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Abstract. Let d > 0 be a squarefree integer and denote by h = h(−d) the class
number of the imaginary quadratic field �(

√−d). It is well known (see e.g. [25]) that
for a given positive integer N there are only finitely many squarefree d’s for which
h(−d) = N. In [45], Saradha and Srinivasan and in [28] Le and Zhu considered the
equation in the title and solved it completely under the assumption h(−d) = 1 apart
from the case d ≡ 7 (mod 8) in which case y was supposed to be odd. We investigate
the title equation in unknown integers (x, y, l, n) with x ≥ 1, y ≥ 1, n ≥ 3, l ≥ 0 and
gcd(x, y) = 1. The purpose of this paper is to extend the above result of Saradha and
Srinivasan to the case h(−d) ∈ {2, 3}.

2000 Mathematics Subject Classification. 11D41, 11D61.

1. Introduction. There are many results concerning the generalised Ramanujan-
Nagell equation

x2 + D = yn, (1)

where D > 0 is a given integer and x, y, n are positive integer unknowns with n ≥ 3.
Results obtained for general superelliptic equations clearly provide effective finiteness
results for this equation, too (see for example [9, 47, 49] and the references given there).

The first result concerning the above equation was due to V. A. Lebesque [29]
who proved that there are no solutions for D = 1. Ljunggren [30] solved (1) for D = 2,
and Nagell [40, 41] solved it for D = 3, 4 and 5. In his elegant paper [20], Cohn
gave a fine summary of the earlier results on equation (1). Further, he developed a
method by which he found all solutions of the above equation for 77 positive values of
D ≤ 100. For D = 74 and D = 86, equation (1) was solved by Mignotte and de Weger
[37]. By using the theory of Galois representations and modular forms, Bennett and
Skinner [8] solved (1) for D = 55 and D = 95. On combining the theory of linear forms
in logarithms with Bennett and Skinner’s method and with several additional ideas,
Bugeaud, Mignotte and Siksek [14] gave all the solutions of (1) for the remaining 19
values of D ≤ 100.

Let S = {p1, . . . , ps} denote a set of distinct primes and S the set of non-zero
integers composed only of primes from S. Put P := max{p1, . . . , ps} and denote by Q
the product of the primes of S. In recent years, equation (1) has been considered also in
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the more general case when D is no longer fixed but D ∈ S with D > 0. It follows from
Theorem 2 of [48] that in (1) n can be bounded from above by an effectively computable
constant depending only on P and s. In [24], an effective upper bound was derived for
n which depends only on Q. Cohn [19] showed that if D = 22k+1 then equation (1) has
solutions only when n = 3 and in this case, there are three families of solutions. The case
D = 22k was considered by Arif and Abu Muriefah [1]. They conjectured that the only
solutions are given by (x, y) = (2k, 22k+1) and (x, y) = (11 · 2k−1, 5 · 22(k−1)/3), with the
latter solution existing only when (k, n) = (3M + 1, 3) for some integer M ≥ 0. Partial
results towards this conjecture were obtained in [1] and [18] and it was finally proved by
Arif and Abu Muriefah [4]. Arif and Abu Muriefah [2] proved that if D = 32k+1 then (1)
has exactly one infinite family of solutions. The case D = 32k has been solved by Luca
[32] under the additional hypothesis that x and y are coprime. In fact in [33], Luca solved
completely equation (1) if D = 2a3b and gcd(x, y) = 1. Abu Muriefah [38] established
that equation (1) with D = 52k may have a solution only if 5 divides x and p does not
divide k for any odd prime p dividing n. The case D = 2a3b5c7d with gcd(x, y) =
1, where a, b, c, d are non-negative integers was studied by Pink [42]. The cases
when D = 72k and D = 2a5b were also considered by Luca and Togbe [34, 35]. For
the case D = 2a5b13c see Goins, Luca and Togbe [23], for D = 5a17b see [43], while if
D = 5a13b see [39]. The cases D = 2a11b and D = 5a11b have been recently considered
in [16] and [17], respectively. Let p ≥ 5 be an odd prime with p �≡ 7 (mod 8). Arif
and Abu Muriefah [5] determined all solutions of the equation x2 + p2k+1 = yn, where
gcd(n, 3h0) = 1 and n ≥ 3. Here, h0 denotes the class number of the field �(

