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For N � 2, a bounded smooth domain Ω in R
N , and g0, V0 ∈ L1

loc(Ω), we study the
optimization of the first eigenvalue for the following weighted eigenvalue problem:

−Δpφ + V |φ|p−2φ = λg|φ|p−2φ in Ω, φ = 0 on ∂Ω,

where g and V vary over the rearrangement classes of g0 and V0, respectively. We
prove the existence of a minimizing pair (g, V ) and a maximizing pair (g, V ) for g0

and V0 lying in certain Lebesgue spaces. We obtain various qualitative properties
such as polarization invariance, Steiner symmetry of the minimizers as well as the
associated eigenfunctions for the case p = 2. For annular domains, we prove that the
minimizers and the corresponding eigenfunctions possess the foliated Schwarz
symmetry.

Keywords: Optimization of the principal eigenvalue; polarization invariance; Schwarz
symmetry; Steiner symmetry; foliated Schwarz symmetry
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1. Introduction

Let N � 2 and Ω be a smooth bounded domain in RN . For p ∈ (1, ∞) and g, V ∈
L1

loc(Ω), we consider the following weighted eigenvalue problem:

−Δpφ+ V |φ|p−2φ = λg|φ|p−2φ in Ω,

φ = 0 on ∂Ω,
(1.1)

c○ The Author(s), 2022. Published by Cambridge University Press on behalf

of The Royal Society of Edinburgh

1777

https://doi.org/10.1017/prm.2022.60 Published online by Cambridge University Press

https://orcid.org/0000-0002-3528-8388
mailto:nirjan22@tifrbng.res.in
https://orcid.org/0000-0002-1072-1405
mailto:ujjal.rupam.das@gmail.com
mailto:ghoshmrityunjoy22@gmail.com
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/prm.2022.60&domain=pdf
https://doi.org/10.1017/prm.2022.60


1778 N. Biswas, U. Das and M. Ghosh

where Δpφ := div(|∇φ|p−2∇φ) is the p-Laplace operator and λ is a real parameter.
We say λ is an eigenvalue of (1.1), if there exists φ ∈W 1,p

0 (Ω) \ {0} so that the
following identity holds:∫

Ω

|∇φ|p−2∇φ.∇ψ dx+
∫

Ω

V |φ|p−2φψ dx = λ

∫
Ω

g|φ|p−2φψ dx, ∀ψ ∈W 1,p
0 (Ω).

Let g, V be such that

Λ(g, V ) := inf
{∫

Ω
|∇φ|p + V |φ|p∫

Ω
g|φ|p : φ ∈W 1,p

0 (Ω),
∫

Ω

g|φ|p > 0
}

is positive. If Λ(g, V ) is attained at some φ ∈W 1,p
0 (Ω), then we say Λ(g, V ) is the

first eigenvalue and φ is a first eigenfunction of (1.1). In the context of studying
eigenvalue problems, many authors have provided various sufficient conditions on
g, V so that the first eigenvalue is simple (i.e., any two first eigenfunctions are
constant multiple of each other), and principal (i.e., first eigenfunctions do not
change their sign). For example, we refer [5, 24, 38, 45] to list a few and the
references therein. In this article, we make the following assumptions on g and V :

(A1) g, V ∈ X :=

{
L

N
p (Ω), if N > p;

Lq(Ω); q ∈ (1,∞), if N � p,

(A2) g+ �≡ 0 and ‖V −‖X � 1 − δ0
Sp

, for some δ0 ∈ (0, 1),

(A)

where for a function f : Ω → R, f±(x) := max{±f(x), 0}, S is the embedding
constant of W 1,p

0 (Ω) ↪→ Lp∗
(Ω) (p∗ = pN

N−p ) if N > p and W 1,p
0 (Ω) ↪→ Lpq′

(Ω) if
N � p. For g, V satisfying (A), using variational technique and the Picone’s iden-
tity, one can show that Λ(g, V ) (for instance, see [38] when Ω is unbounded) is a
simple principal eigenvalue of (1.1). However, for the sake of completeness, we give
a proof of these results for bounded domains in the appendix (theorem A.3). Now,
for g0, V0 as given in (A), we define:

Λmin(g0, V0) = inf {Λ(g, V ) : g ∈ E(g0), V ∈ E(V0)} ,
Λmax(g0, V0) = sup {Λ(g, V ) : g ∈ E(g0), V ∈ E(V0)} ,

where E(f) is the set of all rearrangements of a measurable function f , which is
defined as

E(f) = {h : Ω → R : h is measurable, |{h > t}| = |{f > t}|, ∀ t ∈ R}.
In this article, we are concerned about the following optimization problems:

does there exist (g, V ) ∈ E(g0) × E(V0) such that Λmin(g0, V0) = Λ(g, V )? (1.2)

does there exist (g, V ) ∈ E(g0) × E(V0) such that Λmax(g0, V0) = Λ(g, V )? (1.3)

The above problems have significant importance in the study of elasticity the-
ory, population dynamics and many other mathematical models. For example, the
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following diffusive logistic equation is considered in [44]:

ut − Δu = μ(g0 − u)u in Ω × (0,∞),

u = 0 on ∂Ω × (0,∞),

u(x, 0) � 0 on Ω,

(1.4)

where u(x, t) represents the density of a species at position x and time t, g0 is a
weight function, μ is a positive parameter and u = 0 on ∂Ω × (0, ∞) (i.e., Dirichlet
conditions) represents that the region outside the domain is completely lethal. In
this mathematical model, one can predict the persistence or extinction of a species
by means of certain parameters that are directly related to the principal eigenvalue
of Laplacian [17, 18]. More precisely, in (1.4), μ > Λmax(g0, 0) ensures the survival
of the species and μ � Λmin(g0, 0) leads to the extinction of the species as time t
increases. In this viewpoint, it is important to identify an optimal distribution of
resources that optimize Λ(g, 0) over the rearrangement class. Also, studying qualita-
tive properties of such optimizers (if it exists) is equally essential to know the nature
of an optimal arrangement, such as the shape of a favourable and unfavourable zone
for the species to survive, fragmentation/concentration phenomena, etc. To see more
such problems, see [7, 40] and the references therein.

The objective of this article is twofold. Firstly, we study the existence of optimiz-
ers in (1.2)–(1.3) for a general class of weight functions and potentials as mentioned
in (A). Secondly, we investigate the geometry of the optimizers.

1.1. Existence of optimizers

Krein [35, for N = 1, p = 2] and Cox-McLaughlin [21, for N � 1, p = 2] have
studied the optimization problems (1.2)–(1.3) for V0 = 0, g0 = αχD + βχΩ\D, 0 �
α < β and D ⊂ Ω with 0 < |D| = c < |Ω|, where the optimization was taken over
the class

Aα,β,c =
{
g ∈ L∞(Ω) : α � g � β,

∫
Ω

g = c

}
.

Several authors have considered similar problems where the optimization param-
eter varies over different admissible classes, e.g. [6, 27, 29, 42]. The authors of
[22] considered the optimization problems (1.2)–(1.3) over the rearrangement class
E(g0). If V0 = 0 and g0 ∈ L∞(Ω) with g0 � 0, they have proved that Λmin(g0, 0)
and Λmax(g0, 0) are attained in E(g0) and E(g0) (weak* closure of E(g0) in L∞(Ω))
respectively. In addition, if Ω is a ball, they showed that Λmax(g0, 0) is attained in
E(g0) itself. For the minimization problem (1.2), in [28], authors consider nonnega-
tive g0, V0 ∈ L∞(Ω) with certain restriction on the norm of V0. In [26], authors have
enlarged the class of weight functions and potentials for the existence of minimizer
by considering g0, V0 ∈ Lq(Ω) with q > N

p (if N � p), and q = 1 (if N < p), and
certain restriction on ‖V −

0 ‖Lq . In order to get the existence of optimizers, the com-
pactness of the Sobolev embedding W 1,p

0 (Ω) ↪→ Lr(Ω) with r < p∗ (if N > p) and
r <∞ (if N � p) plays an important role. In this article, we extend all the existence
results for (1.2)–(1.3) with g0, V0 satisfying (A). Now we state our results.
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Theorem 1.1. Let Ω be a smooth bounded domain in RN . Assume that g0, V0

satisfy (A). Then the following holds:

(i) (Existence of minimizer) There exists (g, V ) ∈ E(g0) × E(V0) such that

Λmin(g0, V0) = Λ(g, V ),

(ii) (Existence of maximizer) In addition, if g0 � 0, then there exists (g, V ) ∈
E(g0) × E(V0) such that

Λmax(g0, V0) = Λ(g, V ).

For N > p and g0, V0 ∈ L
N
p (Ω), one of the main difficulties occurs in the min-

imization problem due to the non-compactness of the critical Sobolev embedding
W 1,p

0 (Ω) ↪→ Lp∗
(Ω). However, we overcome this by using certain regularity of the

solution of (1.1) due to Guedda-Veron [30] and a gradient estimate obtained by
Damascelli-Pardo [25]. For the maximization problem, we mainly use the rear-
rangement inequality (by Burton [15]) to get the existence of maximizer in the
rearrangement classes of g0, V0.

In theorem 1.1, we call each of (φ, g, V ) and (φ, g, V ) as an optimal triple, where
φ is a first eigenfunction of (1.1) associated to g, V and φ is a first eigenfunction
of (1.1) associated to g, V . Notice that if g0, V0 are constant functions, then the
rearrangement class is singleton. In these cases, we call an optimal triple as optimal
pair. We set

(φ, g, V ) :=
{

(φ, g), if V0 is constant,
(φ, V ), if g0 is constant,

and the similar convention holds for (φ, g, V ) as well.

