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On a global scale, renal cell carcinoma (RCC) is the second most common form of cancer and the 10th leading cause of cancer-
related deaths. There are about 70% of cases of RCC that are clear cell renal cell carcinomas (ccRCCs). This study explores possible
targets for immune therapy in patients with RCC. In the recent years, immunotherapy has been applied to RCC patients. In order
to identify genes that are closely associated with immune cells, a weighted gene coexpression network analysis (WGCNA) was
conducted. A close association was found between genes involved in MEred and MO macrophages, M1 macrophages, and M2
macrophages. A prognostic prediction model is subsequently developed by incorporating the OS and the expression level of key
genes from the RCC cohort into a univariate COX regression analysis, a multivariate COX regression analysis, and a combined
COX regression analysis. We finally discovered that 6 genes are closely associated with the prognosis of RCC patients, including
SLC16A12, SLC2A9, IGF2BP2, EMX2, ANK3, and METTL7A. The survival analysis proved the prognostic prediction value of the
model. The 1-year, 3-year, and 5-year AUC of ROC curves are 0.759, 0.723, and 0.733, respectively. For clinical ROC curves, the
AUC score for risk score, stage, grade, and T'stage is 0.759, 0.824, 0722, and 0.736, respectively. The nomogram was constructed for
better prognosis prediction of RCC patients. In addition, GSVA and GO enrichment analysis was performed to explore the
potential pathways that are closely associated with genes involved in the prognostic prediction model. Accordingly, our study
demonstrates that immune cells play a crucial role in RCC infiltration. The development of a prognostic prediction model is
a potential new prognostic biomarker and potential immunotherapy target for tumors.

1. Introduction

With an estimated 430,000 new cases and 180,000 deaths
each year, renal cell carcinoma (RCC) is one of the top ten
causes of cancer-related deaths worldwide [1]. RCC develops
from the renal tubular epithelial cells that line the proximal
convoluted tubules, the small conduits that transport urine
in the kidney [2]. RCC has 15 subtypes, each with its own
genetic and epigenetic characteristics, according to the 2012
consensus meeting of the International Society of Urology
Pathology (ISUP) [3]. The predominant subtype of RCC is
clear cell renal cell carcinoma (ccRCC), making up nearly
70% of all cases of RCC [4]. Approximately 50% of RCCs are
discovered incidentally, and a quarter of those patients are
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diagnosed with metastatic disease [5]. Thirty percent of the
patients who undergo nephrectomy for RCC recur and
develop metastatic renal cell carcinoma (mRCC), which is
considered to be at high risk of death from RCC [6]. In
addition to its high morbidity and mortality rates, mRCC
has only an 18% five-year survival rate. It is inherently
difficult to treat RCC with conventional cancer treatments,
such as chemotherapy and radiotherapy [7].

In the past decade, immunotherapy trials targeting
various solid tumors have increased dramatically. Cancer
immunotherapy has advanced beyond understanding the
dialogue between cancer and the immune system to predict
cancer prognoses [8]. Surgical removal of solid tumors,
followed by chemotherapy and/or radiation therapy,
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remains the primary treatment for many solid tumors [9].
However, immunotherapy continues to improve patient
survival rates rapidly. With the development and emergence
of several novel drugs and combinations, medical oncology
has made remarkable progress in the past decade. The
immune checkpoint monoclonal antibodies are key com-
ponents of these therapeutic approaches [10]. Multiple
malignancies have been treated with immune checkpoint
monoclonal antibodies that have achieved remarkable re-
sults [11]. Recently, immunotherapy for metastatic mela-
noma, urothelial carcinoma, nonsmall cell lung cancer, and
renal cell carcinoma has revolutionized, reporting un-
precedented response rates and survival rates [12]. There is
no doubt that immune checkpoint monoclonal antibodies
have revolutionized the treatment of many hematological
and solid tumors. Current challenges remain in identifying
specific molecular and histological biomarkers that predict
the immunotherapy response [13]. As a result, the identi-
fication of predictive biomarkers for the selection of immune
checkpoint monoclonal antibody therapy represents an
extremely active area of clinical research [14]. It should be
noted, however, that while immunotherapy appears
promising for many solid tumors, relatively little progress
has been made in RCC [15]. Over the last decade, RCC
treatment has undergone significant changes. Aside from
surgical resection, there are few effective treatment options
for RCC. As a result of current developments in systemic
therapy, RCC patients can now receive a number of regi-
mens, including bevacizumab, which inhibits VEGF sig-
naling, as well as mTOR inhibitors and immune checkpoint
inhibitors (ICIs) [16]. Patients with metastatic mRCC are
currently treated with an ICI-based combination as the
standard first-line treatment. While ICI-based combination
therapy has greatly improved RCC patient outcomes, most
patients still have primary resistance [17]. In order to treat
patients with RCC effectively, new therapeutic strategies
need to be developed. The established immune reactivity of
RCC makes immunotherapy-based drugs a promising
treatment option [18].

