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ABSTRACT

For the case of a portfolio with identical claim amount distributions, Gerber's
error bound for the compound Poisson approximation is improved (in the case
X ^ 1). The result can also be applied to more general portfolios by partitioning
them into homogeneous subportfolios.
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Consider n distributions of the form

(1) Pi = (\- Pi)bo

where 60 is the probability measure concentrated in 0, /?;€ (0,1), and where Qt
is a distribution on (0, oo). The interpretation of this representation is the fol-
lowing. For each probability measure Pon [0, oo) (i.e. for the distribution Pof
a risk X) with P\0\ < 1 (this means that we are dealing with a "risk") and an
arbitrary event A, one can write

P(A) = P(A n i 0) ) + P(A PI (0, oo))

= Pl0\80(A) + (1 - P{0))P(A | (0, «>))

= {\-p)bo{A)

with p = 1 - P{0] and Q(A) = P(A | (0, oo)) the conditional distribution of A,
given the event (0, oo) (i.e. given a positive claim). In the special case where P
admits the representation

*k(2) P= § qkD
k = 0

(with a distribution D on (0, oo), D* ° = <50, and ̂ ^ 0 , ^ = 0,1 ,2 , . . . , such that
qo < 1 and S"=o Qk = 1) we have p = 1 — qo and

Y qk n*k

1 <?
Now one of the basic results in mathematical risk theory is the fact that the
convolution

G= Pi*...*Pn

ASTIN BULLETIN Vol. 17, No. 2

https://doi.org/10.2143/AST.17.2.2014971 Published online by Cambridge University Press

https://doi.org/10.2143/AST.17.2.2014971


166 MICHEL

of the distributions (1) can be approximated by a compound Poisson distribution,
i.e. by a distribution P of the form (2) with

~X (

and claim amount distribution

D=t PiQilt Pi-/

Concerning bounds for the error of this approximation we have (see e.g. Gerber
(1984), theorem la, p. 192)

d(G, P) < t Pi,

where

d(G, P) = sup | G(A) - P(A)\
A

is the maximal difference of the probabilities for events A.
It is the purpose of this paper to improve (for X ^ 1) the above bound for port-

folios which are homogeneous in as much as the Q, in the representation (1) are
all identical to Q, say. As result we have the following.

THEOREM. For the distribution

G = [(1 - pi)b0 + piQ]*•••*[(1 - pn)5o + PnQ]

and the compound Poisson distribution P with intensity X = S"=i p, and claim
amount distribution D = Q, we have

(3) d(G,P)^fj pi If] Pi-
i = \ j 1 = 1

REMARK 1. Obviously,
n I n

S A ? / Z 1 P> < m a x { # : / = 1 , . . . , « ) .
i = l / i = 1

REMARK 2. By the following device the result of the theorem may also be
applied to portfolios that can be divided into subportfolios, which are homo-
geneous in the above sense. It is standard that

rf(G,*G2, Pi*P2) ^ d(Gu Pi) + d{Gi, Pi).

Hence, if one calculates the bound in (3) for each subportfolio, then the sum of
these bounds yields an error bound for the compound Poisson approximation of
the given portfolio.

PROOF OF THE THEOREM, (i) For easier derivation of the result, we observe
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that

d(G,P) = sup(G(A)-P(A)).
A

(This follows from

\G(A)- P(A)\ = maxtG(A)- P(A), G(AC) - P(AC)},

where Ac denotes the complement of A.) In the following we set

B = BPl*-*BPn,

where Bp is the Bernoulli distribution with parameter p. Furthermore, let

bk = B[k] (k = 0,l,...,n),

and

e-x}^ (£ = 0,1,2, . . . )

with
n

x = XI pi-
/ = i

(ii) We have

(4) d(G, P) < d(B, Px).

(This means that the proof of our result may be reduced to the case Q = Si, where
<5i is the distribution concentrated in 1.)

For any distribution D, we have

D* [ (1 - p)50 + pQ] = (1 - p)D + p{D*Q).

Hence, by induction over n,

G=£ bkQ*k

k = 0

and, with

^ o = {k£ {0,1,. . . ,«} :bk> qk\,

we obtain for an arbitrary event A:

G{A)-P{A)= £ bkQ*k(A)- f, qkQ*k{A)
k=0 k=0

2 (bk-qk)
k=0 kzA0

= B(A0)- Px(A0)^ d(B,Px).

This gives (4).
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(iii) The following part of the proof is a simplified version of the proof of
theorem 1 in BARBOUR and H A L L (1984, p. 474). For a set A c (0, 1,2,. . . j and
Uk= { 0 , 1 , . . . , * - 1 ) let

^ - Px(A)P>.(Uk)] (A: = 1,2, . . . ) •1 [Pxi
kqk

Then (k+ \)qk+i = \qk gives

\g(k + 1) - kg(k) = — [PK(A PI

i.e.

(5) lA{k) - PK(A) = \g(k + I) - kg(k) (k = 0, 1,2,...),

where U denotes the indicator-function of A.
For / = 1,...,«, we set

Let, furthermore, A"i,..., A'n be i.i.d. such that X; is distributed according to
BPi, i = 1,...,«. If in the following we first integrate with respect to BP:, then for
a function h(x, y),

i,f, x

Using (5) we obtain with h(x, y) = pig(y + 1) - xg(y) that

(6) B(A)-PX(A)=

= \[\g(x+l)-xg(x)]B(dx)

= t E[pig(i; xj+ij-xig(£ x

2)-g(y+l)}B°\dy).

In part (iv) of the proof we finally show that

(7) g(k+l)-g(k)^ll\ (A: = 1 , 2 , . . . ) .

Then (6) and (4) give the assertion of the theorem.

(iv) First we observe that (5) implies

\[g(k+l)-g(k)] =lA(k)-Px(A) + (k-\)g(k) (*

Hence, (7) follows from

(8) (k-\)g(k)^Px(A) (A: =1 ,2 ,3 , . . . ) .
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In order to prove this, we consider the cases k > X and k ^ X. In the first case
we use

Px(AHUk)- Px(A)Px(Uk) ^ P x M ) - PUA)Px(Uk)= Px(A)Px(U
c
k)

and

kqk

k-\'

In the case k ^ X we have

(k- \)g(k) = -^— [P\(A)P\(Uk)~ P\(APi

Furthermore,

^kqk (Ar= 1,2, ...)-

For £ = 1 this follows from (X - l)e~x ^ Xe~\ Under the assumption that the
assertion is true for k ^ 1, we obtain

< kqk + (X-

Hence, (8) is proved.
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