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SEPARATING MANY LOCALISATION CARDINALS ON THE
GENERALISED BAIRE SPACE

TRISTAN VAN DER VLUGT

Abstract. Given a cofinal cardinal function h ∈ κκ for κ inaccessible, we consider the dominating
h-localisation number, that is, the least cardinality of a dominating set of h-slaloms such that every κ-real
is localised by a slalom in the dominating set. It was proved in [3] that the dominating localisation numbers
can be consistently different for two functions h (the identity function and the power function). We will
construct a κ+-sized family of functions h and their corresponding localisation numbers, and use a ≤κ-
supported product of a cofinality-preserving forcing to prove that any simultaneous assignment of these
localisation numbers to cardinals above κ is consistent. This answers an open question from [3].

In an effort to generalise the cardinal characteristics related to the null ideal from
the context of the continuum �� to the generalised Baire space κκ, the authors of [3]
considered localisation cardinals. These cardinals were first described in the context
of �� by Bartoszyński [1] and are defined using the concept of slaloms.

Definition 0.1. Let κ be a regular strong limit cardinal (hence κ is inaccessible or
equal to �) and let h ∈ κκ be increasing, then an h-slalom is a function ϕ : κ → [κ]<κ

such that |ϕ(α)| ≤ |h(α)| for all α ∈ κ. A slalom ϕ localises a function f ∈ κκ,
written symbolically as f ∈∗ ϕ, if there exists some � ∈ κ such that f(α) ∈ ϕ(α) for
all α ∈ [�, κ). We denote the set of h-slaloms as Loch .

We can define the following two cardinal characteristics, sometimes called
localisation cardinals, having an increasing function h ∈ κκ as parameter:

b
h
κ(∈∗) = the least cardinality of a family F ⊆ κκ such that ∀ϕ ∈ Loch∃f ∈ F(f /∈∗ ϕ),

d
h
κ(∈∗) = the least cardinality of a family Φ ⊆ Loch such that ∀f ∈ κκ∃ϕ ∈ Φ(f ∈∗ ϕ).

In the case that κ = � these cardinals give a combinatorial definition of two of the
cardinal invariants of the Lebesgue null ideal N :

add(N ) = the least cardinality of a family A ⊆ N such that
⋃

A /∈ N ,
cof(N ) = the least cardinality of a family C ⊆ N such that ∀N ∈ N∃C ∈ C(N ⊆ C ).

Bartoszyński [1] introduced localisation cardinals to give the following
characterisation.
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2 TRISTAN VAN DER VLUGT

Fact 0.2. add(N ) = bh�(∈∗) and cof(N ) = dh�(∈∗).

It is clear from this fact that the choice of the parameter h ∈ �� is irrelevant,
as it does not influence the cardinalities of bh�(∈∗) and dh�(∈∗). This turns out to
be different in the generalised case. Recently, it was proved in [3] that dhκ(∈∗) can
consistently have different values for different h ∈ κκ. In particular, it was shown
that dpowκ (∈∗) < didκ (∈∗) is consistent, where pow : α �→ 2|α| and id : α �→ |α|. This
consistency was proved using a generalisation of Sacks forcing on κ2 that has the
generalised pow-Sacks property, but not the generalised id-Sacks property.

Definition 0.3. Let h ∈ κκ. A forcing P has the generalised h-Sacks property if
for every P-name ḟ and p ∈ P such that p � “ ḟ : κ̌ → κ̌ ” there exists an h-slalom ϕ
and q ≤ p such that q � “ ḟ(α̌) ∈ ϕ̌(α̌) ” for all α ∈ κ. We will from now on simply
say h-Sacks property and omit “generalised”.

Hence, if Φ ⊆ Loch is a family as in the definition of dhκ(∈∗) in the ground model,
then Φ will still witness the size of dhκ(∈∗) in extensions by forcings with the h-Sacks
property. Specifically, the generalised Sacks forcing is unable to increase the size
of d

pow
κ (∈∗). Meanwhile, it is possible to increase the size of didκ (∈∗) by using an

iteration or a product of the generalised Sacks forcing.
In this article we will answer an open question from [3] and prove that there

exist functions h� ∈ κκ and cardinals �� with cf(��) > κ for each � ∈ κ+ such that

it is simultaneously consistent that d
h�
κ (∈∗) = �� for all � ∈ κ. The strategy will

be the same as the strategy used to separate didκ (∈∗) from d
pow
κ (∈∗), in that we

consider a product of Sacks-like forcings that have the h�-Sacks property, but not
the h�-Sacks property for different � and �. In the first section, we introduce the
Sacks-like forcing Shκ. We will prove that it preserves cardinals and cofinalities and
use fusion to show that it satisfies certain Sacks properties. In the second section we
consider products of such forcings. We show that properties such as the preservation
of cardinals and cofinalities and the relevant Sacks properties are preserved under
≤κ-support products and we use this to prove the consistency of κ many different
cardinals. Finally, in the third section we will show that with a preparatory forcing,
we can use our approach to prove the consistency of κ+ many different cardinals.

For the sake of brevity, from now on we will assume that κ denotes a strongly
inaccessible cardinal. We will also fix the convention that h,H, F ∈ κκ denote
increasing cofinal cardinal functions (i.e., ran(h) is cofinal in κ and h(α) is a cardinal
for each α ∈ κ). This convention extends to h� , F0, and other subscripts.

§1. The forcing. Let us establish some notation to discuss trees on κκ before we
define our forcing notion.

A subset T ⊆ <κκ is called a κ-tree if for every u ∈ T and 	 ∈ dom(u) we have
u � 	 ∈ T . A subset C ⊆ T is a chain if for any u, v ∈ C we have u ⊆ v or v ⊆ u,
and C is called maximal if there exists no chain C ′ ⊆ T with C � C ′. A function
b : α → κ where α ≤ κ is called a branch of T if there exists a maximal chainC ⊆ T
such that b =

⋃
C . The set of branches of T is denoted by [T ]. We define the subtree

of T generated by u ∈ T as

(T )u = {v ∈ T | u ⊆ v ∨ v ⊆ u} .
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SEPARATING MANY LOCALISATION CARDINALS ON THE GENERALISED BAIRE SPACE 3

Given u ∈ <κκ and 	 ∈ κ, we write u
	 for the extension of the sequence u with
the term 	 . If u ∈ T , let v ∈ T be a successor of u if there exists 	 ∈ κ such that
v = u
	 . We denote the set of successors of u in T by suc(u, T ).

We call u a �-splitting node (of T), if � ≤ |suc(u, T )|. We say u is a splitting node if
it is a 2-splitting node, and a non-splitting node otherwise. If u is a �-splitting node,
but not a �-splitting node for any cardinal � with � < �, then we say that u is a
sharp �-splitting node.

