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Abstract

Bayesians often appeal to “merging of opinions” to rebut charges of excessive subjectivity. But
what happens in the short run is often of greater interest than what happens in the limit.
Seidenfeld and coauthors use this observation as motivation for investigating the counterintui-
tive short run phenomenon of dilation, since, they allege, dilation is “the opposite” of asymptotic
merging of opinions. The measure of uncertainty relevant for dilation, however, is not the one
relevant for merging of opinions. We explicitly investigate the short run behavior of the metric
relevant for merging, and show that dilation is independent of the opposite of merging.

1. Introduction
A specter is haunting the theory of imprecise probabilities—the specter of dilation.
When dilation occurs, learning new information increases uncertainty. Dilation is
especially interesting because, relative to a dilating partition, uncertainty grows
no matter which cell an agent learns. This has prompted investigations into the
rational status of willingness to pay “negative tuition,” that is, willingness to pay
not to learn (e.g., Kadane et al. 2008). Yet dilation is not the only way for uncertainty
to grow relative to every cell of a partition for imprecise probabilities (IP). With dila-
tion, the focus is on the uncertainty about a particular event. But uncertainty about a
given event is not the only kind of uncertainty with which we might be concerned.
We might instead be concerned about overall uncertainty. In this study, we will be so
concerned. Given a set of probabilities and a (positive, measurable) partition,
distention occurs when the (supremum of the) total variation distance increases no matter
which cell of the partition an agent learns. Since each cell induces an increase in total
variation for a set of probabilities, conditional on any cell, the set of probabilities is
“more spread” than it is unconditionally. In this sense, uncertainty–not about a
particular event, but of a global sort–is sure to grow. Distention, like dilation, then,
is a way for evidence to increase uncertainty across an entire evidential partition.
As far as we know, ours is the first articulation and investigation of the phenomenon
of distention.
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Several considerations motivate our study. With their justly celebrated
“merging of opinions” theorem, Blackwell and Dubins establish that, relative to just
a few assumptions, Bayesians achieve consensus in the limit almost surely (1962).
That priors “wash out” in this way is an important pillar of Bayesian philosophy
(Savage 1954; Edwards et al. 1963; Gaifman and Snir 1982; Earman 1992; Huttegger
2015).1 Schervish and Seidenfeld extend Blackwell and Dubins’s result to IP theory,
establishing that certain convex polytopes of probabilities exhibit uniform merging
(Schervish and Seidenfeld 1990, Corollary 1).2 But as Herron, Seidenfeld, and
Wasserman observe about Blackwell and Dubins’s result, “[w]hat happens asymptoti-
cally, almost surely, is not always a useful guide to the short run” (1997), 412.
Disagreements can persist, or even increase, over finite time horizons even though
they vanish in the limit. Herron et al. use this point, however, to motivate an investi-
gation into dilation. The idea seems to be that an increase in disagreement among
the elements of a set of probabilities in the dilation sense is the opposite of an
increase in agreement among those elements in the merging sense.3 But, as we will
show, an occurrence of dilation does not imply an increase in disagreement in the
Blackwell and Dubins model (section 4). We propose instead to investigate the “short
run” behavior of total variation, the metric with which Blackwell and Dubins are
concerned. To forestall any misreading, our point here is about a particular motiva-
tion and general claim about the significance of dilation. We are not taking issue with
formal results on dilation presented in the literature. One way of reading our position
in this paper is that some of the attention bestowed on dilation amounts to
stolen valor.

1 As Edwards, Lindman, and Savage write, “[t]his approximate merging of initially divergent opinions
is, we think, one reason why empirical research is called ‘objective’” (1963, 197).

2 Convexity is often imposed on sets of probabilities in the IP setting (e.g., Levi 1980). Convex
polytopes of probabilities emerge naturally in many contexts for IP (e.g., Levi 1985; Stewart and Ojea
Quintana 2018), with Bronevich and Klir even claiming that “It is convenient and rational [ : : : ] that each
such set of probability measures is a convex polytope” (2010, 366). We return briefly to the topic of
convexity in Section 5.

