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CRITERIA FOR o-SMOOTHNESS, t-SMOOTHNESS,
AND TIGHTNESS OF LATTICE REGULAR
MEASURES, WITH APPLICATIONS

GEORGE BACHMAN AND PANAGIOTIS D. STRATIGOS

Introduction. Consider an arbitrary set X and an arbitrary disjunc-
tive lattice of subsets of X,.#. The algebra of subsets of X generated
by & is denoted by & (&), the set of all ¥-regular measures on % (),
by MR(Z), and the associated Wallman space, a compact T space, by
IR(Y); assume X is embedded in TR(¥) (otherwise, consider the image
of X in IR(Y)).

In part of an earlier paper [4] the work of Knowles [15] and Gould and
Mahowald [11] was generalized from the explicit topological setting of
X, a Tychonoff space, with .Z the lattice of zero sets of X, to the above
setting, with the added assumption that.# was also § and normal. This
was done so that the important Alexandroff Representation Theorem [1]
could be utilized in order to induce two associated measures g and @
defined on o/ (W(&)) and  (tW (L)), respectively, where W (&) is the
Wallman lattice in JR(Y). In terms of these measures, conditions were
then given for the general element of MR(¥), u, to be ¢-smooth,
7-smooth, and tight, and applications were given. These conditions were
expressed in terms of the measures 2 and 7 and the remainder IR(¥) — X.

However, these results precluded a consideration of certain important
lattices which are either not 6 or not normal, such as the lattice of clopen
sets in a 73, O-dimensional space or the lattice of closed sets in a T,
topological space.

By utilizing regular measure-extension theorems, we can now generalize
the above results, so that we need not assume .¥ is § and normal, but
just disjunctive or at times separating. This has the advantage that we
can systematically consider all the important topological lattices and
can treat, for the first time, in a unified measure theoretical fashion, the
particular remainders wX — X, 8X — X, and BoX — X, where 0X is
the Wallman compactification of X, [22], BX is the Stone-Cech com-
pactification of X, [10], and BoX is the Banachewski compactification
of X [6].

Our techniques, in particular, lead to new measure-extension results
for regular 7-smooth measures (Theorem 2.5), and for certain countably
additive measures (Theorem 3.3). They also yield new criteria for lattice
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countable compactness (Theorem 3.1), and for lattice repleteness
(Theorems 3.2 and 3.5) having specific applications thence to a-complete-
ness, realcompactness, IN-compactness, etc.

Finally, the general results give new proofs and generalizations of
various measure decomposition theorems, such as the Yosida-Hewitt
Decomposition Theorem (Lemmas 4.1 and 4.2 and Theorem 4.1).

1. Terminology and notation. a). Consider any set X and any
lattice of subsets of X, .. We shall always assume, without loss of
generality for our purposes, that #, X € ¥..% is said to be §, if for every
subset of &, {L.; a € A}, if A is countable, then N {L,;a € A} € Z.
& is said to be complemented, if for every element of &, L, L' € ¥. % is
said to be T, if for any two elements of X, a, b, if a 5% b, then there exist
two elements of &, A, B, such thata € A’ and b € B’and 4’ N\ B’ = @.
& is said to be separating, if for any two elements of X, a, b, if a # b,
then there exists an element of ¥, 4, such thata € 4 and b ¢ 4..% is
said to be disjunctive, if for every element of X, a, and for every element
of &, B, if a ¢ B, then there exists an element of ¥, 4, such thata € 4
and 4 N\ B = @. .7 is said to be regular, if for every element of X, a,
and for every element of &, B, if a ¢ A, then there exist two elements
of &, C, D, such thata € C"and BC D’ and C' \ D' = §. ¥ is said
to be normal if for any two elements of &, 4, B,if A M B = @, then there
exist two elements of ¥, C, D, such that 4 C ¢’ and B C D’ and
C'ND =@. % is said to be Lindelof if for every subset of &,
{Lajo € A}, if N\ {Ly; 0 € A} = 0, then there exists a subset of 4, 4%,
such that M {L.;a € A*} = @ and A* is countable. . is said to be
compact if for every subset of &, {Lo; a € A}, if N {La; @ € A} = @, then
there exists a subset of 4, 4%, such that N {L,; a € A*} = @ and 4* is
finite. % is said to be countably compact if for every subset of &,
{Laj o € A}, if N {Ly; @ € A} = B and 4 is countable, then there exists
a subset of 4, A%, such that N\ {L,;a € A*} = @ and A* is finite. & is
said to be countably paracompact if for every sequence in.¥, (4,), if (4,)
is decreasing and lim, 4, = #, then there exists a sequence in.%¥, (B,),
such that for every n, 4, C B,/, and (B,’) is decreasing and lim, B,” = 0.

Next, consider any two lattices of subsets of X,.%1,.% . % is said to
separate & 4 if for any two elements of £, Ls, L, if Ly M Ly = @, then
there exist two elements of .¥;, Ly, Ly, such that Ly C Ly and L, C L,
and Ll f\ fq = ﬂ

b). The set of natural numbers is denoted by N. For an arbitrary
function f, the domain of f is denoted by D,. The set whose general
element is the intersection of an arbitrary subset of & which is countable
is denoted by 6.#. The set whose general element is the intersection of
an arbitrary subset of . is denoted by t¢. A function, f, from X to
RV {40} is said to be £ -continuous if for every closed subset of
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RU {0}, C,f1(C) € Z. The set whose general element is a function
from X to R\U {400} which is.#-continuous is denoted by C(.¥). The
set whose general element is an element of C(.¥) which is bounded is
denoted by C,(¥). The set whose general element is a zero set of & is
denoted by Z(¥). The algebra of subsets of X generated by .& is
denoted by &7 (¥). The c-algebra of subsets of X generated by % is
denoted by ¢(¥). Next, consider any algebra of subsets of X, o&/. A
measure on.%Z is defined to be a function, , from.%Z to R, such that p is
bounded and finitely additive. (See [1], p. 567.) The set whose general
element is a measure on &7 (%) is denoted by M(¥). An element of
M&), u, is said to be F-regular if for every element of & (¥), E, for
every positive number ¢, there exists an element of .¥/, L, such that
L CE and |u(E) — u(L)| < e. The set whose general element is an
element of M (%) which is #-regular is denoted by MR(Z). For the
general element of M(Y), u, the support of u is defined to be
NA{L € L|u(L) = u(X)} and is denoted by S(u). An element of
M(Z), u, is said to be £-(6-smooth) if for every sequence in &7 (&F),
(4,), if (4,) is decreasing and lim, 4, = @, then lim, u(4,) = 0. (See
[21].) The set whose general element is an element of M (%) which is
Z- (s-smooth) is denoted by M (s,.¥). An element of M (&), u, is said
to be ¥~ (r-smooth) if for every net in.¥, (L,), if (L.) is decreasing and
lim, L, = @, then lim, u(L,) = 0. (See [21].) The set whose general
element is an element of M (%), u, which is &Z-(r-smooth) is denoted
by M(e,-£). An element of M (L), u, is said to be ¥ -tight if u € M (¢, L)
and for every positive number e, there exists an .#-compact set, K, such
that ue (K’) < e. (See [21].) The set whose general element is an element
of M(¥) which is £-tight is denoted by M(¢,-¥). The set whose
general element is an element of 21(%), u, such that for every element
of C(¥), f, [ f du € R is denoted by MI(Z). The set whose general
element is an element of M(Y), u, such that u( (¥)) = {0, 1} is
denoted by I(¥)..% is said to be replete if for every element of IR(s,.%),
u, Su) # 0.

Since every element of M (%) is equal to the difference of nonnegative
elements of M (&), in the sequel we shall work, exclusively, with non-
negative elements of M (%), without loss of generality.

2. In this section we work with an arbitrary set X and a fairly arbitrary
lattice of subsets of X,.% ; with this pair we associate the general Wallman
space IR(Z) (see below) and for the general element of MR(¥) we
investigate how the properties of o-smoothness, r-smoothness, and
tightness reflect over to IR(¥) and conversely.

