

is admissible in R and no component function of hσ has a zero or a critical point in
⋃

(l,a)∈Iσ δl,a.
Reasoning as above, in a symmetric way, we may construct a holomorphic Legendrian embedding
hς : M2 → C2n+1 enjoying the following properties:

(F1) hς approximates hσ in the C 1(Sς)-topology;

(F2) πς ◦ hς = πς ◦ hσ;

(F3) |πσ ◦ hς | > µ+ 1 on Υl,a for all (l, a) ∈ Iς .

We claim that, if the approximations in properties (B1), (D1), (E1), and (F1) are close

enough, the Legendrian curve f̃ := hς : M2 → C2n+1 satisfies the conclusion of the lemma. Indeed,
the mentioned properties ensure that f̃ approximates f in the C 1(M1)-topology. It remains to

check conditions (i) and (ii). Let p ∈M2\
◦
M1. If p ∈ Υl,a for some (l, a) ∈ Iσ, we have

|πς(f̃(p))|
(F1)
≈ |πς(hσ(p))|

(E3)
> µ+ 1,

and together with property (F3) we infer that

max{|πσ ◦ f̃ |, |πς ◦ f̃ |} > µ+ 1 on
⋃

(l,a)∈I

Υl,a. (5.5)

On the other hand, if p ∈ Ωl,a\Υl,a for some (l, a) ∈ Iσ, we have

|πσ(f̃(p))|
(F1)
≈ |πσ(hσ(p))| (E2)

= |πσ(g(p))|, (5.6)

whereas if p ∈ Ωl,a\Υl,a for some (l, a) ∈ Iς , then

|πς(f̃(p))| (F2)
= |πς(hσ(p))|

(E1),(D1)
≈ |πς(g(p))|. (5.7)
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So, the estimates (5.6) and (5.7) together with the inequalities (5.5), (C1), and (C2), and the
facts that

bM2 =
⋃

(l,a)∈I

βl,a ⊂
⋃

(l,a)∈I

Υl,a ∪ (βl,a\Υl,a),

M2\
◦
M1 =

⋃
(l,a)∈I

Ωl,a =
⋃

(l,a)∈I

Υl,a ∪ Ωl,a\Υl,a,

guarantee conditions (i) and (ii). This concludes the proof. 2

Proof of Theorem 5.1. Up to adding suitable arcs to the admissible set S and extending f to a

generalized Legendrian curve in the arising admissible set (see Theorem A.6), we may assume

that S is connected. As in the proof of Lemma 4.3, we may also assume that K 6= ∅.

Let M0 ⊂ R be a smoothly bounded compact connected domain such that S ⊂
◦
M0 and S

is a strong deformation retract of M0. By Lemmas 4.3 and 4.4, f can be approximated in the

C 1(S)-topology by a holomorphic Legendrian embedding f0 : M0 → C2n+1. Moreover, up to a

slight deformation of f0, we may assume that max{|πσ ◦ f0|, |πς ◦ f0|} > µ on bM0 for some

constant µ > 0.

Let M0 b M1 b M2 b · · · be a sequence of smoothly bounded compact connected Runge

domains in R such that:

–
⋃
k>0Mk = R;

– the Euler characteristic χ(Mk\
◦
Mk−1) ∈ {0,−1} for all k ∈ N.

Let us construct a sequence {fk : Mk → C2n+1}k∈N of Legendrian embeddings meeting the

following requirements for every k = 1, 2, . . . :

(ik) fk approximates fk−1 uniformly on Mk−1;

(iik) max{|πσ ◦ fk|, |πς ◦ fk|} > µ+ k on bMk;

(iiik) max{|πσ ◦ fk|, |πς ◦ fk|} > µ+ k − 1 on Mk\
◦
Mk−1.

We reason in a recursive way. Observe that f0 : M0 → C2n+1 satisfies condition (ii0), whereas

the conditions (i0) and (iii0) are vacuous. Assume we have found f0, . . . , fk−1 satisfying the above

properties, and let us construct the next map fk.

If χ(Mk\
◦
Mk−1) = 0, then Mk−1 is a strong retract deformation of Mk. Lemma 5.2 applied

to Mk−1, Mk, σ, ς ∈ {1, . . . , 2n+ 1}, µ+k−1, and fk−1 : Mk−1 → C2n+1 provides a holomorphic

Legendrian embedding fk : Mk ↪→ C2n+1 enjoying the desired properties (ik), (iik), and (iiik).

If χ(Mk\
◦
Mk−1) = −1, there is a Jordan arc α ⊂

◦
Mk with the endpoints in bMk−1 and

otherwise disjoint from Mk−1, such that S′ := Mk−1∪α is an admissible subset of R and a strong

deformation retract of Mk. By Theorem A.6 we may extend fk−1 to a generalized Legendrian

map f ′k−1 : S′ → C2n+1 satisfying

max{|πσ ◦ f ′k−1|, |πς ◦ f ′k−1|} > µ+ k − 1 on α.

By Lemmas 4.3 and 4.4 we can approximate f ′k−1 in the C1(S′)-topology by a holomorphic

Legendrian embedding f̃k−1 : Mk → Cn+1. If the approximation is close enough, there is a
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smoothly bounded compact domain M ′k−1 such that S′ ⊂
◦
M ′k−1 ⊂ M ′k−1 ⊂

◦
Mk, M

′
k−1 is a

deformation retract of Mk, and

max{|πσ ◦ f̃k−1|, |πς ◦ f̃k−1|} > µ+ k − 1 on M ′k−1\
◦
Mk−1.