√−p). They
also obtained partial results [3] if D = p2k, where p is an odd prime. In the particular
case when gcd(x, y) = 1, D = p2, p prime with 3 ≤ p < 100 Le [27] gave all the solutions
of equation (1). The equation x2 + pm = yn was considered by Le [26] and for infinitely
many odd primes by Zhu [54], D = p2k with 2 ≤ p < 100 prime and gcd(x, y) = 1 was
solved by Bérczes and Pink [10]. If in (1) D = a2 with 3 ≤ a ≤ 501 and a odd Tengely
[50] solved completely equation (1) under the assumption (x, y) ∈ �2, gcd(x, y) = 1.
The equation A4 + B2 = Cn for AB �= 0 and n ≥ 4 was completely solved by Bennett,
Ellenberg and Nathan [7] (see also Ellenberg [22]). For related results concerning
equation (1), see [36, 45, 46, 51, 52] and the references given there. For a survey
concerning equation (1), see [15].

2. Results. Let d > 0 be a squarefree integer. Consider equation (1) in the case
when

D = d2l+1 with h(−d) = 1. (2)

In [45], Saradha and Srinivasan and in [28] Le and Zhu solved completely equation
(2) under the additional assumption that y is odd if d ≡ 7 (mod 8).

In the present paper, we extend the result of [45] to the case h(−d) ∈ {2, 3}. Namely,
let d > 0 be a squarefree integer and consider the following equation:

x2 + d2l+1 = yn with h(−d) ∈ {2, 3} (3)

in integer unknowns x, y, l, n satisfying

x ≥ 1, y > 1, n ≥ 3, l ≥ 0 and gcd(x, y) = 1. (4)
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THEOREM 1. Consider equation (3) satisfying (4). Further, if d ≡ 7 (mod 8)
also suppose that y is odd. Then all solutions of equation (3) are (x, y, n, d, l) ∈
{(2, 3, 3, 23, 0), (588, 71, 3, 23, 1), (6, 7, 3, 307, 0), (32, 11, 3, 307, 0), (598, 71, 3,

307, 0), (911054064, 939787, 3, 307, 0), (28, 11, 3, 547, 0), (70, 17, 3, 13, 0), (36, 11, 3,

35, 0), (702, 79, 3, 235, 0), (322, 47, 3, 139, 0), (2158, 167, 3, 499, 0)}.
REMARK 1. The proof of our Theorem is organised as follows. Without loss of

generality, we may assume that in (3) n ≥ 5 prime or n ∈ {3, 4}. If in (3) n ≥ 5 is an
odd prime, we use the primitive prime divisor theorem of Bilu, Hanrot and Voutier to
conclude that (3) does not have a solution. For the case n = 4, we reduce the problem
to several ternary equations of signature (m, m, 2) for which the modular method
works. Namely, in this case we apply some results of Bennett and Skinner [8] to list
all solutions of equation (3). Finally, if in (3) n = 3 there is a well-known method for
solving equation (3). Namely, we may transform our equation (3) to several equations
of the form

w2 = t3 − di, (5)

where 2l + 1 = 6l1 + i, l1 ≥ 0, i ∈ {1, 3, 5}, w = x/d3l1 and t = y/d2l1 . Now, we have
to search for all S-integral points on the above elliptic curves, where S consists of the
prime divisors of d. This method works well but in some cases the computation of
the Mordell-Weil group becomes very time consuming. Therefore, we need another
approach, too. In the case n = 3, we distinguish two cases according to h(−d) = 2 and
h(−d) = 3. If in (3) (h(−d), n) = (2, 3) then we combine the parametrisation provided
by Lemma 1 with the modular method and with the method of Chabauty concerning
the determination of all rational points of a hyperelliptic curve of genus 2. If in (3)
(h(−d), n) = (3, 3), we see that the parametrisation provided by Lemma 1 cannot be
applied. Hence, we use an idea of Mignotte and de Weger [37] to reduce the problem
to the resolution of several Thue-Mahler equations of degree 3. Then these equations
are considered locally to get a contradiction.

3. Auxiliary results. Let S = {p1, . . . , ps} be a set of distinct primes and denote
by S, the set of non-zero integers composed only of primes from S. Equation (3) is a
special case of an equation of the type

X2 + D = Y n, (6)

where

gcd(X, Y ) = 1 (7)

and

D ∈ S, D > 0, X ≥ 1, Y > 1, n ≥ 3. (8)

The next lemma provides a parametrisation for the solutions of equation (6).