3 We think this is the natural reading of a claim often repeated in the context of dilation. But in
addition to inviting readers to scrutinize this claim in context for themselves, we report some instances
here. For example, after defining dilation, Seidenfeld writes, “[d]ilation of conditional probabilities is the
opposite phenomenon to the more familiar ‘shrinking’ of sets of options [sic] with increasing shared
evidence” (1995, 458). Herron et al. write, ““[.. .] call this phenomenon dilation of the set of probabilities
(Seidenfeld and Wasserman 1993). Thus, dilation contrasts with the asymptotic merging of posterior
probabilities reported by Savage (1954) and by Blackwell and Dubins (1962)” (1994, 250). A few pages
later, they repeat the claim: “For a useful contrast with Savage-styled, or Blackwell-Dubins-styled asymp-
totic consensus, the following discussion focuses on the short run dynamics of upper and lower condi-
tional probabilities in Robust Bayesian models” (1994, 252). And again, “[i]n contrast with Savage’s, and
Blackwell and Dubins’ well known results about the merging of Bayesian posterior probabilities given
sufficient shared evidence, in this paper we reported two aspects of the contrary case, which we call
dilation of sets of probabilities” (1994, 257). In a subsequent paper, after discussing merging and before
discussing dilation, Herron et al. write, “[w]hat happens asymptotically, almost surely, is not always a
useful guide to the short run. Seidenfeld and Wasserman (1993) address this question in the following
way [.. .]” (1997, 412). More recently, Zhang et al. have made essentially the same claim about dilation:
“This counterintuitive phenomenon is often interpreted as a distinctive challenge to the orthodox
Bayesian doctrine on the value of information and to the Bayesian merging of opinions” (2017, 371; emphasis
added). While no citation is given for who has interpreted dilation as a challenge to merging of opinions,
our point in this paper would likely be informative for that discussion as well.
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Another motivation for investigating distention comes from social epistemology.
In Nielsen and Stewart (2021), we introduce the notions of local and global
probabilistic opinion polarization between agents. There, we note 1) that the dilation
phenomenon for imprecise probabilities is in some ways analogous to local polariza-
tion, and 2) that local and global polarization are logically independent. This presents
our context of discovery for distention: it is the phenomenon analogous to global
polarization for imprecise probabilities.

Furthermore, in many cases, it is natural to be concerned with overall uncertainty
as we construe it in this essay. Many inquiries do not center on just a single event or
proposition of interest, but focus on a host of questions. At least, we claim, this is one
legitimate way to construe some inquiries. For such inquiries, an agent or group may
be concerned with his or their estimates over an entire space of possibilities, and with
how new information affects those estimates. In this kind of case, total variation
seems the more appropriate measure of increases and decreases of uncertainty.

After rehearsing the basics of dilation (section 2), we define distention precisely
(section 3), show that it is logically independent of dilation (section 4, proposition 1),
and provide a characterization (section 5, proposition 2). We then draw some connec-
tions between local and global polarization in social epistemology, on the one hand,
and dilation and distention in IP theory, on the other (section 6). We conclude by
considering some further ramifications of distention (section 7).

2. Dilation
Our main interest in this essay is in certain aspects of the theory of imprecise prob-
abilities. We adopt a formalism based on sets of probability measures, though several
alternative frameworks have been studied (Walley 2000; Augustin et al. 2014).
There are a number of motivations for IP. Imprecise probabilities are an important
tool in robustness analysis for standard Bayesian inference (Walley 1991; Berger
1994). Sets of probabilities are useful in studying group decision problems (Levi
1982; Seidenfeld et al. 1989) and opinion pooling (Elkin and Wheeler 2018; Stewart
and Ojea Quintana 2018). IP provides more general models of uncertainty that are
often championed as superior for a number of normative considerations relevant
to epistemology and decision making (Levi 1974; Walley 1991). Sets of probabilities
can also be used to represent partial elicitation of precise subjective probabilities.
Some have argued that IP presents a more realistic theory of human epistemology
(Arló-Costa and Helzner 2010). IP allows for a principled introduction of incomplete
preferences in the setting of expected utility maximization (Seidenfeld 1993; Kaplan
1996), and has been used to offer resolutions of some of the paradoxes of decision
(Levi 1986). And there are other considerations driving the development of the theory
of imprecise probabilities.

Dilation is the (at least at first blush) counterintuitive phenomenon of learning
increasing uncertainty.4 For a dilating partition, learning any cell results in greater
uncertainty. Take the simple, stock example of flipping a coin. This experiment parti-
tions the sample space into two cells, one corresponding to heads, the other to tails.

4 There is by now a fairly extensive literature on dilation (e.g., Walley 1991; Seidenfeld and Wasserman
1993; Herron et al. 1994; Wasserman and Seidenfeld 1994; Herron et al. 1997; Bradley and Steele 2014;
Pedersen and Wheeler 2014; Pedersen and Wheeler 2015; Nielsen and Stewart 2019; Moss 2020).
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It could be the case that, for some event A, no matter how the coin lands, the agent’s
estimate for A (P�A� � 0:5, say) will be strictly included in the agent’s estimate condi-
tional on the outcome of the coin toss (�0:1; 0:9�, for example). Example 1 details such
a case.

