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Introduction
Consider the sequence of numbers  defined by the iterationan

an = ∑
k

r = 1

pran − r (1)

for , where  ( ) are non-negative numbers with
and the starting values  are given. So  is a weighted
average of the previous  terms.

n ≥ k pr 1 ≤ r ≤ k ∑k
r = 1pr = 1

a0, a1, … , ak − 1 an
k

In the Gazette paper [1], it was shown that if each  is strictly positive,
then  converges to a limit , which can be expressed in terms of the given
numbers  and  (our notation is slightly different, for reasons that will soon
become apparent). The article [2] gives an interesting geometrical illustration
of essentially the same method, and a variant of the method was presented in
[3] in the language of probability theory. A completely different proof was
given in another Gazette note [4] for the special case where  for each .

pr
an L

pr ar

pr = 1
k r

In at least one important application (which we describe shortly), some
of the  will definitely be zero. In the method of [1], the condition that they
are non-zero is unavoidable: it cannot be removed by any kind of minor
adjustment. In fact, without this condition, the result amounts to a version
(though not the most general one) of a deep result known as the ‘renewal
theorem’. Although this is purely a result of Analysis, it is recognised as an
important topic in Probability Theory. A proof of the full version can be
seen in [5, pp. 335-338]: it cannot be described as easy. Here we will present
three quite different methods to prove our less general case, all much
simpler than the one in [5], each offering its own distinctive perspective on
the problem. Two of them use complex numbers in an essential way, one
being a development of [4], while the third is a proof avoiding complex
numbers, somewhat related to [1]. Of course, no reader is obliged to work
through all three!

pr

A trivial example shows that at least one further condition must be
needed. If  and , then the iteration is . It is
satisfied by , which does not tend to a limit. More generally, let

 be the set of  such that , and let  be the greatest common
divisor of the members of . If , then  could simply take
different constant values on each congruence class modulo . We will say
that  satisfies condition (GCD) if .

p1 = 0 p2 = 1 an = an − 2
an = (−1)n

K (p) r pr > 0 d
K (p) d > 1 an

d
(pr) d = 1

An application: population dynamics
In a population (human or otherwise), let  be the number of births

occurring in year . Of those born, suppose that the proportion surviving to
age  is , and that this does not change over time. The values of  and ,

an
n

r sr an sr
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438 THE MATHEMATICAL GAZETTE

once known, fully determine the total population and its age structure in
subsequent years. Suppose that in each year a proportion  of those age
(up to some limit ) give birth (this is the ‘age-specific fertility rate’,
again assumed to remain constant through time). So in year  (for ),
those of age  number : they generate  births. Hence
satisfies (1), with . It does not matter that in real life fertility rates
vary with time. This analysis addresses the question of what would happen
in the long term if the rates occurring in a particular year were to persist
indefinitely.

br r
r = k

n n ≥ k
r an − rsr an − rsrbr an

pr = brsr

Let , this is the ‘net reproduction rate’. Our theorem, once
proved, will state that, if , then  will converge to a non-zero limit. It
then follows easily that if , then  will tend to 0, while if  then

 will tend to infinity.

∑k
r = 1 pr = P

P = 1 an
P < 1 an P > 1

an

In practice, this analysis is actually applied to the female population.
The outcome for the male population (possibly with a different survival rate)
can then be derived as an afterthought!

Since, even in these uninhibited times, human females aged less than
(say) eight do not give birth, it is clear that in this application,  will be zero
for the first few values of .

pr
r

This application also shows why the notation  arises naturally, in
contrast to the notation  used in [1, 2, 4].

pran − r
prar

This analysis was initiated by Lotka in a series of papers, e.g. [6], and
continues to be regarded as a central principle in Demography. He
formulated the basic theorem and gave heuristic reasoning that does not
amount to a watertight proof. His informal reasoning has often been
reproduced in later works on the subject, e.g. [7].

Convolutions; products of series
The notion of convolution will enable us to rewrite the problem in a way

that accommodates a more general result and also opens the way to two of
our methods.