LEMMA 1. Suppose that equation (6) has a solution under the assumptions (7) and
(8) with n ≥ 3 prime. Denote by d > 0 the square-free part of D = dc2 and let h be the
class number of the field �(

√−d). Then equation (6) has a solution with d �≡ 7 (mod 8)
or with d ≡ 7 (mod 8) and Y odd in one of the following cases:
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(a) there exist u, v ∈ � such that X + c
√−d = (u + v

√−d)n and Y = u2 + dv2.
(b) d ≡ 3 (mod 8) and there exist u, v ∈ � with u ≡ v ≡ 1 (mod 2) such that X +

c
√−d = ( u+v

√−d
2 )3 and Y = u2+dv2

4 .
(c) n = 3 if D = 3u2 ± 8 or if D = 3u2 ± 1 for some u ∈ �.
(d) n = 5 if D ∈ {19, 341}.
(e) n | h.

Proof. If d �≡ 7 (mod 8) then the Lemma is a reformulation of a theorem of Cohn
[21]. So, it remains the case when in (3) d ≡ 7 (mod 8) and Y is odd. In this case, we
may apply a result of Ljunggren [31] (pp. 593–594) to conclude that if in equation (3)
n � h then there exist u1, v1 ∈ � such that

X + c
√−d =

(
u1 + v1

√−d
2

)n

, u1 ≡ v1 (mod 2). (9)

If in (9), u1 and v1 are both odd then since d ≡ 7 (mod 8), we get

u2
1 + dv2

1 ≡ 0 (mod 8),

whence, by

Y = u2
1 + dv2

1

4
,

it follows that Y is even, a contradiction. So, u1 and v1 are both even and the Lemma
is proved. �

Recall that a Lucas-pair is a pair (α, β) of algebraic integers such that α + β and
αβ are non-zero coprime rational integers and α/β is not a root of unity. Given a
Lucas-pair (α, β) one defines the corresponding sequence of Lucas numbers by

Ln = αn − βn

α − β
, (n = 0, 1, 2...).

A prime number p is called a primitive divisor of Ln if p divides Ln but does not divide
(α − β)2L1 · · · Ln−1.

The next Lemma is a deep result of Bilu, Hanrot and Voutier [11] concerning the
existence of primitive prime divisors in a Lucas sequence.

LEMMA 2. Let Ln = Ln(α, β) be a Lucas sequence. If n ≥ 5 is a prime then Ln

has a primitive prime divisor except for finitely many pairs (α, β) which are explicitly
determined in Table 1 of [11].

Proof. This follows from Theorem 1.4 of [11] and Theorem 1 of [53]. �
The next lemma gives all the squarefree values of d for which the class number

h(−d) of the imaginary quadratic field �(
√−d) is 2 or 3.

LEMMA 3. Let d > 0 be a squarefree integer. Denote by h(−d), the class number of
the imaginary quadratic field �(

√−d). Then h(−d) = 2 if and only if d ∈ T2, where

T2 = {5, 6, 10, 13, 15, 22, 35, 37, 51, 58, 91, 115, 123, 187, 235, 267, 403, 427},
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and h(−d) = 3 if and only if d ∈ T3, where

T3 = {23, 31, 59, 83, 107, 139, 211, 283, 307, 331, 379, 499, 547, 643, 883, 907}.

Proof. See [6] and [44]. �
The following lemma is a special case of a result of Bennett and Skinner [8].

LEMMA 4. Suppose that x, y, z are non-zero, pairwise coprime integers. If m ≥ 5 is
an integer then the equation

xm + ym = 2z2

has the only solutions (m, x, y, z) = {(5, 3,−1,±11), (5,−1, 3,±11)}.
If m ≥ 4 then the equation

xm + ym = 3z2

has no solutions.
If m ≥ 7 prime then the equation

xm + 8ym = 3z2

has no solutions with xy �= ±1.

4. Proof of Theorem 1. Consider equation (3) satisfying assumption (4). Without
loss of generality, we may distinguish three cases according that in (3) n ∈ {3, 4} or n ≥ 5
prime. Denote by T the set T = T2 ∪ T3.

CASE 1. n ≥ 5 prime.

By a result of Arif and Muriefah [5], we have to consider only those square-free
values of d ∈ T which are not primes. In what follows we work in the field � = �(

√−d)
for d ∈ T . Denote by h(−d) the class number of �. One can see that equation (3)
fulfils the assumptions of Lemma 1. Since for d ∈ T we have d �= 19, 341 and since
h(−d) ∈ {2, 3}, by n ≥ 5 prime, we conclude that equation (3) can have a solution only
in case (a) of Lemma 1. Namely, applying to (3) the parametrisation provided by
Lemma 1 and taking complex conjugation, we get

(x + dl√−d) = (u + v
√−d)n and (x − dl√−d) = (u − v

√−d)n (10)

for some u, v ∈ �. Further, we also have y = u2 + dv2.
If in (3) y > 1 is even and d is also even then it is clear that x has to be even, too.