Preliminaries. (i). Consider any set X and any lattice of subsets of
X, #, such that ¥ is separating and disjunctive. It is known that the
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topological space (IR(Z), tW(¥)) is compact and T%; it is T, if and
only if £ is normal. (See e.g. [2] and [18].) Consider the function ¢
which is such that D, = X and for every element of X, x, ¢(x) = u,.
Then, ¢ is a (£, tW(Z))-homeomorphism. For this reason, ¢(X) is
identifiable with X. Moreover, ¢(X) is dense in IR(¥’). Consequently,
IR(Y) is a compactification of X; it is known as the general Wallman
compactification of X. In case ¢(X) is identified with X, then X is said
to be embedded in IR(Z).

Denote the general element of 2/ (%) by 4. Then, {u € IR(Z)]
u(A4) = 1} is denoted by W (4). The following statements are true:

1.If A € (%), then W(A) = W(4").

2. If 4, B € /(¥), then a) W(4 U B) = W) U W(B);
BYW(ANB) = W(A) \W(B);v) If A D B, then W(4) D W(B); )
HWMA) DW(B),thend D B;e) A = B,ifand only if W(4) = W(B).

3. 4 (W(¥)) = WH(ZL)).

(Proofs are omitted. Note all these statements are true, if £ is simply
disjunctive.)

Next, consider any element of M (%), u, and the function 2 which is
such that D; = & (W(Z)) and for every element of &7 (W (Z)), W(4),
a(W(4)) = u(d). Then, a € M(W(F)) and, if u € MR(Z), then
p € MR(W(Y)). Conversely, consider any element of M(W(¥)), »,
and the function p which is such that D, = .97 (¥) and for every element
of (&), A, u(4) = v(W(4)). Then, u € M(¥) and » = g, and, if
v € MR(W(Z)), then u € MR(Z). Note since W(Z') is compact,

MR(W(L)) = MR(e, W(&L)) = MR(r, W(L)) = MR, W(Z)).
Next, consider any element of MR(¥), u. Then,
B € MR(W()) = MR(o, W(Z)).

Hence, @ is extendible to the cs-algebra of g*-measurable sets, uniquely,
and the extension is W (% )-regular. Continue to use @ for this extension.
(i1). The following statement is true:

‘Q{(Wa(g)) = Wa(d(ﬁg))

(Proof omitted.) Next, consider any element of M(¥), u, and the
function u’ which is such that D,, = .2/ (W,(¥)) and for every element
of ' (W,(L)), W,(B), W (W,(B)) = u(B). Then, ' € M(W,(£)) and,
if w€ MR(Y), then u € MR(W,(¥)). Conversely, consider any
element of M(W,(¥)), p, and the function u which is such that
D, =& (%) and for every element of &/ (%), B, u(B) = p(W,(B)).
Then,u € M(&)andp = u',and,if p € MR(W,(&)), thenu € MR(Z).
The following statement is true: If u € MR(Y), then u € MR(s, %)
if and only if u' € MR(c, W,(£)). (Proof omitted.)
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Observation. Note u € IR(s,¥) if and only if u' € IR(s, W,(&)).
Next, for the general element of IR (s, W,(¥)), &, note

Sw) = NAW(L)|IL € £ and W (W,(L)) = 1}.

Further, note for every element of %, L, if u/(W,(L)) = 1, then
uw(L) = 1, by the definition of u/, and, consequently, u € W,(L). Hence,
u € S(u'). Hence, S(u’) # @. Consequently, IR(c¢,-%) is W,(Z£ )-replete.

Part 1. (On o-smoothness.)

THEOREM 2.1. Consider any set X and any lattice of subsets of X, L,
such that & is (separating) and disjunctive. If p ¢ MR(E), then the
following statements are equivalent:

1. € MR(s,%).

2. If (L;1 € N)isin and (L;) is decreasing and

N«W(L) CIRE) - X,

then (M W(Ly)) = 0.
3. If (Ly;1 € N)isin and (L) is decreasing and

N W(Ly) CIRE) — IR(s, L),

then p(N ¢ W(L:)) = 0.
4. p*(X) = p(IR(Z)).
5. 8*(IR(s, %)) = p(IR(Z)).

Proof. a). Show 1 and 2 are equivalent. Assume 1, and show 2. Con-
sider any sequence in ., (L;), such that (L) is decreasing and
N: W(L,;) CIRE) — X and show a(N: W(L;)) = 0. Note

(N W(Ly)) = lim, (W (L)),
since (W(L;)) is decreasing (because (L;) is decreasing), and
pe M@, W&)) = lim;u(L:) = u(N:Ly),

since (L;) is decreasing, and u € M(c,-£), by the assumption. Since
N:W(L;) CIR&) — X, N:L; = @. Consequently,

a(Ny W(Lz)) = 0.

Hence, 2 is true. Conversely, assume 2, and show 1. Consider any
sequence in.%, (L,), such that (L,) is decreasing and lim, L; = @, and
show lim; u(L;) = 0. Note

lim; u(L;) = lim, p(W(L,)) = p(N: W(Ly)).
Show N; W(L;) C IR(¥) — X. Assume
N:W(Ly) C IRE) — X.
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Then, there exists an element of X, x, such that u, € N ; W(L,). Consider
any such x. Since u, € N: W(L,), for every i, u(L;) = 1. Hence,
lim, u,(L,) = 1. Since u, € I(s,-¥), a contradiction has arisen. Hence,
the assumption is wrong. Hence, N; W(L;) C IR(¥) — X. Hence,
since 2 is true, A(MN; W(L;)) = 0. Consequently, lim; u(L;) = 0. Hence,
u € MR(e,%), since u € MR(E), i.e., 1 is true.

B). Show 1 and 3 are equivalent. Assume 1, and show 3. (Proof
omitted.)

Conversely, assume 3, and show 1. Consider any sequence in &,
(L;), such that (L;) is decreasing and lim; L, = @, and show lim; u(L,)
= 0. Note

lim; u(Ly) = lim; a(W(Ly)) = 2(N: W(Ly)).
Show N; W(L;) C IR(&) — IR(s,.¥). Assume
N:W(Ly) T IRE) — IR(6,%).

Then, there exists an element of IR(%), », such that » € N; W(L,) and
v € IR(0,£). Consider any such ». Since » € N; W(L,), for every 1,
v(L;) = 1. Hence, lim;»(L;) = 1. Since » € I(s,-¥), a contradiction
has arisen. Hence, the assumption is wrong. Hence,

N: WLy CIRE) — IR(e,Z).
Hence, since 3 is true,
ﬁ(ﬂi W(Li)) = 0.

Consequently, lim, u(L,;) = 0. Hence, u € MR(s,-¥), since u € MR(ZL),
i.e., 1 is true.
v). Show 2 and 4 are equivalent. Note

p*(X) + m(IR(Z) — X) = a(IR(X))
and, since g is W (¥ )-regular,
gs(IRY) — X) = sup {a(K)|K € sW(¥)and K C IR(Y) — X}.
Hence, p*(X) = a(IR(Y)), if and only if iy (JIR(Z) — X) = 0, if and
only if whenever K € §W(¥) and K C IR(¥) — X, then a(K) = 0,
if and only if whenever (L;;7 € N) is in.¥ and (L;) is decreasing and
N W(L,) CIR(&) — X, then a(N; W(L;)) = 0. Hence, 2 and 4 are
equivalent.
). Show 3 and 5 are equivalent. (Use the same method as for v).)
Thus, the theorem is proved.
Remark. The part of the assumption “.¥ is separating’’ is not needed,
in case ¢(X) is not identified with X. Whenever we wish to indicate this

in a theorem, we shall enclose the word ‘‘separating’’ (e.g., in the hypoth-
esis), in parentheses.
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Observation 1. Note the statement s (IR(Z) — X) = 0 is equivalent
to the statement “X is f-thick”. (See [13], pp. 74, 75.) Consequently,
4 is equivalent to the statement “X is fg-thick’”. Next, assume
u € MR(e,-£). Then, by the theorem, X is a-thick. Hence, since

AWENNX =L WE)N\X) =A(¥),

the projection of & on X is defined. Denote the projection of & on X by ;.
Then, for every element of &7 (%), 4,

p(4) = (W) N X) = a(W(4)),
by the definition of the projection, = u(4). Hence, 1 = u.
Observation 2. Note the statement
px(IR(&) — IR(0,Z)) = 0

is equivalent to the statement “IR(cs,.¥) is a-thick”. Consequently, 5
is equivalent to the statement “IR(s,.%) is fi-thick”’. Next, assume
u € MR(s,¥). Then, by the theorem, IR (s,-¥) is fi-thick. Hence, since

A W(E))NIR(o, L) = AL (W(L) N IR(s, L)) = (W.(ZL)),

the projection of & on IR(s,.¥) is defined. Denote the projection of &
on IR(s,¥) by fs. Then, for every element of & (W, (¥)),

Wo(B), p2(We(B)) = p2(W(B) N IR(0,£)) = p(W(B)),
by the definition of the projection, = u(B) = ' (W,(B)). Hence,

fe = .U'-
Examples. (Note if L € &, since . is (separating) and disjunctive,
W(L) = L.)