This reduces the proof to the previous case. This closes the induction.
If the approximations in condition (ik) are close enough, the sequence of Legendrian

embeddings {fk : Mk ↪→ C2n+1}k∈N converges uniformly on compacts in R to a holomorphic

Legendrian embedding f̃ : R ↪→ C2n+1. Condition (ik) for k ∈ Z+ ensures that f̃ |S approximates

f0, and hence f , in the C 1(S)-topology. Finally, max{|πσ ◦ f̃ |, |πς ◦ f̃ |} > µ + k on R\Mk for
all k provided that the approximations in condition (ij) are sufficiently close; take into account

conditions (iij) and (iiij), j ∈ N. In particular, πσ,ς ◦ f̃ : R → C2 is a proper map.
This concludes the proof of Theorem 5.1. 2

6. Complete holomorphic Legendrian curves with Jordan boundaries

In this section we prove Theorem 1.2 in the introduction. For simplicity of exposition we shall
prove the theorem in the particular case when the source compact bordered Riemann surface M
is the closed unit disk D ⊂ C (see Theorem 6.2 below). We point out that the same proof applies
in the general case; for that one simply uses Theorem 3.3 (the Riemann–Hilbert problem for
holomorphic Legendrian curves normalized by any given bordered Riemann surface) as opposed
to Lemma 3.2 (the Riemann–Hilbert problem for holomorphic Legendrian disks). We leave the
details to the interested reader and refer to [ADFL15b, § 4] where complete details are given
for any bordered Riemann surface M in a geometrically similar situation of conformal minimal
immersions and holomorphic null curves.

We begin by pointing out the existence of a large family of Legendrian curves which are
contained in certain complex affine hyperplanes of C2n+1. These curves will be crucial in the
subsequent construction.

Proposition 6.1. Let (a1, b1, . . . , an, bn) ∈ C2n (n ∈ N) be such that a1 · · · an 6= 0 and denote
by Π ⊂ C2n+1 the complex vectorial hyperplane

Π :=

{
(x1, y1, . . . , xn, yn, z) ∈ C2n+1 : z +

n∑
j=1

(ajxj + bjyj) = 0

}
.

Given a point p0 = (x0,1, y0,1, . . . , x0,n, y0,n, z0) ∈ C2n+1, the map

C 3 ζ 7→ Ψ(ζ) = (X1(ζ), Y1(ζ), . . . , Xn(ζ), Yn(ζ), Z(ζ)) ∈ C2n+1

defined by

Yj(ζ) = y0,j + ζ,

Xj(ζ) =
x0,j − bj
ey0,j/aj

eYj(ζ)/aj + bj ,

Z(ζ) = z0 +

n∑
j=1

(ajx0,j + bjy0,j − ajXj(ζ)− bjYj(ζ)), j = 1, . . . , n,

is a proper holomorphic Legendrian embedding C ↪→ C2n+1 such that Ψ(0) = p0 and Ψ(C) ⊂
p0 + Π. Moreover, Ψ depends holomorphically on p0 ∈ C2n+1.
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Proof. Obviously, Ψ is holomorphic and depends holomorphically on p0 ∈ C2n+1. A trivial
computation shows that dZj +

∑n
j=1Xj dYj = 0 everywhere on C and so Ψ is Legendrian.

Further, Yj : C → C is a proper (linear) embedding for each j ∈ {1, . . . , n} and hence Ψ is a
proper embedding as well. Finally, the facts that Ψ(0) = p0 and Ψ(C) ⊂ p0 + Π can be checked
by direct computation. 2

A holomorphic disk f : D → CN (N ∈ N) is said to be complete if for any path γ : [0, 1) → D
with limt→1 |γ(t)| = 1 the path f ◦ γ : [0, 1) → CN has infinite length. Equivalently, denoting by
ds2 the Euclidean metric on CN , the pull-back f∗ds2 is a complete metric on D.

If f : D → CN is an immersion of class A 1(D), we denote by distf : D×D → R the distance
on D associated to the Riemannian metric f∗ds2.

The following is the main result in this section.

Theorem 6.2. Every Legendrian curve f : D → C2n+1 (n ∈ N) of class A 1(D) may be

approximated uniformly on D by continuous injective maps f̃ : D → C2n+1 such that f̃ |D : D →

C2n+1 is a complete holomorphic Legendrian embedding.

Recall that T = bD = {ζ ∈ C : |ζ| = 1}. Most of the technical part in the proof of Theorem 6.2
is provided by the following lemma.

Lemma 6.3. Let f : D → C2n+1 (n ∈ N) be a Legendrian immersion of class A 1(D), Y : T →

C2n+1 be a smooth map, and δ > 0 and d > 0 be numbers such that the following conditions
hold:

(i) ‖f −Y‖0,T < δ;

(ii) distf (0,T) > d.

Given µ > 0, f may be approximated uniformly on compacts in D by Legendrian embeddings
f̃ : D ↪→ C2n+1 of class O(D) satisfying the following properties:

(I) ‖f̃ −Y‖0,T <
√
δ2 + µ2;

(II) dist
f̃
(0,T) > d+ µ.