We write just  to denote a sequence  (regarding  as a function
defined on the non-negative integers, which is technically correct; we need
this kind of notation). Given sequences  and  (defined for

), their convolution is the sequence  is defined by

a (an) a

a = (an) b = (bn)
n ≥ 0 a ∗ b

(a ∗ b)n = ∑
n

r = 0

arbn − r.

Of course, this can equally be written as   or .
Convolutions arise naturally in the context of multiplication of polynomials
or power series. Let  and  (in which the
variable  could be real or complex). For the moment, assume that  and
have only finitely many non-zero terms (we will say that such sequences are
‘finitely non-zero’). Then the sums are finite (but we will continue to write

∑n
r = 0 an − rbr ∑r + s = n arbs

A (z) = ∑∞
n = 0 anzn B (z) = ∑∞

n = 0 bnzn

z a b
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RECURSIVE AVERAGES AND THE RENEWAL THEOREM 439

them as infinite sums) and ,  are polynomials. Collecting the
terms in the product, we have at once                                                  

A (z) B (z) zn

A (z) B (z) = ∑
∞

n = 0

(a ∗ b)n zn (2)

for all . The case  says:z z = 1

If  and , then   *∑∞
n = 0 an = A ∑∞

n = 0 bn = B ∑∞
n = 0 (a ∗ b)n = AB.

In the case when  and  have infinitely many non-zero terms, statement *
still holds provided that the series are absolutely convergent: this is a
standard result in Analysis courses [8, p. 376–377].  and  are now
power series, with respective radii of convergence ,  (possibly ). Let

. Power series are absolutely convergent within their radius
of convergence, so * now applies to show that (2) holds for .

a b

A (z) B (z)
R1 R2 ∞

R = min (R1, R2)
|z| < R

The converse also holds, in the following sense. If  are two
sequences such that  within their common radius of
convergence, then  for all : this is the uniqeness theorem for power
series. Consequently, if we have three sequences  such that

 within the common radius of convergence, it follows that
.

a, b
A (z) = B (z)

an = bn n
a, b, c

A (z) B (z) = C (z)
c = a ∗ b

(Note in passing. The Dirichlet convolution of sequences ,
(defined for ) has -th term . This arises from the
multiplication of Dirichlet series . By contrast, our  is
sometimes called the Cauchy convolution.)

(an) (bn)
n ≥ 1 n ∑rs = n arbs

∑∞
n = 1 an / ns a ∗ b

We will need a few more facts about convolutions. First, the sequence
 is the identity for convolution:  for all . If

, then  has an inverse : take  and define  recursively
by: . For example, the inverse of  is

, corresponding to the series identity 

e = (1, 0, 0, … ) a ∗ e = a a
a0 ≠ 0 a b b0 = 1 / a0 bn

a0bn = − ∑n − 1
r = 0 an − rbr (1,  1, 0, 0, … )

(1, −1, 1, −1, … )

(1 + z) (1 − z + z2 −  … ) = 1.
Lemma 1: If  for  and  for , then
for .

an = 0 n > k1 bn = 0 n > k2 (a ∗ b)n = 0
n > k1 + k2

Proof: If  and , then either  or . In
either case, .

n > k1 + k2 r ≤ n r > k1 n − r > k2
arbn − r = 0

Lemma 2: Write . Then .Bn = ∑n
r = 0 br ∑n

r = 0 (a ∗ b)r = ∑n
r = 0 arBn − r

Proof: Reversing the order of summation, we have

∑
n

r = 0

(a ∗ b)r = ∑
n

r = 0
∑

r

s = 0

asbr − s = ∑
n

s = 0

as ∑
n

r = s
br − s = ∑

n

s = 0

as ∑
n − s

t = 0

bt.

By another routine exercise in reversing the order of summation (which we
leave to any reader who is so inclined), one can show that convolution
is associative:  for sequences , , .(a ∗ b) ∗ c = a ∗ (b ∗ c) a b c
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Consequently, we can write  (and indeed longer strings) without
brackets. In particular, it makes sense to consider the convolution of
copies of , which we denote by . Of course, the notation  simply
means the -th term of this sequence.

a ∗ b ∗ c
m

a am ∗ (am ∗)n
n

Lemma 3: If  as  and  is absolutely convergent, with
, then  as .
an → L n → ∞ ∑∞

n = 0 bn
∑∞

n = 0 bn = B (a ∗ b)n → LB n → ∞

Proof: It is enough to prove this statement for the case where , for
then if , we have

L = 0
an → L

∑
n

r = 0

an − rbr = ∑
n

r = 0

(an − r − L) br + LBn → 0 + LB  as n → ∞.