(1). Consider any topological space X such that X is 7, and denote
its collection of closed sets by &% . Then, IR(& ) is known as the
Wallman compactification of X and is denoted by wX. (See [22].) If
p € MR(Z), then the following statements are equivalent:

1. u € MR(s,%).

2. If (Fy;7 € N)isin & and (F,)isdecreasingand N; F; C wX — X,
then a(N; F;) = 0.

3. If (Fy;4 € N)isin & and (F,) is decreasing and N; F; C wX —
IR (s, %), then a(N; F;) = 0.

4. p*(X) = p(wX).

5. 0%*(IR(0, %)) = p(wX).

(2). Consider any topological space X, such that X is 7%, and denote
its collection of zero sets by . Then, IR(Z) is known as the Stone-Cech

compactification of X and is denoted by 8X; IR(s, %) is known as the
Realcompactification of X and is denoted by vX. (See [10].)
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If u € MR(Z), then the following statements are equivalent:

l.p € MR(s,%).

2. 1f (Z;;4 € N)isinZ and (Z,) isdecreasingand N; Z,; C BX — X,
then 2(N: Z,) = 0.

3. If (Z;;1 € N)isinZ and (Z,)isdecreasingand N; Z; C BX — vX,
then a(N:Z;) = 0.

4. p*(X) = p(BX).

5. p*(vX) = a(BX).

(8). Consider any topological space X such that X is T; and 0-dimen-
sional, and denote its collection of clopen sets by €. Then, IR(%) is
known as the Banaschewski compactification of X and is denoted by
BoX (see [6]), and IR (s, ¥ ) is known as the N-compactification of X and
is denoted by voX. (See [14].) Since % is an algebra, MR(%) = M(¥).

If w € M(%), then the following statements are equivalent:

l.u € M(s,%).

2. If (Ci;7 € N)isin € and (C,)isdecreasingand N; C; C B X — X,
then a(N; C;) = 0.

3.1f (Cs;4 € N)isin € and (C,) is decreasing and N; C; C BoX —
voX, then a(N; C;) = 0.

4. p*(X) = p(BoX).

5. 8*(voX) = (BoX).

(4). Consider any topological space X such that X is 71, and denote
its collection of Borel sets by Z. Since & is an algebra, MR(%Z) = M(Z).

If u € M(Z), then the following statements are equivalent:

1.u € M(o,%).

2. If (B;;4 € N)isin % and (B;) is decreasing and N; B; C I(#) —
X, then 2(N; B,)) = 0.

3. If (B;;1 € N)isin & and (B,) is decreasing and N; B; C I(#)—
I(¢,#), then p(N: B,;) = 0.

4. p*(X) = a(I(Z)).

5. 0%(I(c, %)) = a(1(£)).

THEOREM 2.2. Consider any set X and any lattice of subsets of X, L,
such that ¥ is separating and disjunctive. The following statements are true:
1. If & 4s 6 and normal, then

Z W) CsW(EZ (L)).

2. If & 1s countably paracompact and normal, then if (Li; 1 € N) is in
& and (L) is decreasing and N ; W(L;) C IR(ZL) — X, then there exists
an element of & W (X)), Ko, such that

N:W(L) CKyCIRY) — X.

Proof. 1. Assume ¥ is 6 and normal. Consider any element of
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Z (W), K,. It is known that, since.# is separating, disjunctive, 8,
and normal, the function which maps the general element of C,(%), f,
into the element of C(tW (%)), f, which is such that for every element
of IR(Y), p.,f (w) = f f du, is surjective; (it is even a congruence between
Co(&) and CtW(Z)). (See [3] and [18].) Consequently, there exists an
element of C,(%), f, such that K, = f~1({0}). Consider any such f. Then

Ky = ﬂ {u € IR |fW)| = 1/n).

Note since f € C(tW(Z)), for every n,
{v € IRE)| |f(W)| £ 1/n} € Z(W(ZL)).
Denote {u € IR(Z)| |F()| £ 1/n} by K,. Then
KN X = (x € X| | f@)| < 1/n}.
Note since f € C,(¥),
{x € X| | f(®)] = 1/n} € Z(&).

Denote {x € X| |f(x)| £ 1/n} by L,.

Show Ky = N, W(L,). @). Show Ky D N, W(L,). Note for every n,
K, D L,. Hence, since K, is closed, K, O L,. Hence, since L, = W(L,),
K, D W(L,). Consequently, Ko D N, W(L,).

B). Show Koy C N, W(L,). Assume K, # @. Consider any element of
K, p. Then, since X is dense in IR(Z), there exists a net in X, (u,,),
such that limg p,, = p. Consider any such (u,). Then, since 1 is con-
tinuous,

lima fusy) = F(u).
Since u € Ko and Ko = f-1({0}), f(u) = 0. Consequently,

limg f(ug,) = 0.

Hence, for every #, there exists a value of «, ay, such that if @ = «y, then
| f(uz,)] < 1/m. Consider any such ao. Then, if @ = a, then

Mz, €L, = W(Ln) NXC W(Ln)

Hence, since limg p,, = u, 0 € W(L,). Hence, p € N, W(L,). Hence,

v). Consequently, K, = N, W(L,), and for every n, L, ¢ Z(¥).
Hence, K, € sW(Z (£)). Hence, Z tW(¥)) C sW(Z (¥)).

2. Assume . is countably paracompact and normal. Consider any
sequence in &, (L,), such that (L;) is decreasing and N, W(L,) C
IR(Y) — X, and show there exists an element of Z (tW (%)), K., such
that

N:W(L) CKyCIRE) - X
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Since N; W(L;) C IR(Z) — X, N L, = 0. Consequently, lim,L; = 0.
Hence, since.? is countably paracompact, there exists a sequence in.%,
(L), such that for every 7, L, C L/, and (L/) is decreasing and
lim; L/ = @. Consider any such {(L,). Then, for every #, since L, C L,/,
wW(L,) C W(L,) = W(L,)'. Hence, N: WL, C W(L,)’. Note
N+ W(L,) is compact and W(L,)’ is open. Since .¥ is normal, IR(¥)
is T,. Consequently, IR(Y) is locally compact and T,. Hence, by the
Baire Sandwich Theorem (see [13]), there exists a compact G;-set, K,
such that N; W(L,) C K, C W(L,)'. Consider any such K,. Then,

mi W(Li) C nn Kn C mn W(f’n)/'

Note N, K, is a compact G;s-set. Hence, since IR(&) is T and normal,
Nw K, € Z (W (Z)). Denote N, K, by K,. Then,

N« W(Ly) CKoC N WLy
Since (L/) is decreasing and lim; L,/ = @, N: L/ = @. Hence,
N:W(L{) CIRE) — X.

Consequently, N, W(L;) C Ky C IR(¥) — X.
Thus, the theorem is proved.

The following theorem generalizes part of [4], which was itself a
generalization of the work of Knowles [15].

THEOREM 2.3. Consider any set X and any lattice of subsets of X, %,
such that & is separating, disjunctive, 8, normal, and countably para-
compact. If uw € MR(S), then the following statements are equivalent:

1. u € MR(s,%).