Recently, in silico analysis has been used in many areas,
including cancer prognostic prediction, cancer immunology
response, drug sensitivity, and gene mutation analysis. In
this work, we aim to explore the relationship between im-
mune cell infiltrations and RCC. In addition, the potential
relationship between immunotherapy and RCC patients was
also explored. Our research provided a promising direction
for the treatment of RCC.

2. Methods

2.1. Data Downloading. More than 20,000 primary cancer
samples and matched normal samples were molecularly
characterized by the Cancer Genome Atlas (TCGA, https://
www.cancer.gov/about-nci/organization/ccg/research/

structural-genomics/tcga), a landmark cancer genomics
project. TCGA generated more than 2.5 petabytes of genetic,
epigenomic, transcriptomic, and proteomic information in
the next several years. Genotype-Tissue Expression is the full
name of the GTEx database, which collects sequencing data
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from the organizations of normal individuals. In this work,
the transcriptome data, as well as the clinical characteristics
of prostate cancer patients, were downloaded from TCGA
and GTEx databases.

2.2. Immune Cell Infiltration. A CIBERSORT algorithm was
used to analyze RNA-seq data obtained from RCC patients
in different subgroups to determine the relative proportions
of 22 immune infiltrating cells. To determine the relation-
ship between gene expression and immune cell infiltration,
Spearman correlation analysis was performed. Statistically
significant results were those with a P value of less than 0.05.
TIMER (https://cistrome.shinyapps.io/Timer/) is a tool that
allows systematic analysis of immune infiltration in cancers.
In the current study, TIMER was analyzed to determine the
relationship between immune cell infiltration and expres-
sion levels.

2.3. Weighted Gene Coexpression Network Analysis
(WGCNA). In WGCNA, correlation patterns between
genes in different microarray samples are analyzed to study
associations between genomes and clinical features. The first
step in determining a gene’s correlation is to calculate its
correlation coefficient. A threshold for screening determines
whether two genes have similar expression patterns. Genes
above the threshold are considered similar. Using the cor-
relation coefficient between the genes, the second step is to
build a hierarchical clustering tree. The clustering tree shows
different gene modules as different branches, and the colors
show different modules as different colors. Based on their
weighted correlation coefficients, genes with similar ex-
pression patterns are grouped into modules based on their
expression patterns. In order to identify the modular im-
mune cells most associated with these immune infiltrates,
WGCNA was performed using the “WGCNA” R package
(https://cran.rproject.org/web/packages/wgcna/index.html).

2.4. Construction of the Prognostic Prediction Model Based on
the RCC Cohort. Members of the module (MM) represent
gene expression profiles that are correlated with genes
known to be part of the module. Afterwards, we performed
univariate analyses for each gene in the module, identifying
significantly associated genes with prognosis. With the
“glmnet” R package, we used the least absolute shrinkage and
selection operator (LASSO) Cox regression to further nar-
row down candidate immunorelated prognostic biomarkers.
A bivariate model with nonzero coeflicients identified
immune-related genes, and samples were divided into low-
risk and high-risk groups using the “survminer” R package.
In addition, survival analysis was also performed in R. ROC
analysis was conducted using the R package “survival ROC.”
The AUC (area under the ROC curve) value was used to
evaluate the prognostic value of the ROC curve.

2.5. Enriched Pathway Analysis Based on the Key Genes.
Analyses of GO function annotations based on the GO
database (https://geneontology.org/page/go-database) and
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analyses of KEGG pathway annotations based on the KEGG
database (https://www.kegg.jp/kegg/ko.html) were per-
formed to explore the potential pathways that are closely
associated with selected genes. The GO enrichment analysis
has consisted of the biological process (BP), the molecular
function (MF), and the cellular component (CC). As part of
this study, the enrichment of gene sets was assessed using
GSVA, a method that is nonparametric and unsupervised.
By scoring gene sets of interest comprehensively, gene-level
changes in this analysis are converted to pathway changes
and the biological function of the sample is then de-
termined. A database of molecular signatures was used to
retrieve gene sets for this study. The GSVA algorithm was
used to assess potential biological functional changes in

various samples.