So suppose that . Then  is certainly bounded: there exists
such that  for all . Also, let . Choose . There
exists  such that  for  and also . For

, we then have

an → 0 (an) M
|an| ≤ M n ∑∞

n = 0 |bn| = B∗ ε > 0
N |an| ≤ ε n > N ∑∞

n = N + 1 |bn| ≤ ε
n > 2N

|∑N

r = 0

an − rbr| ≤ ε ∑
N

r = 0

|br| ≤ εB∗,

| ∑
n

r = N + 1

an − rbr| ≤ M ∑
n

r = N + 1

|br| ≤ εM.

Another way in which convolutions arise has to be mentioned, though it
will not be used in our proofs (so readers may ignore it). Let  be a random
variable taking the values  (for integers ) with probability , so that

. Let  be another random variable taking the value  with
probability . If  and  are independent, then the probability that

 is . Further, the expectation  is  : denote it
by . Let . Then . One can verify
(again by reversing the order of summation) that this equals : this is a
standard result in Probability Theory. So it follows, for example, that

.

X
r r ≥ 0 pr

∑∞
r = 0 pr = 1 Y r

qr X Y
X + Y = n (p ∗ q)n E (X) ∑∞

r = 1 rpr
μ E (Y) = ν E (X + Y) = ∑∞

n = 1 n (p ∗ q)n
μ + ν

∑∞
r = 1 r (pm ∗)r = mμ

Identification of a possible limit, and statements of the theorems
Returning to our problem, let us restate it in convolution notation.

Extend the definition of  by setting  for , also . Then
(1) says that  for . Meanwhile, for  we have

pr pr = 0 r > k p0 = 0
an = (p ∗ a)n n ≥ k n < k

an − (p ∗ a)n = an − ∑
n

r = 1

pran − r.
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This is a combination of the given values as far as , and there is no reason
why it should be zero. Denoting it by  for , and setting

 for , we can state

an
gn 0 ≤ n ≤ k − 1

gn = 0 n ≥ k

an = ∑
n

r = 1

pran − r + gn (3)

for all , in other words .n ≥ 0 a = p ∗ a + g

This reproduces all the original information. It also gives us a useful
alternative formulation of the problem. Regard  as given, rather than
(with  for ). Then define  recursively by (3) for all ,
starting with . This opens the possibility of generalisation to the
case where  and  are not finitely non-zero. (In the population
example,  equates to the contribution to  of the population present in
year 0.)

gn an
gn = 0 n ≥ k an n ≥ 1

a0 = g0
(pr) (gn)

gn an

Now let

qr = pr + 1 +  …  + pk

for , also  for . Then ,
for all  and , where . Also,

0 ≤ r ≤ k − 1 qr = 0 r ≥ k q0 = 1 0 ≤ qr ≤ 1
r qr = 1 − Pr Pr = p1 +  …  + pr

∑
k − 1

r = 0

qr = ∑
k − 1

r = 0
∑

k

s = r + 1

ps = ∑
k

s = 1

ps ∑
s − 1

r = 0

1 = ∑
k

s = 1

sps.

Denote this by  (as seen above, it is the expectation of the probability
distribution .)

μ
(pr)

Further, write . Of course,  for all :
denote this by . The next Lemma is pivotal in our development. It is similar
to the reasoning in [1], in different notation.

Gn = ∑n
r = 0 gr Gn = Gk − 1 n ≥ k

γ

Lemma 4: With  and  defined this way, we have .q G q ∗ a = G
Proof: Write also . By (3) and Lemma 2,An = ∑n

r = 0 ar

Gn = An − ∑
n

r = 0

(p ∗ a)r = An − ∑
n

r = 0

arPn − r

= An − ∑
n

r = 0

ar (1 − qn − r)

= ∑
n

r = 0

arqn − r.