But this is a contradiction since x and y are coprime. If in (3) y > 1 is even and d is odd,
we obviously have that x is odd. Since for any odd integer a we have a2 ≡ 1 (mod 8)
and since n ≥ 5 we get that 1 + d ≡ 0 (mod 8) by reducing (3) modulo 8. This leads
to d ≡ 7 (mod 8) for d ∈ T . But for these values of d, we consider only odd values of
y. Hence, in what follows we may assume that in (3) y > 1 is odd (and hence x ≥ 1 is
even). By (a) of Lemma 1, we see that u | x and since y > 1 is odd and gcd(x, y) = 1
we get that gcd(2u, y) = 1.

Let α = u + v
√−d and β = u − v

√−d. Then gcd(αβ, α + β) = gcd(y, 2u) = 1. If
α/β is a root of unity then by d ∈ T we have α/β ∈ {±1}. This leads to u = 0 or v = 0.
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By (10) u = 0 yields x = 0, while v = 0 yields dl = 0, which is a contradiction by (3)
and (4). Thus,

Ln := (u + v
√−d)n − (u − v

√−d)n

2v
√−d

(11)

is a Lucas sequence. Further, by (a) of Lemma 1 we obtain

Ln = dl

v
. (12)

Since (α − β)2 = −4dv2, we see by (12) and by the definition of the primitive prime
divisor that Ln cannot have a primitive prime divisor. But for d ∈ T , Lemma 2 implies
that Ln has a primitive prime divisor for n ≥ 5 prime. This is a contradiction. Therefore,
our equation (3) does not have any solution for n ≥ 5 prime and d ∈ T (recall, that y
is odd if d ≡ 7 (mod 8)).

CASE 2. n = 4

By factorising (3), we get

(y2 + x)(y2 − x) = d2l+1. (13)

Since in this case we can also suppose that y is odd and x is even, we obtain by
gcd(x, y) = 1 that gcd(y2 + x, y2 − x) = 1 also holds. Further, since x, y and d are
positive (13) implies that y2 + x and y2 − x are positive, too. Hence from (13), we have
for some d1, d2 ∈ �

y2 + x = d2l+1
1 and y2 − x = d2l+1

2 ,

where d1 > 0 and d2 > 0 , gcd(d1, d2) = 1 and d1d2 = d > 0. Hence, we get

d2l+1
1 + d2l+1

2 = 2y2, (14)

which is a ternary equation. By applying Lemma 4 to (14), we get that (d1, d2) ∈
{(3,−1), (−1, 3)} for l ≥ 2. However, this contradicts the fact that d1 and d2 are
positive. Hence, there are no solutions to (14) for l ≥ 2, which implies that there
are no solutions to our equation (3) in this case with l ≥ 2. Finally, if in (14)
l ∈ {0, 1} then we can easily enumerate the solutions of (14) (and hence the solutions
of our original equation (3)) since d1 and d2 are positive divisors of d. We get
(x, y, n, d, l) ∈ {(1, 2, 4, 15, 0), (15, 4, 4, 31, 0), (6083, 78, 4, 23, 1)}, and we see that in
the above solutions, we have d ≡ 7 (mod 8) and y is even, which is excluded. Thus, we
do not have any solution to (3) fulfilling the assumptions of Theorem 1.

CASE 3. n = 3

Suppose first that h(−d) = 2, i.e. d ∈ T2. The cases d ∈ {5, 6, 10, 13, 15, 22, 35}
were considered earlier as a consequence of some results concerning the resolution
of equations of the form x2 + paqb = y3. See for example, [17, 23, 32, 42]. Therefore,
we may assume that d ∈ T2 and d ≥ 37. As we mentioned in Remark 1, the well-
known method for solving our equation (3) by searching S-integral points on some
elliptic curves does not work in some cases. Namely, if d = 427 the computation of the
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Mordell-Weil group of the curve

w2 = t3 − 4275

becomes very time consuming. Hence, we need another approach, namely we use the
parametrisation provided by Lemma 1. We see that equation (3) can have a solution
in the cases (a), (b), (c) of Lemma 1. We consider these cases separately. By equating
imaginary parts in case (a) (of Lemma 1), we obtain

v(3u2 − dv2) = dl (15)

Since in (3) we have gcd(x, y) = 1 then by u | x and y = u2 + dv2 we see that gcd(u, v) =
1 also holds. Now, if in (15) we have p | v and p | 3u2 − dv2 for some prime p then since
gcd(u, v) = 1 we get that p = 3. By (15) we get that p = 3 has to divide d. This yields

gcd(v, 3u2 − dv2) = 1 if 3 � d or gcd(v, 3u2 − dv2) = 3 if 3 | d.