2.6. Statistical Analysis. We used the R software to conduct
all statistical analyses. A P value less than 0.05 was con-
sidered statistically significant on both sides of the test.

3. Results

3.1. Exploration of the Module Genes That Are Closely Asso-
ciated with Macrophages. First, in order to figure out the
level of immune cells in all RCC patients from TCGA da-
tabase, we performed the immune cell infiltration analysis
based on the CIBERSORT algorithm. The heatmap reveals
the different expression levels of immune-related cells in all
RCC cohorts (Figure 1(a)). Subsequently, we evaluate the
correlation between different immune-related cells. For the
majority of the immune-related cells, a negative relationship
has been discovered (Figure 1(b)). Then, in order to obtain
molecule genes that are closely associated with certain
immune cells, we performed WGCNA. For WGCNA, the
soft threshold of 9 is recognized (Figures 1(c)-1(e)). After
building a hierarchical clustering tree, we finally obtain
a total of 23 gene modules, including MEblue, MEsad-
dlebrown, MEdarkturquoise, MElightcyan, MEpurple,
MEskyblue, MEcyan, MEdarkolivegreen, MEred, MEdark-
green, MEgrey60, MElightyellow, MEturquoise, MEr-
oyalblue, MEsalmon, MEyellow, MEsteelblue,

MEpaleturquoise, MEviolet, MEdarkorange,

MEmidnightblue, and MEblue (Figure 1(f)). The further
analysis discovered that genes involved in MEblue are
closely associated with plasma cells. In addition, regulatory T
cells are closely associated with MEblack genes. For mac-
rophages, we have discovered that both M0 macrophages,
M1 macrophages, and M2 macrophages are highly corre-

lated with the genes involved in MEred.

3.2. Construction of the Prognostic Prediction Model Based on
the Genes That Are Associated with Macrophages. Based on
the previous analysis, we found that genes involved in
MEred module are considered to be closely associated with
macrophages. Then, we performed the univariate COX re-
gression analysis based on the overall survival (OS) and the
expression of MEred genes. The results demonstrated that
a total of 70 genes were closely associated with the prognosis
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of RCC patients (Figure 2(a)). Furthermore, LASSO re-
gression analysis demonstrated that 12 genes (ZNF704,
CYS1, AP000439.2, SLC16A12, HACDI1, CRAT, F2RLI,
SLC2A9, IGF2BP2, EMX2, ANK3, and METTL7A) were
considered as prognosis-related genes (Figures 2(b) and
2(c)). Finally, multivariate COX regression analysis dem-
onstrated that 6 genes were involved in the prognostic
prediction model, including SLC16A12, SLC2A9, IGF2BP2,
EMX2, ANK3, and METTL7A (Figure 2(d)). The survival
analysis revealed that RCC patients involved in the high-risk
group are associated with poorer OS (Figure 2(e)). Sub-
sequently, we conduct univariate and multivariate in-
dependent prognostic analysis based on the clinical
characteristics and the risk score. The univariate in-
dependent prognostic analysis showed that grade, stage, T
stage, M stage, and risk score are the independent prognostic
factors of RCC patients (Figure 3(a)). For multivariate in-
dependent prognostic analysis, grade, stage, and risk score
are the independent prognostic factors of RCC patients
(Figure 3(b)). For both univariate and multivariate in-
dependent prognostic analysis, the risk score based on the
expression level of SLC16A12, SLC2A9, IGF2BP2, EMX2,
ANKS3, and METTL7A are considered to be highly corre-
lated with the prognosis of RCC patients. Furthermore, we
performed the time-dependent ROC curve. The 1-year, 3-
year, and 5-year AUC of ROC curves is 0.759, 0.723, and
0.733, respectively (Figure 3(c)). For clinical ROC curves, the
AUC score for risk score, stage, grade, and T stage is 0.759,
0.824, 0722, and 0.736, respectively (Figure 3(d)). The results
revealed that the model showed a good predictive value for
RCC patients. Subsequently, in order to construct a better
predictive tool for RCC patients, we build a nomogram
based on clinical characteristics and risk scores (Figure 3(f)).
The calibration curve demonstrated that the nomogram
shows the good predictive value for the prognosis of RCC
patients (Figure 3(e)).