2. If Ko € Z (tW(Z)) and Ko C IR(E) — X, then p(K,) = 0.

Proof. (Note since & is separating, disjunctive, 8, and normal,
Z (W) CsW(EZ (&)), by Theorem 2.2, Part 1, C sW(¥) C D;.
Note, in general, for an arbitrary lattice of subsets of X, .#, for every
element of Z (tW(¥)), Z, there exists a sequence in.¥, (L,), such that
Z = N, W(L,)'. Consequently, Z tW(¥)) C ¢(W(¥)) C Dz.)

Assume 1, and show 2. Consider any element of Z (¢tW (%)), K, such
that Ko C IR(Y) — X, and show a(K,) = 0. Since .¥ is separating,
disjunctive, 8, and normal, K, € W (). Hence, since p € MR(s,.¥),
by assumption, by Theorem 2.1, f(K,) = 0. Hence, 2 is true. Conversely,
assume 2, and show 1. Use Theorem 2.1, namely, show if (L;;7 € N) is
in.¥ and (L,) is decreasing and N; W(L,;) C IR(¥) — X, then

a(N:W(Ly)) = 0.

Consider any sequence in &, (L,), such that (L,) is decreasing and
N:W(L;) CIR() — X. Then, since .£ is countably paracompact
and normal, by Theorem 2.2, Part 2, there exists an element of
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Z W (%)), Ko, such that
N:W(L;) CK: CIRZ) — X.

Consider any such K, Then, a(K,) = 0, by the assumption. Con-
sequently, a(N; W(L,)) = 0. Hence, by Theorem 2.1, u € MR(s,.¥),
i.e., 1 1is true.

Thus, the theorem is proved.

Examples. (We use the notation introduced earlier in this section.)

(1). Consider any topological space X such that X is T, normal, and
countably paracompact. If u € MR(Z), then u € MR(c, %), if and
only if whenever K, is a zero set of wX and K, C wX — X, then
ﬁ(Ko) = 0.

(2). Consider any topological space X such that X is Ty If
p € MR(Z), then p € MR(c, %), if and only if whenever K, is a zero
set of X and K, C BX — X, then a(X,) = 0. (This result is due to
Knowles [15].)

(3). Consider any topological space X such that X is 7. If u € M(Z),
then u € M (o, %), if and only if whenever K, is a zero set of I(#) and
Ky C I(#) — X, then a(K,) = 0.

Part 11. (On r-smoothness.)

LEMMA 2.1. Consider any set X and any two lattices of subsets of X,% 1,
Ly, such that £+ C L 2. If w1 € MR(Z 1), then there exists an element of
MR(SL5), pe, such that el ypp = w1 and, if F\ separates Ly, then u, is
unique. (See [5] and [16].)

Next, consider any set X and any lattice of subsets of X, .%, such
that % is disjunctive. Consider any element of MR(Y), u. Then,
2 € MR(W(Z)). Hence, by the lemma, there exists an element of
MR({W(Z)), &, such that §|smw) = A and, since W(Z) separates
tW (&) (because W(Z') is compact), @ is unique.

Note since tW (&) is compact,

MR(@W (L)) = MR(o, tW(Z)) = MR(+,tW(Z))
= MR(t, tW(Z)).

Consequently, @ € MR(o, tW(¥)). Hence, i is extensible to the
s-algebra of g*-measurable sets, uniquely, and the extension is tW(Z)-
regular. Continue to use f for this extension.

LEMMA 2.2. Consider any set X and any lattice of subsets of X, L, such
that ¥ is 8. The following statements are equivalent:
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1.u € MR(+, ).
2. If (La; o € A) (net) is in L and (L.) is decreasing, then

p*(Na Lo) = infa p(La).
3. If (La;a € A} C& and {La;a € A} is a filter base, then
#*(Na Lo) = infa p(La).
(See [19].)

THEOREM 2.4. Consider any set X and any lattice of subsets of X, %,
such that & is (separating) and disjunctive. If u € MR(Y), then the
following statements are equivalent:

l.u € MR(+,Z).

2. If (Lyja € A) (net) is in L and (L.) is decreasing and
Nae W(Ls) C IR(E) — X, then

;Z(ma W(La)) = 0.
3. i*(X) = g(IR)).
Proof. ). Show 1 and 2 are equivalent. Assume 1, and show 2. Consider

any net in ., (L,), such that (L,) is decreasing and N, W(L,) C
IR(Y) — X, and show

E(Na W(La)) = 0.

Since (L,) is decreasing, (W (L,)) is decreasing. Hence, since & €
MR(7,¥) and tW(Z) is 6, by Lemma 2.2,

/](ma W(La)) = lima ﬂ(W(La))
Consequently,
ﬂ(ﬂa W(La)) = lim, ﬁ(W(La)) = lim, ﬁ(W(La)) = lim, P(La)-

Since (L,) is decreasing, lim, Lo = N4 La. Since N, W(L,) C IR(Z) —
X, NaLs = 0. Consequently, lim, L, = @. Hence, since u € M(c,&),
by the assumption,

lim, u(Ly) = 0.
Consequently,
E(Na W(La)) = 0.

Hence, 2 is true. Conversely, assume 2, and show 1. Consider any net
in %, (L,), such that (L,) is decreasing and lim, L, = @, and show
limg u(L,) = 0. Note

lim, I-"(La) = lim, .a(W(La)) = limg ﬂ(W(La))
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Since (L,) is decreasing, (W(L,)) is decreasing. Consequently,
lime 3(W(La)) = B(Na W(La)).

Since NaLe = 9, Na W(L.) C IR ) — X. Hence, since 2 is true,
B(Na W(La)) = 0.

Consequently, lim, u(L,) = 0. Hence, u € MR(r,.¥), i.e., 1 is true.
B). Show 2 and 3 are equivalent.

Remark. The method of proof of this statement is the same as that of
the statement ‘2 and 4 are equivalent” in Theorem 2.1, and, for this
reason, it is omitted.

Thus, the theorem is proved.

Observation. Statement 2 is equivalent to the statement: If K € tW(Z)
and K C IR(Y) — X, then a(K) = 0.

Examples. (1). If u € MR(Z), then u € MR(r, %) if and only if &
vanishes on every closed subset of wX, contained in wX — X.

(2). If u € MR(Z), then u € MR(s,Z) if and only if i vanishes on
every closed subset of 38X, contained in X — X.

3).1fu € M(%¥),thenpu € M(r, €) if and only if & vanishes on every
closed subset of 3¢X, contained in 8,X — X.

4).Ifu € M(#),thenu € M(r, #) if and only if i vanishes on every
closed subset of I(#), contained in I(#) — X.

THEOREM 2.5. Consider any set X and any lattice of subsets of X, ¥,
such that £ s separating and disjunctive. If uw € MR(r,L) then there
exists an element of MR (7, tL), v, such that v| 4@, = u and v is unique in
the sense that if p € MR(r,tL) and plae) = m, then p = v; moreover, v is
L -regular on (t.L)".

Proof. (i). Existence. Since u € MR(r,-¥), by Theorem 2.4, g*(X) =
E(IR(Y)). Hence, X is fi-thick. Hence, since

LEWE)NX =L (WE)NX) =L (L),

the projection of fi on X is defined. Denote the projection of & on X by ».
Denote the general element of &7 (t.%¢) by A. Then, there exists an
element of & (W (L)), A*, such that 4 = A* N X. Consider any such
A*. Then, v(4) = g(4*), by the definition of the projection.

a). Show v| 4z = r. Note if 4 € (&), then

v(d) =v(WA) N X) = g(W(4)) = p(W(4)) = n(4).

Hence, V() = M.
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B). Show v is t.% -regular. Note
v(4) = g(4*) = sup {B(K)|K € tW(¥) and K C 4%}
sup {(»(KN X)|K € tW(&¥) and K C 4*}
sup (P(KNX)KNX €t¥and KNX C A*N X}
sup {v(F)|F € t¥ and F C A} < v(4).

A1

Il

Hence,
v(A) = sup {v(F)|F € t.¥ and F C A}.