Suppose that gcd(v, 3u2 − dv2) = 3. Hence, 3 | d and therefore by d ∈ T2 and d ≥ 37,
we see that d ∈ {51, 123, 267}. For these values of d, we transform our equation (3) to
the form

w2 = t3 − di, (16)

where

d ∈ {51, 123, 267}, 2l + 1 = 6l1 + i, l1 ∈ �≥0, i ∈ {1, 3, 5}, w = x/d3l1 and t = y/d2l1 .

(17)

We have to give all the S-integral points of the above curves, where S consists of
the prime divisors of 51, 123 and 267 respectively. Now, using the computer algebra
package MAGMA (see [12]), we see that for d ∈ {51, 123, 267} and i ∈ {3, 5} the rank
of the Mordell-Weil group of the curves (16) is 0. Therefore, the computation of S-
integral points on these elliptic curves is trivial. If in (16) we have i = 1, MAGMA was
able to compute the Mordell-Weil group and hence we can list all the S-integral points
in this case, too. By using transformation (17), we see that we do not get any solution
of our original equation (3).

If in (15) we have gcd(v, 3u2 − dv2) = 1 (which occurs if 3 � d) then by (15) we
obtain some systems of equations of the form{

3u2 − dv2 = ±dl
1

v = ±dl
2,

(18)

where d1 > 0, d2 > 0 are positive divisors of d with d = d1d2 and gcd(d1, d2) = 1. If in
(18) l = 0 then we obtain v = ±1 and 3u2 = d ± 1. For d ∈ T2 and 3 � d this yields
(u, v, d) = (±2,±1, 13). Since y = u2 + dv2 we obtain the solution (x, y, n, d, l) =
(70, 17, 3, 13, 0) to our equation (3), which is already known (see e.g. [23]). Hence,
we may suppose that in (18) l ≥ 1. Now, if d1 �= 1 then d1 has a prime factor q ≥ 2.
Since 3 � d and d1 | d we get by (18) that q | u. But by q | d, u | x and y = u2 + dv2 we
infer that q is a common prime factor of x and y. This is a contradiction in view of (4).
Finally, if in (18) l ≥ 1 and d1 = 1 we obviously have that d2 = d. Hence by (18), we
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obtain the equation

3u2 = d2l+1 ± 1, (19)

which is a ternary equation for which we can apply Lemma 4. We obtain that if l ≥ 2
then (19) has no solutions. If in (19) l = 1 we obtain 3u2 = d3 ± 1 and v = ±d. But for
d ∈ T2 and 3 � d we do not obtain any solution.

Consider now the case (b) of Lemma 1. By equating imaginary parts, we obtain

v(3u2 − dv2) = 8dl, (20)

where d ≡ 3 (mod 8), u and v are odd integers and y = u2+dv2

4 . We work as in the
previous case. Since gcd(v, 3u2 − dv2) = 1 and v is odd equation (20) leads to systems
of equations of the form {

3u2 − dv2 = ±8dl
1

v = ±dl
2,

(21)

where d1 > 0, d2 > 0 are divisors of d with d = d1d2 and gcd(d1, d2) = 1. If
in (21) l = 0 then we have v = ±1 and 3u2 = d ± 8. For d ∈ T2 and d ≡
3 (mod 8), this yields (u, v, d) ∈ {(±3,±1, 35), (±9,±1, 235)}. Since y = (u2 +
dv2)/4 we obtain two solutions to our equation (3), namely (x, y, n, d, l) ∈
{(36, 11, 3, 35, 0), (702, 79, 3, 235, 0)}. The case l ≥ 1 and d1 �= 1 leads to a
contradiction since x and y are coprime. Finally, if in (21) l ≥ 1 and d1 = 1 (and
hence d2 = d), we get

3u2 = d2l+1 ± 8 · 12l+1, (22)

which is a ternary equation of signature (2l + 1, 2l + 1, 2). By applying Lemma 4 to
(22), we see that equation (22) does not have a solution if 2l + 1 ≥ 7 is a prime. Hence,
we may suppose that in (22) 2l + 1 = 3a5b for some a, b ∈ �≥0. Now, if a ≥ 1 then we
may transform (22) to an elliptic equation

w2 = t3 ± 8 · 33, (23)

where w = 9u and t = 3d3a−15b
. By using MAGMA, we get (t, w) ∈ {(−6, 0),

(6, 0), (±28, 10), (±189, 33)} which do not lead to a solution of the original
equation (3).