Throughout, let Ω be a sample space of elementary events or possible worlds.
Elements of Ω can be thought of as maximally specific epistemic possibilities for
an agent. Let F be a sigma-algebra on Ω, i.e., a non-empty collection of subsets of
Ω closed under complementation and countable unions. Elements of F are called
events, and F can be thought of as a general space of possibilities (not just maximally
specific ones). We assume the standard ratio definition of conditional probability:

P�AjE� � P�A \ E�
P�E� ; when P�E� > 0:

Let P be a set of probability measures. Such a set can be interpreted, for example, as
the probability measures an agent regards as permissible to use in inference and deci-
sion problems, those distributions he has not ruled out for such purposes. If is convex,
it associates with any event in the algebra an interval of probability values (such as
�0:1; 0:9�).5 We can now define dilation precisely.

Definition 1. Let P be a set of probabilities on �Ω;F �; letB be a positive partition of
Ω6, and let A 2 F . We say that the partition B dilates A just in case, for each E 2 B,

inffP�AjE� : P 2 Pg < inffP�A� : P 2 Pg ≤ supfP�A� : P 2 Pg < supfP�AjE� : P 2 Pg:

It is clear that precise credal states are dilation-immune since inffP�HjE�g�
supfP�HjE�g for all H and E in F such that P�HjE� is defined.

Consider the following common example of dilation, introduced in outline earlier
(Herron et al. 1994; Pedersen and Wheeler 2015). We simplify by assuming that
consists of just two probabilities.

Example 1. Let P � fP1; P2g be a set of probabilities on �Ω;F �. Suppose that, for
G 2 F , P1�G� � 0:1 and P2�G� � 0:9. Relative to P, then, G is a highly uncertain event.
Consider the toss of a coin that is fair according to both P1 and P2: P1�H� �
P2�H� � 1=2 � P1�Hc� � P2�Hc�. Suppose that the outcomes of the coin toss are inde-
pendent of the event G according to both P1 and P2. Then, P1�G \ H� � P1�G�P1�H�
and P2�G \ H� � P2�G�P2�H�. Let A be the “matching” event that either both (G)
and (H) occur or both do not. That is, A :� �G \ H� [ �Gc \ Hc�. Notice that
P1�A� � 1=2 � P2�A�. Despite initial agreement concerning (A), the coin toss dilates
P1 and P2 on (A). For i 2 f1; 2g,

Pi�AjH� �
Pi���G\ H� [ �Gc \ Hc�� \ H�

Pi�H�
� Pi�G \ H�

Pi�H�
� Pi�G�Pi�H�

Pi�H�
� Pi�G�:

5 We call P convex when P;Q 2 P implies aP� �1 � a�Q 2 P for every a 2 �0; 1�. The convex hull of a set
of points is the smallest convex set containing those points.

6 The partition B is positive if implies E 2 F and P�E� > 0 for all P 2 P. Note that this definition
entails that every cell of B is measurable. Also note that positive partitions are necessarily countable.

Philosophy of Science 607

https://doi.org/10.1017/psa.2021.44 Published online by Cambridge University Press

https://doi.org/10.1017/psa.2021.44


So even though both P1 and P2 assign probability 1=2 to A initially,
learning that the coin lands heads yields P1�AjH� � 0:1 and P2�AjH� � 0:9.
Hence, P1�AjH� < P1�A� ≤ P2�A� < P2�AjH�. Analogous reasoning establishes
that P2�AjHc� < P2�A� ≤ P1�A� < P1�AjHc�: Δ

Some see in dilation grounds for rejecting the notion that imprecise probabilities
provide a normatively permissible generalization of standard Bayesian probability
theory (e.g., White 2010; Topey 2012). It is not just that it seems intuitively wrong
that learning should increase uncertainty. Dilation has further consequences. For
example, dilation leads to violations of Good’s Principle. Good’s Principle enjoins
us to delay making a terminal decision if presented with the opportunity to first learn
cost-free information. For the standard, Bayesian expected utility framework, Good’s
Principle is backed up by a theorem. Good famously shows that, in the context of
expected utility maximization, the value of making a decision after learning cost-free
information is always greater than or equal to the value of making a decision before
learning (Good 1967).7 Dilation, however, leads to the devaluation of information (e.g.,
Pedersen and Wheeler 2015). With dilation, an agent may actually be willing to pay to
forgo learning some information, what Kadane et al. label “negative tuition” (Kadane
et al. 2008).