1.2. Symmetry of minimizers

In the pioneering article [19], authors considered (1.2) for p = 2, g0 = 1 and V0 =
αχD, where α > 0 and χD is the characteristic function of a measurable set D ⊂ Ω,
and proposed the question of whether, or not, an optimal pair (φ, V ) inherits the
symmetry of the underlying domain Ω. In [19, theorem 4], they proved that if Ω is
Steiner symmetric with respect to a hyperplane P (i.e., Ω is convex and symmetric
with respect to P ), then (φ, V ) is also Steiner symmetric with respect to P . They
also showed that a symmetry of the underlying domain would not carry to an
optimal pair (φ, V ) without the convexity assumption. For example, [19, theorem
6] provides a concentric annular region and a V0 for which (φ, V ) is not rotationally
symmetric. Furthermore, [19, theorem 7] gives a dumbbell domain for which the
axial symmetry breaks for an optimal pair. In [19, section 6], authors have also
conjectured several necessary and sufficient criteria on domains (concentric annulus,
dumbbell, etc.) for which symmetry is preserved.

For certain convex domains, the minimizers of (1.2) preserve the symmetry of
the underlying domains. For example, when Ω = B1(0), with the same assumptions
on g0 and V0 as in [19], Pielichowski [42] proved that an optimal pair (φ, V ) is
radial. For V0 ≡ 0 and nonnegative g0 ∈ L∞(B1(0)), in [22] authors showed that
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an optimal pair (φ, g) is radial and radially decreasing in B1(0). This result has
been further extended by Emamizadeh-Prajapat [28, theorem 3.3] for nonnegative
V0 ∈ L∞(B1(0)) satisfying certain norm bound, and in addition, authors obtained
that V is radial and radially increasing inB1(0). For Steiner symmetric domains, the
Steiner symmetry of (φ, g) is obtained in [2, theorem 3.1] for g0 = αχD + βχΩ\D

(where 0 � α < β and D ⊂ Ω such that 0 < |D| < |Ω|) and V0 = 0. For similar
symmetry preserving results related to other variational problems in this direction,
we refer to [16, 23, 32, 36] and the references therein. We also refer to [37, 41] for
further results on the symmetry of the optimal weights.

Notice that, for the domains where symmetry breaking happens, the classical
symmetrizations such as Schwarz and Steiner symmetrization were not applicable.
However, it is natural to ask: for such domains, do optimal pairs have any partial
symmetry? In this article, using polarization (also known as two-point symmetriza-
tion; cf. [8, 13]), we prove various symmetries of an optimal triple on a more general
class of domains (not necessarily simply connected) for the linear case (i.e., p = 2
in (1.2)). To the best of our knowledge, there are no such results available in the
literature regarding the symmetry properties of an optimal triple for the problem
(1.2) on domains that are not simply connected, except a few counterexamples (for
symmetry breaking) mentioned earlier. Before stating our results, we first define
polarization of a domain and polarization of a function.

Polarization

Let H be an open affine half-space in RN and σH denote the reflection with respect
to the boundary ∂H of H.

Definition 1.2.

(i) The polarization of Ω ⊂ RN with respect to H is defined as

ΩH =
(
(Ω ∪ σH(Ω)) ∩H) ∪ (

Ω ∩ σH(Ω)
)
.

(ii) For a measurable function f : RN → R, the polarization of f with respect to
H is defined as

fH(x) =
{

max{f(x), f(σH(x))}, if x ∈ H,
min{f(x), f(σH(x))}, if x /∈ H.

For Ω � RN , we define the polarization of a function f : Ω → R with respect
to H by fH = f̃H |Ω, where f̃ is the extension of f to RN by 0 outside of Ω.
We also define a dual-polarization of f as fH = fH ◦ σH .

(iii) Let f : Ω → R be a measurable function. If fH = f a.e. in Ω, then f is said
to be polarization invariant with respect to H. Similarly, if fH = f a.e. in Ω,
then f is said to be dual-polarization invariant with respect to H.

Now we state our next result.

Theorem 1.3. Let p = 2 and H ⊂ RN be an open affine half-space such that 0 ∈ H.
Let Ω be a smooth, bounded domain in RN such that Ω = ΩH . Let g0, V0 satisfy the
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assumption as given in (A). In addition, we assume that g0, V0 � 0. Let (φ, g, V )
be an optimal triple as given by theorem 1.1-(i). Then the following holds:

(i) if σH(Ω) �= Ω and V0 = 0, then φ, g are polarization invariant with respect
to H,

(ii) if σH(Ω) = Ω, then φ, g, V are either polarization invariant or else dual-
polarization invariant with respect to H.

Let us now briefly describe the technique of our proof. As seen in [2, 19, 22], the
techniques for proving the Schwarz and Steiner symmetry of the minimizers mainly
rely on the Hardy-Littlewood inequality and the characterizations for the equality
case in Pólya-Szegö inequality, namely, (i) Brothers-Ziemer’s characterization [14,
for Schwarz symmetrization], (ii) the counterpart of Brothers-Ziemer’s characteri-
zation due to Cianchi-Fusco [20, for Steiner symmetrization]. Indeed, an analogue
of the Hardy-Littlewood inequality for polarization plays a vital role in our proof
as well. However, since the gradient norm of a function remains unchanged under
polarization (proposition 2.2), equality occurs in the Pólya-Szegö type inequality.
Thus the analogue of Brothers-Ziemer type characterization is no more valid in the
case of polarization. We bypass this deficiency by using a version of strong max-
imum principle (proposition 4.1) and compare φ and φ

H
on Ω ∩H. This indeed

helps us to prove the above theorem.
As we mentioned earlier, for g0 taking a finite number of nonnegative values,

Anedda-Cuccu studied the Steiner symmetry of minimizers [2, remark 3.1]. This
particular choice of g0 allowed them to use the result by Cianchi-Fusco [20, theorem
2.6] in their proof. In this article, as an application of theorem 1.3, we extend
Cuccu-Anedda’s result for a more general class of weight functions g0.

Corollary 1.4 Steiner symmetry. Let p, g0, H be as given in theorem 1.3 and
V0 = 0. Assume that Ω is a Steiner symmetric domain with respect to the hyperplane
∂H. Then an optimal pair (φ, g) is Steiner symmetric with respect to ∂H in Ω. In
particular, we have φ = φ ◦ σH and g = g ◦ σH a.e. in Ω.

We observe that the concentric annulus is polarization invariant with respect to
any open half-space containing the origin on the boundary. On the other hand, the
non-concentric annulus is polarization invariant with respect to any open half-space
which contains the origin on the boundary and does not contain the centre of the
inner ball. This kind of geometry motivates us to study certain partial symmetry
of (φ, g, V ) on the annular region. Indeed, in the following theorem, we show that
(φ, g, V ) is foliated Schwarz symmetric in annular domains.

Theorem 1.5. Let ΩR,r = BR(0) \Br(te1), 0 � t < R− r and p, g0, V0 be as in
theorem 1.3. Let (φ, g, V ) be an optimal triple. Then the following holds:

(i) (Concentric case) if t = 0, then there exists γ ∈ SN−1 such that φ, g are foli-
ated Schwarz symmetric in ΩR,r with respect to γ and V is foliated Schwarz
symmetric in ΩR,r with respect to −γ,
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(ii) (Non-concentric case) if t > 0 and V0 = 0, then φ and g are foliated Schwarz
symmetric in ΩR,r with respect to −e1.

As a by-product of theorem 1.3 and theorem 1.5, we prove that maxima of the first
eigenfunction of (1.1) associated to a minimizer of (1.2) on nonconcentric annulus
will lie on a segment of the negative x1-axis.

Corollary 1.6. Let p = 2 and Ω = ΩR,r = BR(0) \Br(te1), where 0 < t < R− r.
Assume that g0 ∈ Lq(Ω), where q > N

2 , is nonnegative and V0 = 0. Let (φ, g) be an
optimal pair. Define

LΩ =
{
x =

(
x1, x2, . . . , xN

) ∈ Ω ∩ (−R+e1) : x1 � −R+ r − t

2

}
,

where R+ is the set of nonnegative real numbers. Then max
x∈Ω

φ(x) = max
x∈LΩ

φ(x). In

addition, if g is continuous, then max
x∈Ω

g(x) = max
x∈LΩ

g(x).

The remainder of the article is organized as follows. In § 2.1, we briefly discuss
polarization and prove certain related results that are essential for the development
of this article. In § 2.2, we recall three different types of symmetrizations and their
characterizations in terms of polarization. Proof of the existence result (theorem
1.1) is given in § 3. In § 4, we study the symmetry results. This section contains the
proof of theorem 1.3–1.5 and corollary 1.4–1.6. The existence of the first eigenvalue
of (1.1) is derived in appendix.

2. Preliminaries

2.1. Polarizations

Let H be the collection of all open affine half-spaces in RN , and H0 ⊂ H denotes
the set of all H ∈ H such that 0 ∈ H. For β ∈ RN , we set

Ĥ0 := {H ∈ H0 : 0 ∈ ∂H},
H(β) := {H ∈ H : β ∈ H},
Ĥ0(β) := {H ∈ Ĥ0 : β ∈ H}.

In the next proposition, we prove some results which will be used in subsequent
sections.

Proposition 2.1. Let H ∈ H and Ω be a domain in RN such that Ω = ΩH . Then

(i) σH(Ωc ∩H) ⊂ Ωc ∩Hc.

(ii) σH(Ω ∩Hc
) ⊂ Ω ∩H.

(iii) if σH(Ω) �= Ω, then there exists A ⊂ Ω ∩H such that |A| > 0 and σH(A) ⊂
Ωc ∩Hc

.