3.3. Exploration of the Correlation between Clinical Charac-
teristics and the Risk Score. On the basis of the risk score
involved in the prognostic prediction model, the RCC
patients were divided into low- and high-risk groups. The
heatmap was performed to show the correlation between
the risk score and clinical characteristics, including age,
gender, grade, stage, T stage, N stage, and M stage
(Figure 4(a)). The results revealed that grade, stage, T'stage,
N stage, and M stage are closely associated with the risk
score with a P value less than 0.05, while age and gender
show no obvious relationship with a risk score. For RCC
patients involved in a high-risk group, the higher risk score
is related to the high grade, stage, T stage, and M stage.
However, for the N stage, the higher risk score is associated
with the lower N stage (Figures 4(b)-4(h)). In addition, we
also evaluate the prognostic value of six prognosis-related
alone in RCC patients. The results demonstrated that the
high-expression level of ANK3, EMX2, METTL7A,
SLC2A9, and SLC16A12 is associated with better OS, while
the high expression of IGF2BP2 is associated with poorer
OS (Figures 4(i)-4(n)).
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FIGURE I: (a) The heatmap demonstrated the immune cell infiltration between RCC tissues and normal renal tissues; (b) the correlation
analysis between different immune cells; (c) the threshold for screening determines whether two genes have similar expression patterns;
(d, e) the clustering tree shows different gene modules as different branches, and the colors show different modules as different colors; (f) the
results of WGCNA shows the correlation between module genes and immune cells.

3.4. The Risk Score Is Also Strongly Correlated with Immune
Cell Infiltration in the RCC Cohort. Subsequently, we eval-
uated the potential relationship between the risk score and
immune cell infiltration in the RCC cohort. The results
reveal that the risk score is positively correlated with naive B
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cell, cancer-associated fibroblast, immune score, M0 mac-
rophages, M1 macrophages, and regulatory T cell. However,
the endothelial cell, hematopoietic stem cell, activated mast
cell, and myeloid dendritic cell are negatively correlated with
a risk score (Figures 5(a)-5(k)).
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FIGURE 2: (a) The univariate COX regression analysis based on the overall survival (OS) and the expression of MEred genes; (b, c) the LASSO
regression analysis demonstrated that 12 genes are closely associated with the prognosis of RCC patients; (d) the heatmap demonstrated the
different expression level of 6 prognosis-related genes between the low- and high-risk groups; (e) the survival analysis between the low- and

high-risk groups.

3.5. Exploration of the Potential Pathways That Are Closely
Associated with the Key Genes. We first evaluate the potential
pathways of genes involved in the risk score, such as
SLC16A12, SLC2A9, IGF2BP2, EMX2, ANK3, and MET-
TL7A, by GSVA enrichment analysis. For HALLMARK
enrichment pathways, the results revealed that SLC2A9 is
positively correlated with the majority of the pathways,
including bile acid metabolism, fatty acid metabolism, heme
metabolism, adipogenesis, and androgen response. How-
ever, the risk score is negatively correlated with the majority
of the pathways, including xenobiotic metabolism, protein
secretion, peroxisome, heme metabolism, and fatty acid
metabolism (Figure 6(a)). For KEGG enrichment pathways,
the results revealed that SLC16A12 and SLC2A9 are posi-
tively correlated with PPAR signaling, mTOR signaling
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pathway, ERBB signaling pathway, VEGF signaling pathway,
WNT signaling pathway, and B cell receptor signaling
pathway. The risk score is also negatively associated with the
WNT signaling pathway, GnRH signaling pathway, MTOR
signaling pathway, insulin signaling pathway, and JAK--
STAT signaling pathways (Figure 6(b)). For all genes in-
volved in the MEred module, we then performed GO
enrichment analysis. The GO BP is closely associated with
lipid oxidation, fatty acid metabolic process, cellular amino
acid catabolic process, and cellular aldehyde metabolic
process (Figure 6(c)). For GO CC, cell-cell junction, cell
projection membrane, apical part of the cell, and brush
border membrane are the most enriched pathways
(Figure 6(d)). In terms of BP MF, the anion transmembrane
transporter activity, active transmembrane transporter