3. Distention
What would it mean for uncertainty to grow with respect to every cell of an
experimental partition, though not uncertainty about a single, fixed event? We adopt
the same metric that Blackwell and Dubins employ to gauge consensus in the context
of merging of opinions. For any two probabilities, P1 and P2, the total variation distance
d is given by

d�P1; P2�� sup
A2F

P1�A� � P2�A�j j:

When d�P1; P2� � 0, it follows that P1 � P2. And if P1 and P2 are within ε according to
d, they are within ε for every event in the algebra. We will have occasion to appeal
to the fact that, in finite probability spaces, the total variation distance is given by

d�P1; P2� � P1�A0� � P2�A0�; (1)

where A0 � fω 2 Ω : P1�ω� > P2�ω�g (e.g., Nielsen and Stewart 2021).
So we take it that for global uncertainty to grow with respect to each cell of an

experimental partition is for the total variation to increase conditional on each cell.8

That, in turn, means that, for every cell, there is some event such that the “distance”
between the probabilities for that event conditional on that cell is greater than the
distance between probabilities for any event unconditionally. For an arbitrary set of
probabilities, we look at the supremum of the total variation for all elements of the
set. To simplify notation, let us adopt some metric space terminology and call

7 More precisely, the value of deciding before learning is given by the maximum expected utility of the
options. That value is always less than or equal to the expected value of the maximum expected utility of
the options after learning, where expected utility after learning is calculated with the relevant condi-
tional probability.

8 See subsection 7.3 for some comments on alternative interpretations of increasing global
uncertainty.
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d�P� � supP;Q2Pd�P; Q� the diameter of P. If P�E� > 0 for all P 2 P, then let us write
PE � fPE : P 2 Pg, where PE � P�	 j E�. We should stress that whenever we write PE,
we are assuming that all P 2 P assign E positive probability.

Definition 2. Let P be a set of probabilities on �Ω;F �; letB be a positive partition of
Ω. We say that the partition B distends P just in case, for each E 2 B,

d�P� < d�PE�:

Another way to think of distention is that a partition that distends P pushes the
elements of P further from consensus. When P is interpreted as the credal state
of a single agent, the closer a set of probabilities gets to “consensus,” the closer it
is that uncertainty is reduced to risk—a unique probability function—for an agent.
So distention pushes uncertainty further from being reduced to simple risk. Like dila-
tion, then, distention is a way that uncertainty grows whatever the outcome of an
experiment. Unlike dilation, though, the focus for distention is on total variation
distance and not the probability of a single, fixed event.

As repeatedly noted in the literature (e.g., Seidenfeld and Wasserman,
1993; Pedersen and Wheeler, 2015), dilation bears certain similarities to non-
conglomerability. Let B � fEi : i 2 Ig be a positive partition. We say that A is
conglomerable in B when

inffP�AjE� : E 2 Bg ≤ P�A� ≤ supfP�AjE� : E 2 Bg:

And we say that P is conglomerable inB if the above inequalities hold for all events A.
When A is non-conglomerable inB, P�A� cannot be regarded as a weighted average of
the probabilities P�AjEi�. If B is a countable partition, and P is not conglomerable for
A in B, then the law of total probability fails. This happens only when P fails to be
countably additive. Schervish et al. prove that, for any merely finitely additive
probability P (on a space admitting a countably infinite partition), there is some event
A and countable partition B such that P fails to be conglomerable for A in B (1984).
One reason non-conglomerability is odd is that it allows for reasoning to foregone
conclusions (Kadane et al. 1996). Merely running an experiment, regardless of the
outcome, allows one to uniformly increase (or decrease) one’s estimate in some event.
In other words, an experiment could be designed such that, before even running it,
the experimenter can be sure that conditionalizing on the outcome will yield a higher
(or lower, depending on the case) probability for the event in question. Like dilation,
non-conglomerability also leads to the devaluation of information in violation
of Good’s Principle (e.g., Pedersen and Wheeler 2015). Distention, like dilation, but
unlike non-conglomerability, can occur even on finite sets. So, like dilation,
but perhaps unlike non-conglomerability, distention cannot be explained away by
poor intuitions concerning infinite sets.

4. Distention is logically independent of dilation
Given certain conceptual similarities between distention and dilation, it is natural to
ask about their logical relations. The answer to that query is that dilation does not
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imply distention, nor does distention imply dilation. In other words, dilation and
distention are logically independent.9

To see that dilation does not imply distention, return to the coin example from
earlier.

Example 2. Let Ω � fω1;ω2;ω3;ω4g; A � fω1;ω2g; and H � fω1;ω4g: Let
P � fP; Qg, given on the following table along with their updates on H and on Hc.

Take B � fH;Hcg as our experimental partition (the outcome of a flip of a
fair coin). From the table, we compute P�A� � 0:5 � Q�A�. Yet, P�AjH� � 0:1
and Q�AjH� � 0:9. Similarly, P�AjHc� � 0:9 and Q�AjHc� � 0:1. So, B
dilates P on A. However, again computing from the table using equation 1, we have
d�P; Q� � d�PH; QH� � d�PHc

; QH
c � � 0:8. It follows that dilation does not entail

distention. Δ

To see that distention does not imply dilation, consider the following simple
example.