(iv) Let f : Ω → R+ be a measurable function. Let f̃H be the polarization of f̃ as
given in definition 1.2-(ii). Then f̃H = 0 a.e. in Ωc.
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Proof. (i) Let x ∈ Ωc ∩H. Then σH(x) ∈ Hc. We claim that σH(x) ∈ Ωc. On the
contrary, suppose σH(x) ∈ Ω. Let y = σH(x). Then σH(y) ∈ σH(Ω). Thus σH(y) ∈
σH(Ω) ∩H ⊂ ΩH . Since Ω = ΩH , we have σH(y) ∈ Ω. Therefore x(= σH(y)) ∈ Ω,
which is a contradiction as x ∈ Ωc.

(ii) Proof follows using a similar set of arguments as given above.
(iii) From (ii), we have σH(Ω ∩Hc

) ⊂ Ω ∩H. Since σH(Ω) �= Ω, we get σH(Ω ∩
H

c
) � Ω ∩H. Therefore, the set A := (Ω ∩H) \ σH(Ω ∩Hc

) is nonempty. Then
σH(A) ⊂ Ωc ∩Hc

. Now it is enough to show that int(A) is nonempty. Suppose
int(A) = ∅. Then for every x ∈ A, there exists rx > 0 such that Br(x) ∩ σH(Ω ∩
H

c
) �= ∅, ∀ r ∈ (0, rx). This implies that A ⊂ ∂(σH(Ω ∩Hc

)) and hence

σH(Ω ∩Hc
) � Ω ∩H ⊂ σH(Ω ∩Hc

). (2.1)

On the other hand, A ⊂ ∂(σH(Ω ∩Hc
)) ∩ (Ω ∩H) and Ω ∩H is open. Hence for

y ∈ A, there exists r > 0 such that Br(y) ⊂ Ω ∩H and Br(y) ∩ (σH(Ω ∩Hc
))c �= ∅,

a contradiction to (2.1). Thus, int(A) must be nonempty.
(iv) Let x ∈ Ωc ∩H. Since Ω = ΩH , using proposition 2.1-(i), σH(x) ∈

Ωc ∩Hc and f̃H(x) = max{f̃(x), f̃(σH(x))} = 0. If x ∈ Ωc ∩Hc, then f̃H(x) =
min{f̃(x), f̃(σH(x))} � 0. Thus, f̃H = 0 a.e. in Ωc. �

In the next proposition, we prove that the polarization of a measurable function
defined on Ω is a rearrangement of that function. For Ω = RN , this result is well
known as polarization is a two-point rearrangement (see [13, section 5]). For Ω �
RN , we give a proof using definition 1.2-(ii). We also state some results related to
the invariance of norms under polarization.

Proposition 2.2. Let H ∈ H and let Ω � RN be a domain such that Ω = ΩH .
Let f : Ω → R+ be a measurable function, and its polarization fH be as given in
definition 1.2-(ii). Then the following holds:

(i) fH is a rearrangement of f,

(ii) If f ∈ Lp(Ω) for some p ∈ [1, ∞), then fH ∈ Lp(Ω) with ‖f‖p = ‖fH‖p.
Furthermore, if f ∈W 1,p

0 (Ω), then fH ∈W 1,p
0 (Ω) with ‖∇f‖p = ‖∇fH‖p.

Proof. (i) Let t < 0. Since f � 0, it is clear that f̃H � 0. Thus fH � 0 and hence
|{x ∈ Ω : fH(x) > t}| = |Ω|. Let t � 0. In this case, it is easy to observe that

|{x ∈ Ω : f(x) > t}| = |{x ∈ RN : f̃(x) > t}|
= |{x ∈ RN : f̃H(x) > t}|
= |{x ∈ Ω : fH(x) > t}| + |{x ∈ Ωc : f̃H(x) > t}|. (2.2)

Since f � 0 a.e. in Ω, applying proposition 2.1-(iv) we have |{x ∈ Ωc : f̃H(x) > t}| =
0. Therefore, from (2.2) we conclude |{x ∈ Ω : f(x) > t}| = |{x ∈ Ω : fH(x) > t}|.

(ii) Both the claims follow from [46, proposition 2.3]. �

In the following remark, we enlist some elementary facts about the polarized
domains and functions. If g = h a.e. in Ω, then we write g = h in Ω now onwards.
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Remark 2.3. Let H ∈ H, Ω ⊂ RN be a domain and f : Ω → R+ be a measurable
function.

(i) If Ω = ΩH = ΩH
c , then Ω is symmetric with respect to the hyperplane ∂H.

For such domain if f satisfies f = fH = fH in Ω, then it is easy to see that
f = f ◦ σH in Ω, i.e., f is symmetric with respect to ∂H.

(ii) From definition 1.2-(ii), it follows that

fH = fH
c , fH = fH

c

, (fH)H = (fH)H = fH , (fH)H = (fH)H = fH .

(iii) If Ω = ΩH
c , then (analogous to proposition 2.2-(i)), fH is a rearrange-

ment of f . However, the assumption Ω = ΩH alone is not sufficient to
ensure that fH is a rearrangement of f . For example, we consider an open
set Ω := {x ∈ R2 : |x| < 1} ∩ {x ∈ R2 : x2 > 0}. Let f : Ω → R+ \ {0} be a
measurable function. Let H ∈ H0(e2) where e2 = (0, 1). Then Ω = ΩH and
σH(Ω) �= Ω. Therefore, σH(Ω ∩Hc

) � Ω ∩H (by proposition 2.1-(ii)). Set
A = (Ω ∩H) \ σH(Ω ∩Hc

). From proposition 2.1-(iii), |A| > 0. Then for each
x ∈ A, σH(x) ∈ Ωc ∩Hc and hence using definition 1.2-(ii), fH(x) = 0. Thus
|x ∈ Ω : fH(x) > 0| � |Ω \A| < |Ω| = |x ∈ Ω : f(x) > 0|.

(iv) If Ω = ΩH and f ∈ H1
0 (Ω), then it is not necessary that fH lies in H1

0 (Ω).
For example, consider Ω ⊂ R2 and H as above. For such H, it is easy to
see that fH /∈ H1

0 (Ω). However, in addition if Ω = ΩH
c , then we have fH =

fH
c ∈ H1

0 (Ω).

2.1.1. Hardy-Littlewood and reverse Hardy-Littlewood inequality. Next, we discuss
the Hardy-Littlewood and the reverse Hardy-Littlewood inequality for polarization.

Proposition 2.4. Let p ∈ (1, ∞), H ∈ H0 and v, w ∈ Lp(RN ) be such that vw ∈
L1(RN ). Then ∫

RN

v(x)w(x) dx �
∫

RN

vH(x)wH(x) dx.

Proof. For a proof, we refer to [11, lemma 2]. �

In the following proposition, we first derive the Hardy-Littlewood inequality
for functions defined on polarization invariant domains other than RN . Then, we
prove a reverse Hardy-Littlewood inequality involving the polarization and the
dual-polarization of functions.

Proposition 2.5. Let p ∈ (1, ∞), H ∈ H0 and Ω ⊂ RN be a bounded domain such
that Ω = ΩH . Let v, w ∈ Lp(Ω) with vw ∈ L1(Ω).

(i) (Hardy-Littlewood inequality) Assume that at least one of v and w are
nonnegative. Then ∫

Ω

v(x)w(x) dx �
∫

Ω

vH(x)wH(x) dx. (2.3)
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(ii) (Reverse Hardy-Littlewood inequality) Assume that w is nonnegative.
Then ∫

Ω

vH(x)wH(x) dx �
∫

Ω

v(x)w(x) dx.

Proof. (i) Let ṽ, w̃ are the zero extensions of v, w respectively to RN . Then, using
proposition 2.4, we have∫

RN

ṽ(x)w̃(x) dx �
∫

RN

ṽH(x)w̃H(x) dx. (2.4)

From the definition ṽ(x) = 0 for x ∈ Ωc. Using (2.4), we write∫
Ω

v(x)w(x) dx =
∫

RN

ṽ(x)w̃(x) dx �
∫

RN

ṽH(x)w̃H(x) dx

=
∫

Ω

vH(x)wH(x) dx+
∫

Ωc

ṽH(x)w̃H(x) dx.

Without loss of generality, we assume v � 0 in Ω. Applying proposition 2.1-(iv) we
see that ṽH = 0 in Ωc. Thus from the above inequality, we get (2.3).

(ii) First, notice that

−vH(x) = −vH(σH(x)) = (−v)H(x).

Now, using (2.3), we get∫
Ω

(−v)(x)w(x) dx �
∫

Ω

(−v)H(x)wH(x) dx = −
∫

Ω

vH(x)wH(x) dx.

Therefore,
∫
Ω
vH(x)wH(x) dx �

∫
Ω
v(x)w(x) dx. �

2.2. Symmetrizations

In this section, we define Schwarz symmetry, Steiner symmetry and Foliated
Schwarz symmetry of a function. We also characterize these symmetries using
polarization.

2.2.1. Schwarz symmetry

Definition 2.6 Schwarz symmetric function. Let f : B1(0) → R be a measurable
function. Then f is called Schwarz symmetric in B1(0) if f is radial and radially
decreasing in B1(0).

Now we give an equivalent criterion for Schwarz symmetry via polarization. The
following result is proved in [13, lemma 6.3].