Recall that 2l + 1 = 3a5b. Consider now the case if in (22) we have b ≥ 1. Then we
may transform (22) to the form

w2 = t5 ± 8 · 35, (24)

where w = 27u and t = 3d3a5b−1
. We see that the curves occurring in (24) are

hyperelliptic curves of genus 2. By using MAGMA, we infer that the Jacobian of
the above curves has rank 0. Therefore, we may apply the method of Chabauthy to
give all the rational points of the above curves. Using MAGMA again we get that the
curves in (24) do not have any rational points. Hence, there are no solutions to our
original equation (3) in this case.

Finally, we have to consider the case when in (3) (h(−d), n) = (3, 3) holds (and
hence d ∈ T3). In this case, the parametrisation provided by Lemma 1 is not enough
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for our purposes. Hence, we follow the idea of Mignotte and de Weger [37] to reduce
the problem to several Thue-Mahler equations of degree 3. Then we consider these
equations locally to prove the non-solvability. This approach works well except three
cases, namely if d ∈ {23, 307, 547}. In these cases, we reduce the problem to finding
S-integral points on some elliptic curves.

We illustrate the reduction of (3) to some Thue-Mahler equations if d = 883 (see
e.g. [37]). For other values of d ∈ T3, the reduction can be done in the same way.
Consider equation

x2 + 8832l+1 = y3. (25)

By factorising in the field �(
√−883) we get the following ideal equation〈

x + 883l
√−883

〉 〈
x − 883l

√−883
〉 = 〈y〉3 . (26)

Hence, we have 〈
x + 883l

√−883
〉 = A3B (27)

for some ideals A and B, where B is the third-power-free part of
〈
x + 883l

√−883
〉
. Let

B̄ denote the conjugate ideal of B. Then by (26) we infer that BB̄ = C3 for some ideal
C. Since B | 〈−2 · 883l

√−883
〉

this implies that in (27) B =< 1 >. Hence, we get

〈
x + 883l

√−883
〉 = A3. (28)

Pick a rational prime p which splits in �(
√−883). We see that < 13 >= PP̄ holds.

The ideal class of P has order 3 in the class group and hence P3 is a principal ideal.
Further, there exists an integer k ∈ {−1, 0, 1} such that P−kA is principal. Hence, we
infer

P−kA =
〈

u + v
1 + √−883

2

〉
, (29)

where u, v ∈ 13− max{0,k}�. Thus, (29) implies

P−3kA3 =
〈

u + v
1 + √−883

2

〉3

. (30)

Denote by γ the generator of the principal ideal P3. Since P3 = 〈 29+3
√−883
2

〉
(i.e γ =

29+3
√−883
2 ) we get by (28) and (30) that

〈
x + 883l

√−883
〉 =

〈
29 + 3

√−883
2

〉k 〈
u + v

1 + √−883
2

〉3

. (31)

Since the only units in �(
√−883) are {±1} by (31) we may write

x + 883l
√−883 =

(
29 + 3

√−883
2

)k

(U + V
√−883), (32)
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where k ∈ {−1, 0, 1} and

U = 1
2

(2u3 + 3u2v − 1323uv2 − 662v3), V = 1
2

(3u2v + 3uv2 − 220v3). (33)

Hence, we obtain three Thue-Mahler equations, according to k = 0, 1 and −1. Table 1
contains the values of d ∈ T3, our choice for the prime p which splits in �(

√−d), the
generator γ of P3 we choose and the resulting Thue-Mahler equations.

We see that the equations corresponding to the case k = 0 in Table 1 are reducible.
In this case, we reduce the problem to some ternary equations for which the modular
method can be applied. We present the method in the case d = 883. For the other
values of d ∈ T3, we can apply the same approach. Consider the equation for d = 883
with k = 0, i.e.

