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107.31 Obtaining a more general result from a functional
equation by not differentiating

Introduction
Relying too much on tools with which we are familiar is a human trait

that can cause us to overlook details or features that might be interesting.
This is captured in Maslow's Law or The Law of the Instrument:

To a person with a hammer, everything looks like a nail [1].
That occurred in our Theorem 8 of [2, p. 429]:

A sufficient condition for the twice differentiable function  to
be a quadratic polynomial (parabola) is that any three distinct
points , that satisfy  with ,
form an inscribed non-degenerate triangle and the formula for the
area of the triangle with vertices at the points is

y (x)

(xi, yi) i = 1,  2,  3 y = y(x) x1 < x2 < x3

C (x3 − x2) (x3 − x1) (x2 − x1)
for a single value of  for the curve.C

The condition of twice differentiability is an unnecessary assumption that is
instead a consequence of the conclusion. The hammer is differentiation and
knowing how to solve a simple differential equation. The nail is the
remainder of the theorem.

The requirement concerning the area of the inscribed triangle can be
expressed as

1
2 | | = C (x3 − x2) (x3 − x1) (x2 − x1) . (1)

x1 y1 1

x2 y2 1

x3 y3 1

Expanding the determinant on its first row and multiplying by 2 yields

x1 (y2 − y3) − y1 (x2 − x3) + (x2y3 − x3y2) = 2C (x3 − x2)(x3 − x1)(x2 − x1).   (2)
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The order of the values of  is immaterial, because all orders yield an
equivalent equation. This can be seen as follows. Consider switching
between  and . On the left-hand side of (1), this
interchanges rows 2 and 3 of the determinant, which introduces a minus sign
[3, p. 3]. On the right-hand side, switching solely introduces a minus sign, as
well. These minus signs cancel. Similarly, switching between any two -
values either just introduces a minus sign on both sides or does not.

x

x2 < x3 x3 < x2

x

A proof using differentiation
This proof resembles the proof in [2]. Because  are independently

selected values for the single function , select one of them, say , and

apply  to (2), remembering that the derivatives of  and  and of

evaluated at  and  are zero, to obtain

xi
y x1

∂
∂ x1

x2 x3 y

x2 x3

y2 − y3 − y′1 (x2 − x3) = 2C (x3 − x2)(−1)(x2 − x1) + 2C (x3 − x2)(x3 − x1)(−1).  (3)

Applying  to (3) gives the second order differential equation .

Dropping the subscript 1 and solving the differential equation results in the
quadratic-polynomial solution 

∂
∂ x1

y1″ = 4C

y = 2Cx2 + C1x + C2. (4)
From (4), 

y (0) = C2 and y (1) = 2C + C1 + C2,

C2 = y (1) − y (0) − 2C and C2 = y (0) ,
and (4) is

y = 2Cx2 + (y (1) − y (0) − 2C) x + y (0) . (5)
The proof resulting in (5) unnecessarily relies on the condition of twice

differentiability, as well as the use of partial differentiation and solving a
differential equation. As a result, the similar proof given in [2, p. 429] is
more complicated than necessary. Instead, we can drop the condition of
twice differentiability and view (1) and (2) as equivalent functional
equations, whose solutions imply differentiability.

A proof using a functional equation approach
Equation (1) is a functional equation in three variables  for

one function  [4, p. 25]. The indeterminacy allows two of the variables
to be chosen as fixed numbers. For simplicity, use the values 0 and 1. Thus,
without loss of generality, select

(x1, x2 and x3)
(y (x))

x1 = x,  x2 = 0 and  x3 = 1,
and write 

y1 = y(x) = y,  y2 = y(x2) = y(0) and  y3 = y(x3) = y(1).
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Equation (2) becomes

y = 2Cx2 + (y (1) − y (0) − 2C) x + y (0) ,
which is (5).

The final step is to check that no spurious solutions have been
introduced [4, p. 26]. Substituting (5) into (1) gives an identity, which shows
that there are none.
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107.32 A new inductive proof of the AM - GM inequality

In what follows, we denote by  and  the arithmetic and geometric
means of  non-negative real numbers  , that is,

An Gn
n a1, a2, … , an (n ≥ 1)

An =
a1 + a2 +  …  + an

n
and Gn = n a1a2 …  an.

Then the famous arithmetic mean - geometric mean inequality (see, e.g.,
[1, Subsection 2.1] and [2, Section 5]) states that

An ≥ Gn, (1)
where equality holds if, and only if, .a1 = a2 =  …  = an

Several proofs of the arithmetic mean-geometric mean inequality are
known in the literature (see, e.g., [3]). It was used as the inductive
hypothesis in [4, 5, 6, 7, 8].

https://doi.org/10.1017/mag.2023.103 Published online by Cambridge University Press

https://doi.org/10.1017/mag.2023.103