We let Splitα(T ) be the set of all u ∈ T such that u splitting and

ot({	 ∈ ot(u) | u � 	 is splitting}) = α,

where ot(X ) denotes the order-type of X.

Definition 1.1. The conditions of the forcing Shκ are κ-trees T ⊆ <κκ that satisfy
the following properties:

(i) For any u ∈ T there exists v ∈ T such that u ⊆ v and v is splitting.
(ii) If u ∈ Splitα(T ), then u is an h(α)-splitting node in T.

(iii) If C ⊆ T is a chain of splitting nodes with |C | < κ, then
⋃
C is a splitting

node in T.

The order is defined as T ≤
Shκ
S (here T provides more information than S) iff :

• T ⊆ S and
• for every u ∈ T , if suc(u, T ) 
= suc(u, S), then |suc(u, T )| < |suc(u, S)|.

If the forcing notion is clear from context, we will write T ≤ S in place of T ≤
Shκ
S.

The generalised Sacks forcing from [6], which was used in [3] to separate didκ (∈∗)
from d

pow
κ (∈∗), is a special case of the forcing Shκ. Indeed, the only difference is

that splitting nodes split into h(α) successors in our forcing, instead of only two
successors in the Sacks forcing. That is, if f : κ → {2} is the constant function that
sends every α ∈ κ to 2, then the generalised Sacks forcing is equivalent to S

f
κ .

However, contrary to the constant function f, we will assume that h is an increasing
cofinal cardinal function, and thus (as a consequence of the next lemma) any node
can be extended to a �-splitting node for arbitrarily large � < κ. In this sense we can
also view Shκ as a bounded version of Miller forcing, where the set of successors of
a node is < κ but eventually arbitrarily large. On ��, such a forcing has first been
studied in [4] as Miller Lite forcing.

Lemma 1.2. IfT ∈ Shκ and b ∈ [T ] is a branch of T, then dom(b) = κ. In particular,
if α ∈ κ is limit and u ∈ ακ is such that u � 	 ∈ T for all 	 ∈ α, then u ∈ T .

Proof. Suppose that C ⊆ T is a chain such that u =
⋃
C and dom(u) ∈ κ. If

we show that u ∈ T , then suc(u, T ) 
= ∅ by (i) of Definition 1.1, thus it follows that
C is not a branch. Let

C ′ = {v ⊆ u | v is splitting in T} .

From (i) of Definition 1.1 we can conclude that either
⋃
C ′ = u or there is some

splitting node v ∈ T withw ⊆ v for allw ∈ C . In the first case it follows that u ∈ T
by (iii) of Definition 1.1, and in the second case v � dom(u) = u ∈ T since T is a
κ-tree. �
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4 TRISTAN VAN DER VLUGT

We naturally want Shκ to preserve cardinalities. If we assume that V � “ 2κ = κ+ ”,
then it is clear that Shκ has the <κ++-chain condition, since |Shκ| ≤ |P(<κκ)| =
2κ = κ+, where the former equality is implied by κ<κ = κ, which in turn follows
from κ being inaccessible. Therefore cardinalities above κ+ are preserved under
assumption of V � “ 2κ = κ+ ”.

To preserve cardinalities less than or equal to κ, we show that Shκ is <κ-closed.

Lemma 1.3. Shκ is<κ-closed. That is, for any � < κ, if 〈T� | � ∈ �〉 is a descending
chain of conditions, then there exists a condition T such that T ≤ T� for all � ∈ �.

The condition T that is below all T� will simply be T =
⋂
�∈� T� , which can easily

be seen to be a κ-tree as well. We will make use of the following claim to prove the
lemma.

Claim 1.4. If u ∈ T =
⋂
�∈� T� , then there is � ∈ � such that suc(u, T ) =

suc(u, T�).

Proof. Suppose that u ∈ T , and let �� = |suc(u, T�)|, then the ordering on Shκ
dictates that 〈�� | � ∈ �〉 is a descending sequence of cardinals, hence there is � ∈ �
such that �� = �� for all � ∈ [�, �). But then suc(u, T�) = suc(u, T�) for all � ∈ [�, �)
by the ordering of Shκ. �

Proof of Lemma 1.3. We show thatT =
⋂
�∈� T� satisfies the lemma by verifying

points (i)–(iii) from Definition 1.1 and showing that T ≤ T� for all � ∈ �.
(i) Let u ∈ T , and let f ∈ [T ] be a branch for which u ⊆ f. If ot(f) < κ, then

f ∈ T� for each �, thus by Claim 1.4 there is some � ∈ � for which suc(f,T�) =
suc(f,T ) = ∅. Then clearly T� /∈ Shκ, which is a contradiction, hence ot(f) = κ.

Let C� = {α ∈ [ot(u), κ) | f � α is splitting in T�}, then since T� ∈ Shκ satisfies
(i) and (iii), we see that C� is a club set. But then

⋂
�∈� C� is club. Any v ∈

⋂
�∈� C�

is splitting in all T� , thus by Claim 1.4 it is splitting in T, and by definition of C� it
follows that u ⊆ v.

(ii) If u ∈ Splitα(T ), then by Claim 1.4 there is � ∈ � such that suc(u, T�) =
suc(u, T ). Therefore u ∈ Split	(T�) for some 	 ≥ α, hence u is a h(	)-splitting in T.
Remember that we assume h is increasing, so u is also h(α)-splitting in T.

(iii) Let C ⊆ T be a chain of splitting nodes, then for every � ∈ � we also see
that C is a chain of splitting nodes in T� , and thus

⋃
C is a splitting node in all T� ,

hence by Claim 1.4,
⋃
C is splitting in T.

(≤) Clearly T ⊆ T� for each � ∈ �, and if u ∈ T and suc(u, T ) 
= suc(u, T�),
then by Claim 1.4 there exists � ∈ � such that suc(u, T ) = suc(u, T�), and clearly
� < �. Since T� ≤ T� by assumption, then |suc(u, T )| = |suc(u, T�)| < |suc(u, T�)|.
Hence T ≤ T� . �

Corollary 1.5. Shκ preserves all cardinalities and cofinalities ≤ κ.

What is left, is to show that κ+ is also preserved. This will be a consequence of the
proof that Shκ has the F-Sacks property for some suitably large F ∈ κκ, so we will
prove this first. But before that, we will need to show that Shκ is closed under fusion.
It will be helpful to establish the notion of sharp trees.