This algebra is reversible:  is actually equivalent to
.

q ∗ a = G
a = p ∗ a + g

By Lemma 3, if  tends to a limit , then  tends to .
But  has the constant value  for all . So the only possible
candidate for  is .

an L Gn L ∑k − 1
r = 0 qr = Lμ

Gn γ n ≥ k
L γ / μ
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Further, , a combination of the values
. For our original version of the problem, it is natural to

express our candidate limit in this way. The fact that  for
expresses the fact that the limit is the same if  are regarded
as the starting values. Obviously, any combination of values that is supposed
to represent the limit has to pass this test.

γ = (q ∗ a)k − 1 = ∑k − 1
r = 0 qrak − 1 − r

a0, a1, … , ak − 1
Gn = γ n > k

an − k, … , an − 1

We are now ready to set out the exact statement of our Theorems.

Theorem 1: Suppose that  for , that  and that
 satisfies condition (GCD). Let . Suppose also that numbers

 are given, with  for  and . Let  be defined
recursively by  and

pr ≥ 0 1 ≤ r ≤ k ∑
k

r = 1 pr = 1
(pr) ∑k

r = 1rpr = μ
gn gn = 0 n ≥ k ∑k − 1

n =0gn = γ an
a0 = g0

an = ∑
n

r = 1

pran − r + gn

for all . Thenn

an →
γ
μ

 as n → ∞.

As we have seen, this implies the following variant, in line with our
original version of the problem.

Theorem 2: Suppose that  is as in Theorem 1. Write
for . Suppose also that  are given and

 for . Then  as , where

(pr) qr = pr + 1 + … + pk
0 ≤ r ≤ k − 1 a0, a1, … , ak − 1

an = ∑k
r = 1 pran − r n ≥ k an → L n → ∞

L =
∑k − 1

r = 0 qrak − 1 − r

∑k − 1
r = 0 qr

.β

For the special case where  for , one can easily
deduce the well-known formula .

p = 1
k 1 ≤ r ≤ k

L = 2
k(k + 1) ∑k

r = 1 rar − 1

The formulation of Theorem 1, unlike Theorem 2, points to the full
version of the renewal theorem. For this,  and  are given infinite
sequences satisfying ,  and . The
conclusion is the same as before. As we progress, we will consider the
extent to which our methods stretch to this case.

(pr) (gn)
∑∞

r = 1 pr = 1 ∑∞
r = 1 rpr = μ ∑∞

n = 0 gn = γ

The sub-unital case and an easy special case
Let . We call the case  ‘unital’, and the case where

 ‘sub-unital’. Of course, the unital case is our main concern, but we
can make good use of the sub-unital one. Observe next that in the unital
case, if  for , then, by an obvious induction,
for all . We can deduce the following very easy result for the sub-unital
case (for which condition (GCD) is not needed):

∑k
r = 1 pr = P P = 1

P < 1

|an| ≤ M 0 ≤ n ≤ k − 1 |an| ≤ M
n
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Lemma 5: Suppose that  satisfies (1) for , with .
Then for some  and , we have  for all , hence
as .

an n ≥ k ∑k
r = 1 pr = P < 1

M λ > 1 |an| ≤ M / λn n an → 0
n → ∞

Proof: Let , where  is to be chosen. Then for ,cn = λnan λ n ≥ k

cn = λn ∑
k

r = 1

pran − r = λn ∑
k

r = 1

prλ
r − ncn − r = ∑

k

r = 1

prλ
rcn − r.

By the intermediate value theorem, there exists  such that .
By the preceding remark,  is bounded, say  for all . So

 for all .

λ > 1 ∑k
r = 1prλr = 1

(cn) |cn| ≤ M n
|an| ≤ M / λn n

Of course, it follows, not only that , but that  is
convergent: let its sum be . We can actually identify . Recall our basic
equation . By (*), we have . Hence

, so .

an → 0 ∑∞
n = 0 an

A A
a − p ∗ a = g ∑∞

n = 0 (p ∗ a)n = PA
A − PA = γ A = γ / (1 − P)

More importantly, the case of Theorem 1 where  for
now follows very easily (in fact, a little more easily than in [1]). Let