Hence, » is t.% -regular.

v). Show v € M(r,t.¥). Consider any net in ¥, (F,;« € A), such
that (F,; @ € A)isdecreasing and lim, F, = @, and show lim, »(F,) = 0.
Consider any positive number e. For every «, consider the set whose
general element is an element of .¥, L, such that F, C L, and denote
it by {Lag,; B« € Aa}. Then, since F, € 1.7,

Fa =N {La,ﬂa; ﬁa € Aa}-
Since (F,) is decreasing and lim, F, = @, N, F, = #. Consequently,
ﬂ = mnt Fa = m{La,ﬁa;a e Ay ,Ba e Aa}'

Consider {Lag,; @ € A, B« € Ao}, and denote it by {L,; v € T'}. Consider
the partial ordering =, of T, which is such that whenever v, v2 € T,
then y1 2 v, if and only if L, C L,,. Then, T is directed by = and
(Ly;y € T) is decreasing and lim, L, = @. Hence, since v|y ) = u, and
p € M(r,£), by the assumption, lim, »(L,) = 0.

Hence, there exists a value of v, v, such that »(L,) < e. Consider
any such vo. Note there exists a value of «, @y, such that Foy C Ly,
Consider any such ao. Then, since (F,) is decreasing, if @ = ao, then

F, C F,,. Consequently, if « 2 ao, then
v(F,) = V(Fao) = V(L'ro) <e

Hence, lim, »(F,) = 0. Hence, » € M(r,t%).

8). Consequently, v € MR(r,tL).

(ii). Uniqueness. (Proof omitted.)

(iii). Show » is.&-regular on (£.¥)’. Consider any element of (t.¢')’, B,
and show

v(B) = sup {v(L)|L € ¥ and L C B}.

Consider any positive number e. Since B € (£¥)’ and the relativization
of tW(Z) to X is t.Z, there exists an element of (W (¥))’, G, such that
B = G N X. Consider any such G. Then, since f is tW (% )-regular, there
exists an element of tW (%), K, such that K C G and g(G — K) < e
Consider any such K. Then, consider the set whose general element is
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an element of W(¥), W(L), such that K C W(L), and denote it by
{W(Ly);a € A}. Then, since K € tW(¥),

K =N {W(la);a € 4}.
Then, since K C G,
N{W(Ls);a € Ay NG = 0.
Hence, since W (%) is compact, there exists a subset of 4, A*, such that
NA{W(Le);a € Ay NG =0
and A4* is finite. Consider any such 4*. Then,
NAW(La); @ € A*} = W(N {La; o € A%}).

Note N {L,;a € A*} € %. Denote N {L.;a € A*} by L. Then,
K C W(L) C G. Hence,

W(LYNXCGNX.
Consequently, L C B. Consequently, L € ¥ and L C B and

v(B — L) = v((G — W(L)) N X)

=pG—-WI) £aG—-K)<e
Hence,

v(B) = sup {¢v(L)|L € ¥ and L C B}.

Hence, » is & -regular on (t:¥)’.
Thus, the theorem is proved.

Remark. For a related type of extension involving content see [20].

Examples. (1). If u € MR(r,%Z), then there exists an element of
MR(r,t%) = MR(r,#), v, such that v|4@) = » and v is unique;
moreover, v is Z -regular on % '.

(2). If w € M(r,€), then there exists an element of MR(r,t%) =
M(r, #), v, such that v|¢ = u and » is unique; moreover, v is % -regular
on%".

3). If w € M(r, %), then there exists an element of MR(r,t%#) =
M(r, (X)), v, such that v|g = u and » is unique; moreover, » is
P -regular on £ (X).

THEOREM 2.6. Consider any set X and any lattice of subsets of X, %,
such that ¥ is disjunctive. If w € MR(ZL), then the following statements
are equivalent:

1. ' € MR(r, W,(Z)).
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2. If (Lo € A) (net) is in & and (L,) s decreasing and
Na W(La) C IR&) — IR(0, &),

then 5(No W(La)) = 0.
3. i*(IR(0,%)) = R(IR(Z)).

Proof. a). Show 1 and 2 are equivalent. Assume 1, and show 2. Consider
any net in.¥, (L,), such that (L,) is decreasing and

ﬂa W(La) C IR(g) - IR(U’g)v

and show @(N.W(L,)) = 0. Since (L,) is decreasing, (W(L,)) is
decreasing. Consequently,

B(Na W(Le)) = lima (W (La)) = lima 2(W(La))
= lim, I-"(La) = lim, ”,(Wv(La))'

Since (W(L,)) is decreasing, (W,(L,)) is decreasing. Show lim, W, (L,)
= @. Since N« W(L,) C IR(Z) — IR(s,%),

Ne W(Ls) N IR(0,F) = 0.

Hence, N« W,(L,) = 8. Consequently, lim, W,(L,) = @. Hence, since
W € M(r, W,(&)), by the assumption,

limg p' (W (La)) = 0.

Consequently, (N« W(L.)) = 0. Hence, 2 is true. Conversely, assume
2, and show 1. Consider any net in W,(¥), (W,(L.)), such that
(Ws(Lea)) is decreasing and

lim, W, (L) = 9,
and show
limg o' (W, (La)) = 0.
Note
limg p' (Wo(La)) = lima u(La) = lime (W (La))
= lim, 2(W(Le)) = B(Ne W(La)).
Show g(Nae W(L,)) = 0. Since (W,(L,)) is decreasing and
lime Wo(La) = 0, Na Wi(La) = 0.
Hence,
Ne W(L.) C IR(Z) — IR(0,F).
Hence, since 2 is true, g(Ne W(L.)) = 0. Consequently,
limg p' (Wo(La)) = 0.
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Hence, 4’ € MR(r, W,(£)), i.e., 1 is true.
B). Show 2 and 3 are equivalent. (Proof omitted.)
Thus, the theorem is proved.

Observation. Statement 2 is equivalent to the statement: If K € tW (%)
and K C IR(Y) — IR(s,%), then g(K) = 0.

Examples. (1). If u € MR(F ), then ' € MR(r, W,(%)), if and only
if & vanishes on every closed subset of wX, contained in wX — IR(c¢,%).

2).If p € MR(Z), thenp’ € MR(r, W,(Z)), if and only if i vanishes
on every closed subset of 8X, contained in BX — vX. (Note W,(%Z) is
just the collection of zero sets of IR(¢,Z) = vX.)

3). If u ¢ M(%), then p’ € M(r, W,(%)), if and only if & vanishes
on every closed subset of 3¢X, contained in 8oX — voX.

Part I11. (On tightness.)

THEOREM 2.7. Consider any set X and any lattice of subsets of X, %L,
such that. L is separating, disjunctive, and normal, (or Ts). If u € MR(Z),
then the following statements are equivalent:

l.u € MR(,Z).

2. 5% (X) = g(IR(L)) and X is g*-measurable.

Proof. Assume 1, and show 2. Note it suffices to show
*(IR(Z) — X) = 0.

Consider any positive number e. Then, since u € MR(t,.¥), by assump-
tion, there exists an . -compact set, K, such that us (K’) < e. Consider
any such K. Since w € MR(¢,.Y¥) and MR(t,.¥) C MR(r,&),
u € MR(7,¥). Hence, by Theorem 2.5, there exists an element of
MR(r,t¥), v, such that v|4) = u and » is unique; moreover, » is
L -regular on (t¥)’. Since K is ¥-compact, and .Z is separating, dis-
junctive, and normal, (or T,), K € t.%. Hence, K’ € (£¥)’. Consider
the extension of u to ¢(%) and denote it by the same symbol; also,
consider the extension of » to ¢(t%) and denote it by the same symbol.
Then,

v(K")

sup {v(L)|L € ¥ and L C K'}

= sup {u(L)|L € ¥ and L C K'}
{

{

A

sup {u(E)|E € ¢(&) and E C K'}
= sup {¢(E)|E € ¢(&¥) and E C K'},

since Vla(g) = U,

< sup {((E)IE € ¢(t.¥) and E C K’} = v(K').
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Hence,
V(K'Y = sup (w(E)E € o(¥) and E C K’} = ua(K').
Note K/ = X — K = (IR(Y¥) — K) N\ X. Also, since K is.¥-compact
and tW (&) is T, (because ¥ is normal), K € tW(Z). Consequently,
p*(IR(Z) — X) £ a(IRZ) — K)
=1((IR(&K) —K)NX) =v(K') = ue(K') < e

Hence, g*(IR(&) — X) = 0. Hence, #*(X) = g(IR(¥)) and X is
fi*-measurable. Hence, 2 is true.