Let a κ-treeT ∈ Shκ be called sharp if every u ∈ Splitα(T ) is a sharp h(α)-splitting
node. It is clear that by pruning we may find a sharp T ∗ below any condition T ∈ Shκ
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such that Splitα(T ∗) ⊆ Splitα(T ) for every α ∈ κ. We may assume that we can
canonically do so, thus we will hereby fix the notation T ∗ to denote a canonical
sharp κ-tree below condition T. We will write (Shκ)

∗ =
{
T ∈ Shκ | T is sharp

}
, which

embeds densely into Shκ.

Definition 1.6. For T, S ∈ Shκ, we let T ≤α S iff T ≤ S and Splitα(T ) =
Splitα(S). A fusion sequence is a sequence

〈
Tα ∈ Shκ | α ∈ κ

〉
such that T	 ≤α Tα

for all α ≤ 	 ∈ κ.

Lemma 1.7. If
〈
Tα ∈ Shκ | α ∈ κ

〉
is a fusion sequence, then T =

⋂
α∈κ Tα ∈ Shκ.

Proof. Clearly T is a κ-tree on <κκ. We check conditions (i)–(iii) of Definition
1.1.

(i) Let u ∈ T and α = ot(u), then for any 	 ≥ α we see that Splitα(T	) =
Splitα(Tα). Since α = ot(u), necessarily there exists some v ∈ Splitα(Tα) such that
u ⊆ v, and since v ∈ Splitα(T	) for all 	 > α we see that v ∈ Splitα(T ).

(ii) Letu ∈ Splitα(T ), then u ish(α)-splitting inTα+1. Let�u = |suc(u, Tα+1)| ≥
h(α) and let 〈v� | � ∈ �u〉 enumerate those v ⊇ u such that v ∈ Splitα+1(Tα+1). For
all 	 ≥ α + 1 we have Splitα+1(T	) = Splitα+1(Tα+1), therefore for each � ∈ �u we
see that v� ∈ T	 for all 	 > α, thus v� ∈ T . Therefore u is h(α)-splitting in T.

(iii) LetC ⊆ T be a chain of splitting nodes with |C | < κ and let � ∈ κ be large
enough such that C ⊆

⋃
α<� Splitα(T ). It follows that C ⊆

⋃
α<� Splitα(T�), and

thus
⋃
C ∈ Split	(T�) for some 	 ≤ �. Then also

⋃
C ∈ Split	(T�′) for all � ′ > �,

hence
⋃
C ∈ Split	(T ).

(≤) ClearlyT ⊆ Tα for allα ∈ κ. Given u ∈ T andα ∈ κ such that suc(u, T ) 
=
suc(u, Tα), we will show that |suc(u, T )| < |suc(u, Tα)|. We may assume without
loss of generality that u is splitting in T, so let 	 ∈ κ be such that u ∈
Split	(T ). Since Split�(T ) = Split�(Tα) for all � ≤ α, we see that 	 ≥ α. We have
Split	+1(T	+1) = Split	+1(T ), and thus suc(u, T	+1) = suc(u, T ). Finally T	+1 ≤
Tα gives us |suc(u, T )| = |suc(u, T	+1)| < |suc(u, Tα)|. �

We are now ready to prove the two main ingredients necessary for separating the
localisation cardinals. We will show that for any h there is some faster growing F
such that Shκ has the F-Sacks property, and reversely that for any F there exists some
faster growing h such that Shκ does not have the F-Sacks property. In other words,
for any F0 we may find h and F1 such that Shκ does not have the F0-Sacks property,
but does have the F1-Sacks property.

If T is a κ-tree and u ∈ T , let (T )u = {v ∈ T | u ⊆ v ∨ v ⊆ u}. It is clear that
(T )u ≤ T .

Theorem 1.8. For any h there exists F such that h ≤∗ F and Shκ has the F-Sacks
property.

Proof. We will let F : α �→ h(α)|α| and show that Shκ has the F-Sacks property.
Let T0 ∈ Shκ and let ḟ be a name such that T0 � “ ḟ : κ̌ → κ̌ ”. If T0 � “ ḟ ∈

V̌ ”, then the existence of an appropriate F-slalom is obvious, so we assume
that T0 � “ ḟ /∈ V̌ ”. We will construct a fusion sequence 〈T� | � ∈ κ〉 and sets
{D� ⊆ κ | � ∈ κ} with |D� | ≤ F (�) such that⋂

�∈κ T� = T � “ ḟ(�̌) ∈ Ď� ”
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6 TRISTAN VAN DER VLUGT

for each � ∈ κ. Consequently, we can define the F-slalom ϕ : � �→ D� in the ground
model, then it follows that T � “ ḟ(�̌) ∈ ϕ̌(�̌) ” for all � ∈ κ.

In general, we will assume each T� has the following property:

(∗) For every u ∈ Splitα(T�) with α < � we have |suc(u, T�)| = h(α).

This is vacuously true for T0, and by using sharp κ-trees at successor stages of our
construction, (∗) will follow by induction. If � is limit, we will let T� =

⋂
�∈� T� ,

which will be a condition by the proof of Lemma 1.3. T� need not necessarily be a
sharp κ-tree, but it is at least sharp for all splitting levels less than �, which is enough
for (∗).

Suppose T� has been defined, then we will define T�+1 such that it limits the
possible values of ḟ(�) and such that T�+1 ≤� T� . First note that if T� has property
(∗), then T ∗

� ≤� T� : If u is splitting in T� and u /∈ T ∗
� , then u was removed because

there is some v ⊆ u such that suc(v, T�) is too large for sharpness. But then by (∗)
it follows that v ∈ Splitα(T�) for some α ≥ �, hence u ∈ Split	(T�) for some 	 > �.

We define a set V� of successor nodes of the �-th splitting level, that is,

V� =
⋃
{suc(u, T ∗

� ) | u ∈ Split�(T
∗
� )}.

Our goal is to find a stronger condition below each subtree (T ∗
� )v with v ∈ V� that

decides ḟ(�̌), and glue these conditions back together to get a condition stronger
than T ∗

� . Since the size of V� is limited, this limits the possible values of ḟ(�̌) to a
small set.

For each v ∈ V� find a condition Tv ≤ (T ∗
� )v such that Tv � “ ḟ(�̌) = 	̌v� ”

for some 	v� ∈ κ. Choose some arbitrary u ∈ Split�(T
v) and w ∈ suc(u, T v), and

consider the subtree (Tv)w of Tv generated by the initial segment w. We let G� :
V� → P(T�) send v �→ (Tv)w . Note that the α-th splitting level of G�(v) = (Tv)w
corresponds to the (� + 1 + α)-th splitting level of Tv .

Now we define

T�+1 =
⋃
G�[V�] =

⋃
{G�(v) | v ∈ V�},

D� =
{
	v� | v ∈ V�

}
.