3u2v + 3uv2 − 220v3 = 2 · 883l. (34)

If in equation (34) l = 0 then we obtain a Thue-equation, which is easy to solve. Hence,
we may suppose that in (34) l ≥ 1. It is clear that in (34) u and v cannot be both even,
since otherwise we get a contradiction by reducing (34) modulo 4. Now, if in (34)
gcd(u, v) �= 1 then it follows obviously that 883 | u and 883 | v. But, using (32) with
k = 0 then by (33) we get that 883 | x. Since l ≥ 1 our original equation (3) implies that
883 | y. This is a contradiction in view of gcd(x, y) = 1. Hence, we may assume that in
(34) gcd(u, v) = 1 (and l ≥ 1). Thus, we have to solve four systems of equations of the
form {

3u2 + 3uv − 220v2 = ±f
v = ±g,

(35)

where (f, g) ∈ {(2 · 883l, 1), (883l, 2), (2, 883l), (1, 2 · 883l)}. If (f, g) ∈ {(2 · 883l, 1),
(883l, 2)}, we get by (35) that{

3(2u ± 1)2 = 883 ± 8 · 883l, if (f, g) = (2 · 883l, 1)

3(2u ± 1)2 = 883 ± 883l, if (f, g) = (883l, 2).
(36)

If in (36) we have l = 1 then it is clear that (36) leads to a contradiction. Hence, we
may suppose that in (36) l ≥ 2. Thus, 883 | (2u ± 1)2 and therefore 8832 | (2u ± 1)2.
But this is a contradiction by reducing (36) modulo 8832. Finally, if in (35) we have
(f, g) ∈ {(2, 883l), (1, 2 · 883l)} we get by (35) the following equations{

3
( 2u+v

2

)2 = 8832l+1 ± 12l+1, if (f, g) = (1, 2 · 883l)

3(2u ± v)2 = 8832l+1 ± 8 · 12l+1, if (f, g) = (2, 883l).
(37)

For the first equation of (37), we can apply Lemma 4 to conclude that l = 1. (Note,
that in the first equation of (37), 2u+v

2 is a rational integer since v is even (i.e. v =
2 · 883l)). The case l = 1 does not lead to a solution. For the second equation of
(37), we apply Lemma 4 to conclude that this equation does not have any solution
if 2l + 1 consists only of primes ≥ 7. Finally, if 3 | 2l + 1 or 5 | 2l + 1 then we use
the method already applied in the case (h(−d), n) = (2, 3). Namely, we reduce the
second equation of (37) to some elliptic and hyperelliptic equations of genus 2. Then
we apply MAGMA to solve the equations under consideration. We see that there
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Table 1. Resulting Thue-Mahler equations