Proof. We assume that n = 1; the same proof applies in general.
Choose numbers ε0 > 0 and 0 < r0 < 1. To prove the lemma it suffices to find a Legendrian

embedding f̃ : D ↪→ C3 of class O(D) satisfying properties (I), (II), and ‖f̃ − f‖0,r0D < ε0.
Write f = (f1, f2, f3) and Y = (Y1,Y2,Y3). By condition (ii) and up to enlarging r0 < 1 if

necessary, there is a number d0 such that

distf (0, r0T) > d0 > d. (6.1)

Set g = (g1, g2, g3) := f −Y : T → C3 and, up to slightly deforming Y, assume that

g1g3 : T → C has no zeros. (6.2)

By dimension reasons, this can be achieved without loss of generality. In particular, g1 and g3

(and hence g) vanish nowhere on T. Further, condition (i) gives a number δ0 such that

‖f −Y‖0,T < δ0 < δ. (6.3)
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Pick a number ε > 0 which will be specified later. Let m ∈ N be a large enough integer such
that, setting

αj :=

{
ei2πt : t ∈

[
j − 1

m
,
j

m

]}
⊂ T, j ∈ Zm,

the following estimates are satisfied for all u, u′ ∈ αj and j ∈ Zm:

|f(u)− f(u′)| < ε, |f(u)−Y(u′)| < δ0, |Y(u)−Y(u′)| < ε. (6.4)

Such m exists in view of (6.3) and continuity of f and Y. For every j ∈ Zm we set

uj := ei2π(j/m); (6.5)

hence uj−1 and uj are the endpoints of the arc αj ⊂ T.
Given w ∈ C3\{0} we denote by

πw : C3
→ Cw = {ζw : ζ ∈ C} ⊂ C3 (6.6)

the Hermitian orthogonal projection onto the complex line Cw. The proof of the lemma consists
of two different deformation procedures. The first one is provided by the following.

Claim 6.4. Let ε, δ0, r0 and µ be as above. For any ε′ > 0 there exists a Legendrian embedding
F = (F1, F2, F3) : D ↪→ C3 of class O(D) satisfying the following conditions:

(A1) ‖F − f‖1,r0D < ε′;

(A2) |F (u)− f(u′)| < ε and |F (u)−Y(u′)| < δ0 for all u, u′ ∈ αj and j ∈ Zm;

(A3) setting G = (G1, G2, G3) := F −Y : T → C3, the function G1G3 : T → C has no zeros;

(A4) if γ ⊂ D is an arc with the initial point in r0D and the final point uj ∈ T (see (6.5)) for
some j ∈ Zm, and if {Ja}a∈Zm is any partition of γ by Borel measurable subsets, then∑

a∈Zm

length(πG(ua)(F (Ja))) > 2µ.

Proof. For every j ∈ Zm, let uj ∈ T be given by (6.5) and set

γj := {tuj : t ∈ [1, 2]} ⊂ C.

In C we consider the admissible subset

S := D ∪
( ⋃
j∈Zm

γj

)
.

Choose a number c > 0 to be specified later. Let h̃ = (h̃1, h̃2, h̃3) : S → C3 be a generalized
Legendrian curve satisfying the following requirements:

(a1) h̃ = f on D;

(a2) |h̃(u)− f(uj)| < c for all u ∈ γj , j ∈ Zm;

(a3) (h̃1(u)−Y1(uj))(h̃3(u)−Y3(uj)) 6= 0 for all u ∈ γj , j ∈ Zm;

(a4) if {Ja}a∈Zm is any partition of γj , j ∈ Zm, by Borel measurable subsets, then∑
a∈Zm

length(πg(ua)(h̃(Ja))) > 2µ.
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Figure 6.1. Sets in the proof of Claim 6.4.

The existence of such h̃ is ensured by (6.2), (6.4), and the fact that every compact path in
C3 may be uniformly approximated by Legendrian paths (see Theorem A.6). Indeed, by (6.2) we
have that g(uj) 6= 0 for all j ∈ Zm and hence there is w0 ∈ C3 such that 〈w0, g(uj)〉 6= 0 for all
j ∈ Zm. (For instance, w0 = (1, 0, 0) or w0 = (0, 0, 1) meet this requirement since g1(uj)g3(uj) 6= 0

for all j ∈ Zm.) Thus, it suffices to define h̃ on each arc γj as a Legendrian path which is highly
oscillating in the direction of w0 (which ensures condition (a4)) but with very small diameter in
C3 (which guarantees conditions (a2) and (a3); take into account (6.2) for the latter). Choosing
c > 0 sufficiently small, (6.4) and condition (a2) give that

(a5) |h̃(u)− f(u′)| < ε and |h̃(u)−Y(u′)| < δ0 for all (u, u′) ∈ (γj−1 ∪ αj ∪ γj)× αj , j ∈ Zm.

By Lemmas 4.3 and 4.4 we may approximate h̃ in the C 1(S)-topology by Legendrian

embeddings h = (h1, h2, h3) : 3D ↪→ C2n+1. If the approximation of h̃ by h is close enough,
conditions (a4) and (a5) guarantee the existence of numbers

0 < τ < λ′ < λ < ρ < 1− r0 (6.7)

such that the following properties are satisfied (see Figure 6.1):

(b1) (γj + τD) ∩ D ⊂ uj + λ′D, j ∈ Zm;

(b2) ((γj + τD) ∪ (uj + λD)) ∩ ((γi + τD) ∪ (ui + λD)) = ∅ for all i 6= j ∈ Zm;

(b3) |h(u) − f(u′)| < ε and |h(u) −Y(u′)| < δ0 for all (u, u′) ∈ ((γj−1 + τD) ∪ (uj−1 + λD) ∪
αj ∪ (γj + τD) ∪ (uj + λD))× αj , j ∈ Zm;

(b4) (h1(u)−Y1(u′))(h3(u)−Y3(u′)) 6= 0 for all (u, u′) ∈ ((uj+λD)∪(γj+τD))×((uj+λD)∩T),
j ∈ Zm;

(b5) if γ′j ⊂ (uj +λD)∪ (γj + τD) is an arc with the initial point in uj +λD and the final point
2uj , and if {Ja}a∈Zm is any partition of γ′j , j ∈ Zm, by Borel measurable subsets, then∑

a∈Zm

length(πg(ua)(h(Ja))) > 2µ;

(b6) |h(u)− f(u′)| < c for all (u, u′) ∈ ((uj + λD) ∪ (γj + τD))× ((uj + λD) ∩ T), j ∈ Zm.