For each v ∈ V� we have v ∈ G�(v), thus each successor of a splitting node
in Split�(T�) is in T�+1. Therefore we see that Split�(T�+1) = Split�(T�). If u ∈
Split�+1+α(T�+1) for some α ∈ κ, then u ∈ Splitα(G�(v)), thus u ∈ Split�+1+α(Tv),
and since Tv ∈ Shκ, we see that u is h(� + 1 + α)-splitting. Therefore T�+1 satisfies
(ii) of Definition 1.1. It is easy to check (i) and (iii), thus we can conclude that
T�+1 ∈ Shκ and that T�+1 ≤� T� .

Note that the set D� is indeed small enough:

|D� | ≤ |V� | = |Split�(T
∗
� )| · h(�) ≤ h(�)|�| = F (�).

For each v ∈ V� we have Tv � “ ḟ(�̌) ∈ Ď� ”, and {Tv | v ∈ V�} is predense below
T�+1; thus,

T�+1 � “ ḟ(�̌) ∈ Ď� ”.

https://doi.org/10.1017/jsl.2023.21 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.21


SEPARATING MANY LOCALISATION CARDINALS ON THE GENERALISED BAIRE SPACE 7

Let T =
⋂
�∈κ T� , then by the fusion lemma T ∈ Shκ, and T � “ ḟ(�̌) ∈ Ď� ” for all

� ∈ κ. �
As a corollary of Shκ having the F-Sacks property, we immediately get that κ+ is

preserved.

Corollary 1.9. Shκ preserves κ+.

Proof. Given an Shκ-name ḟ and T ∈ Shκ such that T � “ ḟ : κ̌ → κ̌+ ”, then
using (the proof of) the F-Sacks property we may produce sets D� with
|D� | = F (�) < κ for each � ∈ κ such that T ′ � “ ḟ(�̌) ∈ Ď� ” for some stronger
T ′ ≤ T , and thus ḟ is forced to have a range contained in

⋃
�∈κ D� and cannot be

cofinal in κ+. �
The second ingredient is to find a suitably fast growing h for a given function F

such that Shκ does not have the F-Sacks property. We will need the following lemma.

Lemma 1.10. Let T ∈ Shκ and let CT = {α ∈ κ | Splitα(T ) = T ∩ ακ}, then CT
is a club set.

Proof. For α0 ∈ κ we can recursively define αn+1 large enough such that
Splitαn (T ) ⊆ ≤αn+1κ for each n ∈ �. Let α =

⋃
n∈� αn, then α ∈ CT , hence CT

is unbounded. It is easy to see that CT is continuous. �
Theorem 1.11. Let F ∈ κκ, then there exists h such that Shκ does not have the

F-Sacks property.

Proof. Let h be such that F (α) < h(α) for all α ∈ S, where S is a stationary
subset of κ. We will show that Shκ does not have the F-Sacks property.

Let ḟ be a name for the generic Shκ-real in κκ, let ϕ be an F-slalom, letT ∈ Shκ and
letα0 ∈ κ. We want to find someα ≥ α0 and S ≤ T such that S � “ ḟ(α̌) /∈ ϕ̌(α̌) ”.
If we can find u ∈ T ∩ α+1κ such that u(α) /∈ ϕ(α), then (T )u will be sufficient.

Let CT be as defined in Lemma 1.10 and α ∈ CT ∩ S such that α0 ≤ α, then
Splitα(T ) = T ∩ ακ, thus each t ∈ T ∩ ακ is an h(α)-splitting node. Hence, there
is a set X ⊆ κ with |X | = h(α) such that t
� ∈ T for all � ∈ X . Since |ϕ(α)| =
F (α) < h(α), there is some � ∈ X such that � /∈ ϕ(α), and thus u = t
� is as
desired. �

As a final part of this section, we will discuss the relation between parameters
that are almost equal. For functions f, g ∈ κκ, we say that f and g are almost equal,
written as f =∗ g, if there exists � ∈ κ such that f(α) = g(α) for all α ∈ [�, κ). A
related notion is that g dominates f, written as f ≤∗ g, if there exists � ∈ κ such that
f(α) ≤ g(α) for all α ∈ [�, κ).

Fact 1.12. If h =∗ h′, then Shκ and Sh
′
κ are forcing equivalent.

Proof. Since Shκ ∩ Sh
′
κ is dense in both Shκ and Sh

′
κ . �

§2. Products. We see that for any F0, we can find a faster growing F1 and some
suitable h such that the forcing Shκ has the F1-Sacks property and not the F0-Sacks
property, thus forcing with Shκ will not increase d

F1
κ (∈∗), but has the potential to

increase dF0
κ (∈∗).
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In order to increase d
F0
κ (∈∗) we will need to add many Shκ-generic κ-reals to

the ground model. This can be either done with an iteration, or with a product.
Iteration has the drawback that once we have forced 2κ to be of size κ++, the
forcing Shκ no longer has the <κ++-c.c., and thus we cannot sufficiently control
the iteration past this point. While this does not form a problem to prove the
consistency of κ+ = d

F1
κ (∈∗) < d

F0
κ (∈∗) = κ++, iteration proves to be an obstacle

when we wish to force localisation cardinals to be larger than κ++. In particular, our
goal to simultaneously assign multiple localisation cardinals to different cardinalities
requires a product.

Definition 2.1. Let A be a set of ordinals and P� a forcing notion for each � ∈ A.
Let C be the set of functions p with dom(p) = A such that p(�) ∈ P� for each � ∈ A.
For any p ∈ C, the support of p is defined as

supp(p) =
{
� ∈ A

∣∣∣ p(�) 
= 1P�

}
.

We define the <�-support product as follows:

P =
∏
�∈A P� = {p ∈ C | |supp(p)| < �}.

This is a forcing poset under the ordering q ≤
P
p iff q ≤P�

p for all � ∈ A. Generally
we will say “≤κ-support” instead of “<κ+-support”.

Let us fix a set of ordinals A, parameters 〈h� | � ∈ A〉 for the forcings S
h�
κ and the

set C of functions p such that p(�) ∈ S
h�
κ for each � ∈ A. For the remainder of this

section we will also fix the shorthand S =
∏
�∈A S

h�
κ . If p, q ∈ S, we will often write

q ≤ p instead of q ≤
S
p when the forcing S is clear from context.

If 〈pα | α ∈ �〉 is a sequence of conditions in S such that pα′ ≤
S
pα for all α ≤ α′,

define ∧
α∈�pα : � �→

⋂
α∈� pα(�) for � ∈ A.

Lemma 2.2. S is <κ-closed.