, where . Then for ,

pr > 0 1 ≤ r ≤ k

bn = an − L L = γ / μ n ≥ k

∑
k

r = 1

prbn − r = ∑
k

r = 1

pran − r − L = an − L = bn (4)

and

∑
k

r =1

qr −1bn− r = ∑
k −1

s =0

qsan− 1− s − Lμ = Gn− 1 − Lμ = γ − Lμ = 0. (5)

For some , we have  for . Then
for such , and . But by (4) and (5),

δ > 0 pr ≥ δ 1 ≤ r ≤ k pr − δqr − 1 ≥ 0
r ∑k

r = 1 (pr − δqr − 1) = 1 − δμ

bn = ∑
k

r = 1

(pr − δqr − 1) bn − r

for . So, by Lemma 5,  as .n ≥ k bn → 0 n → ∞

Without further refinement, this reasoning does not adapt to the case
where some  are zero. For example, , then  has a block of
six non-zero terms: no translation of them can be covered by non-zero .
The refinement needed is substantial: we describe it in Method 3 below.

pr p5 = p6 = 1
2 q

pr

Method 1: inverse of ; complex power seriesq
This is certainly the slickest of our methods. It is a rather striking

example of Complex Analysis being applied to prove a result in Real
Analysis. The scheme is as follows. Recall that . Since ,
we know that  has an inverse with respect to convolution: denote it by , so

, the identity. Hence . Now
 for all , so if we can show that  is absolutely

convergent, then Lemma 3 shows that  tends to .

q ∗ a = G q0 = 1
q c

c ∗ q = e a = (c ∗ q) ∗ a = c ∗ (q ∗ a) = c ∗ G
Gn = γ n ≥ k ∑∞

n = 0 cn
an γ ∑∞

n = 0 cn
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Let  and . Note that  and
.

P (z) = ∑k
r = 1 przr Q (z) = ∑k − 1

r = 0 qrzr P (1) = 1
Q (1) = μ

Lemma 6: We have .(1 − z) Q (z) = 1 − P (z)

Proof: Since  and  for ,q0 = 1 qr − 1 − qr = pr r ≥ 1

(1 − z) Q (z) = q0 + ∑
k

r = 1

(qr − qr − 1) zr = 1 − ∑
k

r = 1

prz
r = 1 − P (z) .

We now deploy the assumption that  satisfies (GCD): this is to be
understood in the following lemmas.

(pr)

Lemma 7:  for complex  with .P (z) ≠ 1 z ≠ 1 |z| = 1

Proof: Recall that  denotes the set of  such that . Suppose that
 and , so also . If  for some  in

, then . Hence for each  in , we have
, so in fact .

K (p) r pr > 0
|z| = 1 P (z) = 1 Re P (z) = 1 Re zr < 1 r
K (p) Re P (z) < ∑k

r = 1 pr = 1 r K (p)
Re zr = 1 zr = 1

By the generalised Bezout identity in number theory, there exist
 in  and integers  (some positive, some negative)

such that . Then .
r1, … , rj K (p) n1, … , nj

∑j
i = 1 niri = 1 z = ∏j

i = 1 zniri = 1

Lemma 8:  for all complex  with .Q (z) ≠ 0 z |z| ≤ 1

Proof: First, . For , Lemma 6 shows that  if,
and only if, . By Lemma 7, this does not occur for  with

. If , then  for all , so .

Q (1) = μ > 0 z ≠ 1 Q (z) = 0
P (z) = 1 z ≠ 1

|z| = 1 |z| < 1 |zr| < 1 r |P (z)| < ∑k
r = 1 pr = 1

Lemmas 6, 7 and 8 appear in [5, chap. 13], but our final step does not.
We apply the following theorem of Complex Analysis: if a function is
differentiable (alias holomorphic) for , then it is given by a power
series for .

f (z)
|z| < R

|z| < R

Lemma 9: There exist  and a sequence  such that
for . Further,  and  is absolutely convergent, with
sum .

R > 1 c = (cn) ∑∞
0 cnzn = 1/Q(z)

|z| < R c ∗ q = e ∑∞
n = 0 cn

1 / μ

Proof: Let the complex zeros of the polynomial  be . By
Lemma 7,  for each , so if  is the smallest , then . Then
for all  with , we have , so  is well-defined and
differentiable: denote it by . By the theorem just quoted,  is given
by a power series  for such . So : as explained
earlier, this implies that . Also, .
Convergence is absolute, as always with power series.