Conversely, assume 2, and show 1. Since g*(X) = g(/R(.¥)) by assump-
tion, by Theorem 2.4, p € MR(r, ¥). Consequently, u € MR(s, L).
Now, consider any positive number ¢, and show there exists an.¥’-compact
set, K, such that uy(K’) < e Since X is fi*-measurable, by assumption,
and i is tW(Z)-regular on the g-algebra of g*-measurable sets,

p*(X) = sup {B(K)|K € tW(¥) and K C X}.

Consequently, there exists an element of tW (%), K, such that K C X
and g(K) > p*(X) — e Consider any such K. Note K is .#-compact.
Hence, since & is separating, disjunctive, and normal, (or T), K € t¥,
and v(K’') = us(K’) (as above). Consequently, v(K) = u*(K). Also,

v(K) = v(KN X) = g(K).

Consequently, u*(K) > g*(X) — e. Hence, since 5*(X) = g(IR(&)),
by assumption,

w*(K) > p(IR&)) — e

Hence, since g(IR(Y)) = u(X), w*(K) > u(X) — e. Consequently,
ux(K’) < e. Hence, u € MR(¢,.%), i.e., 1 is true.
Thus, the theorem is proved.

Remark. & is said to be strongly measure replete if MR(c¢,.¥) =
MR(t,.%). The following statement is true: If & is separating, dis-
junctive, 8, and normal, then .# is strongly measure replete, if and only
if for every element of MR (c,.¥), u, there exists an.¥-compact set, K,
such that u*(K) > 0. (Proof omitted.) (This generalizes a result of [17].)

Examples. (1). Consider any topological space X such that X is T's. If
u € MR(Z), then u € MR(t, %) if and only if g*(X) = g(wX) and X
is i*-measurable. (Note that since X is normal, wX = X.)

(2). If p € MR(Z), then u € MR(t,%Z) if and only if g*(X) = g(8X)
and X is g*-measurable.

3).Ifu € M(#),thenp € M(t,#)ifandonly if g*(X) = g(IR(Z))
and X is g*-measurable.
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(4). & is said to be Cech-complete if and only if IR(¥) — X is an
F -set of tW (). (See [9], p. 142.)

THEOREM. If & is also normal, Cech-complete, and Lindelif, then
MR(¢,¥) = MR(+,.¥) = MR(t,%£).

Proof. Since ¥ is Lindelof, MR(¢,-£) = MR(r,.¥). Next, show
MR(r,¥) C MR(t,¥). Consider any element of MR(r,.#), u. Then,
by Theorem 2.4, g*(X) = g(IR(Z)). Also, since X is Cech-complete,
IR(Y) — X is an ¥ ,-set of tW(Z). Hence, IR(¥) — X € ¢(tW()).
Hence, X € o(tW(¥)). Consequently, X is @g*-measurable. Con-
sequently, p*(X) = g(JR(¥)) and X is g*-measurable. Hence, by
Theorem 2.7, u € MR(t,%¥). Hence, MR(r,¥) C MR(,¥). Con-
sequently, MR(s,.¥) = MR(r,¥) = MR(¢,%).

APPLICATION 1. Consider any topological space X such that X is complete,
separable, and metrizable. Then

M(o,#) = MR(¢,%# ) = MR(r,# ) = MR(,%).

Proof. Since X is metrizable, Z = % ;also,Z iséand ¢(Z) C s(Z).
Consequently, M (¢, # ) = MR(s,%). (See [3].) Since X is metrizable,
it is separating and disjunctive. Since X is metrizable and separable, it
is Lindelof. Since X is metrizable and complete, it is Cech-complete. (See
[9], p. 105.) Consequently,

M(o,¥) = MR(¢,%) = MR(r,%¥ ) = MR(t,F).

APPLICATION 2. Consider any topological space X such that X is locally
compact, T2, and Lindelif. Then,
MR(¢,%) = MR(+,¥) = MR(t,¥).
Proof. Since X is T, ¥ is separating and disjunctive. Since X islocally
compact and Ty, & is regular. Consequently, % is §, regular, and

Lindelsf. Hence, % is normal. Since X is locally compact, it is Cech-
compact. (See [9], pp. 142, 143). Consequently,

MR(¢,%#) = MR(r,¥) = MR(t, ).

APPLICATION 2. Consider any topological space X such that X is locally
compact, Ts, and paracompact and separable. Then

MR(¢,%) = MR(+,¥) = MR(t, ).

Proof. Since X is paracompact and separable, it is Lindelof. (See [7].)
Now, see Application 2.

3. In this section we give certain further applications of the theory
developed in Section 2.
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Part 1. (On countable compactness.)

THEOREM 3.1. Consider any set X and any lattice of subsets of X, L,
such that & is (separating) and disjunctive. The following statements are
equivalent:

1. % s countably compact.

2. IR(Z) — X does not contain any nonempty element of W (L ).

Proof. Assume 1, and show 2. Assume 2 is false. Then, IR(Y) — X
does contain a nonempty element of §W (). Consider any such element
of sW(¥), N:W(L,). Since N; W(L,) # 0, consider any element of
N W(L,), u. Then, p € IR(Z) and for every 4, u(L,) = 1. Also, since
N:W(L) CIRE) — X, N:L; = 0. Consequently, u ¢ IR(c,.%).
Hence, IR(Y) ¢ IR(s,¢). Hence, . is not countably compact. Since
this statement is false, the assumption is wrong. Hence, 2 is true.

Conversely, assume 2, and show 1. (Proof omitted.)

Thus, the theorem is proved.

Examples. (1). Consider any topological space X such that X is T}.
Then, X is countably compact if and only if wX — X does not contain
any nonempty closed set of the form N ; F;, with F; € &, for every .

(2). Consider any topological space X such that X is T's3. Then, X is
pseudocompact if and only if 3X — X does not contain any nonempty
closed set which is a G;.

(3). Consider any topological space X such that X is T'y. Then, X is
countably compact if and only if wX — X does not contain any non-
empty zero set.

(4). Consider any topological space X such that X is 7'y and 0-dimen-
sional. Then, X is clopen-countably compact (i.e., mildly countably
compact) if and only if 8,X — X does not contain any nonempty closed
set of the form N; C;, with C; € &, for every 1.

Part 11. (The sets MR(¥) and MR(Z).)

The set MR(¥). Preliminaries. Consider any set X and any lattice of
subsets of X,.%, such that.? is disjunctive. Then, the set whose general
element is an element of MR(Y), u, such that ' € MR(r, W.(Z)) is
denoted by MR(Z).

THEOREM 3.2. (On MR(Z).) The following statements are true:
1. MR(¥) C MR(s,.%).

2. IR(s,¥) C MR(¥).

3. is replete if and only if MR(YL) C MR(r,%¥).

Proof. 1. Consider any element of MR(¥), u. Then 4 €
MR(r, W,(&)). Hence, p’ € MR(s, W,(&)). Hence, u € MR(s,.Z).
Hence, 1 is true.
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2. Consider any element of IR(s,-#), u. Then S(g) = {u}. (Proof
omitted.) Hence, whenever K ¢ tW(¥) and K C IR(¥) — IR(s,%),
then i (K) = 0. Hence, by Theorem 2.6,

u € MR(r, W,(¥)).

Consequently, u € MR(Z). Hence, 2 is true.

3. Assume % is replete, and show MR(¥) C MR(r,£). Consider
any element of MR(¥), u. Then, ' € MR(r, W,(¥)). Hence, by
Theorem 2.6, whenever K € tW(¥) and K C IR(¥) — IR(s,%),
then Z(K) = 0. Since.? is replete, IR(s,-¥) = X. Consequently, when-
ever K € tW(¥) and K C IR(Y) — X, then g(K) = 0. Hence, by
Theorem 2.4, u € MR(r,¥). Hence, MR(¥) C MR(r,.£). Conversely,
assume MR(Z) C MR(r,-¥), and show.? isreplete. Show IR(s,.¥) =
X. Assume IR(s,¥) # X. Then, IR(¢,¥) — X # @. Consider any
element of IR(s,.¥) — X, u. Since 2 is true, u € MR(). Hence, since
MR(¥) C MR(+,¥), u € MR(r,&). Hence, by Theorem 2.4, when-
ever K € tW(¥) and K C IR(Y) — X, then g(K) = 0. Hence, since
{u} € W) and {u} C IR(E) — X, g({n}) = 0. Since S(r) = {u}, a
contradiction has arisen. Hence, the assumption is wrong. Hence,
IR(s,¥) = X. Hence, .Z is replete. Consequently, 3 is true.