Proof. If 〈pα | α ∈ �〉 is a descending sequence in S and � ∈ κ, then
∧
α∈�pα is

a condition below each pα , since each S
h�
κ is <κ-closed. �

We will also need a generalisation of the fusion lemma to work on product forcings.
The generalisation of fusion described here is analogous to what is described in [3]
or [6].

Definition 2.3. Given p, q ∈ S, α ∈ κ, and Z ⊆ A with |Z| < κ, let q ≤Z,α p iff
q ≤ p and for each � ∈ Z we have q(�) ≤α p(�).

A generalised fusion sequence is a sequence 〈(pα,Zα) | α ∈ κ〉 such that:
(1) pα ∈ S and Zα ∈ [A]<κ for each α ∈ κ.
(2) p	 ≤Zα,α pα and Zα ⊆ Z	 for all α ≤ 	 ∈ κ.
(3) For limit 
 we have Z
 =

⋃
α∈
 Zα .

(4)
⋃
α∈κ Zα =

⋃
α∈κ supp(pα).

Lemma 2.4. If 〈(pα,Zα) | α ∈ κ〉 is a generalised fusion sequence, then∧
α∈κpα ∈ S.
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Proof. Suppose that 〈(pα,Zα) | α ∈ κ〉 is a generalised fusion sequence, and let
p =

∧
α∈κpα . Point (4) of Definition 2.3 implies that every � ∈ supp(p) is an element

of Z�� for some �� ∈ κ. This means that if 	 ≥ α ≥ �� , then p	(�) ≤α pα(�), and

thus 〈pα(�) | α > ��〉 is a fusion sequence in S
h�
κ . Since S

h�
κ is closed under fusion

sequences (Lemma 1.7), we can conclude that

p(�) =
⋂
α∈κ pα(�) ∈ S

h�
κ .

Since supp(p) =
⋃
α∈κ Zα , we see that |supp(p)| ≤ κ, thus we can conclude that

p ∈ S. �

By Lemma 2.2, S preserves all cardinalities up to and including κ. Suppose that
each S

h�
κ has the F-Sacks property for some suitably large F. We will show in the next

lemma that this implies that S has the F-Sacks property and therefore preserves κ+.
Finally, if we assume that V � “ 2κ = κ+ ”, then a standard Δ-system argument
(see, e.g., [5, Lemma 15.4]) shows that S is <κ++-c.c. as well. Thus, S preserves all
cardinals and cofinalities assuming that there exists some fixed F ∈ κκ such that
each S

h�
κ has the F-Sacks property.

Before we prove the lemma, let us introduce some notation related to the product
of forcings. Suppose P =

∏
�∈A P� is a product with≤κ-support,X ⊆ P andB ⊆ A,

we define

X � B = {p � B | p ∈ X} .

Let Bc = A \ B and G ⊆ P be P-generic over V, then clearly P and (P � B) ×
(P � Bc) are forcing equivalent, (G � B) × (G � Bc) is (P � B) × (P � Bc)-generic
and

V[G ] = V[(G � B) × (G � Bc)] = V[G � B][G � Bc ].

Lemma 2.5. LetB ⊆ A be sets of ordinals andBc = A \ B , and consider a sequence

of functions 〈h� | � ∈ A〉. We define the≤κ-support product S =
∏
�∈A S

h�
κ , we assume

G is an S-generic filter. If there exists F ∈ κκ such that F (α)|α| = F (α) for all α ∈ κ
and h� ≤∗ F for all � ∈ Bc , then for each f ∈ (κκ)V[G ] there is ϕ ∈ (LocF )V[G�B]

such that f ∈∗ ϕ.

Proof. Note that Fact 1.12 implies that we can assume without loss of generality
that h� ≤ F for each � ∈ A. Letp ∈ S and ḟ be a name such thatp �

S
“ ḟ : κ̌ → κ̌ ”,

then we will construct a name ϕ̇ and a condition p′ ≤ p such that p′ � “ ϕ̇ ∈
(LocF̌ )V[Ġ�B̌] ”.

The proof is essentially the same as the proof of Theorem 1.8, except that we
work with generalised fusion sequences and have to construct a name ϕ̇ for the
appropriate F-slalom in V[G � B], since such a slalom is not generally present in
the ground model. That is, we will construct a sequence 〈(p�,Z�) | � ∈ κ〉 with each
p� ∈ S that is a generalised fusion sequence in S and names Ḋ� for sets of ordinals
D� ∈ V[G � B] with |D� | ≤ F (�), such that p�+1 � “ ḟ(�̌) ∈ Ḋ� ”.

For each � ∈ κ and 	 ∈ Z� we will make sure that p�(	) ∈ (S
h	
κ )∗ is sharp. To

start, we let p0 = p and we letZ0 = ∅. At limit stages 
 we can define p′
 =
∧
�∈
p�
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and let p
 ≤ p′
 be defined elementwise such that p
(	) = (p′
(	))∗ is sharp for each
	 ∈ Z
 .

Suppose we have defined p� ∈ S and Z� and that |Z� | ≤ |�|. As in the proof of
Theorem 1.8, we will consider the successor nodes of the �-th splitting level, find
subtrees that decide the value of ḟ(�̌), and glue the subtrees together. However, in
this situation we have to deal with multiple trees at once, namely with each p�(	)
such that 	 ∈ Z� . For each 	 ∈ Z� we define the set of successor nodes of the �-th
splitting level of p�(	):

V 	� =
⋃ {

suc(u, p�(	))
∣∣ u ∈ Split�(p�(	))

}
.

To deal with p�(	) for all 	 ∈ Z� simultaneously, we have to consider combinations
of elements of V 	� for 	 ∈ Z� , and for each combination we will define a condition

that decides ḟ(�̌). These combinations are given by functions g : Z� →
⋃
	∈Z� V

	
�

with the property that g(	) ∈ V 	� . We will refer to such g as choice functions, since

g chooses an element of V 	� for each 	 ∈ Z� .
Let V� be the set of choice functions on {V 	� | 	 ∈ Z�} and V ′

� the set of choice

functions on {V 	� | 	 ∈ Z� \ B}, that is, V ′
� is the set of g � (Z� \ B) with g ∈ V� .

By induction hypothesis p�(	) ∈ (S
h	
κ )∗ for each 	 ∈ Z� \ B , hence we know that

|Split�(p�(	))| ≤ h	(�)|�| ≤ F (�),

and thus |V 	� | ≤ F (�) for all 	 ∈ Z� \ B . Since we assume that |Z� | ≤ |�|, we
therefore have |V ′

� | ≤ F (�)|�| = F (�) (assuming without loss of generality thatF (�)
is infinite). Hence, if we restrict our attention to Z� \ B , we have a small number of
choice functions. Consequently, we can describe a name Ḋ� depending only on the
support in B, i.e., Ḋ� names a set in V[G � B], such that Ḋ� is bounded in cardinality
by F (�).