Now, by Forstnerič and Wold [FW09, Theorem 2.3], there is a smooth diffeomorphism φ : D →

φ(D) satisfying the following conditions:
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Figure 6.2. The sets α′j and Dj .

(c1) φ(D) ⊂ S + ρD;

(c2) φ|D : D → φ(D) is a biholomorphism;

(c3) φ is as close as desired to the identity map in the C 1(D\
⋃
j∈Zm(uj + λ′D))-topology;

(c4) φ(uj) = 2uj and φ(D ∩ (uj + λ′D)) ⊂ (uj + λD) ∪ (γj + τD), j ∈ Zm.

If the approximation of h̃ by h and the one in condition (c3) are close enough, then the
Legendrian map F := h ◦ φ : D → C3, which may be assumed to be an embedding of class O(D)
by Lemmas 4.3 and 4.4, meets the conclusion of the claim. Indeed, condition (A1) clearly follows
if the mentioned approximations are sufficiently close. Moreover, condition (A2) is ensured by
conditions (b3) and (c4). If c > 0 is chosen sufficiently small, then, in view of conditions (b6)
and (c4), G = F −Y is so close to g = f −Y on T that (6.2) ensures condition (A3). Likewise,
if γ ⊂ D is an arc with the initial point in r0D and the final point in uj for some j ∈ Zm, and if
{Ja}a∈Zm is any partition of γ by Borel measurable subsets, then conditions (b5), (c3), and (c4)
guarantee that ∑

a∈Zm

length(πg(ua)(F (Ja))) > 2µ,

and, if c > 0 is sufficiently small, G(ua) is so close to g(ua) for all a ∈ Zm so that the above
inequality gives condition (A4). This concludes the proof. 2

Fix ε′ > 0 to be specified later and let F be given by Claim 6.4. By condition (A4), there
exists a number r with 0 < r < 1− r0 enjoying the following property.

(A5) If γ ⊂ D is an arc with the initial point in r0D and the final point in uj + rD for some
j ∈ Zm, and if {Ja}a∈Zm is any partition of γ by Borel measurable subsets, then∑

a∈Zm

length(πG(ua)(F (Ja))) > 2µ.

Fix another constant ε′′ > 0 to be specified later. In view of condition (A2), the continuity
of F provides numbers 0 < %′ < % < r such that, setting for each j ∈ Zm

α′j := αj\((uj−1 + %D) ∪ (uj + %D)) ⊂ αj ⊂ T,
Dj := (α′j + %′D) ∩ D ⊂ D\r0D

(recall that r < 1− r0 and see Figure 6.2), the following conditions are satisfied:

(B1) |F (u)− f(u′)| < ε and |F (u)−Y(u′)| < δ0 for all (u, u′) ∈ Dj × αj , j ∈ Zm;

(B2) |F (u/|u|)− F (u)| < ε′′ for all u ∈ Dj , j ∈ Zm.
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Now, for each j ∈ Zm let Πj ⊂ C3 denote the vectorial complex 2-plane Hermitian orthogonal
to the vector

G(uj) = F (uj)−Y(uj) ∈ C3\{(x, y, z) ∈ C3 : xz = 0}
(see condition (A3)) as

Πj = {(V1, V2, V3) ∈ C3 : G1(uj)V1 +G2(uj)V2 +G3(uj)V3 = 0}
= {(V1, V2, V3) ∈ C3 : G1(uj)/G3(uj)V1 +G2(uj)/G3(uj)V2 + V3 = 0}.

Since G1(uj)/G3(uj) 6= 0 (see condition (A3)), Proposition 6.1 furnishes a continuous map
Ψj : (Dj ∩ T)× C → C3 satisfying the following conditions for all u ∈ Dj ∩ T:

– Ψj(u, 0) = F (u);

– Ψj(u, ·) : C → C3 is a proper holomorphic Legendrian embedding;

– Ψj(u,C) ⊂ F (u) + Πj .

Thus, by the Maximum Principle, suitably shrinking and reparametrizing the curves Ψj(u, ·),
u ∈Dj∩T, we obtain a continuous map Hj : (Dj∩T)×D → C3 enjoying the following properties:

(C1) Hj(u, 0) = F (u) for all u ∈ Dj ∩ T;

(C2) Hj(u, ·) : D → C3 is a Legendrian disk of class O(D) for all u ∈ Dj ∩ T;

(C3) Hj(u,D) ⊂ F (u) + Πj for all u ∈ Dj ∩ T;

(C4) |Hj(u, ζ)− F (u)| = µ for all u ∈ α′j and ζ ∈ T;

(C5) |Hj(u, ζ)− F (u)| 6 µ for all u ∈ Dj ∩ T and ζ ∈ D;

(C6) if u ∈ T is an endpoint of the arc Dj ∩ T then Hj(u, ζ) = F (u) for all ζ ∈ D.