d p γ Thue-Mahler equations

23 2 −3+√−23
2

3u2v − 3uv2 − 5v3 = 2 · 23l

u3 − 6u2v − 12uv2 + 16v3 = 24 · 23l

−u3 − 3u2v + 21uv2 − v3 = 24 · 23l

31 5 1 − 2
√−31

3u2v − 3uv2 − 7v3 = 2 · 31l

−4u3 + 9u2v + 87uv2 − 53v3 = 2 · 53 · 31l

4u3 − 3u2v − 93uv2 + 39v3 = 2 · 53 · 31l

59 3 −7−√−59
2

3u2v − 3uv2 − 14v3 = 2 · 59l

−u3 − 9u2v + 54uv2 + 27v3 = 2 · 33 · 59l

u3 − 12u2v − 33uv2 + 71v3 = 2 · 33 · 59l

83 3 5−√−83
2

3u2v + 3uv2 − 20v3 = 2 · 83l

−u3 + 6u2v + 69uv2 − 19v3 = 2 · 33 · 83l

u3 + 9u2v − 54uv2 − 81v3 = 2 · 33 · 83l

107 3 1+√−107
2

3u2v + 3uv2 − 26v3 = 2 · 107l

u3 + 3u2v − 78uv2 − 53v3 = 2 · 33 · 107l

−u3 + 81uv2 + 27v3 = 2 · 33 · 107l

139 5 19−√−139
2

3u2v + 3uv2 − 34v3 = 2 · 139l

−u3 + 27u2v + 132uv2 − 271v3 = 2 · 53 · 139l

u3 + 30u2v − 75uv2 − 375v3 = 2 · 53 · 139l

211 5 −17−√−211
2

3u2v + 3uv2 − 52v3 = 2 · 211l

−u3 − 27u2v + 132uv2 + 521v3 = 2 · 53 · 211l

u3 − 24u2v − 183uv2 + 363v3 = 2 · 53 · 211l

283 7 33−√−283
2

3u2v + 3uv2 − 70v3 = 2 · 283l

−u3 + 48u2v + 261uv2 − 1049v3 = 2 · 73 · 283l

u3 + 51u2v − 162uv2 − 1261v3 = 2 · 73 · 283l

307 7 6−√−307
2

3u2v + 3uv2 − 76v3 = 2 · 307l

−2u3 + 15u2v + 477uv2 − 226v3 = 2 · 73 · 307l

2u3 + 21u2v − 441uv2 − 686v3 = 2 · 73 · 307l

331 5 −13+√−331
2

3u2v − 3uv2 − 82v3 = 2 · 331l

u3 − 21u2v − 228uv2 + 657v3 = 2 · 53 · 331l

−u3 − 18u2v + 267uv2 + 409v3 = 2 · 53 · 331l

379 5 −11−√−379
2

3u2v + 3uv2 − 94v3 = 2 · 379l

−u3 − 18u2v + 267uv2 + 659v3 = 2 · 53 · 379l

u3 − 15u2v − 300uv2 + 375v3 = 2 · 53 · 379l

499 5 1+√−499
2

3u2v + 3uv2 − 124v3 = 2 · 499l

u3 + 3u2v − 372uv2 − 249v3 = 2 · 53 · 499l

−u3 + 375uv2 + 125v3 = 2 · 53 · 499l

547 11 −28 + √−547
3u2v − 3uv2 − 136v3 = 2 · 547l

2u3 − 87u2v − 735uv2 + 4218v3 = 2 · 113 · 547l

−2u3 − 81u2v + 903uv2 + 3398v3 = 2 · 113 · 547l

643 7 27−√−643
2

3u2v + 3uv2 − 160v3 = 2 · 643l

−2u3 + 78u2v + 1044uv2 − 3838v3 = 4 · 73 · 643l

2u3 + 84u2v − 882uv2 − 4802v3 = 4 · 73643l

883 13 29+3
√−883
2

3u2v + 3uv2 − 220v3 = 2 · 883l

3u3 + 48u2v − 1941uv2 − 4183v3 = 2 · 133 · 883l

−3u3 + 39u2v + 2028uv2 − 2197v3 = 2 · 133 · 883l

907 13 25+3
√−907
2

3u2v − 3uv2 − 226v3 = 2 · 907l

3u3 + 33u2v − 2076uv2 − 1805v3 = 2 · 133 · 907l

−3u3 + 42u2v + 2001uv2 − 3845v3 = 2 · 133 · 907l

are no solutions in the case when d = 883. We mention that the equations occurring
in Table 1 corresponding to the choices (k, l, d) ∈ {(0, 0, 139), (0, 0, 499)} have the
solutions (u, v) ∈ {(±3,±1), (±4,±1)} and (u, v) ∈ {(±6,±1), (±7,±1)}, respectively,
which lead to the solutions (x, y, n, d, l) ∈ {(322, 47, 3, 139, 0), (2158, 167, 3, 499, 0)}
to our original equation (3).
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Finally, we consider the “irreducible” case, i.e. the Thue-Mahler equations
corresponding to the choice k ∈ {1,−1}. If d ∈ {31, 59, 83, 107, 139, 211, 283, 331,

379, 499, 643, 883, 907} then we consider the Thue-Mahler equations locally to prove
the unsolvability. Namely, for the above values of d the occurring Thue-Mahler
equations lead to a contradiction by reducing them modulo 4. If d ∈ {23, 307, 547},
the local consideration does not work. Hence, in this case, we transform our original
equation to several elliptic equations of the form

w2 = t3 − di, (38)

where

d ∈ {23, 307, 547}, 2l + 1 = 6l1 + i, l1 ∈ �≥0, i ∈ {1, 3, 5}, w = x/d3l1 and t = y/d2l1 .

(39)

For the elliptic curves occurring in (38), MAGMA was able to compute the Mordell-
Weil group and hence all the S-integral points, where S = {23}, {307} and {547},
respectively. Namely, we get the following points on the curves (38): (t, w, d, i) ∈
{(3,±2, 23, 1), (23, 0, 23, 3), (71,±588, 23, 3), (7,±6, 307, 1), (11,±32, 307, 1),
(71,±598, 307, 1), (939787,±911054064, 307, 1), (307, 0, 307, 3), (5219,±376996,

307, 3), (11,±28, 547, 1), (547, 0, 547, 3)}. Finally, using the substitution (39), we see
that these solutions lead to the following solutions of our original equation (3)
satisfying assumption (4): (x, y, n, d, l) ∈ {(2, 3, 3, 23, 0), (588, 71, 3, 23, 1),
(6, 7, 3, 307, 0), (32, 11, 3, 307, 0), (598, 71, 3, 307, 0), (911054064, 939787, 3, 307, 0),
(28, 11, 3, 547, 0)}.

This completes the proof of our theorem. �
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9. A. Bérczes, B. Brindza and L. Hajdu, On power values of polynomials, Publ. Math.

Debrecen 53 (1998), 375–381.
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