For any choice function g ∈ V� , let (p�)g be the condition defined by

(p�)g(	) =

{
p�(	), if 	 /∈ Z�,
(p�(	))g(	), if 	 ∈ Z�.

Here (p�(	))g(	) is the subtree of p�(	) generated by the initial segment g(	) ∈ V 	� .
Let � = |V� | then � < κ by inaccessibility of κ. Fix some enumeration 〈g� | � ∈ �〉

of V� , which we will use to recursively define a decreasing sequence of conditions r�
with r� ≤Z�,� p� for each � ∈ � . Essentially, our recursive construction will result in
r�+1 being like r�, except that (r�)g� is replaced by a stronger condition that decides

ḟ(�̌). At the end of the recursion, we will be left with a condition r� such that
(r�)g decides ḟ(�̌) for every g ∈ V� . We then gather the possible values of ḟ(�̌) to
construct the name Ḋ� .

Let r0 = p� . For limit 
 ∈ � let r
 =
∧
�∈
r�, which is a condition by <κ-closure

(Lemma 2.2). Assuming that r� ≤Z�,� p� for each � ∈ 
, it is easy to see that r
 ≤Z�,�
p� as well.
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Suppose r� is defined and r� ≤Z�,� p� , then in particular r�(	) ≤� p�(	) for all
	 ∈ Z� , and thus Split�(r�(	)) = Split�(p�(	)) for all 	 ∈ Z� . Therefore by

definition of the ordering on S
h	
κ and the fact that p�(	) is sharp, we see that

V 	� is exactly the set of successors of nodes at the �-th splitting level of r�(	). Take

the �-th choice function g� ∈ V� , and let r′� ≤ (r�)g� be such that r′� � “ ḟ(�̌) = 	̌�� ”
for some ordinal 	�� . We define r�+1 elementwise.

If 	 /∈ Z� , then we simply take r�+1(	) = r′�(	).
If 	 ∈ Z� , fix somew ∈ suc(u, r′�(	)) for some u ∈ Split�(r

′
�(	)) and consider the

subtree (r′�(	))w generated by the initial segment w. Now we are ready to define
r�+1(	) as

r�+1(	) = (r′�(	))w ∪
{
u ∈ r�(	)

∣∣∣ ∃v ∈ V 	� \ {g�(	)} (u ⊆ v or v ⊆ u)
}
.

In words, r�+1(	) is the result of replacing the extensions of g�(	) ∈ r�(	) by
(r′�(	))w that decides ḟ(�̌), where we use the subtree (r′�(	))w instead of r′�(	)

to make sure that r�+1(	) has enough successors at each splitting level to be in S
h	
κ

(compare this to the role of (Tv)w instead of Tv in the proof of Theorem 1.8).
To finish the construction of the next condition in the fusion sequence, we use

<κ-closure to define p′�+1 =
∧
�∈� r� and let p�+1 = (p′�+1)∗ be sharp. To see that

p�+1 ≤Z�,� p� , note that for every	 ∈ Z� and v ∈ V 	� we have v ∈ r�(	) for all � ∈ � ,
hence v ∈ p�+1(	). This implies by definition of V 	� that p�+1(	) ≤� p�(	) for all
	 ∈ Z� . Finally, we can let Z�+1 = Z� ∪ {
} for some ordinal 
, using bookkeeping
to make sure that

⋃
�∈κ Z� =

⋃
�∈κ supp(p�).

Note that the set of conditions r ≤ p�+1 with |r(	) ∩ V 	� | = 1 for all 	 ∈ Z� , is

dense below p�+1. For any such r, let g map 	 to the unique element of r(	) ∩ V 	�
for each 	 ∈ Z� , then g ∈ V� is a choice function, so we see that there exists � ∈ �
such that g = g�. We will show that r ≤ r′�, which implies that r � “ ḟ(�̌) = 	̌�� ”.

For any 	 we have r(	) ≤ p�+1(	) ≤ r�+1(	). If 	 /∈ Z� , then we simply have
r�+1(	) = r′�(	), thus we are done. Otherwise 	 ∈ Z� , and we know that g(	) is an
initial segment of the stem of r(	), hence

r(	) = (r(	))g(	) ⊆ (r�+1(	))g(	) = (r′�(	))w,

where w is as in the definition of r�+1(	) above. Since r(	) ≤ r�+1(	), we also have

r(	) = (r(	))w ≤ (r�+1(	))w = (r′�(	))w ≤ r′�(	),

and thus r(	) ≤ r′�(	).
We are now ready to construct the names Ḋ� such that

p�+1 � “ ḟ(�̌) ∈ Ḋ� and Ḋ� ∈ V[Ġ � B̌] and |Ḋ� | ≤ F̌ (�̌) ”.

For any g ∈ V� , we define
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g ′′ = g � (Z� ∩ B),

Eg =
{
� ∈ � | ∃g ′ ∈ V ′

�(g
′ ∪ g ′′ = g�)

}
,

Dg� =
{
	�� | � ∈ Eg

}
.

Since |V ′
� | ≤ F (�), we see that |Eg | ≤ F (�), hence |Dg� | ≤ F (�). Clearly, if g, g̃ ∈ V�

and g � (Z� ∩ B) = g̃ � (Z� ∩ B), then Dg� = Dg̃� .

Let A� be an antichain below p�+1 such that r ∈ A� implies |r(	) ∩ V 	� | = 1 for

all 	 ∈ Z� , and let gr ∈ V� be such that gr(	) is the single element of r(	) ∩ V 	� for
each 	 ∈ Z� . We define

Ḋ� =
{

(r, Ďgr� ) | r ∈ A�
}
.

It is clear by the above that for each r ∈ A� and � such that gr = g� we have

r � “ ḟ(�̌) = 	̌�� ∈ Ď
gr
� and |Ďgr� | ≤ F̌ (�̌) ”,

so by denseness

p�+1 � “ ḟ(�̌) ∈ Ḋ� and |Ḋ� | ≤ F̌ (�̌) ”.

To see that p�+1 � “ Ḋ� ∈ V[Ġ � B̌] ”, we argue within V[G � B]. For every
r, r̃ ∈ A� such that both r � B and r̃ � B are elements of G � B we see that the
corresponding gr and gr̃ have the property that gr � (Z� ∩ B) = gr̃ � (Z� ∩ B),
and therefore Dgr� = Dgr̃� . Thus, we can fix any arbitrary such r ∈ A� for which
r � B ∈ G � B holds, and see that

V[G � B] � “p�+1 � Bc � Ḋ� = Ďgr� ”.