Proposition 2.7. Let f : B1(0) → R be a measurable function. Then f is Schwarz
symmetric in B1(0) if and only if f = fH for all H ∈ H(0).
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2.2.2. Steiner symmetry. In this section, we give a definition of Steiner sym-
metrization; cf. [31, section 2.2]. First, we fix some notations. We write x ∈ RN

as x = (x′, xN ), where x′ = (x1, x2, . . . , xN−1) ∈ RN−1 and xN ∈ R. Let πN−1

denotes the orthogonal projection from RN to RN−1. For a measurable set Ω ⊂ RN ,
we define the slice of Ω through x′ in the direction xN as Ωx′ = {xN ∈ R : (x′, xN )
∈ Ω}.

Definition 2.8 Steiner symmetric domain. The Steiner symmetrization of Ω with
respect to the hyperplane xN = 0 is defined by

Ω# =
{

(x′, xN ) ∈ RN : |xN | < |Ωx′ |1
2

, x′ ∈ πN−1(Ω)
}
,

where | · |1 denotes the 1-dimensional Lebesgue measure. If Ω = Ω# (up to trans-
lation), then Ω is said to be Steiner symmetric with respect to the hyperplane
xN = 0.

Equivalently Ω is Steiner symmetric with respect to the hyperplane xN = 0 if (i)
Ω is symmetric with respect to the hyperplane xN = 0, and (ii) Ω is convex with
respect to the xN -axis, i.e., any line segment parallel to the xN -axis joining two
points in Ω lies completely inside Ω.

Definition 2.9 Steiner symmetric function. Let Ω ⊂ RN be a measurable set and
f : Ω → R be a nonnegative measurable function. Then the Steiner symmetrization
f# of f on Ω# with respect to the the hyperplane xN = 0 is defined as

f#(x) = sup
{
c ∈ R : x ∈ {y ∈ Ω : f(y) � c}#

}
, where x ∈ Ω#.

Let Ω = Ω#. If f = f# in Ω, then f is called Steiner symmetric with respect to the
hyperplane xN = 0.

Next, we give a characterization of Steiner symmetric domains and Steiner
symmetric functions in terms of polarization; cf. [13, lemma 6.3].

Proposition 2.10. Let Ω be a measurable set in RN and f : Ω → R be a nonneg-
ative measurable function. Also, let H∗ ⊂ H be the collection of all half-spaces H
such that H contains the hyperplane xN = 0 and ∂H is parallel to the hyperplane
xN = 0. Then the following holds:

(i) Ω = Ω# if and only if Ω = ΩH for all H ∈ H∗,

(ii) if Ω = Ω#, then f is Steiner symmetric with respect to the hyperplane xN = 0
if and only if f = fH for all H ∈ H∗.

2.2.3. Foliated Schwarz symmetry. First, we define the foliated Schwarz sym-
metrization of a function on radial domains following [12].

Definition 2.11 Foliated Schwarz symmetrization. Let Ω be a radial domain with
respect to 0 and f : Ω → R be a nonnegative measurable function. Then the foliated
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Schwarz symmetrization f� of f with respect to a vector β ∈ SN−1 is the function
satisfying the following properties:

(i) f�(x) = h(r, θ), ∀x ∈ Ω, for some function h : [0, ∞) × [0, π) → R, which is
decreasing in θ, where (r, θ) := (|x|, arccos(x·β

|x| )).

(ii) for a, b ∈ R with a < b and r � 0,

|{x : |x| = r, a < f(x) � b}|N−1 = |{x : |x| = r, a < f�(x) � b}|N−1,

where | · |N−1 denotes the (N − 1)-dimensional Lebesgue measure.

Definition 2.12 Foliated Schwarz symmetric function. Let Ω be a radial domain
with respect to 0. Then a nonnegative measurable function f : Ω → R is said to be
foliated Schwarz symmetric with respect to a vector β ∈ SN−1 if f = f�.

Next, we give an analogous definition of foliated Schwarz symmetry on noncon-
centric annular domains motivated by [4].

Definition 2.13 Foliated Schwarz symmetry on non-concentric annulus. Let
ΩR,r = BR(0) \Br(te1), where 0 < t < R− r, and f : ΩR,r → R be a nonnegative
measurable function. We call f is foliated Schwarz symmetric with respect to −e1
if f̃ is foliated Schwarz symmetric with respect to −e1 in BR(0), where f̃ is the
extension of f to BR(0) by 0 outside of ΩR,r.

From the definition, it follows that if f is foliated Schwarz symmetric with respect
to β ∈ SN−1, then f is axially symmetric with respect to the axis Rβ and decreasing
in the polar angle θ = arccos(x·β

|x| ). Alternatively, this symmetry is also known as
spherical symmetry [33] or co-dimension one symmetry [10] in the literature. Now
we state a characterization for foliated Schwarz symmetry in terms of polarization.
The first part of the following proposition is proved in [12, theorem 3.5] for mea-
surable functions. For continuous functions, the second assertion is proved in [47,
proposition 2.4]. However, using a similar approach as given in [12, theorem 3.5],
one can obtain the same result for measurable functions. We omit the proof here.

Proposition 2.14. Let p ∈ [1, ∞), Ω be a radial domain with respect to 0 and
f ∈ Lp(Ω) be nonnegative.

(i) If for every H ∈ Ĥ0, either fH = f or fH = f, then there exists γ ∈ SN−1

such that f is foliated Schwarz symmetric with respect to γ.

(ii) Let β ∈ SN−1. Then f is foliated Schwarz symmetric with respect to β if and
only if fH = f for all H ∈ Ĥ0(β).

Remark 2.15. From definition 2.13 and proposition 2.14-(ii), a nonnegative mea-
surable function f : ΩR,r → R is foliated Schwarz symmetric with respect to −e1
if and only if f̃H = f̃ in BR(0), ∀H ∈ Ĥ0(−e1). Observe that by definition 2.13,
f̃H = f̃ in Br(te1) for all H ∈ Ĥ0(−e1). Therefore f is foliated Schwarz symmet-
ric in ΩR,r with respect to −e1 if and only if f̃H = f̃ in BR(0) \Br(te1), i.e.,
fH = f in ΩR,r for all H ∈ Ĥ0(−e1).
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3. Existence of optimizer

In this section, we study the existence and uniqueness of both minimizer and max-
imizer for (1.2)–(1.3). First, we recall a few properties of rearrangement and an
important rearrangement inequality due to Burton [15].

Proposition 3.1. Let p ∈ [1, ∞) and f0 ∈ Lp(Ω).

(i) If f1 ∈ E(f0), then f±1 ∈ E(f±0 ).

(ii) If f1 ∈ E(f0), then ‖f1‖p = ‖f0‖p.

(iii) Let h ∈ Lp′
(Ω). Then there exists f1, f2 ∈ E(f0) such that∫

Ω

f1(x)h(x) dx �
∫

Ω

f(x)h(x) dx �
∫

Ω

f2(x)h(x) dx, ∀ f ∈ E(f0),

where E(f0) is the weak closure of E(f0) in Lp(Ω).

Proof. (i) It is enough to show that for t ∈ R+, |{x ∈ Ω : f−1 (x) > t}| = |{x ∈
Ω : f−0 (x) > t}|. Let t ∈ R+. Then we have {x ∈ Ω : f−i (x) > t} = {x ∈ Ω : fi(x) <
−t}, i = 0, 1. Therefore, as f1 is a rearrangement of f0, we get

|{x ∈ Ω : f−1 (x) > t}| = |Ω| − |{x ∈ Ω : f1(x) � −t}| = |Ω| − |{x ∈ Ω : f0(x) � −t}|
= |{x ∈ Ω : f−0 (x) > t}|.

Thus f−1 ∈ E(f−0 ). In a similar procedure, f+
1 is a rearrangement of f+

0 .
(ii) and (iii) follow from [15, lemma 2.1 and lemma 2.4]. �

The following proposition gives regularity and a gradient estimate of the solutions
of (1.1) that play a crucial role in the existence of minimizer.

Proposition 3.2. Let p ∈ (1, ∞), N � p, and Ω be a smooth bounded domain.

(a) Let g, V ∈ Lq(Ω) with q > N
p . If φ ∈W 1,p

0 (Ω) is a solution of (1.1), then
φ ∈ C1(Ω).

(b) Let N > p, and g, V ∈ L
N
p (Ω). Let φ ∈W 1,p

0 (Ω) be a solution of (1.1).
Then
(i) φ ∈ Lr(Ω) for any r ∈ [1, ∞).

(ii) there exists C = C(N, r) > 0 such that ‖∇φ‖Nr(p−1)
N−r

� C‖(λg − V )|φ|p−2

φ‖
1

p−1
r , for r ∈ [(p∗)′, N).

Proof. (a) Proof follows using [30, proposition 1.3] and [39, theorem 1].
(b) Proof of (i) follows using [30, proposition 1.2], and proof of (ii) follows as a
consequence of [25, theorem 2.7]. �

Next, we prove a preparatory lemma for theorem 1.1.
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Lemma 3.3. Let q, r ∈ (1, ∞). Let fn ⇀ f in Lq(Ω) and hn → h in Lrq′
(Ω). Then

lim
n→∞

∫
Ω

fn|hn|r =
∫

Ω

f |h|r.

Proof. Let ε > 0 be given. For each n ∈ N, we have

|(fn|hn|r − f |h|r)| � |fn − f ||h|r + |fn||(|hn|r − |h|r)|.