Consider the continuous map H : T× D → C3 given by

H(u, ζ) =

{
Hj(u, ζ) if u ∈ Dj ∩ T for some j ∈ Zm,
F (u) if u ∈ T\

⋃
j∈Zm Dj .

Given ε′′′ > 0 to be specified later, Lemma 3.2 furnishes a Legendrian disk f̃ : D → C3 of
class A 1(D) such that the following conditions hold:

(D1) dist(f̃(u), H(u,T)) < ε′′′ for all u ∈ T;

(D2) dist(f̃(u), H(u/|u|,D)) < ε′′′ for all u ∈
⋃
j∈Zm Dj ;

(D3) ‖f̃ − F‖1,D\⋃j∈Zm Dj
< ε′′′.

Moreover, by Lemmas 4.3 and 4.4, we may assume that f̃ is a Legendrian embedding of class
O(D).

We claim that if the positive numbers ε, ε′, ε′′, and ε′′′ are chosen sufficiently small, the
Legendrian embedding f̃ satisfies the conclusion of the lemma. Indeed, conditions (A1), (D3),
and the fact that r0D ⊂ D\

⋃
j∈Zm Dj ensure that ‖f̃−f‖1,rD < ε′+ε′′′ < ε0, provided that ε′ > 0

and ε′′′ > 0 are so small to satisfy the latter inequality. To check condition (I) pick a point u ∈ T.
Assume first that u ∈ T\

⋃
j∈Zm Dj . Then,

|f̃(u)−Y(u)|
(D3)
< |F (u)−Y(u)|+ ε′′′

(A2)
< |f(u)−Y(u)|+ ε′′′ + ε′

(6.3)
< δ0 + ε′′′ + ε′ <

√
δ2 + µ2,
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where the last inequality holds provided that ε′ > 0 and ε′′′ > 0 are small enough. Assume that,
on the contrary, u ∈ T∩Dj for some j ∈ Zm. In this case, there exists vu ∈ T and wu ∈ Πj with
|wu| 6 µ such that

|f̃(u)−Y(u)|
(D1),(6.4)

< |H(u, vu)−Y(uj)|+ ε′′′ + ε

= |Hj(u, vu)−Y(uj)|+ ε′′′ + ε
(C3),(C5)

= |F (u) + wu −Y(uj)|+ ε′′′ + ε
(A2),(6.4)

6 |F (uj) + wu −Y(uj)|+ ε′′′ + 4ε
(C3)
=

√
|F (uj)−Y(uj)|2 + |wu|2 + ε′′′ + 4ε

(A2)
<

√
δ2

0 + µ2 + ε′′′ + 4ε
(6.3)
<

√
δ2 + µ2,

where the last inequality holds assuming that ε > 0 and ε′′′ > 0 are sufficiently small. This proves
condition (I).

Finally, let us check condition (II). If ε′ > 0 and ε′′′ > 0 are chosen small enough, (6.1),
conditions (A1), and (D3) guarantee that dist

f̃
(0, r0T) > d0 > d, and hence it suffices to prove

that dist
f̃
(r0T,T) > µ−(d0−d); equivalently, length(f̃(γ)) > µ−(d0−d) for all paths γ ⊂ D\r0D

with the initial point in r0T and the final point in T. Let γ be such a path.
Assume first that γ ∩ (uj + rD) = ∅ for all j ∈ Zm. In this case there is j ∈ Zm and a subarc

γ̃ of γ such that γ̃ ⊂ Dj\((uj−1 + rD)∪ (uj + rD)), the initial point u of γ̃ lies in (bDj)∩D and
its final point u′ lies in α′j ⊂ Dj ∩ T. We have

length(f̃(γ)) > length(f̃(γ̃))

> |f̃(u)− f̃(u′)|
(D3), (D1)

> |F (u)−H(u′, vu)| − 2ε′′′ for some vu ∈ T
(6.4),(A2)

> |F (u′)−H(u′, vu)| − 2ε′′′ − 3ε
(C4)
= µ− 2ε′′′ − 3ε > µ− (d0 − d),

where the last inequality holds provided that ε > 0 and ε′′′ > 0 are chosen small enough.
Assume now that γ∩ (uj +r′D) 6= ∅ for some j ∈ Zm. Note that, since Πa is perpendicular to

the vector G(ua) = F (ua)−Y(ua) for all a ∈ Zm, there exists for each u ∈ Da a point v = vu ∈ D
such that

|πG(ua)(f̃(u))− πG(ua)(F (u))| = |πG(ua)(f̃(u)− F (u))|
(D2),(B2)
<

∣∣∣∣πG(ua)

(
H

(
u

|u|
, v

)
− F

(
u

|u|

))∣∣∣∣+ ε′′ + ε′′′
(C3)
= ε′′ + ε′′′.

(6.8)

Then, we have

length(f̃(γ)) = length

(
f̃

(
γ

∖ ⋃
a∈Zm

Da

))
+
∑
a∈Zm

length(f̃(γ ∩Da))

> length

(
f̃

(
γ

∖ ⋃
a∈Zm

Da

))
+
∑
a∈Zm

length(πG(ua)(f̃(γ ∩Da))),
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and hence, in view of condition (D3) and (6.8), the length of f̃(γ) is greater or equal than

length

(
F

(
γ

∖ ⋃
a∈Zm

Da

))
+
∑
a∈Zm

length(πG(ua)(F (γ ∩Da)))−O(ε′′ + ε′′′).