Let p′ =
∧
�∈κp� be the limit of the generalised fusion sequence, and let ϕ̇ be a

name such that p′ � “ ϕ̇ : �̌ �→ Ḋ� ”, then ϕ̇ names an F-slalom in V[G � B] and
p′ � “ ḟ ∈∗ ϕ̇ ”. �

If we let B = ∅ in the definition of the lemma, then we can simplify this lemma
to the following corollary, providing us with the preservation of the Sacks property.

Corollary 2.6. If S =
∏
�∈A S

h�
κ and each h� ≤∗ h and F : α �→ h(α)|α|, then S

has the F-Sacks property.

Finally the following lemma is based on Theorem 1.11 and shows how we can use
products of forcings S

h�
κ to increase the cardinality of dFκ (∈∗).

Lemma 2.7. Let B ⊆ A be sets of ordinals, and consider a sequence of functions
〈h� | � ∈ A〉. We define the ≤κ-support product S =

∏
�∈A S

h�
κ and we assume G is an

S-generic filter. Let 〈S� | � ∈ B〉 be a sequence of stationary sets. If F is such that for
each � ∈ B we have F (α) < h�(α) for all α ∈ S� , then V[G ] � “ |B | ≤ dFκ (∈∗) ”.

Proof. The lemma is trivial if |B | ≤ κ+, so we will assume that |B | ≥ κ++.
We work in V[G ]. Let � < |B | and let {ϕ� | � ∈ �} be a family of F-slaloms,

then we want to describe some f ∈ κκ such that f /∈∗
ϕ� for each � ∈ �. Since
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S is <κ++-c.c., we could find A� ⊆ A with |A� | ≤ κ+ for each � ∈ � such that
ϕ� ∈ V[G � A�]. Since |B | > � · κ+, we may fix some 	 ∈ B \

⋃
�∈� A� for the

remainder of this proof. Let f =
⋂
p∈G p(	), then f ∈ κκ is the generic κ-real

added by the 	-th term of the product S.
Continuing the proof in the ground model, let ḟ be an S-name for f and ϕ̇� be an

S-name for ϕ� , let p ∈ S and α0 ∈ κ. We want to find some α ≥ α0 and q ≤ p such
that q � “ ḟ(α̌) /∈ ϕ̇�(α̌) ”.

LetC = {α ∈ κ | p(	) ∩ ακ = Splitα(p(	))}, which is a club set by Lemma 1.10.
Since S	 is stationary, there exists some α ≥ α0 such that α ∈ C ∩ S	 . Choose some
p0 ≤ p such that p0(	) = p(	) and such that there is a Y ∈ [κ]≤F (α) for which
p0 � “ ϕ̇�(α̌) = Y̌ ”. This is possible, since ϕ� ∈ V[G � A�] and 	 /∈ A� , therefore
we could findp′0 ∈ S � A� withp′0 ≤ p � A� and Y with the aforementioned property,
and then let p0(�) = p′0(�) if � ∈ A� and p0(�) = p(�) otherwise.

Each t ∈ p0(	) ∩ ακ is a h	(α)-splitting node, hence the setX = {� ∈ κ | t
� ∈
p0(	)} has cardinality |X | ≥ h	(α). Because α ∈ S	 and 	 ∈ B , we have by our
assumptions on F that |Y | ≤ F (α) < h	(α) ≤ |X |. We can therefore find some
� ∈ X such that � /∈ Y . Let q ≤ p0 be defined as

q(�) =

{
(p0(	))t
�, if � = 	,
p0(�), otherwise.

Here (p0(	))t
� is the subtree of p0(	) generated by the initial segment t
�. Then
q ≤ p0 ≤ p and q � “ ḟ(α̌) /∈ Y̌ = ϕ̇�(α̌) ”. �

Lemma 2.8. Let A be a set of ordinals such that κ < cf(|A|), let 〈h� | � ∈ A〉 be a

sequence of functions, let S =
∏
�∈A S

h�
κ with S-generic G, and let F ∈ κκ. Assuming

V � “ 2κ = κ+ ”, it follows that

V[G ] � “ 2κ = |LocF | = κ+ · |A| ”.

Proof. This is a standard argument of counting names. �

We are now ready to use our product forcing to separate κ many cardinals of the
form dhκ(∈∗).

Theorem 2.9. There exists a family of functions {g� | � ∈ κ} ⊆ κκ such that for
any � ∈ κ+ and any increasing sequence 〈�� | � ∈ �〉 of cardinals with κ < cf(��) for
all � ∈ � and any � : κ → �, there exists a forcing extension in which d

g�
κ (∈∗) = ��(�)

for all � ∈ κ.

Proof. We assume that V � “ 2κ = κ+ ”, or otherwise we first use a forcing to
collapse 2κ to become κ+. By a result of Solovay (Theorem 8.10 in [5]) there exists
a family of κ many disjoint stationary subsets of κ, thus let {S� | � ∈ κ} be such
a family. Let κ ≤ � ∈ κ+ and � : κ → � be given. We will assume without loss of
generality that � is bijective, and hence that �–1 : � → κ is a well-defined bijection.
Let 〈�� | � ∈ �〉 be an increasing sequence of cardinals with cf(��) > κ for all � ∈ �.
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Fix some F ∈ κκ such that F (α)|α| = F (α) and 2F (α) ≤ F (	) for any α < 	 . For
each � ∈ κ we define a function g� as follows:

g�(α) =

{
F (α), if α ∈ S�,
2F (α), otherwise.

For each � ∈ � we define H� ∈ κκ as follows:

H�(α) =

{
F (α), if α ∈

⋃
�∈� S�–1(�),

2F (α), otherwise.

For each � ∈ � let A� be a set of ordinals with |A� | = �� , such that 〈A� | � ∈ �〉
is a sequence of mutually disjoint sets, and let A =

⋃
�∈� A� . For each � ∈ � and

	 ∈ A� , we define h	 = H� .

We now consider the product forcing S =
∏
	∈A S

h	
κ with ≤κ-support. Let G be

S-generic. We will fix some � ∈ κ, and let B =
⋃
�∈�(�)+1A� and Bc = A \ B . By

Lemma 2.8 we see that (Locg� )
V[G�B] has cardinality

κ+ · |B | = κ+ ·
∣∣sup�≤�(�)A�

∣∣ = κ+ ·
∣∣A�(�)

∣∣ = ��(�).

To use Lemma 2.5, we need that h	 ≤∗ g� for all 	 ∈ Bc , equivalently, thatH� ≤∗ g�
for all � ∈ (�(�), �). But this is true for any � ∈ (�(�), �), since g� = F (α) iff α ∈
S� = S�–1(�(�)) and because �(�) ∈ � we see thatH�(α) = F (α) as well. Meanwhile
for all α /∈ S� we have g�(α) = 2F (α) ≥ H�(α). Therefore Lemma 2.5 shows that
(Locg� )

V[G�B] is a family in V[G ] of size ��(�) that forms a witness for

V[G ] � “ dg�κ (∈∗) ≤ ��(�) ”.