Example 3. Let Ω � fω1;ω2;ω3;ω4g; H � fω1;ω2g; and P � fP; Qg; given on
table 2. Consider the partition B consisting of H and its complement. While
d�P; Q� � 1=10, d�PH; QH � � 1=6 and d�PHc

; QH
c � � 3=28. So B distends P. But it does

not dilate any event. Not only is there no dilation in B, no partition of Ω dilates any
event. This can be checked, a bit tediously, by hand.10 Δ

A set of probabilities cannot exhibit distention on a smaller sample space. That is
because any (non-trivial) partition on a smaller space will have a singleton as a cell.

Table 1. Dilation without Distention

!1 !2 !3 !4

P 0:05 0:45 0:05 0:45

Q 0:45 0:05 0:45 0:05

PH 0:1 0 0 0:9

QH 0:9 0 0 0:1

PH
c

0 0:9 0:1 0

QHc
0 0:1 0:9 0

9 It is fairly trivial to see that dilation in the short run is consistent with asymptotic merging—in fact,
under suitable assumptions about learning, the probabilities in examples 1 and 2 are subject to the
merging results. So any alleged contrast there, straightforwardly construed, cannot be correct. We focus
on the short run for both dilation and the total variation metric in this paper. Here, too, we claim that
dilation does not “contrast with,” is not the “opposite of” merging of opinions.

10 Note, though, that only partitions consisting of non-singleton cells, of which there are just three,
need to be checked. Dilation will be thwarted by any partition containing a singleton because the
resulting conditional distributions will agree.
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In that case, provided the partition is positive, the distance between probabilities
conditional on a singleton is 0.

We submit that the short run that is relevant to merging of opinions is the short
run behavior of total variation distance and not the sort of behavior exemplified by
dilation. After all, it is the total variation distance that Blackwell and Dubins use to
measure consensus. Examples 2 and 3 show that dilation is in fact orthogonal to
distention, but example 4 shows that distention and dilation in a given partition
are consistent (see the Appendix). We summarize these findings in the following
proposition.

Proposition 1. While a set P can exhibit both dilation and distention simultaneously
with respect to a single partition, dilation does not imply distention, nor does disten-
tion imply dilation.

5. A characterization of distention
For any two probabilities P and Q and any two events A and E such that P�E�; Q�E� > 0,
define a function B̄ as follows:

BP;Q�A; E� �
P�A�
P�E� �

Q�A�
Q�E� : (2)

In a way, the function B̄ sets the so-called Bayes factor in difference form. The Bayes
factor for P and Q with respect to A and E is defined as

BP;Q�A; E� �
P�A�
P�E�

�
Q�A�
Q�E� : (3)

Bayes factors have a distinguished pedigree in Bayesian thought (Good 1983; Wagner
2002; Jeffrey 2004). Wagner, for instance, contends that identical learning experiences
for two agents are captured by identical Bayes factors for their respective priors and
posteriors rather than by identical posterior opinions. But B̄ differs substantially in
interpretation from a Bayes factor. In particular, it is not assumed that either
of P or Q is an update of the other.

Table 2. Distention without Dilation

!1 !2 !3 !4

P 1=10 1=5 1=10 3=5

Q 1=10 1=10 1=5 3=5

PH 1=3 2=3 0 0

QH 1=2 1=2 0 0

PH
c

0 0 1=7 6=7

QHc
0 0 1=4 3=4
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The function B̄ allows us to state one simple characterization of distention. Since
convexity has played a prominent role in IP theory, we also state an equivalence with
the distention of the convex hull.11

Proposition 2. Let P be a set of probabilities on �Ω;F �, and letB be a positive parti-
tion of Ω. The following are equivalent.

(i) B distends P.
(ii) For all E 2 B there exist P; Q 2 P, and A 
 E such that

BP;Q�A; E� > d�P�: (4)

(i) B distends the convex hull of P.

We regard proposition 2 as a first pass at characterizing distention. The problem of
finding such characterizations is more than a purely formal one. The characterizing
conditions should be relatively simple and provide insight into the “wherefore” of
distention. It is not clear to us that proposition 2 satisfies the second desideratum.

6. Local and global polarization
Polarization is a social phenomenon. Accordingly, in our previous related study
(2021), we were concerned about its implications for social epistemology. But,
as we noted there, social epistemology and the theory of imprecise probability gain
much from cross-fertilization. In this paper, we exploit concepts from social episte-
mology in the hopes of gaining a deeper understanding of the theory of imprecise
probabilities.

Like dilation, local polarization is defined in terms of a specific event. Polarization
in this sense occurs when shared evidence pushes opinions about a specific event
further apart.