Thus, condition (A5) ensures that length(f̃(γ)) > µ provided that ε′′ > 0 and ε′′′ are sufficiently
small. This proves condition (II) and concludes the proof of Lemma 6.3. 2

With Lemma 6.3 in hand, one can prove the following approximation result in the same way
that [ADFL15b, Lemma 4.2] enables to prove [ADFL15b, Lemma 4.1]. As above, although we
state it just for the disk, the next lemma also holds for any compact bordered Riemann surface.

Lemma 6.5. Let f : D → C2n+1 (n ∈ N) be a Legendrian curve of class A 1(D). Given λ > 0, f

may be approximated uniformly on D by Legendrian embeddings f̃ : D ↪→ C2n+1 of class O(D)
such that dist

f̃
(0,T) > λ.

The main point in the proof of Lemma 6.5 is that, for any given constants d0 > 0, δ0 > 0,

and c > 0, the sequence dj := dj−1 + c/j diverges whereas the sequence δj :=
√
δ2
j−1 + c2/j2

converges as j ∈ N goes to infinity; this allows us to approximate the initial curve f uniformly
on D as close as desired by a Legendrian embedding f̃ whose intrinsic boundary distance from
0 ∈ D is as large as desired.

Finally, Theorem 6.2 follows from Lemma 6.5 by a standard recursive application. We refer
to the proof of [ADFL15b, Theorem 1.1] via [ADFL15b, Lemma 4.1] and leave the details to the
interested reader.
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Appendix A. Holomorphic version of Darboux’s theorems

In this appendix we collect some results concerning holomorphic contact and symplectic forms
and structures. The corresponding results in the smooth case are well known and can be found
in numerous sources; however, their complex (holomorphic) versions do not seem easily available
in the literature. We do not claim any originality whatsoever since the proofs follow rather
closely those in the smooth case. In the present paper, we strongly use Theorem A.2 (Darboux’s
theorem for holomorphic contact structures) and Theorem A.6 concerning the approximation by
Legendrian paths.

Theorem A.1. Let ω be a closed nondegenerate holomorphic 2-form (i.e., a holomorphic
symplectic form) on a complex manifold M of even dimension 2n. At every point p ∈ M
there exist local holomorphic coordinates (x1, y1, . . . , xn, yn) in which ω equals the standard
holomorphic symplectic form ω0 = dx1 ∧ dy1 + · · ·+ dxn ∧ dyn.

Proof. We follow Moser’s proof for the smooth case (see [Mos65]). We may assume that M = C2n

with complex coordinates z = (x1, y1, . . . , xn, yn), p = 0, and

ω|0 = ω0 := dx1 ∧ dy1 + · · ·+ dxn ∧ dyn.
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Consider the family of holomorphic symplectic forms near 0 ∈ C2n given by

ωt = (1− t)ω0 + tω, t ∈ [0, 1].

We wish to find a holomorphic vector field Vt on a neighborhood of the origin in C2n whose local
holomorphic flow φt (the solution of φ̇t = Vt ◦ φt, φ0(z) = z) satisfies

φ∗tωt = ω0, t ∈ [0, 1] (A.1)

in some neighborhood of the origin. Since φ0 = Id, this holds at t = 0. At time t = 1 we shall
then get φ∗1ω = ω0 which will prove the theorem.

Let LV denote the Lie derivative of a vector field V . We differentiate (A.1) on t:

0 =
d

dt
(φ∗tωt) = φ∗t (ω̇t + LVtωt) = φ∗t (ω − ω0 + LVtωt). (A.2)

Applying Cartan’s formula for the Lie derivative and noting that dωt = 0 gives

LVtωt = d(Vt cωt) + Vt c dωt = d(Vt cωt). (A.3)

The 2-form ω−ω0 is closed and hence exact near the origin, ω−ω0 = −dλ for some holomorphic
1-form λ. Thus (A.2) is equivalent to

0 = d(Vt cωt − λ) for all t ∈ [0, 1].

This holds if the vector field Vt is chosen such that

Vt cωt = λ, t ∈ [0, 1].

This algebraic equation for the coefficients of Vt has a unique holomorphic solution. 2

We have the following analogous result for holomorphic contact forms; see e.g. [Gei08,
Theorem 2.5.1, p. 67] for the smooth case.

Theorem A.2. Let η be a holomorphic contact form on a complex manifold M2n+1. For every
point p ∈ M there exist local holomorphic coordinates (x1, y1, . . . , xn, yn, z) on a neighborhood
of p in which η agrees with the standard contact form

η0 = dz +

n∑
j=1

xj dyj . (A.4)

Proof. By the same argument as in the real case (see Geiges [Gei08]), a holomorphic contact
form η uniquely determines a holomorphic vector field Rη by the following two conditions:

Rη c η = η(Rη) = 1, Rη c dη = 0. (A.5)

This Rη is called the Reeb vector field of η. From the formula (A.3) we see that

LRηη = d(Rη c η) +Rη c dη = 0.