Since fn ⇀ f in Lq(Ω) and |h|r ∈ Lq′
(Ω), there exists n1 ∈ N such that∫

Ω

|fn − f ||h|r < ε, ∀n � n1. (3.1)

Next, since hn → h in Lrq′
(Ω), we get ‖|hn|r‖q′ → ‖|h|r‖q′ and up to subsequence

|hn|r → |h|r a.e. in Ω. Hence |hn|r → |h|r in Lq′
(Ω). Therefore, there exists n2 ∈ N

such that∫
Ω

|fn||(|hn|r − |h|r)| � ‖fn‖q‖(|hn|r − |h|r)‖q′ < Cε, ∀n � n2. (3.2)

The last inequality uses the fact that (fn) is bounded in Lq(Ω). From (3.1) and
(3.2), we conclude that

∫
Ω
fn|hn|r → ∫

Ω
f |h|r. �

Proof of theorem 1.1. By the hypothesis,

g0, V0 ∈ X :=
{
L

N
p (Ω), if N > p;

Lq(Ω); q ∈ (1,∞), if N � p,
g+
0 �≡ 0, and ‖V −

0 ‖X � 1 − δ0
Sp

.

(3.3)
(i) Existence of minimizer: Let N > p. Recall that

Λmin(g0, V0) = inf {Λ(g, V ) : g ∈ E(g0), V ∈ E(V0)} ,

where E(g0) and E(V0) are the set of all rearrangements of g0 and V0 respectively.
Let (gn), (Vn) be minimizing sequences in E(g0), E(V0) such that

Λmin(g0, V0) = lim
n→∞Λ(gn, Vn). (3.4)

For brevity, we denote Λ(gn, Vn) as Λn. For each n ∈ N, using proposition 3.1-(i),
we see that gn, Vn satisfies all the assumptions as given in (3.3). Therefore, applying
theorem A.3, we get

Λn =

∫
Ω
|∇φn|p + Vnφ

p
n∫

Ω
gnφ

p
n

, (3.5)

where φn is an eigenfunction of (1.1) corresponding to Λn, φn > 0 in Ω and∫
Ω
gnφ

p
n > 0. For r ∈ ((p∗)′, N

p ), we set r1 = Nr(p−1)
N−pr . Using proposition 3.2 ((i)
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of (b)), (φn) ⊂ Lr1(Ω). It is easy to see that Φn := φn

‖φn‖r1
is also a positive eigen-

function of (1.1) corresponding to Λn normalized as ‖Φn‖r1 = 1. Moreover, from
(3.4) and (3.5),

Λmin(g0, V0) = lim
n→∞

∫
Ω
|∇Φn|p + VnΦp

n∫
Ω
gnΦp

n
. (3.6)

Now we show that (Φn) is bounded in W 1,r2
0 (Ω), where r2 = Nr(p−1)

N−r > p. For each
n ∈ N, using proposition 3.2 ((ii) of (b)), we have the following gradient estimate:

‖∇Φn‖r2 � C‖(Λngn − Vn)Φn‖r. (3.7)

We apply the Hölder’s inequality with the conjugate pair ( N
pr ,

N
N−pr ) to get

‖(Λngn − Vn)Φp−1
n ‖

1
p−1
r �

(∫
Ω

|Λngn − Vn|N
p

) p
N(p−1)

(∫
Ω

Φr1
n

) 1
r1

� ‖Λngn − Vn‖
1

p−1
N
p

‖Φn‖r1 = ‖Λngn − Vn‖
1

p−1
N
p

.

Since (gn, Vn) ∈ E(g0) × E(V0), it follows that ‖Λngn − Vn‖N
p

� Λn‖g0‖N
p

+
‖V0‖N

p
� C. Therefore, from (3.7), the sequence (‖∇Φn‖r2) is bounded. Also, since

r2 < r1 and Ω is bounded, we infer that (Φn) is bounded in Lr2(Ω). Thus the
sequence (Φn) is bounded in W 1,r2

0 (Ω). By the reflexivity of W 1,r2
0 (Ω), there exists

a subsequence (Φnk
) such that Φnk

⇀ φ in W 1,r2
0 (Ω). Since r∗2 > p∗, W 1,r2

0 (Ω) is
compactly embedded into Lp∗

(Ω). Therefore, Φnk
→ φ in Lp∗

(Ω) and φ � 0 in Ω.

Further, the sequences (gnk
) and (Vnk

) are bounded in L
N
p (Ω). By the reflexivity of

L
N
p (Ω), up to a subsequence gnk

⇀ g̃ and Vnk
⇀ Ṽ in L

N
p (Ω). Hence using lemma

3.3, we get

lim
k→∞

∫
Ω

gnk
Φp

nk
=

∫
Ω

g̃(φ)p and lim
k→∞

∫
Ω

Vnk
Φp

nk
=

∫
Ω

Ṽ (φ)p.

Therefore, (3.6) and the weak lower semicontinuity of ‖∇(·)‖p yield

Λmin(g0, V0) �
∫
Ω
|∇φ|p + Ṽ (φ)p∫

Ω
g̃(φ)p

, where (g̃, Ṽ ) ∈ E(g0) × E(V0).

Furthermore, from proposition 3.1-(iii) there exists (g, V ) ∈ E(g0) × E(V0) such
that

∫
Ω
V (φ)p �

∫
Ω
Ṽ (φ)p and

∫
Ω
g(φ)p �

∫
Ω
g̃(φ)p. Using these inequalities it

follows that

Λmin(g0, V0) �
∫
Ω
|∇φ|p + Ṽ (φ)p∫

Ω
g̃(φ)p

�
∫
Ω
|∇φ|p + V (φ)p∫

Ω
g(φ)p

� Λmin(g0, V0).

Thus Λmin(g0, V0) is attained at (g, V ) ∈ E(g0) × E(V0). For N � p, the existence
of minimizer follows from [26, theorem 3.4].
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(ii) Existence of maximizer: Recall that

Λmax(g0, V0) := sup {Λ(g, V ) : (g, V ) ∈ E(g0) × E(V0)} .
Let (gn) ⊂ E(g0) and (Vn) ⊂ E(V0) be maximizing sequences, i.e.,

Λmax(g0, V0) = lim
n→∞Λ(gn, Vn) = lim

n→∞

∫
Ω
|∇φn|p + Vnφ

p
n∫

Ω
gnφ

p
n

, (3.8)

where φn is a positive eigenfunction of (1.1) corresponding to Λ(gn, Vn) (by propo-
sition 3.1-(i) and theorem A.3). As before, we denote Λ(gn, Vn) as Λn. Since the
sequences (gn) and (Vn) are bounded in X, by the reflexivity of X, up to a subse-
quence gn ⇀ g and Vn ⇀ V in X. Now

∫
Ω
gnf → ∫

Ω
gf, ∀ f ∈ X ′, where X ′ is the

dual of X. Further, since gn ∈ E(g0) and g0 � 0, it follows from proposition 3.1-(ii)
that

∫
Ω
gn =

∫
Ω
g0. Now, by taking f = 1, we obtain∫

Ω

g = lim
n→∞

∫
Ω

gn =
∫

Ω

g0 > 0.

Therefore, g+ �≡ 0 on a set of positive measure. Also, from the weak lower
semicontinuity of ‖·‖X ,

‖V −‖X � ‖V ‖X � lim inf
n→∞ ‖Vn‖X � 1 − δ0

Sp
.

Thus g, V satisfies all the assumptions in (3.3), and by theorem A.3, there exists
an eigenfunction φ of (1.1) corresponding to Λ(g, V ). Now we write

Λn =

∫
Ω
|∇φn|p + Vnφ

p
n∫

Ω
gnφ

p
n

�
∫
Ω
|∇φ|p + Vn(φ)p∫

Ω
gn(φ)p

= Λ(g, V )

∫
Ω
g(φ)p∫

Ω
gn(φ)p

+

∫
Ω
(Vn − V )(φ)p∫

Ω
gn(φ)p

. (3.9)

From the Sobolev embedding W 1,p
0 (Ω) ↪→ Y , where Y = Lp∗

(Ω) (if N > p) and
Y = Lpq′

(Ω) (if N � p), we have (φ)p ∈ X ′. Therefore,
∫
Ω
(Vn − V )(φ)p → 0 and∫

Ω
(gn − g)(φ)p → 0, as n→ ∞. Now using (3.9), we obtain

lim sup
n→∞

Λn � Λ(g, V ).

Therefore, Λmax(g0, V0) � Λ(g, V ), where g ∈ E(g0) and V ∈ E(V0). Further, from
the rearrangement inequality (proposition 3.1-(iii)) there exists (g, V ) ∈ E(g0) ×
E(V0) such that

∫
Ω
V (φ)p �

∫
Ω
V (φ)p and

∫
Ω
g(φ)p �

∫
Ω
g(φ)p. Therefore,

Λmax(g0, V0) �
∫
Ω
|∇φ|p + V (φ)p∫

Ω
g(φ)p

�
∫
Ω
|∇φ|p + V (φ)p∫

Ω
g(φ)p

� Λmax(g0, V0).

Thus Λmax(g0, V0) is attained at (g, V ) ∈ E(g0) × E(V0). �
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Remark 3.4. Notice that, in order to get the existence of optimizers, we have used
the reflexivity of the space X. Naturally, when X = L1(Ω), the above procedure
fails due to the lack of reflexivity.

In the following proposition, we give a characterization of minimizers g and V .

Proposition 3.5. Let g0, V0 be as given in theorem 1.1. Let (φ, g, V ) be an optimal
triple. Then there exists an increasing function F : R �→ R and a decreasing function
G : R �→ R such that

g = F ◦ φ and V = G ◦ φ in Ω.

Proof. Proof follows using theorem 1.1-(i) and the similar set of arguments as given
in [26, theorem 3.5]. �

Next, we study the uniqueness for the maximization problem (1.3). In [22,
theorem 4.4], authors proved the uniqueness of maximizer when Ω is a ball and
g0 ∈ L∞(Ω) is nonnegative. Here we establish the uniqueness for more general
domains Ω and nonnegative g0 ∈ X (X is as in (A)) by extending ideas of the
preceding paper. In order to get this, we derive the weak continuity of the map
g �→ Λ(g, 0) in X. For brevity, we denote Λ(f) = Λ(f, 0) for a function f .