Definition 3. Let P1 and P2 be probability functions on �Ω;F �, and let A; E 2 F .
We say that evidence E polarizes P1 and P2 with respect to the event A if

P1�AjE� < P1�A� ≤ P2�A� < P2�AjE�:

The possibility of two agents polarizing when updating on shared evidence may itself
come as a surprise to some. In particular, the fact that it is possible for Bayesians to
polarize is a challenge to the view that rational agents who share evidence resolve
disagreements. Elsewhere, we have labeled this view The Optimistic Thesis About
Learning (TOTAL), and, at Gordon Belot’s suggestion, its proponents TOTALitarians
(2021). Such a view seems to underwrite many of our ordinary practices (in rational
persuasion, advocacy, etc.) as well as positions in current philosophical debates. For
example, the view that an epistemic peer’s disagreement is evidence of defect in one’s

11 For one important debate about the normative status of convexity for IP, see Levi (1980, 1990, 2009)
and Seidenfeld et al. (1989, 2010).
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own beliefs, as some so-called conciliationists allege, seems committed to TOTAL.
Bayesian polarization, however, suggests TOTAL is false.

Not only does the definition of local polarization resemble that of dilation,
local polarization and dilation can be characterized in terms of similar conditions
(cf. Seidenfeld and Wasserman 1993, Result 1; Nielsen and Stewart 2021, Theorem 1).
But we can be more precise than mere resemblance. Let P � fP1; P2g and let B be a
positive finite partition that dilates A. Then there is some E 2 B such that E polarizes
P1 and P2 with respect to A. If not, then dilation implies that

P1�A�≤ P2�A�< P1�A j E�
for all E 2 B, where we have assumed the first inequality without loss of generality.
Multiplying by P1�E� and summing over E 2 B yields

P1�A� �
X
E2B

P1�A�P1�E�<
X
E2B

P1�A j E�P1�E��P1�A�;

which is a contradiction. Hence, dilation guarantees that some cell of the dilating
partition is polarizing.

Central to the concept of global polarization is a measure of the extent of total
disagreement between two probability functions. Again, we adopt the total variation
metric to assess total disagreement. Naturally enough, we say that global polarization
occurs when shared evidence brings about an increase in total variation between two
probability functions.

Definition 4. Evidence E polarizes P1 and P2 globally if d�P1; P2�< d�PE1; PE2�.

In contrast to the optimistic spin typically put on the Blackwell-Dubins merging
result, our consensus-or-polarization law shows that even very mild and plausible weak-
enings of the relevant assumptions no longer entail almost sure consensus in the
limit. Rather, agents achieve consensus or maximally (globally) polarize with proba-
bility 1 (Nielsen and Stewart 2021, Theorem 3).

Local and global polarization are logically independent. While probabilities can
exhibit local and global polarization simultaneously, global polarization does not
imply local polarization, nor does local polarization imply global polarization
(Nielsen and Stewart 2021, Proposition 1). As we saw above, the IP analogues of local
and global polarization, dilation and distention, respectively, exhibit the same sort of
logical independence.

7. Some upshots

7.1 Asymptotic consensus
The primary precondition of Blackwell and Dubins’ merging theorem is absolute
continuity.12 If P is absolutely continuous with respect to Q, then Q�A� � 0 implies
P�A� � 0 for all A 2 F . Their theorem roughly says that if P is absolutely continuous

12 The theorem also assumes that probabilities admit regular conditional distributions (Billingsley
2008). A stronger assumption that implies the existence of regular conditional distributions is that
all sub-sigma-algebras of the filtration are generated by countable partitions. This assumption is used,
for example, in Kalai and Lehrer (1994).
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with respect to Q, then P assigns probability 1 to achieving consensus with Q in the
limit. The examples above involve regular prior distributions on finite probability
spaces. Every probability function is absolutely continuous with respect to a regular
distribution. In larger spaces, regularity is not achievable. This makes the issue of
absolute continuity non-trivial. Extending the theorem to sets of probability func-
tions presents further complications. Schervish and Seidenfeld establish that closed,
convex sets of mutually absolutely continuous probabilities that are generated by
finitely many extreme points merge under Bayesian conditionalization (Schervish
and Seidenfeld 1990, Corollary 1). In previous work, we generalize this result, showing
that closed, convex sets of mutually absolutely continuous probabilities that are
generated by finitely many extreme points merge under Jeffrey conditioning as well
(Stewart and Nielsen 2019, Proposition 1).13 For such sets of distributions, the signifi-
cance of distention depends on the importance of the short run. In our opinion, the
importance is clear. For all Blackwell and Dubins’s theorem says, approximate
consensus may be achieved only in the very long run. Many things for which
consensus is relevant happen in the not very long run. Even if is a set of mutually
absolutely continuous probabilities (and so subject to the merging theorem), not only
can its elements fail to achieve consensus in the short run, they might collectively
distend, moving away from consensus whatever evidence comes. Of course, if an IP
set does not consist of mutually absolutely continuous priors, failure of almost sure
asymptotic consensus is a foregone conclusion.