Thus, the theorem is proved.

Examples. (1). X is a-complete, if and only if MR(F ) C MR(r, %)
(8].

(2). X is realcompact if and only if MR(Z) C MR(r,Z) [10].

(3). X is N-compact if and only if (%) C M(r, ¥) [14].

(4). X is Borel-complete if and only if (%) C M(r, Z) [12].

The following theorem gives a useful condition on extension of certain
countably additive measures to countably additive measures.

THEOREM 3.3. (On MR(¥).) Consider any set X and any two lattices
of subsets of X, L1, L s, such that £ is separating and disjunctive, £ s is
disjunctive and 8, and £ C Ly Assume there exists a function from
IR(0, %) to IR(0,Ls), ¥, such that ¥ is a homeomorphism and ¥ leaves
X fixed, pointwise. If u € MR(ZL), then there exists an element of
MR(O',:?Z), €, such that Gl‘g(gl) = M.

Outline of proof. Consider any such ¢ and any element of MR(¥), u.
Then, v € MR(r, W,(£1)). Hence, by Theorem 2.5, there exists an
element of MR (r, tW,(¥1)), v, such that

Yoz =

and v is unique. Next, consider the element of M (¢tW,(¥,)), p, which is
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such that for every element of &7 (tW,(¥:)), Es,
p(Es) = v(Y~1(Es)).

Then,
p € MR(r, tW,(&5)).

Consider p|zwo(#,)), and denote it by ». Then,
v € MR(o, W,(Z2)).

Next, consider the element of MR(s,-¥,), ¢, which is such that ¢ = ».
Then, €y = p.

Remark. This theorem generalizes a result of [4].

The set MR(Z). Preliminaries. The set whose general element is an
element of MR(ZL), u, such that whenever p € IR(¥) — IR(s,-¥), then
there exists an element of ((W())’, O, such that p € O and %(0) = 0,
is denoted by MR(¥). Then, MR(¥) C MR(). (For a proof of this
statement use a compactness argument.)

THEOREM 3.4. (On MR(Z).) If & is also 6, normal, and countably
paracompact, then MR(¥) = MRI(Y).

Proof. «). Show MR(Y¥) C MRI(Y). Consider any element of
MR(¥), u. Then, consider any element of C(¥), f, and show

‘ffdn‘ < +o0.
Consider the function 6 which is such that Dy = [—o0, 400 ], and for
every element of (—o0, 400),7,8(r) = 7/(1 + |r]),and 6(—0) = —1

and 6(4+o) = 1. Then, ([—o, +©]) = [—1,1] and 6 is a homeo-
morphism. Next, consider the function f* which is such that f* = 6-' o
(8 of)". (See Section 2 for the notation related to (§ of)".) Then, f*
maps IR(¥) into [—o0, +00] and is tW (& )-continuous. Also,

Jrau= [ rran

(See [4], p. 283.) Next, consider
{p € IRZ) — IR(e,L)If *(p) = +0}.

Note f * is finite on IR(c,.¥). Hence, since f * is tW (£ )-continuous,
{p € IR(?) — IR(0,L)|f*(p) = +o0} € tW(ZL).

Denote {p € IR(Y) — IR(¢,L)|f *(p) = + ©} by K. Then, since
p € MR(Z) and K is compact, there exists an element of (tW(¥))’, O,
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such that K C O and %(0) = 0. Consider any such O. Then,

’ffdu - lff*dﬁ - ‘fof*dﬁ-i-fwf*dﬁ _ ’fOlf*dﬁ

Note that f * is finite on O’. Hence, since f * is continuous on O’ and O’
is compact,

[ i
]

Consequently,

< 00,

ffd#l < 4.

Hence, u € MRI(Z). Hence, MR(¥) C MRI(Y).
B). Show MRI(Y) C MR(Z). (See [4].)

Examples. (1). Consider any topological space X such that X is T4
and countably paracompact. Then, u € MR(%) if and only if u inte-
grates all continuous functions.

(2). Consider any topological space X such that X is Tj;. Then,
uw € MR(Z) if and only if u integrates all continuous functions.

(3). Consider any topological space X such that X is 7;. Then,
p € M(Z) if and only if u integrates all Borel measurable functions.

THEOREM 3.5. (On MR(X).) The following statements are true:

1. IR(s,.¥) C MR().

2. If u € MR(Y), then p € MR(ZL) if and only if S(&) C IR (s, L).
3. L is replete if and only if whenever u € MR(SL), then S(i) C X.

4. % is replete if and only if MR(&L) C MR(r,Z).

Proof. 1. Consider any element of IR(s,-¥), u. Next, consider any
element of IR(Y) — IR(¢,.%), p. Then, p # u. Hence, since tW(Z) is
T, there exists an element of (¢tW(¥))’, O, such that p € O and u ¢ O.
Consider any such O. Since u € IR(Y), S(i) = {u}. Consequently,
#%(0) = 0. Consequently, u € MR(Z). Hence, 1 is true.

2. Consider any element of MR(¥), u. Assume p € MR(¥), and
show S(a) C IR(s,-¥). Assume S(i) Z IR(c,-¥). Then there exists
an element of IR(Y), p, such that p € S(&) and p ¢ IR(s,-¥). Consider
any such p. Then, since u € MR(Y), there exists an element of
(W (&))’, 0, such that p € O and z(0) = 0. Consider any such O. Then
O € tW(&) and E(0’) = 1. Hence, since p € S(@), p € O'. This is a
contradiction. Hence, S(z) C IR(s,.%).

Conversely, assume S(&) C IR(c¢,-¢), and show u € MR(Z). Con-
sider any element of IR(Y) — IR(s,¥), p. Since p ¢ IR(s,-¥) and
S(@) C IR(¢,-%), p ¢ S(f). Hence, there exists an element of (W (Z))’,

https://doi.org/10.4153/CJM-1981-115-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1981-115-4

LATTICE REGULAR MEASURES 1521

0, such that #(0’) = g(IR(¥)) and p ¢ O'. Consider any such O. Then,
p € Oand 5(0) = 0. Hence, u € MR(Z). Consequently, 2 is true.

3. Assume .% is replete, and show whenever u € MR(Z), then
S(r) C X. Consider any element of MR(¥), u. Then, since 2 is true,
S(@) C IR(s,.%). Since . is replete, IR(s,-¥) = X. Consequently,
S(m) C X.

Conversely, assume whenever u € MR(Z), then S(z) C X, and show
& is replete. Show IR(s,-¥) = X. Assume IR(c¢,.¥) # X. Then,
IR(¢,¥) — X # 0. Consider any element of IR(s,.¥) — X, p. Then,
since 1 is true, p € MR(Z). Hence, by assumption, S(5) C X. Since
p € IR(&), S(5) = {p}. Consequently, p € X, a contradiction. Hence,
IR(0,-¥) = X. Hence, & is replete. Consequently, 3 is true.

4. Assume .% is replete, and show MR(¥) C MR(r,.¥). Since & is
replete, by Theorem 3.2, Part 3, MR(¥) C MR(r,.). Hence, since
MR&) C MR(&), MR(¥) C MR(+,%).

Conversely, assume MR(Y) C MR(r,-¥), and show £ is replete.
(Proof omitted.) Consequently, 4 is true.

Thus, the theorem is proved.

Examples. (1). ). If u € MR(Z), then u € MR(ZF) if and only if
S(@) C IR(e, ).

B8). X is a-complete if and only if whenever u € MR(%), then
S C X.

7). X is a-complete if and only if MR(F ) C MR(r,.F).

(2).a). If u € MR(Z), then u € MR(Z) if and only if S(&) C vX.