Q (z) z1, z2.… , zk
|zi| > 1 i R |zi| R > 1

z |z| < R Q (z) ≠ 0 1 / Q (z)
C (z) C (z)

∑∞
n = 0 cnzn z C (z) Q (z) = 1

c ∗ q = e ∑∞
n =0cn = C (1) = 1/Q(1) = 1/μ
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By Lemma 3, it follows that  as , completing the
proof of Theorem 1.

an → γ / μ n → ∞

Note. Alternatively, the existence of the power series for  can be
established as follows: we can write the factorisation of  in the form

. The negative binomial series expresses  as a
power series, convergent for . By (2), the product of these power
series is again a power series, convergent for .

C (z)
Q (z)

∏k
i = 1 (1 − z / zi)ni (1 − z / zi)−ni

|z| < |zi|
|z| < R

One might be tempted to suppose that this method will extend easily to
the case where  and  are infinite sequences. Lemmas 6, 7 and 8 do
indeed extend with no trouble. The snag is that  may well have radius
of convergence 1, and fail to be defined for . For example, this
happens with . In this situation, we can only
conclude that  converges for , giving no information about
the case , which is what we want. This might seem like a small
distinction, but it is critical. In fact, convergence of  equates to a
deep result known as ‘Wiener's Tauberian theorem’, which is best proved
using the spectral theory of Banach algebras (e.g. see [9, p. 333]).

(pr) (gn)
Q (z)
|z| > 1

qr = 2 / ((r + 1) (r + 2))
∑∞

n = 0 cnzn |z| < 1
z = 1

∑∞
n = 0 |cn|

Method 2: an explicit expression for an

This is a familiar method in the context of difference equations. We
consider the scenario of Theorem 2 rather than Theorem 1. The recurrence
(1) will be satisfied by  if , wherean = zn f (z) = zk

f (z) = ∑
k

r = 1

prz
k − r = p1z

k − 1 +  … +pk − 1z + pk.

With , we have , whereqr = pr + 1 +  … + pk zk − f (z) = (z − 1) g (z)

g (z) = ∑
k − 1

r = 0

qrz
k − 1 − r = q0z

k − 1 +  … +qk − 2z + qk − 1.

The relation between  and  is expressed by .g (z) Q (z) g (z) = zk − 1Q (1 / z)
Let the complex factorisation of  be . Also, let

. Then any linear combination of the form  satisfies (1). As
we now show, if the  are all distinct, then  can be expressed as such a
combination.

g (z) ∏k − 1
i = 1 (z − zi)

z0 = 1 ∑n
i = 0 cizn

i
zi an

Theorem 3: Let  satisfy (1) for , with  given.
Suppose that  are distinct. Let . Then there exist

) such that

an n ≥ k a0, a1, … , ak − 1

z1, z2, … , zk ∑k − 1
r = 0 qr = μ ci

(0 ≤ i ≤ k − 1)

an = c0 + ∑
k − 1

i = 1

ciz
n
i (6)

for all . Also, .n c0 = 1
μ ∑k − 1

r = 0 qrak − 1 − r

Proof: We need to choose the  so that (6) holds for ,
matching the given starting values . This is possible, because the vectors

ci 0 ≤ n ≤ k − 1
an
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 for  are linearly independent: they form
the ‘van der Monde matrix’. Also,
(1, zi, z2

i , … .zk − 1
i ) 0 ≤ i ≤ k − 1

∑
k − 1

r = 0

qrak − 1 − r = c0μ + ∑
k − 1

i = 1

cig (zi) = c0μ.