7.2 Group manipulation
Moving now to the social setting, distention implies the possibility of a sort of group
manipulation in the short run. Interpret a set P as the (individually precise) proba-
bilities of a group of agents. For certain such sets, an experiment can be designed such
that, no matter the outcome, the group will be further from consensus as a result of
learning shared evidence. If a policy decision or group choice requires consensus (or a
tolerance of only ε disagreement) on some algebra of events, such decision-making
can be frustrated (at least in the short run) by a devious experimenter no matter the
outcome of the experiment.

7.3 Alternative measures of uncertainty
We have focused on total variation distance because of its distinguished role in
merging of opinions and, consequently, Bayesian thought, and because of merging’s
alleged contrast with dilation. Total variation, however, is one example of a large class
of divergences between probabilities known as f-divergences. Another prominent
example is Kullback-Leibler (KL) divergence from Q to P defined in discrete spaces by

13 One interesting thing about the generalization to Jeffrey conditioning is that, unlike standard
Bayesian conditionalization, Jeffrey conditioning does not generally preserve the convexity of the initial
set (Stewart and Nielsen 2019, Proposition 3). Another is that “uncertain learning” has been rarely
married with general models of uncertainty along IP lines in the literature.
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DKL�P k Q� � �
X
i

P�ωi� log
Q�ωi�
P�ωi�

:

An important fact about KL divergence, often pointed out, is that, unlike total varia-
tion, KL divergence is not a true metric. For instance, it is not symmetric. Above, we
provided an example of distention without dilation (example 3). This example also
establishes that distention does not imply that the KL divergence increases across
the partition. In particular, DKL�P k Q� > DKL�PE k QE�, as can easily be computed from
table 2. Still other IP-specific measures of uncertainty have been explored in the liter-
ature (e.g., Bronevich and Klir 2010). Absent strong reasons to privilege some such
measure over the others—and perhaps there are such reasons for total variation
—these simple observations urge caution in drawing general lessons from dilation-
or distention-type phenomena.

7.4 “Pathologies” of imprecision
The further ramifications of distention remain to be explored. As we point out above,
in the social setting, distention implies the possibility of certain sorts of group manip-
ulation. For an individual with an imprecise credal state, an analogous sort of manip-
ulation is possible in contexts in which a precise estimate is desired. For certain credal
states, an experimenter can guarantee that the agent gets further (as measured by the
total variation metric) from a precise estimate no matter what. How dramatic are the
consequences of this sort of manipulation? And what other sorts of surprising effects,
like the violations of Good’s Principle for dilation, might distention bring in tow?
We hope to explore these issues in future research.

One interesting point, we find, is that none of the alleged pathologies discussed in
connection with imprecise probabilities seem to be at all unique to a specific IP
phenomenon, nor even unique to IP given social interpretations of sets of probabili-
ties. Violations of Good’s Principle do not require dilation. Non-conglomerability
leads to such violations as well. Neither does the strange phenomenon of learning
increasing uncertainty imply dilation. With distention, uncertainty increases what-
ever evidence comes in as well. In a social setting, dilation and distention are some-
what robbed of their apparent counter-intuitive sting. The lesson there is that
updating on shared evidence does not guard against various types of group opinion
polarization (what could be called “social uncertainty”), as mundane examples illus-
trate (Nielsen and Stewart 2021).

One might take these anomalies as an argument for restricting to precise proba-
bilities on finite spaces—by our lights, far beyond the pale of what is warranted. For
one thing, continuous random variables are essential in many scientific applications
and are unavailable in finite spaces. For another, violations of Good’s Principle do not
require imprecise probabilities, so the restriction to precise probabilities fails as a
safeguard. True, there are no instances of non-conglomerability in finite spaces,
but suppose with us that the restriction to such spaces is too costly. By requiring
countable additivity, one guarantees conglomerability in countable partitions. But,
depending on the theory of conditional probabilities that we adopt, even countably
additive probabilities can exhibit non-conglomerability in uncountable partitions.
And the moral is more general still (Schervish et al. 2017). So such proposed restric-
tions are costly, hasty, and ineffective.
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Appendix
9. Example 4
The following example shows that a set P can exhibit both dilation and distention
simultaneously with respect to a single partition.

Example 4. Let Ω � fω1;ω2;ω3;ω4g; E � fω1;ω2g; and A � fω1;ω3g: We take
B � fE; Ecg as our experimental partition.

Calculating the total variation distance from the table, we have d�P� � d�P; Q� � 0:29,
d�PE; QE� � 0:302, and d�PEc ; QEc � � 0:46. So B distends P. For dilation, notice
that Q�A� � 21=100 and P�A� � 31=100. But PE�A� � 1=38 < 21=100<
31=100 < 20=61 � QE�A�. Similarly, QE

c�A� � 1=39 < 21=100 < 31=100 < 30=62 �
PE

c�A�. So, B dilates A.