https://doi.org/10.1155/2023/3898610

6 Genetics Research
pvalue Hazard ratio | pvalue Hazard ratio |
1 1
age <0.001 1.028 (1.015-1.042) - age <0.001 1.029 (1.014-1.044) -
| 1
gender 0.802 0.960 (0.700-1.318) |—.I—| gender 0.490 1.125 (0.805-1.572) H—
1
1
grade <0.001 2.266 (1.844-2.785) | —— grade 0.043 1.283 (1.007-1.633) I—.—|
| |
stage <0.001 1.895 (1.657-2.167) : = - stage <0.001 2.184 (1.585-3.009) : —a—
1 1
T <0.001 1.904 (1.613-2.249) | - T 0.005 0.608 (0.429-0.861) HEH |
| |
M <0.001 2215 (1.756-2.795 ! —— . . .684-1.
( ) H M 0.853 1.041 (0.684-1.583) |—-—|
| |
N 0.201 0.905 (0.776-1.055) HH N 0.345 0.926 (0.790-1.086) HEH
1 |
riskScore  <0.001 1.551 (1.432-1.680) : HH riskScore  <0.001 1.368 (1.246-1.502) : HH
r T T T 1 f T T T T T 1
00 05 10 15 20 25 00 05 10 15 20 25 30
Hazard ratio Hazard ratio
(a) (b)
1.0 -
1.0
- 0.8 | =
0.8 N ,
5 0.6 # £ 064
5 044 304 J
/! Vi
wd 7 02
{
0.0 4 0.0 +
T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
1 - specificity 1 - specificity
—— AUCat 1 years: 0.759 ——— Risk, AUC=0.759 ~ ——— stage, AUC=0.824
AUC at 3 years: 0.723 age, AUC=0.633 ——— T,AUC=0.736
AUC at 5 years: 0.733 gender, AUC=0.509 ——— M, AUC=0.713
——— grade, AUC=0.722 ——— N, AUC=0.459
(c) (d)
1.0 T f Points _ _ _ _ _
% Va 0 10 20 0 : 4o 50 60 70 80 90 100
/ /"
0.8 4 % gender
— /.
®
% 06 -
]
o
: N
g 04 N1
3 =
0.2 |
M
MX
0.0 | [,
T T i T T T M1
0.0 0.2 0.4 0.6 0.8 1.0 ’
ameoredic T - a
Nomogram-predicted OS (%) Tob 3b 5 T
& E [ @ - =] i
——— l-year r4 Foa T3
—— 3-year T3a T1b
Sy age M
T 7 T T ——r=
o \Ii
Shi h
stage"™ tage | Stage Ill
Stage Il Stage IV

Total points

/V\/\,Mm\‘

110 160 180 200 230 240 260 280
0.378
Pr(futime>5) r T T r r T r r T 1
0.98 0.96 092 0.85 0.7 0.5 0.3 008 0015 0001
0.58
Pr(futime>3) _ . . = - = .
0.99 0.98 0.96 0.92 0.85 07 05 03 0.1 0.02
0.834
Pr( futime > 1)
0.99 0.99 0.98 0.96 092 0.85 07 0.5 0.3
(e) )

FIGURE 3: (a) The univariate independent prognostic analysis based on the clinical characteristics and the risk score; (b) the multivariate
independent prognostic analysis based on the clinical characteristics and the risk score; (c) the time-dependent ROC curve shows the 1-year,
3-year, and 5-year prognostic prediction value in RCC cohort; (d) the ROC curve demonstrated the prognostic prediction value of the risk
score and clinical characteristics; (e) the calibration curve demonstrated that the nomogram shows a good predictive value for the prognosis
of RCC patients; (f) the build of nomogram based on the risk score and clinical characteristics.
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activity, organic acid transmembrane transporter activity,
and symporter activity are closely associated with genes
involved in MEred (Figure 6(e)).

4. Discussion

There is an increase in the incidence of RCC over time, with
the incidence of the disease being sixth for men and tenth for
women, accounting for 5% and 3% of all malignancies,
respectively [19]. In patients with locally or locally advanced
disease, surgery remains the cornerstone of treatment, yet
a significant number of patients experience disease re-
currences [20]. As a result of the poor prognosis of these
individuals, studies have been conducted to evaluate what
can be achieved with adjuvant and neoadjuvant medical
therapy in addition to surgery alone [21]. In the recent years,
with the development of bioinformatics analysis methods,
in silico analysis has been applied in many fields of medical
research, including disease diagnosis, immunotherapy, and
therapy targets [22]. In this work, we aim to explore the
potential relationship between RCC and immune response.
First, by performing WGCNA, we discovered that many
module genes are associated with different immune-related
cells. In addition, we also discovered that genes involved in
MEred are closely associated with both M0 macrophages,
M1 macrophages, and M2 macrophages. Therefore, the
genes involved in MEred are selected for further analysis. In
the recent years, macrophages have been found to play a key
role in the development of RCC. As is reported by a former
research study, M1 macrophage fraction correlates signifi-
cantly with the stage and the tumor histological grade of
RCC. Additionally, a high expression of FCER1G in ¢ccRCC

