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In this paper we prove: 

T H E O R E M . Let & be an ordered pseudo-symmetric connected graph with I lines 
and v vertices. Let there be atj lines directed from vertex i to vertex j , i, 7 = 1, 
2, . . . , v. Let gcd (a^ ) = d, and define ^)=\aij = au i = 1, 2, . . . , v. The 
number of distinct I long circular arrangements of the v vertices arising from 
circuits of the graph is: 

i^wn n«t 
X 

Oji a n a iv 

. x x ' ' ' ' x. 

where <t> is the Euler phi function, the large bracket indicates a multinomial 
coefficient, and V can be taken as the (v — 1) X (v — 1) de te rminant : 

det 

#2 — #22 — an — #24 • • — # 2 , 0 - 1 —a2 

- # 3 2 az — a33 — #34 • • — # 3 , ^ - 1 — a* 

-av2 -avZ # V, V—l av — c avv 

(For all graph-theoretic undefined terms and unproved theorems see (1 , 
especially Chapters 16 and 17). 

Proof. We say t h a t an / long circle of the v vertices is of frequency p if it is 
composed of a sequence of p identical 1/p long stretches bu t is not composed 
of a sequence of more than p identical stretches. Each frequency p circular 
pa t te rn t ha t arises from a circuit of © arises from exactly ( I I " , ^ i atj\)/p 
Euler circuits of @. Moreover, if d = g c d ( a ^ ) , the only frequencies p t h a t can 
arise are divisors of d. We thus have the fundamental relation: 

a) 
np(&) _ no. of Euler circuits of ® 

p\d n o>u 
i,3 = l 

- - £(®), 

where np{®) is the number of circular pa t te rns of frequency p t h a t arise from 
Euler circuits of @. 

For each p dividing d we define a new graph &p with the same number v of 
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vertices as before but with dij/p lines directed from vertex i to vertex j . 
Obviously 

(®„), = ®M-

Every l/p long sequence of vertices arising from an Euler circuit of @p 

defines by a p-io\A repetition an /-long circular sequence of frequency > £ . 
If, in keeping with our previous notation, ni(®p) is the number of frequency 1 
circular patterns of length l/p defined by Euler circuits of ®PJ we have the 
relation : 

np(®i) = »!(©„). 

Shortening n\{®v) to n(®P), (1) becomes 

n(&p) 

P 
Note that if q is some fixed divisor of d, then (2) implies that 

(2) E ?™ = Em 
P\d P 

P 
Since (©,)„ = ®OT, letting gw = d, we have 

E «yaw = m ) . 
Pld/ç P 

i7/rtt \ V n(®pd/u) ^ n(®d/p) 
p!« .r p'u **/ f7 

SO 

(3) «£(©«/*) = E M(©«/»)• 
v\u 

Because of the form of (3) we can now use the Môbius inversion formula to 
express pn(®d)p) in terms of uE(&d/u); see (2, Chapter 6) for all the needed 
number-theoretic terms and definitions. Summing over all divisors r of d, we 
obtain : 

(4) E »(®«.) = E ; E /*(*) ; £(®*./r) = E £(®.) E ^ . 
u\d u\d ' s\r «J x \ d s\x $ 

where /z is the Môbius function. Since by a standard identity: 

where <f> is the Euler phi function, (4) yields: 

(5) E »(®r) = E ^ •(*)• 
By a standard theorem of Tutte, Bott, Aardenne-Ehrenfest, de Bruijn 

(1, p. 169) for a graph ®: 
(6) no. of Euler circuits = I"! (a* — 1)! V 
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where v" can be taken as : 

V = det 

#2 — #22 —#23 —#24 

— #32 #3 "~ #33 ~ # 3 4 

"#2,1,-1 

-#3,*;- l 

~~#2*> 

-av2 

Since the relevant determinant V@x for ®x has each element divided by x, 
we have for each x dividing d: 

(7) £(®,) = 
n ifli/x -1)! 

n (fla/xv-
Substituting (7) in (5) we find that the number of distinct circular patterns of 
the v vertices defined by Euler circuits of the graph ® is: 

(8) 
<j>(x) II (ai/*-D! 

i*wn # q 

L # 

# j 

x 
an 
x 

aiv 

X J 
m x n (««/*>! ru< 

i , ; = l i = l 

where the large brackets indicate a multinomial coefficient. 
A special case of formula (8) gives the number of distinct circular patterns 

of O's and l's compatible with a given frequency count fu i = 0, . . . , 2n — 1 
of n bit words. The associated graph is similar to the Good diagram (3) with 
lines corresponding to n bit words and vertices to n — 1 bit words. If 
i = 2!^=o cLj 2j, then the graph has/* lines extending from vertex J^Zo &j 2J to 
vertex X^Io a<j 2i~1. Since each vertex has at most 2 distinct vertices as successor 
in these graphs, all the multinomial coefficients in formula (8) are binomial 
coefficients. 

Of course, if gcd(fi) = 1, in particular if / = YLfi ls prime, the formula (8) 
reduces to a single term. 

The authors wish to thank Professors David G. Cantor, Anil Nerode, and 
W. T. Tutte for helpful conversations. 
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