10. Proof of proposition 2
Proof. We start by showing that (i) and (ii) are equivalent. Suppose that (ii) holds and
let E 2 B. Then there exist P; Q 2 P, and A 
 E such that

d�P�< jPE�A� � QE�A�j ≤ d�PE; QE� ≤ d�PE�:
Hence, B distends P, so (II) implies (I).

Conversely, suppose thatB distends P and let E 2 B. Then there are P; Q 2 P such
that

d�P� < d�PE; QE�:
Let p and q be densities for P and Q, respectively, with respect to any common domi-
nating measure m; that is, both P and Q are absolutely continuous with respect to m.
(Let m � P=2� Q=2, for instance.) Define

pE � 1Ep
P�E� and qE � 1Eq

Q�E� ;

so that pE and qE are densities for PE and QE with respect to m. Note that
the set A � fω 2 Ω : pE�ω� > qE�ω�g is a subset of E, because if ω =2 E, then
pE�ω� � 0 � qE�ω�. We now have,

Table 3. Distention is Consistent with Dilation

!1 !2 !3 !4

P 1=100 37=100 30=100 32=100

Q 20=100 41=100 1=100 38=100

PE 1=38 37=38 0 0

QE 20=61 41=61 0 0

PE
c

0 0 30=62 32=62

QEc 0 0 1=39 38=39
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d�P�< d�PE; QE� � PE�A� � QE�A� � P�A�
P�E� �

Q�A�
Q�E� � BP;Q�A; E�;

where the first equality is the general version of (1). This establishes (ii), and shows
that (i) and (ii) are equivalent.

Next, we show that (i) is equivalent to (iii). We use the following lemmas and
include proofs for the reader’s convenience.

Lemma 1. For any set of probabilities P, d�P� � d�co�P��.

Proof of Lemma 1. Since P 
 co�P�, d�P� ≤ d�co�P�. To show the reverse inequality,
let P; Q 2 co�P� be arbitrary. Then P �Pn

i� 1 aiPi, Q �Pm
j� 1 bjPj for some n; m 2 N,

Pi; Pj 2 P, and ai; bj ≥ 0 with
P

i ai � 1 �P
j bj. For all A 2 F ,

jP�A� � Q�A�j �
Xn
i� 1

aiPi�A� �
Xm
j� 1

bjPj�A�
�����

����� �
Xn
i� 1

ai
Xm
j� 1

bjPi�A� �
Xm
j� 1

bj
Xn
i� 1

aiPj�A�
�����

�����

�
Xn
i� 1

ai
Xm
j� 1

bjPi�A� � Pj�A�
�����

����� ≤
Xn
i� 1

ai
Xm
j� 1

bjd�P� � d�P�:

Since this holds for all A 2 F , we have

d�P; Q� ≤ d�P�:
And since this holds for all P; Q 2 co�P�, we have

d�co�P�� ≤ d�P�;
which proves the lemma. □

Lemma 2. For any set of probabilities P, co�PE� � co�P�E.

Proof of Lemma 2. First, let P 2 co�PE�. Then P �Pn
i� 1 aiPi�	 j E� for some n 2 N, Pi 2 P

and ai ≥ 0 with
P

i ai � 1. Let bi � ai
Pi�E�N ≥ 0, where N �P

i
ai

Pi�E� is a normalizing
constant that ensures

P
i bi � 1. Then,

P �
Xn
i� 1

aiPi�	 j E� �
P

i
aiPi�	\E�
NPi�E�P

i
aiPi�E�
NPi�E�

�
P

i bi Pi�	 \ E�P
i biPi�E�

�
X
i

bi Pi

 !
�	jE�2co�P�E

Hence, co�PE� 
 co�P�E.
Next, suppose that P 2 co�PE�. Then P � �Pn

i� 1 aiPi��	 j E� for some n 2 N, Pi 2 P

and ai ≥ 0 with
P

i ai � 1. Let bi � aiPi�E�
N and N �P

i aiPi�E�. Then

P �
X
i

aiPi

 !
�	 j E� �

P
i
aiPi�	 \ E�P
i
aiPi�E�

�
X
i

aiPi�E�
N

Pi�	 \ E�
Pi�E�

Philosophy of Science 619

https://doi.org/10.1017/psa.2021.44 Published online by Cambridge University Press

https://doi.org/10.1017/psa.2021.44


�
X
i

bi
Pi�	 \ E�
Pi�E�

�
X
i

biPi�	jE� 2 co�PE�:

Hence, co�PE� 
 co�P�E, and the proof is complete. □

Using Lemmas 1 and 2, if (i) holds, then for all E 2 B,

d�co�P��� d�P�< d�PE�� d�co�PE��� d�co�P�E�:
Hence, (iii) holds. And if (iii) holds, then for all E 2 B,

d�P��d�co�P��< d�co�P�E�� d�co�PE��� d�P�E:
Hence, (i) holds. This shows that (i) and (iii) are equivalent. □
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