https://doi.org/10.1155/2023/3898610 Published online by Cambridge University Press

is closely linked to infiltration of the tumor microenvi-
ronment, which inhibits T cell proliferation and activation.
Combined FCER1G expression levels and macrophage
biomarker CD68 expression levels may be promising
postoperative prognostic indicators in patients with ccRCC
[23]. In terms of another study, by simulating a large number
of infiltrating macrophages, HK3 activates the ccRCC mi-
croenvironment and promotes the microenvironmental
signature of active antitumor immunity [24].
Subsequently, based on the OS and the expression level
of key genes in the RCC cohort, we then construct the
prognostic prediction model. The results demonstrated that
6 genes are closely associated with the prognosis of RCC
patients, including SLC16A12, SLC2A9, IGF2BP2, EMX2,
ANK3, and METTL7A. Both the ROC curve and survival
analysis proved that the model shows the good predictive
value for RCC patients. In addition, the univariate and
multivariate independent prognostic analysis demonstrated
that the prognostic prediction model, as well as the clinical
characteristics, is the independent risk factor for RCC pa-
tients. In order to further construct a better model for the
prediction of RCC prognosis, we then build a nomogram
based on the risk score and clinical characteristics. We
further discovered that SLC16A12 and IGF2BP2 have been
studied by researchers in the RCC cohort. In a previous
study, SLC16A12 was found to be a poor prognostic factor in
ccRCC patients. These findings suggest that SLC16A12
might be a potential biomarker and a treatment target for
ccRCC [25]. For IGF2BP2, ccRCC progression and metas-
tasis can be inhibited by Circ-TNPO3 by binding directly to
the IGF2BP2 protein and destabilizing the SERPINHI1
mRNA [26]. In addition, our study also found that the high-
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FIGURE 6: (a) The results of GSVA based on the HALLMARK enrichment analysis; (b) the results of GSVA based on HALLMARK
enrichment analysis; (c) the GO BP enrichment analysis based on genes involved in the MEred module; (d) the GO CC enrichment analysis
based on genes involved in the MEred module; (e) the GO MF enrichment analysis based on genes involved in the MEred module.

expression level of SLC16A12 is associated with better OS of
RCC patients, while the high expression of IGF2BP2 is

associated with poorer OS of RCC patients.

Furthermore, we found that the risk score is also closely
associated with many immune cells, such as naive B cell,
cancer-associated fibroblasts, M0 macrophages, M1 mac-
rophages, and regulatory T cells, which may provide the
targets for the immunotherapy for RCC patients. The
clinical outcome of RCC is closely related to immune re-
sponses [27]. As tumor-infiltrating immune cells regulate
cancer progression and show a potential prognostic value,
they form an ecosystem within the tumor microenviron-
ment [28]. A number of studies have demonstrated that
regulatory T cells can effectively inhibit the proliferation of
effector T cells in RCC [29]. In addition to macrophages,
tumor-associated macrophages play an important role in
the development of tumors. Recently, treatments targeting
PD-1, CTLA-4, and other immune checkpoint pathways
have significantly improved the outcomes for patients with

mRCC [30].

Finally, we explore the potential pathways that are
closely associated with the key genes. The results of GSVA
reveal that the risk score is highly correlated with the WNT
signaling pathway, GnRH signaling pathway, MTOR sig-
naling pathway, insulin signaling pathway, and JAK-STAT
signaling pathways. On the basis of the former research,
these pathways play an important role in the development of
RCC [31]. A basic study found that the mTOR signaling
pathway is activated by ITPKA1 and promotes renal cell
carcinoma growth, migration, and invasion [32]. Also, by
inhibiting the PI3K/Akt/mTOR signaling pathway, bufalin
inhibits renal cell carcinoma proliferation

metastasis [33].

However, there are some limitations in the
informatics analysis. First of all, the limited data from the
online dataset may lead to different results of the analysis
[34]. In addition, the single cohort may also lead to bias
[35-38]. Therefore, more analysis should be involved to

further promote the quality of the analysis.
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5. Conclusion

In this work, by exploring the key genes that are closely
associated with immune cells, we discovered the genes that
are closely associated with macrophages. In addition, a 6-
gene-based prognostic prediction model shows a good
predictive value for the patients involved in the RCC cohort.
Finally, the potential pathways of the key genes may provide
new insights for RCC immunotherapy.
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