Of course, non-real  occur in conjugate pairs . The sum in (6) becomes
real when  is combined with . Also, any real  is negative, because

 for .

zi zi, zi
_

cizn
i cizn

i
⎯

zi
g (x) > 0 x > 0

Lemma 10: If  satisfies (GCD), then  for .(pr) |zi| < 1 1 ≤ i ≤ k − 1

Proof: Since , we have  and . By Lemma 8,
, so .

g (zi) = 0 zi ≠ 0 Q (1 / zi) = 0
|1 / zi| > 1 |zi| < 1

Theorem 2 now follows for the case where the  are distinct: each
tends to 0, so .

zi zn
i

an → c0

It was shown in [4] that the  are distinct in the special case where
 for each . But in general they may well fail to be distinct. An actual

example is easily constructed by choosing the  first and deducing the  :
let  and . Then , given
by  and , so by , , .

zi
pr = 1

k r
zi pr

k = 3 z1 = z2 = −1
3 g (z) = (z + 1

3)2 = z2 + 2
3z + 1

9
q1 = 2

3 q2 = 1
9 p3 = 1

9 p2 = 5
9 p1 = 1

3

In [1, p. 220], it is stated that the method of [4] can be ‘easily modified’
to prove the general result, apparently overlooking the possibility of
repeated . In fact, this case requires quite a bit more work. First, we
describe the solution when one  (say ) is repeated just once.

zi
zi z1

Lemma 11: If  is a repeated zero of , then (1) is satisfied by .z1 g (z) an = nzn
1

Proof: Write . Since , we have
. Also, , so , hence

F (z) = zk − f (z) = (z − 1) g (z) F (z1) = 0
f (z1) = ∑k

r = 1 przk − r
1 = zk

1 g′ (z1) = 0 F′ (z1) = 0

0 = z1F′ (z1) = kzk
1 − ∑

k

r = 1

(k − r) prz
k − r
1 ,

so

∑
k

r = 1

pran − r = ∑
k

r = 1

(n − r) prz
n − r
1

= zn − k
1 ∑

k

r = 1

[(n − k) + (k − r)] prz
k − r
1

= (n − k) zn − k
1 ∑

k

r = 1

prz
k − r
1 + zn − k

1 ∑
k

r = 1

(k − r) prz
k − r
1
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= (n − k) zn − k
1 zk

1 + kzn − k
1 zk

1

= nzn
1 = an.

Suppose now that , while the other  are distinct. In (6), replace
 by . The resulting set of vectors is still linearly independent, so can still

be matched with the starting values .

z2 = z1 zi
zn

2 nzn
1

a0, a1, … , ak − 1

The reader will not be surprised to hear that if  occurs three times, then
 satisfies (1), and so on. The verification becomes increasingly

complicated as we progress to higher numbers of repetitions, and we will
refrain from spelling it out in detail. If  is repeated  times, then we obtain

 corresponding vectors, which are inserted into (6). By a fairly simple
extension of the van der Monde result, the resulting set of vectors is still
linearly independent. Theorem 2 still follows, because for any ,

 as .

zi
n2zn

i

zi mi
mi

r ≥ 1
nrzn

i → 0 n → ∞
Of course, there is no possibility of this method extending to infinite

sequences.

Method 3: repeated convolutions, reduction to the sub-unital case
We have seen two proofs of this theorem of Real Analysis using

complex numbers in an essential way. When this happens, it is a natural
challenge to find a proof avoiding complex numbers. A particularly famous
instance where this occurs is the prime number theorem.

The idea of this method (which, I think, is not well known) was already
seen in the ‘easy special case’ described earlier. With , the aim
is to show that  satisfies a condition like the one in Lemma 5, so tends to
zero.

bn = an − L
b

Given our iteration , a natural idea is to
substitute for  using the same identity again, thereby obtaining a double
sum expressing  in terms of certain previous values. Convolution notation
describes this step very neatly: given , apply  again and
substitute to find . Repeating this, we obtain:

an = ∑k
r = 1 pran − r + gn

an − r
an

a = g + p ∗ a p
a = g + p ∗ g + p ∗ p ∗ a

Lemma 12: For each ,m ≥ 1

a = g + p ∗ g +  … + p(m − 1) ∗ ∗ g + pm ∗ ∗ a. (7)
Proof: Induction on . Assuming the statement for , apply  again to
obtain

m m p

p ∗ a = p ∗ g + p ∗ p ∗ g +  …  pm ∗ ∗ g + p(m + 1) ∗ ∗ a.
Since , this implies the identity for .a = g + p ∗ a m + 1