Proposition 3.6. Let g0 satisfies (A), g0 � 0 and V0 = 0. Then the following
holds:

(i) Let E(g0) be the weak closure of E(g0) in X. Then the map g �→ Λ(g) is
continuous on E(g0), i.e., for every sequence (gn) in E(g0) if gn ⇀ g in X,
then Λ(gn) → Λ(g),

(ii) There exists a unique maximizer of Λmax(g0, 0).

Proof. (i) Let N > p and g0 ∈ L
N
p (Ω). Let (gn) be a sequence in E(g0) such that

gn ⇀ g in L
N
p (Ω). We show that Λ(gn) → Λ(g). For each n ∈ N, since gn ∈ E(g0),

there exists a sequence (gn,m) in E(g0) such that gn,m ⇀ gn in L
N
p (Ω). Now for

every f ∈ (L
N
p (Ω))′, we have

∫
Ω
gn,mf → ∫

Ω
gnf , as m→ ∞ and

∫
Ω
gnf → ∫

Ω
gf,

as n→ ∞. In particular, for f = 1,∫
Ω

gn = lim
m→∞

∫
Ω

gn,m =
∫

Ω

g0 and
∫

Ω

g = lim
n→∞

∫
Ω

gn =
∫

Ω

g0.

Therefore, for each n ∈ N, supp(g+
n ) and supp(g+) have positive measure. Hence

using theorem A.3, there exist positive eigenfunctions φn and φ of (1.1) correspond-
ing to Λ(gn) and Λ(g), respectively. Further,

Λ(gn) =

∫
Ω
|∇φn|p∫

Ω
gnφ

p
n

�
∫
Ω
|∇φ|p∫

Ω
gnφp

= Λ(g)

∫
Ω
gφp∫

Ω
gnφp

.

This yields lim sup
n→∞

Λ(gn) � Λ(g). On the other hand, following the steps as given

in the proof of theorem 1.1-(i), we get a sequence (Φn) of eigenfunctions of (1.1)

https://doi.org/10.1017/prm.2022.60 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2022.60


1794 N. Biswas, U. Das and M. Ghosh

such that

Λ(gn) =

∫
Ω
|∇Φn|p∫

Ω
gnΦp

n
,Φn ⇀ φ in W 1,p

0 (Ω), and
∫

Ω

gnΦp
n →

∫
Ω

g(φ)p. (3.10)

Hence (3.10) and the weak lower semicontinuity of ‖∇(·)‖p give

lim inf
n→∞ Λ(gn) �

∫
Ω
|∇φ|p∫

Ω
g(φ)p

� Λ(g).

Thus the sequence (Λ(gn)) converges to Λ(g). For N � p, proof follows using the
similar set of arguments.

(ii) We consider the following maximization problem:

Λmax(g0) = sup
{

Λ(g) : g ∈ E(g0)
}
. (3.11)

Step 1: First, we show that the maximizer of (3.11) is attained in E(g0). Let (gn) be
a maximizing sequence in E(g0) such that Λ(gn) → Λmax(g0). Since the set E(g0)
is weakly sequentially compact (by [15, lemma 2.2]), up to a subsequence gn → g̃
in E(g0) (i.e., gn ⇀ g̃ in X). Using the continuity of g �→ Λ(g), we have Λ(g̃) =
lim

n→∞Λ(gn) = Λmax(g0). Further, using proposition 3.1-(iii), there exists ĝ ∈ E(g0)

such that Λ(g̃) � Λ(ĝ). Thus, Λ(ĝ) = Λmax(g0).

Step 2: Next, we claim that the maximizer ĝ of (3.11) is unique. One can verify
that

Λ̂min(g0) := inf
{

1
Λ(g)

: g ∈ E(g0)
}

=
(
Λmax(g0)

)−1
.

Thus the uniqueness of maximizer for Λmax(g0) is equivalent to the unique-
ness of minimizer for Λ̂min(g0). Suppose there exists g1, g2 ∈ E(g0) such that

1
Λ(g1)

= 1
Λ(g2)

= Λ̂min(g0). For t ∈ (0, 1), set ft = tg1 + (1 − t)g2. Since E(g0) is con-

vex (by [15, lemma 2.2]), ft ∈ E(g0). Let φft
, φg1 , and φg2 be eigenfunctions of (1.1)

corresponding to Λ(ft), Λ(g1) and Λ(g2). Then

Λ̂min(g0) � 1
Λ(ft)

= t

∫
Ω
g1φ

p
ft∫

Ω
|∇φft

|p + (1 − t)

∫
Ω
g2φ

p
ft∫

Ω
|∇φft

|p

� t

∫
Ω
g1φ

p
g1∫

Ω
|∇φg1 |p

+ (1 − t)

∫
Ω
g2φ

p
g2∫

Ω
|∇φg2 |p

= t
1

Λ(g1)
+ (1 − t)

1
Λ(g2)

= Λ̂min(g0).

Hence the equality holds in each of the above inequalities. Therefore, the following
equations hold weakly:

−Δpφft
= Λ(g1)g1φ

p−1
ft

, and − Δpφft
= Λ(g2)g2φ

p−1
ft

in Ω.

From the above identities, it follows that Λ(g1)g1 = Λ(g2)g2 in Ω. Further, g0 ∈
L1(Ω) and using proposition 3.1-(ii) we have

∫
Ω
g1 =

∫
Ω
g2 =

∫
Ω
g0 > 0. Therefore,
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Λ(g1) = Λ(g2) and g1 = g2 in Ω. Thus the minimizer of Λ̂min(g0) is unique, and the
uniqueness of ĝ follows immediately.

Step 3: From step 1, we have

Λmax(g0) � Λmax(g0) = Λ(ĝ) � Λmax(g0).

Therefore, using step 2, it is evident that the maximizer of (1.3) is unique. �

Remark 3.7. In general, minimizer of (1.2) need not be unique (see remark 4.5).
However, when Ω is a ball, there exists a unique minimizer for (1.2); cf. [22,
theorem 3.3].

4. Symmetry of minimizers

This section is devoted to studying the various symmetry of the minimizers of (1.2).
First, we state a strong maximum principle due to Brezis and Ponce in [9, corollary
4], which will be used in our proof of theorem 1.3.

Proposition 4.1 Strong maximum principle. Let O ⊂ RN be a bounded domain
and V ∈ L1

loc(O) with V � 0 a.e. in O. Assume that φ � 0, V φ ∈ L1
loc(O) and Δφ

is a Radon measure on O. Suppose that the following inequality holds in the sense
of distribution:

−Δφ+ V φ � 0.

Then either φ ≡ 0 or φ > 0 a.e. in O.

For the rest of this section, we denote φ as φ.

Proof of theorem 1.3. (i) Let H ∈ H0. By the hypothesis, Ω = ΩH , σH(Ω) �= Ω,
V0 = 0, g0 satisfies (A) with g0 � 0, and g is given in theorem 1.1-(i). For simplicity,
we set Λmin(g0) := Λmin(g0, 0). From theorem 1.1-(i) and theorem A.3, there exists
φ ∈ H1

0 (Ω) such that φ > 0 in Ω and

Λmin(g0) = Λ(g) =

∫
Ω
|∇φ|2∫

Ω
gφ2

. (4.1)

Using proposition 2.2-(i), we see that g
H

∈ E(g0). Hence, g
H

� 0 and g
H

satisfies
(A). Thus, using theorem A.3, we infer that Λ(g

H
) is achieved. Further, since g

H
∈

E(g0), it follows that

Λ(g
H

) � Λmin(g0). (4.2)

Now from the Hardy-Littlewood inequality (proposition 2.5-(i)),∫
Ω

gφ2 �
∫

Ω

g
H

(φH)2, (4.3)

where we also used the fact that (φ2)H = (φH)2 (as φ > 0). Furthermore, since
φ ∈ H1

0 (Ω) and φ > 0 in Ω, by proposition 2.2-(ii), we have φH ∈ H1
0 (Ω) and
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‖∇φ‖2 = ‖∇φH‖2. Therefore, using (4.1), (4.2) and (4.3), we get

Λ(g) =

∫
Ω
|∇φ|2∫

Ω
gφ2

�
∫
Ω
|∇φH |2∫

Ω
g

H
(φH)2

� Λ(g
H

) � Λ(g).

Thus the equality occurs in each of the above inequalities. As a consequence, φ and
φH satisfy the following equations weakly:

− Δφ = Λ(g)gφ in Ω, and − ΔφH = Λ(g)g
H
φH in Ω. (4.4)

Set w = φH − φ. Then w � 0 in Ω ∩H, and from (4.4), w satisfies the following
equation weakly:

− Δw = Λ(g)(g
H
φH − gφ) in Ω ∩H, w = 0 on ∂(Ω ∩H). (4.5)

Moreover, since g0 � 0, we get g � 0 and hence g
H
φH − gφ � 0 in Ω ∩H. Therefore,

applying the strong maximum principle (proposition 4.1) and using (4.5) we obtain
w > 0 or w = 0 in Ω ∩H, i.e.,

φH > φ in Ω ∩H, unless φH = φ in Ω ∩H. (4.6)

Further, since σH(Ω) �= Ω, using proposition 2.1-(iii), there exists A ⊂ Ω ∩H such
that |A| > 0 and σH(A) ⊂ Ωc ∩Hc

. For x ∈ A, from definition 1.2-(ii), φH(x) =
φ̃H(x) = φ̃(x) = φ(x), i.e., φH = φ in A. Therefore, from (4.6), we must have φH =
φ in Ω ∩H, i.e., φ � φ ◦ σH in Ω ∩H. Consequently, we get φH = φ in Ω. Moreover,
from (4.5) the conclusion g

H
= g in Ω follows immediately.