8). X is realcompact if and only if whenever u € MR(%), then
S(m) C X.

v). X is realcompact if and only if MR(Z) C MR(r,%).

(3).a). If u € M(¥), then u € MR(%) if and only if S(z) C veX.

B). X is N-compact if and only if whenever u € M (%), then S(g) C X.

v). X is N-compact if and only if M (%) C M(r, €).

4). ). If u € M(ZB), then u € M (%) if and only if S@) C (o, B).

B8). X is Borel complete if and only if whenever u € M (%), then
S(p) C X.

v). X is Borel complete if and only if M (%) C M(r, Z#).

4. In this section, as a result of our previous development, we give a
different proof of the well-known Yosida-Hewitt Decomposition
Theorem.

Preliminaries. Consider any set X and any lattice of subsets of X,.%.
An element of MR(Z), u, (such that u = 0), is said to be purely finitely
additive (p.f.a.), if whenevery € M(¥),0 < v < p,andy € M(s,%),
then v = 0.
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LemMa 4.1. Consider any set X and any lattice of subsets of X, L.
Consider any element of MR(ZL), u (such that u = 0), and the measures
pon c(W(Z)) and fon e (W (Z)). (Recall g is §W (L )-regular and f is
tW (& )-regular.) Next, consider any subset of X, H. Then,

Case 1: There exists a countadly additive measure on o (W (L)), p, such
that 0 < p £ i, p is SW(E)-regular, and p*(H) = p(IR(K)) = p*(H).

Case 2: There exists a countably additive measure on o (W (L)), p, such
that 0 £ p £ fi, p is tW(L)-regular, and

p*(H) = p(IR(Y)) = u*(H).
Proof. (For Case 1.) Since g is W (¥ )-regular,
p*(H) = inf {p(4)]|4 € W(¥)) and 4 D H}.
Hence, there exists a sequence in (§W(¥))’, (4,), such that for every
n, A, D H, and (4,) is decreasing and
lim, 2(4,) = p*(H).

Consider any such (4,). Then, N, 4, € ¢(W(¥)). Denote N, 4, by 4.
Next, consider the function p which is such that D, = ¢(W(¥)) and for
every element of ¢ (W (L)), E, p(E) = a(E N A). Since @ is a countably
additive measure on ¢(W(¥)), p is a countably additive measure on
a(W(&)). Note that 0 < p < g. Also, since 2 is W (Z)-regular, p is
W (& )-regular.

Next, show p*(H) = p(IR(Y)) = a*(H). a). Note for every n,

p*(H) = p(4,) = 24, N A) = p(4) = lim, a(4,) = p*(H).
Hence,
p*(H) = p(4) = p(IR(Z)) = p*(H).
B). Show p*(H) = a*(H). Since p is §W (& )-regular,
p*(H) = inf {p(G)|G € (W(Z))" and G D H}.
Consider any element of (W (¥))’, G, such that G D H. Then,
p(G) = p(GMA) =p(GN (N, 4a))
=Ny (GMN 4,)) = lim, 8(G M 4,).
Note for every n, since G M 4, D H, a(G M 4,) = a*(H). Hence,
lim, 2(G M 4,) 2 p*(H).

Consequently, p(G) = a*(H). Consequently, o*(H) = p*(H).

v). Consequently, p*(H) = p(IR(Z)) = a*(H). (Similarly, for Case
2.)

Thus, the lemma is proved.
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Observation. plgewe)y € MR(o, W (Z)). Hence, since W(¥) separ-
ates 6W (&) (because W(Z) is compact),

plawen € MR(o, W(Z)).
Continue to use p for p|ywe))-
Remark. This lemma generalizes a result of Knowles ([15], p. 143).

LeEmMA 4.2. Consider any set X and any laitice of subsets of X,L, such
that & is complemented, i.e., L is an algebra. Then L () = £ . Hence,
MR(&) = M(&) and IR(K) = I(¥L). If u€ M&) (and u = 0),
then w 1s p.f.a. if and only 1f g*(X) = 0.

Proof. Assume p is p.f.a., and show g*(X) = 0. Assume g*(X) = 0.
By Lemma 4.1, there exists an element of MR(c, W(¥)), p, such that
0=<p=pand

p*(X) = p(IR(Z)) = p*(X).

Consider any such p. Next, consider the element of M (%), », which is
such that p = ». Then, since 0 < p £ #,0 <5 £ . Hence, 0 = v =< u.
Also, since (&) =%, v € MR(E), and, since p*(X) = p(IR(Z)),
9*(X) = »(IR(¥)). Hence, by Theorem 2.1,» € MR(s,.¥) = M(s,&).
Hence, since u is p.f.a., by assumption, » = 0. Moreover, since p(IR(Z))
= p*(X),

v(X) = W(IR&)) = p(IRZ)) = p*(X) # 0,

by assumption, a contradiction. Hence, 2*(X) = 0.

Conversely, assume g*(X) = 0, and show u is p.f.a. Consider any
element of M (%), v, such that 0 £ » £ pand » € M(s,.¥), and show
» = 0. Note that » € MR(s,.¥). Hence, by Theorem 2.1,

7*(X) = s(IR(¥)).

Also, since0 = v =< 4,0 = » = . Hence,0 =< v* = g*. (Proof omitted.)
Hence, 0 = »*(X) < p*(X). Hence, since g*(X) = 0, by assumption,
v*(X) = 0. Consequently, »(IR(¥)) = 0. Consequently, » = 0. Hence,
wis p.f.a.

Thus, the lemma is proved.

TueEorEM 4.1. (The Yosida-Hewitt Decomposition Theorem.) Consider
any set X and any lattice of subsets of X, such that ¥ is complemented,
e, L is an algebra. If u € M(L) (and p = 0), then there exist two
elements of M(Z), N\, v, such that w = XN+ v, and )\ is pfa. and
v € M(o,L); moreover, such a representation of u is unique.

Proof. Existence. Note that u € MR(¥). Consider a. Then, by Lemma
4.1, there exists an element of MR (o, W(Z)), p, such that 0 < p < &

https://doi.org/10.4153/CJM-1981-115-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1981-115-4

1524 G. BACHMAN AND P. D. STRATIGOS

and
p*(X) = p(IRZ)) = a*(X).

Consider any such p.

Next, consider the element of M (%), », which is such that p = ». Then,
since 0 £ p =2, 0 =<» = a. Hence, 0 £ » £ u. Also, since ¥ (&) =
Z, v € MR(Y), and, since p*(X) = p(IR(Y)), »(X) = »(IR(Z)).
Hence, by Theorem 2.1,

v € MR(6,¥) = M(s, ).

Next, consider u — », and denote it by A. Since v < u, A =
N=pu—v, u=\+r Hence, g = A + 5. Hence, a* = \* 4+ 5*. (See
(24], p. 33.) Hence, A* = p* — »*. Hence, \*(X) = p*(X) — »*(X).
Since p*(X) = p*(X), »(X) = p*(X). Consequently, A*(X) = 0.
Hence, by Lemma 4.2, )\ is p.f.a. Consequently, u = X 4+ », and X is
pf.a.and v € M(s,Z).

Uniqueness. Consider any two elements of M (%), \i, v1, such that
u =N + vy, and N\ is p.f.a. and »; € M(e,.¥), and show A\; = \ and
v1 = v. Note that N\ +»; = X + ». Hence, v1 — v = N\ — A\;. Hence,
since \y = 0, »; — v = \. Hence, since A = 0,

0 (m—v)r=rand0 = —( —v)" =\

Hence, since (v; — »)* € M(c,-¥) and — (v — v)~ € M(0,-¥) and \
is pfaa., (g —v)* =0 and —(v; — v)~ = 0. Hence, »; — » = 0. Con-
sequently, A\; = N and v; = ».

Thus, the theorem is proved.

Remark 1. Although there is nothing new in the uniqueness proof, we
have included it for completeness.

Remark 2. Using the techniques developed in this paper, it is possible
to extend the Yosida-Hewitt Decomposition Theorem to more general
lattices than the complemented ones (i.e., algebras) considered, and to
even obtain further refinements, but we will not pursue these matters
here any further. The previous applications should already give an
indication of the scope of the techniques developed.
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