We remark that any attempt to express this identity without convolution
notation would involve increasingly complicated multiple sums, a nightmare
even to contemplate!
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Write formula (7) as , where .
This is an identity of the same sort as the original , with
replacing . By Lemma 1,  for , so for ,
we have , hence .

a = t + pm∗ ∗ a t = g + p ∗ g +… +p(m− 1)∗ ∗ g
a = g + p ∗ a pm ∗

p (pj ∗ ∗ g)n = 0 n > (j + 1) k n > mk
tn = 0 (pm ∗ ∗ a)n = an

Now let us come back to . We can restate (4) as
, where all that matters is that  for  (actually,

, but we do not need this.) By Lemma 12, applied to  and
instead of  and , we see that  for .

bn = an − L
b − p ∗ b = h hn = 0 n ≥ k
h = g − Lq b h

a g (pm ∗ ∗ b)n = bn n > mk

We now incorporate condition (GCD). From the definition of
convolution, it is obvious that if ,  are non-negative sequences with

 and , then . Applying this
repeatedly, we see that if  and  are positive integers for

, with , then .

u v
r ∈ K (u) s ∈ K (v) r + s ∈ K (u ∗ v)

ri ∈ K (p) ci
1 ≤ i ≤ I ∑I

i = 1 ci = c ∑I
i = 1 ciri ∈ K (pc ∗)

Lemma 13: If  satisfies (GCD), then there exist positive integers , ,
such that if , then both  and  are in . Further,

 for .

(pr) c d N
u = 1

2 (pc ∗ + pd ∗) N N + 1 K (u)
n ∈ K (uk ∗) kN ≤ n ≤ k (N + 1)

Proof: Separating the positive and negative terms in the Bezout identity, we
see that there exist ,  in  and positive integers ,  such that

 and  for some . Let  and
. Then  and . Hence both are in

. Now let , where . Then
, hence .

ri sj K (p) ci dj

∑I
i = 1 ciri = N ∑J

j =1djsj = N + 1 N ∑I
i = 1 ci = c

∑J
j =1dj = d N ∈ K (pc ∗) N + 1 ∈ K (pd ∗)

K (u) n = kN + r 0 ≤ r ≤ k
n = (k − r) N + r (N + 1) n ∈ K (uk ∗)

(Of course, if  itself contains two consecutive integers, we just take
.)

K (p)
u = p

Clearly,  for all large enough . Write . Then, as
with  and , we have  for all large enough . Also, the non-
zero values of  occur for  (for some ) and . Our final
step is to use a translation of  to replace this by a sum less than 1. Recall
that (5) says, in convolution notation, that  for . Let

 for , also  for . Then for
,

(u ∗ b)n = bn n uk ∗ = v
a p (v ∗ b)n = bn n

v r ≤ R R ∑R
r = 1 vr = 1

q
(q ∗ b)n = 0 n ≥ k

q̃n = qn − kN n ≥ kN q̃n = 0 n < kN
n ≥ k (N + 1)

(q̃ ∗ b)n = ∑
n

r =kN
q̃rbn− r = ∑

n− kN

s =0

qsbn− kN − s = (q ∗ b)n = (q ∗ b)n− kN = 0.

Completion of the proof of Theorem 1. By Lemma 13, there exists
such that  for . Let . Then
for  and  for large enough . To conclude that
using Lemma 5, we need to know that  and . Now

 for all  and  is only non-zero for , so
 for all . Since , we have .

δ > 0
vr ≥ δ kN ≤ r ≤ kN + 1 w = v − δq̃ wr = 0

r > R (w ∗ b)n = bn n bn → 0
wr ≥ 0 ∑R

r = 1 wr < 1
q̃r ≤ 1 r q̃r kN ≤ r ≤ k (N + 1)
wr ≥ 0 r ∑R

r = 1 q̃r = μ ∑R
r = 1 wr = 1 − δμ
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With a little extra effort, this method can be modified to deal with
infinite sequences. Wherever we previously had finitely non-zero sequences,
we now have sequences that have to be shown to tend to 0, usually using
Lemma 3. This applies also to differences between two sequences. Some
proofs, especially Lemma 5 and the final step, become a little more delicate.
Even with these further refinements, the method is still arguably more
elementary than the proof in [5].
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