We may assume that M = C2n+1 and p = 0 is the origin. By a linear algebra argument, we
can choose linear complex coordinates (x1, y1, . . . , xn, yn, z) on C2n+1 such that

η = η0 and dη = dη0 hold on T0C2n+1.
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It follows that

ηt = η0 + t(η − η0), t ∈ [0, 1],

is a smooth family of holomorphic contact forms on a neighborhood of 0 ∈ C2n+1 such that η̇t = 0
holds at 0 ∈ C2n+1 for all t ∈ [0, 1]. We shall find a time-dependent holomorphic vector field Vt
on a neighborhood of the origin on C2n+1 whose flow φt exists on a smaller neighborhood of 0
for all t ∈ [0, 1] and satisfies

φ∗t ηt = η0, t ∈ [0, 1]. (A.6)

At time t = 1 we shall get

φ∗1η = η0

which will prove the theorem.
Let Rt denote the holomorphic Reeb vector field of ηt (cf. (A.5)). We seek Vt in the form

Vt = htRt + Yt, Yt ∈ Lt := ker(ηt), (A.7)

where ht is a smooth family of holomorphic functions and Yt ∈ Lt is a smooth family of
holomorphic contact vector fields on a neighborhood of the origin. Then

Vt c ηt = ht, Vt c dηt = Yt c dηt.

Differentiating the equation (A.6) on t gives

0 = η̇t + d(Vt c ηt) + Vt c dηt = (η − η0 + dht) + Yt c dηt. (A.8)

Since dηt is nondegenerate on Lt, a suitable (unique!) choice of the vector field Yt tangent to
Lt ensures that Yt c dηt equals any given holomorphic 1-form that is annihilated by Rt. Hence,
it suffices to choose the function ht such that the component of the 1-form η − η0 + dht in the
direction of Rt vanishes. This gives the following 1-parameter family of quasilinear holomorphic
partial differential equations for the functions ht:

Rt(ht) = Rt c dht = Rt c(η0 − η), t ∈ [0, 1].

Since Rt is nonvanishing for all t and the right-hand side vanishes at 0 ∈ C2n+1, this equation
can be solved by the method of characteristics in a small neighborhood of 0, and we can also
choose ht such that ht(0) = 0 for all t ∈ [0, 1]. Inserting the solution ht into (A.8) we then obtain
a unique holomorphic vector field Yt ∈Lt such that the flow of the vector field Vt given by (A.7)
satisfies condition (A.6). 2

A holomorphic vector field V on a complex contact manifold (M,L ) is said to be an
infinitesimal automorphism of the contact structure L , or a contact holomorphic Hamiltonian,
if its local holomorphic flow φt preserves L , in the sense that for all t ∈ R we have T (φt)L = L
on the maximal open subset Mt ⊂M on which the flow φτ is defined for all τ ∈ [0, t]. Assuming
that L = ker(η), this is equivalent to

LV η = λη for some λ ∈ O(M). (A.9)

The following result describes infinitesimal automorphisms of a holomorphic contact structure;
see e.g. [Gei08, Theorem 2.3.1, p. 62] for the smooth case.
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Theorem A.3. Let (M,η) be a complex contact manifold and let R be the associated Reeb
vector field (A.5). There is a bijective correspondence between holomorphic functions h on M
and holomorphic vector fields V on M which are infinitesimal holomorphic automorphisms of
the contact structure L = ker η. The correspondence is given by

– V 7→ h := V c η ∈ O(M);

– O(M) 3 h 7→ V , where V = Vh is uniquely determined by the conditions

V c η = h, V c dη = −dh+R(h)η. (A.10)

In particular, if M is compact then the only infinitesimal automorphisms of the contact structure
L = ker η are the constant multiples cR (c ∈ C) of the Reeb vector field.

After completing our paper, we noticed that this result is already available in [LeB95,
Proposition 2.1]

Proof. Assume that V is a contact Hamiltonian of (M,η). Set h = V c η ∈ O(M). By the Cartan
formula for the Lie derivative, condition (A.9) is equivalent to

λη = LV η = d(V c η) + V c dη = dh+ V c dη.

Contracting this 1-form by the Reeb vector field R for η gives

λ = R c dh+R c(V c dη) = R(h)− V c(R c dη) = R(h).

Inserting this into the previous formula shows that V satisfies conditions (A.10). Conversely,
given a function h ∈ O(M), the holomorphic 1-form

α = −dh+R(h)η

clearly satisfies R cα = 0, so α has no component in the direction R. Since ker(dη) = span(R),
there exists a unique holomorphic vector field Y on M such that

Y c η = 0 and Y c dη = α.

Set V = hR + Y . Then V c η = h and V c dη = Y c dη = α, so V satisfies condition (A.10).
Cartan’s formula shows that

LV η = d(V c η) + V c dη = dh+ (−dh+R(h)η) = R(h)η. (A.11)

Hence V is an infinitesimal automorphism of the contact structure L = ker η. 2

The following corollary to Theorem A.3 is analogous to [Gei08, Corollary 2.3.2, p. 63].

Corollary A.4. Let (M,η) be a complex contact manifold. Given a smooth family of
holomorphic functions {ht}t∈[0,1] ⊂ O(M), let {Vt}t∈[0,1] be the corresponding family of contact
Hamiltonians defined by (A.10). Assume that the flow φt of the time-dependent vector field Vt
exists on a domain M0 ⊂ M for all t ∈ [0, 1]. Then there is a smooth family of nonvanishing
holomorphic function {λt}t∈[0,1] ⊂ O(M0) such that

φ∗t η = λtη on M0, t ∈ [0, 1].