(ii) Let H ∈ H0 be such that σH(Ω) = Ω. By the hypothesis, g0, V0 satisfy (A),
with g0, V0 � 0, and g, V are given in theorem 1.1-(i). Using theorem 1.1-(i) and
theorem A.3, there exists positive φ ∈ H1

0 (Ω) such that

Λmin(g0, V0) = Λ(g, V ) =

∫
Ω
|∇φ|2 + V φ2∫

Ω
gφ2

. (4.7)

From proposition 2.2-(i) and remark 2.3-(iii), we obtain (g
H
, V H) ∈ E(g0) ×

E(V0). Hence, g
H
, V H � 0, and g

H
, V H satisfy (A). Therefore, by theorem A.3,

Λ(g
H
, V H) is achieved. Further, from the Hardy-Littlewood inequality (proposi-

tion 2.5-(i)), reverse Hardy-Littlewood inequality (proposition 2.5-(ii)) and using
proposition 2.2-(ii), we obtain∫

Ω

gφ2 �
∫

Ω

g
H

(φH)2,
∫

Ω

V φ2 �
∫

Ω

V Hφ2
H , ‖∇φ‖2 = ‖∇φH‖2.

Therefore, (4.7) yields

Λmin(g0, V0) =

∫
Ω
|∇φ|2 + V φ2∫

Ω
gφ2

�
∫
Ω
|∇φH |2 + V H(φH)2∫

Ω
g

H
(φH)2

� Λ(g
H
, V H) � Λmin(g0, V0).
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Since equality occurs in each of the above inequalities, the following equations hold
weakly:

−Δφ+ V φ = Λ(g, V )gφ, and − ΔφH + V HφH = Λ(g, V )g
H
φH in Ω. (4.8)

As before, we set w = φH − φ and using (4.8) see that w ∈ H1
0 (Ω) satisfies the

following equation weakly:

−Δw + V w � −Δw + (V HφH − V φ) � 0 in Ω ∩H, w = 0 on ∂(Ω ∩H). (4.9)

Further,
∫
Ω∩H

V w � (
∫
Ω∩H

V )
1
2 (

∫
Ω∩H

V w2)
1
2 <∞. Therefore, by proposition 4.1,

we conclude that either φH > φ or φH = φ in Ω ∩H. Now we consider these two
possibilities separately:

(a) Let φH = φ in Ω ∩H, i.e., φ ◦ σH � φ in Ω ∩H. Then using proposition 3.5,
we get

g ◦ σH = F ◦ (φ ◦ σH) � F ◦ φ = g in Ω ∩H.
V ◦ σH = G ◦ (φ ◦ σH) � G ◦ φ = V in Ω ∩H.

Therefore, φH = φ, g
H

= g and V H = V in Ω.
(b) If φH > φ in Ω ∩H, i.e., φ ◦ σH > φ in Ω ∩H, then using proposition 3.5,

g ◦ σH > g and V ◦ σH < V in Ω ∩H. Therefore, we get φH = φ, gH = g and V H =
V ◦ σH in Ω. Further, using definition 1.2-(ii), it follows that V H = V in Ω.

Combining both possibilities, we complete the proof. �

Remark 4.2 Radiality on ball. If Ω = B1(0), then we have ΩH = Ω and σH(Ω) �= Ω
for every H ∈ H(0). Therefore, by theorem 1.3-(i), φH = φ and g

H
= g in Ω for all

H ∈ H(0). Hence from proposition 2.7, we conclude that φ and g are radial and
radially decreasing on Ω. For 1 < p <∞, this result has been proved in [22] with
V0 = 0 and in [28] with V0 � 0. Here we recover the same result for p = 2 and
V0 = 0, using the polarization invariance structure of a minimizing weight and the
associated first eigenfunctions.

Proposition 4.3. Let Ω be a bounded domain containing 0, g0 = χE , where E � Ω
with 0 < |E| < |Ω| and V0 = 0. If Ω = BR(0) for some R > 0, then g = χBr(0) for
some r > 0 such that |E| = |Br(0)|. Furthermore, the converse is also true.

Proof. Let Ω = BR(0). Since g0 = χE , we have g = χF for some F � Ω with
|F | = |E|. Now by remark 4.2, g is radial and radially decreasing. Thus, g(0) = 1.
Moreover, |{g = 1}| = |{g0 = 1}| = |E|. Thus F must be a ball centred at origin,
i.e., F = Br(0) for some r > 0 such that |E| = |Br(0)|. The proof of the converse
result follows adapting the similar ideas used in [37, theorem 2]. �

If a domain is symmetric with respect to the hyperplane ∂H, where H ∈ H0,
then theorem 1.3-(ii) states that any optimal triple remains either polarization
invariant or dual-polarization invariant with respect to H. This is the finest result
(in a certain sense) one can expect without any further assumptions on the domain.
The following remark emphasizes this assertion.
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Remark 4.4 Nonradiality on concentric annulus. Let Ω = BR+1(0) \BR(0) ⊂ R2,
where R > 0 is sufficiently large and V0 = 0. Then proceeding in the same way as in
the proof of [19, theorem 6], we can show that there exists g0 = χD, where D ⊂ Ω,
such that g is not radial. Consequently, any first eigenfunction φ associated to g is
nonradial.

Remark 4.5 Nonuniqueness of minimizer. Nonuniqueness of minimizer of (1.2)
follows from the asymmetric nature of minimizers, as mentioned in remark 4.4.
More precisely, let us choose a concentric annulus Ω centred at the origin and a
weight function g0 such that a minimizing weight g is not radial. Thus there exists
H ∈ H0 such that g �= g

H
. Further, we show that g

H
is also a minimizer for (1.2)

(in the proof of theorem 1.3-(i)). Hence the minimizer for (1.2) is not unique.

As a consequence of theorem 1.3-(i), next, we prove corollary 1.4, which assures
that an optimal pair (φ, g) preserves the Steiner symmetry if the underlying domain
is Steiner symmetric.

Proof of corollary 1.4. LetH ∈ H0 and Ω be Steiner symmetric with respect to ∂H.
Since the Laplace operator is invariant under isometries, without loss of generality,
we assume thatH = {(x1, x2, . . . , xN ) ∈ RN : xN < 0}, i.e., Ω is Steiner symmetric
with respect to the hyperplane ∂H = {(x1, x2, . . . , xN ) ∈ RN : xN = 0}. Let H∗ ⊂
H0 be the collection of all open half-spaces H̃ containing ∂H such that ∂H̃ is parallel
to ∂H. Therefore, using proposition 2.10-(i), we have ΩH̃ = Ω for all H̃ ∈ H∗. Since
Ω is symmetric with respect to ∂H, it is easy to observe that σH̃(Ω) �= Ω for every
H̃ ∈ H∗. Hence by theorem 1.3-(i), we get φH̃ = φ and g

H̃
= g in Ω for all H̃ ∈ H∗.

Therefore by proposition 2.10-(ii), we conclude that φ and g are Steiner symmetric
in Ω. �

Now we study the foliated Schwarz symmetry of the minimizers. First, we prove
theorem 1.5. Then we discuss some of its consequences.

Proof of theorem 1.5. (i) By the hypothesis, Ω = BR(0) \Br(0), where 0 < r < R.
Recall that Ĥ0 = {H ∈ H0 : 0 ∈ ∂H}. For each H ∈ Ĥ0, we have σH(Ω) = Ω, and
we apply theorem 1.3-(ii) to get φH = φ or φH = φ in Ω. Therefore, from proposi-
tion 2.14-(i), there exists γ ∈ SN−1 such that φ is foliated Schwarz symmetric in Ω
with respect to γ. Hence using proposition 2.14-(ii), we get φH = φ, ∀H ∈ Ĥ0(γ).
Further, following the arguments as given in the proof of theorem 1.3-(ii), we also
get g

H
= g and V H = V , ∀H ∈ Ĥ0(γ). Therefore, from the sufficient condition

for the foliated Schwarz symmetrization (proposition 2.14-(ii)), we conclude g is
foliated Schwarz symmetric in Ω with respect to γ. Moreover, since V H = V for
H ∈ Ĥ0(γ), from remark 2.3-(ii) we have V H̃ = V , where H̃ = H

c ∈ Ĥ0(−γ). Since
H is arbitrary, V H = V , ∀H ∈ Ĥ0(−γ). Now again from proposition 2.14-(i), it
follows that V is foliated Schwarz symmetric in Ω with respect to −γ.

(ii) In this case, Ω = BR(0) \Br(te1), where 0 < t < R− r, and V0 = 0. Recall
that Ĥ0(−e1) = {H ∈ Ĥ0 : −e1 ∈ H}. It is easy to observe that ΩH = Ω and
σH(Ω) �= Ω for every H ∈ Ĥ0(−e1). Thus by theorem 1.3-(i), we have φH = φ and
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g
H

= g for every H ∈ Ĥ0(−e1). Therefore, φ and g are foliated Schwarz symmetric
with respect to −e1 in Ω (by remark 2.15). �

Corollary 4.6. Let u1 be a positive eigenfunction associated to the first eigen-
value λ1 of the following eigenvalue problem on Ω = BR(0) \Br(te1), where 0 < t <
R− r:

−Δu = λu in Ω ; u = 0 on ∂Ω.

Then u1 is foliated Schwarz symmetric with respect to −e1 on Ω.

Proof. We note that if g0 = 1, then E(g0) = {g0}. Thus Λmin(g0) = λ1 and hence
(u1, g0) is an optimal pair. Now the assertion follows from (ii) of theorem 1.5. �

Remark 4.7.