In particular, the biholomorphic map φt : M0 → φt(M0)⊂M is a holomorphic contactomorphism
of the contact structure L = ker η for every t ∈ [0, 1].
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Proof. By the assumption we have that φ0 = IdM and φ̇t = Vt ◦φt on M0 for all t ∈ [0, 1]. Let R
denote the Reeb vector field of η. By (A.11) we have LVtη = R(ht)η for all t ∈ [0, 1]. Hence we
get the following identity on M0:

d

dt
φ∗t η = φ∗t (LVtη) = φ∗t (R(ht)η) = µtφ

∗
t η, t ∈ [0, 1]

where µt = R(ht) ◦ φt ∈ O(M0). Since φ∗0η = η, it follows by integration that φ∗t η = λtη where

λt = exp(
∫ t

0 µs ds) ∈ O(M0) for t ∈ [0, 1]. 2

Example A.5. Let η = dz +
∑n

i=1 xi dyi be the standard contact form on C2n+1. Then the
correspondence in Theorem A.3 is given by

h 7−→ Vh =

(
h−

n∑
j=1

xjhxj

)
∂z +

n∑
j=1

((xjhz − hyj )∂xj + hxj∂yj ).

Note that for any linear function h on C2n+1 the vector field Vh is also linear and hence completely
integrable. Its flow {φt}t∈C is a complex 1-parameter family of C-linear contactomorphisms of
the standard contact structure L = ker η on C2n+1.

The last result that we mention concerns the possibility of approximating any smooth
compact real curve in a complex contact manifold by Legendrian curves.

Theorem A.6. Let (M,L ) be a complex contact manifold. Every path γ : [0, 1] → M can be
approximated in the C 0 topology by smooth embeddings λ : [0, 1] → M tangential to L (i.e.,
such that λ̇(t) ∈ Lλ(t) holds for all t ∈ [0, 1]). Furthermore, assuming that the vectors γ̇(0) and

γ̇(1) lie in L at the respective points, λ can be chosen such that λ̇(t) = γ̇(t) for t ∈ {0, 1}.

Since the contact distribution L ⊂ TM is spanned by vector fields which, together with their
commutators, span the tangent bundle TM at every point (see § 2.1), Theorem A.6 is essentially
a corollary to the following theorem of Chow [Cho39] from 1939.

Theorem A.7. Let V1, . . . , Vm be smooth vector fields on a connected manifold M such that
their successive commutators span each tangent space TpM , p ∈ M . Then every two points in
M can be joined by a piecewise smooth path where each piece is a segment of an integral curve
of one of these vector fields. Furthermore, every path γ : [0, 1] → M can be C 0 approximated by
piecewise smooth paths λ : [0, 1] → M of the above type such that λ(t) = γ(t) for t ∈ {0, 1}.

The approximation statement in Theorem A.7 is an immediate consequence of local
connectivity by integral curves. Indeed, it suffices to subdivide the curve γ into short arcs and
connect the division points by integral curves lying in small connected open sets in M .

Theorem A.7 has a complex origin. The basic case of vector fields tangent to the standard
contact distribution on R3 was observed by Carathéodory (1909). The result was proved in
essentially this form by Chow [Cho39] in 1939; a similar result was obtained by Rashevski (1938).
An informative historical discussion can be found in Gromov’s paper on the Carnot–Carathéodory
metrics (see [Gro96, § 0.2, p. 86]); these are metrics defined by curves tangent to a distribution
spanned by a collection of vector fields. Gromov gave a proof of Chow’s theorem in [Gro96,
p. 113], followed by a stronger quantitative version of it on p. 114. The proof can also be found
in numerous other sources. Further, more precise results were obtained by Sussman [Sus73a,
Sus73b]. These notions also appear in optimal control theory and robotics under the name of
controllability ; see the references in [Gro96, § 0.2, p. 86].
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Proof of Theorem A.6. By Theorem A.7, γ can be approximated in the C 0 topology by piecewise
smooth paths λ̃ : [0, 1] → M satisfying the conclusion of the theorem. We need to replace λ̃ by
a smooth embedding tangent to L and matching γ at the endpoints.

Let us first consider the case M = C2n+1 and L = ker η, where η is the standard holomorphic
contact form given by (A.4). Let λ̃= (x̃1, ỹ1, . . . , x̃n, ỹn, z̃) : [0, 1] → C2n+1. By dimension reasons,
a slight deformation of the map (x̃1, ỹ1, . . . , x̃n, ỹn) : [0, 1] → C2n provides a smooth embedding
(x1, y1, . . . , xn, yn) : [0, 1] → C2n such that, setting

z(t) = z̃(0)−
∫ t

0

n∑
j=1

xj(s)ẏj(s) ds, t ∈ [0, 1],

we have that

– z(t) ≈ z̃(t) for all t ∈ [0, 1];

– z(t) = z̃(t) for all t ∈ {0, 1}; and

– if γ̇(0) and γ̇(1) lie in ker η at the respective points, then ż(t) = γ̇(t) for t ∈ {0, 1}.

Thus, the smooth embedding λ = (x1, y1, . . . , xn, yn, z) : I → C2n+1 satisfies the conclusion
of the theorem.

In the general case, we choose a division 0 = t0 < t1 < · · · tk = 1 of [0, 1] such that for every

i = 1, . . . , k we have λ̃([ti−1, ti]) ⊂ Ui, where Ui ⊂ M is a connected coordinate neighborhood
such that the restriction L |Ui is given by the contact form (A.4) (cf. Theorem A.2). The above
argument can then be applied within each Ui, making sure that the embedded Legendrian curves
λi : [ti−1, ti] → Ui (i = 1, . . . , k) smoothly match at the respective endpoints and do not intersect
elsewhere. 2
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