(i) Let Ω = BR(0) \Br(te1), 0 < t < R− r and V0 = 0. Let (φ, g) be an optimal
pair as given in theorem 1.1-(i). Then from theorem 1.5-(ii), φ is axially
symmetric with respect to the axis Re1 and decreasing in the polar angle
arccos(−x·e1

|x| ). If g0 ∈ Lq(Ω) with q > N
2 , then continuity of φ (proposition

3.2) along with the foliated Schwarz symmetry ensures that maxima of φ is
attained on Ω ∩ (−R+e1).

(ii) Let Ω = BR(0) \Br(0), where 0 < r < R. Also let g0 = 1, V0 = αχD, where
α > 0, and D ⊂ Ω. Observe that in this case V = αχE for some E ⊂ Ω with
|E| = |D|. In [19, theorem 6], the authors showed that there exist R, r, V0

for which E is not rotationally symmetric. However, using theorem 1.5-(i)
we conclude that for any R, r with 0 < r < R and D, the function αχE and
hence E is axially symmetric with respect to some axis passing through the
origin. Thus the axial symmetry of E does not depend on the choices of R, r
and D.

Proof of corollary 1.6. Let Ω = BR(0) \Br(te1), where 0 < t < R− r. For α ∈ R,
let Hα ∈ H be defined as

Hα =
{(
x1, x2, . . . , xN

) ∈ RN : x1 > α
}
.

Then it is easy to observe that ΩHα
= Ω, ∀α � −R+r−t

2 (however, if α > −R+r−t
2 ,

then ΩHα
�= Ω). Let α̃ = −R+r−t

2 . Then ΩHα̃
= Ω and obviously σHα̃

(Ω) �= Ω.
Therefore by theorem 1.3-(i), we have φHα̃

= φ in Ω. Since g0 ∈ Lq(Ω) for q > N
2 ,

by standard elliptic regularity (proposition 3.2-(a)), φ ∈ C1(Ω). Thus

φ(x) � φ(σHα̃
(x)), ∀x ∈ Ω ∩Hα̃

H . (4.10)

We recall that LΩ =
{
x ∈ Ω ∩ (−R+e1) : x1 � α̃ = −R+r−t

2

}
(see Fig. 1). Then

LΩ ⊂ Ω ∩Hα̃ and hence from (4.10), we have

φ(x) � φ(σHα̃
(x)), ∀x ∈ LΩ. (4.11)
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Figure 1. Location of maxima of φ in BR(0) \ Br(te1).

Also by (i) of remark 4.7,

max
x∈Ω

φ(x) = max
x∈Ω∩(−R+e1)

φ(x). (4.12)

Thus using (4.11) and (4.12), we conclude that max
x∈Ω

φ(x) = max
x∈LΩ

φ(x). If g is

continuous, we can repeat the process, and hence the assertion follows. �

Remark 4.8. We emphasize that for g0 ∈ L∞(Ω) and 2N+2
N+2 < p <∞, using a

stronger version of comparison principle [43, theorem 1.3] and adapting similar
techniques as given in this article, one can prove all the symmetry results obtained in
theorem 1.3-1.5 and corollary 1.4-1.6. However, when p �= 2 and g0 is not bounded,
the extension of the results obtained in § 4 seems challenging due to the lack of
comparison principles which plays an important role in our proofs.

Appendix A.

In this section, we study the existence and some properties of Λ(g, V ). Let X be
as given in (A). For g, V ∈ X, we consider the following functionals on W 1,p

0 (Ω):

G(φ) =
∫

Ω

g|φ|p; J(φ) =
∫

Ω

|∇φ|p + V |φ|p, ∀φ ∈W 1,p
0 (Ω).

One can verify that G, J ∈ C1(W 1,p
0 (Ω), R).

Remark A.1. ForN > p and g ∈ L
N
p (Ω), using [3, lemma 4.1] the map G is compact

on W 1,p
0 (Ω). For N � p, the compactness of G holds from the compact embeddings

of W 1,p
0 (Ω) ↪→ Lr(Ω) with r ∈ (1, ∞) (when N = p) and W 1,p

0 (Ω) ↪→ L∞(Ω) (when
N < p).

The functional J may not be coercive on W 1,p
0 (Ω) for any sign-changing V ∈ X.

However, in the following lemma under a suitable integrability assumption on V −

we show that J is coercive on W 1,p
0 (Ω).
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Lemma A.2. Let V satisfies assumptions as given in (A). Then there exists δ0 ∈
(0, 1) such that ∫

Ω

|∇φ|p + V |φ|p � δ0

∫
Ω

|∇φ|p, ∀φ ∈W 1,p
0 (Ω).

Proof. Let N > p. For φ ∈W 1,p
0 (Ω), using the embedding W 1,p

0 (Ω) ↪→ Lp∗
(Ω) we

get ∫
Ω

V −φp � ‖V −‖N
p
‖φp‖ p∗

p
= ‖V −‖N

p
‖φ‖p

p∗ � Sp‖V −‖N
p

∫
Ω

|∇φ|p.

Hence∫
Ω

|∇φ|p + V φp �
∫

Ω

|∇φ|p − V −φp �
(
1 − Sp‖V −‖N

p

) ∫
Ω

|∇φ|p � δ0

∫
Ω

|∇φ|p,

∀φ ∈W 1,p
0 (Ω). Therefore, the functional J is coercive on W 1,p

0 (Ω). For N � p, the
coercivity of J follows using same arguments. �

Theorem A.3. Let Ω be a bounded domain in RN . Assume that g, V satisfies (A).
Then

Λ(g, V ) = inf
{∫

Ω
|∇φ|p + V φp∫

Ω
gφp

: φ ∈W 1,p
0 (Ω),

∫
Ω

gφp > 0
}

is attained. Moreover, Λ(g, V ) is principal and simple.

Proof. Due to the homogeneity of the Rayleigh quotient, we write

Λ = inf
{
J(φ)
G(φ)

: φ ∈W 1,p
0 (Ω), G(φ) > 0

}
= inf

{
J(φ) : φ ∈W 1,p

0 (Ω), G(φ) = 1
}
.

Existence of Λ(g, V ): Let (φn) be a minimizing sequence in W 1,p
0 (Ω) such that

J(φn) → Λ(g, V ) as n→ ∞. By lemma A.2, the sequence (φn) is bounded in
W 1,p

0 (Ω). By the reflexivity, up to a subsequence φn ⇀ Φ1 in W 1,p
0 (Ω). Since N

is weakly closed by the compactness of G (remark A.1), Φ1 ∈ N . Moreover, using
the lower semicontinuity of ‖∇(·)‖p,

Λ(g, V ) = lim
n→∞

∫
Ω

|∇φn|p + V |φn|p �
∫

Ω

|∇Φ1|p + V |Φ1|p � Λ(g, V ).

Thus Λ(g, V ) is attained, and Φ1 is a critical point of J on N . Therefore, by the
Lagrange multiplier, Λ(g, V ) is an eigenvalue of (1.1) and Φ1 is an eigenfunction
corresponding to Λ(g, V ).

Λ(g, V ) is principal: Let Φ1 be an eigenfunction of (1.1) corresponding to
Λ(g, V ). Then |Φ1| ∈W 1,p

0 (Ω) is also an eigenfunction corresponding to Λ(g, V ).
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For ψ ∈ C1
c (Ω) with ψ � 0,∫

Ω

|∇(|Φ1|)|p−2∇(|Φ1|) · ∇ψ + (V + + Λg−)|Φ1|p−1ψ =
∫

Ω

(V − + Λg+)|Φ1|p−1ψ � 0.

Moreover, V + + Λg− � 0 and∫
Ω

|V + + Λg−||Φ1|p−1 �
(∫

Ω

|V + + Λg−|
) 1

p
(∫

Ω

|V + + Λg−||Φ1|p
) 1

p′
<∞.

Thus |Φ1| ∈W 1,p
0 (Ω) satisfies all the properties of [34, proposition 3.2] (for N > p)

and [34, part (b) of corollary 3.3] (for N � p). Therefore, |Φ1| > 0 a.e. in Ω.
Λ(g, V ) is simple: Suppose Φ1 and Φ2 are two eigenfunctions of (1.1) cor-
responding to Λ(g, V ). Without loss of generality we assume that Φ1, Φ2 > 0

a.e. in Ω. Set P (Φ1, Φ2) := |∇Φ1|p + (p− 1)Φp
1

Φp
2
|∇Φ2|p − p

Φp−1
1

Φp−1
2

|∇Φ2|p−2∇Φ2 and

R(Φ1, Φ2) := |∇Φ1|p − |∇Φ2|p−2∇( Φp
1

Φp−1
2

) · ∇Φ2. Let ε > 0 be given. Then using

the Picone’s identity ([1, theorem 1.1]),∫
Ω

P (Φ1, Φ2 + ε) =

∫
Ω

R(Φ1, Φ2 + ε) =

∫
Ω
|∇Φ1|p − |∇Φ2|p−2∇

(
Φp

1

(Φ2 + ε)p−1

)
· ∇Φ2

=

∫
Ω

(Λg − V )

(
Φp

1 − Φp−1
2

Φp
1

(Φ2 + ε)p−1

)
.

Now we let ε→ 0 and apply the dominated convergence theorem to get∫
Ω
P (Φ1, Φ2) = 0. Since P (Φ1, Φ2) � 0, we obtain P (Φ1, Φ2) = 0 a.e. in Ω. There-

fore, again using the Picone’s identity ([1, theorem 1.1]), we get that Φ1 is a constant
multiple of Φ2. Thus Λ is simple. �
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