On the other hand, if 	 ∈ A�(�), then h	 = H�(�) and thus for anyα ∈ S� = S�–1(�(�))

we see that g�(α) < H�(�)(α). Therefore by Lemma 2.7 we see that

V[G ] � “ ��(�) = |A�(�)| ≤ d
g�
κ (∈∗) ”.

In conclusion, we get for every � ∈ κ that

V[G ] � “ ��(�) = d
g�
κ (∈∗) ”. �

Corollary 2.10. There exists functions h� for each � ∈ κ such that for any

cardinals �� > κ with cf(��) > κ it is consistent that simultaneously d
h�
κ (∈∗) = ��

for all � ∈ κ.

§3. Separating κ+ many cardinals. We saw in the previous section that we can use
a partition of κ into disjoint stationary sets {S� | � ∈ κ}, and associate a function
g� with each stationary S� such that the cardinals dg�κ (∈∗) can consistently be put in
any arbitrary well-order.

It is natural to ask if we can do better than this, and separateκ+ many cardinalities.
Clearly we cannot do this using a disjoint family of stationary sets, since no such
family of size κ+ exists. Fortunately we can work around this by using an almost
disjoint family of stationary sets, that is, a family S of stationary subsets of κ, such
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that |S ∩ S ′| < κ for any distinctS, S ′ ∈ S. Let us refer to such families as stationary
almost disjoint families, or sad families.

The existence of a sad family of size 2κ is a consequence of �κ. Let 〈Aα | α ∈ κ〉
be a �κ-sequence, that is, a sequence such that for any X ∈ P(κ) the following set
is stationary:

SX = {α ∈ κ | X ∩ α = Aα}.

If X,Y ∈ P(κ) are distinct, and � is the least element of the symmetric difference
X�Y , then it is easy to see that SX ∩ SY ⊆ � + 1, thus {SX | X ∈ P(κ)} is a sad
family of size 2κ.

However, generalising the proof of Theorem 2.9 to work with a sad family is not
as straightforward as it seems. As we have seen in Lemmas 2.5 and 2.7, the forcing
Shκ will not increase d

g
κ(∈∗) if Shκ has the F-Sacks property for some F ≤∗ g, but it

will increase d
g
κ(∈∗) if there exists a stationary set S such that g(α) < h(α) for all

α ∈ S.
Let us assume V � “ 2κ = κ+ and �κ ” and fix a sad family {S� | � ∈ κ+}. We

assume that F ∈ κκ is some arbitrary function such that F (α)|α| = F (α) and
2F (α) ≤ F (	) for allα < 	 . For every � ∈ κ+ we can define the functions g�, forming
the parameters of dg�κ (∈∗):

g�(α) =

{
F (α), if α ∈ S�.
2F (α), otherwise.

In analogy with Theorem 2.9, we want to define functions H� such that S
H�
κ keeps

d
g�
κ (∈∗) small when � ∈ X and increases dg�κ (∈∗) when � ∈ Y , where {X,Y} forms

a partition of κ+. Assuming H�(α) = H�(α)|α| for all α ∈ κ, this means that we
want to defineH� such that:

when � ∈ X : H� ≤∗ g�,

when � ∈ Y : g�(α) < H�(α) for all α ∈ S, where S is stationary.

Note that g�(α) can only have two possible values, either F (α) or 2F (α), regardless
of � ∈ κ+. We can therefore assume without loss of generality that the same holds
forH�(α). Let z be the set on whichH� is small:

z = {α ∈ κ | H�(α) = F (α)}.

If � ∈ X , then H�(α) ≤ g�(α) is true for all α /∈ S�, but since H�(α) ≤ g�(α) has
to hold for almost all α ∈ κ, we also need |{α ∈ S� | α /∈ z}| < κ. Let us fix the
notation that a ⊆∗ b iff a \ c ⊆ b for some c with |c| < κ, then our condition above
states that S� ⊆∗ z should hold.

On the other hand, if � ∈ Y , then g�(α) < H�(α) is possible if

g�(α) = F (α) < 2F (α) = H�(α).

Thus (κ \ z) ∩ S� needs to be stationary. The assumption that |z ∩ S�| < κ is
sufficient for this.
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Given our sad family S = 〈S� | � ∈ κ+〉, the existence of a set z such that S� ⊆∗ z
for all � ∈ X and |z ∩ S�| < κ for all � ∈ Y , is not immediately clear, but we can
add such z generically through forcing.

We define the forcing WX,Yκ (where W stands for wedge). If s ∈ [κ]<κ, let �s be
the least ordinal such that s ⊆ �s .

Definition 3.1. Given a sequence S = {S� | � ∈ κ+} of almost disjoint subsets of
κ and a partition {X,Y} of κ+, we define WX,Y

κ to have tuples p = (sp, Ap, Bp) as
conditions, where sp ∈ [κ]<κ and Ap ∈ [X ]<κ and Bp ∈ [Y ]<κ are such that⋃

�∈Ap S� ∩
⋃
�∈Bp S� ⊆ �sp .

The ordering on WX,Yκ is given by (sq, Aq, Bq) ≤ (sp, Ap, Bp) if all of the following
hold:

(i) Ap ⊆ Aq ,
(ii) Bp ⊆ Bq ,
(iii) sp = sq ∩ �sp ,
(iv) sq ∩ [�sp , �sq ) ⊇

⋃
�∈Ap S� ∩ [�sp , �sq ),

(v) sq ∩
⋃
�∈Bp S� ⊆ �sp .

If G ⊆ WX,Yκ is a generic filter, then let zG =
⋃
p∈G sp. It is not hard to see that

zG indeed has the desired properties.

Lemma 3.2. If � ∈ X , then S� ⊆∗ zG . If � ∈ Y , then |S� ∩ zG | < κ.

Proof. Letp ∈ WX,Yκ . It is clear from the way we have defined the forcing that for
any � ∈ Ap we have p � “ Š� ⊆∗ żG ” and for any � ∈ Bp we have p � “ Š� ∩ żG ⊆
�̌p ∈ κ ”. Therefore, we are done if we prove that:

(1) for every � ∈ X there is q ≤ p such that � ∈ Aq , and
(2) for every � ∈ Y there is q ≤ p such that � ∈ Bq .

Proving (1) and (2) happens in the same way, so we only prove (1) below.
Fix some � ∈ X . Since S� is almost disjoint from S� for all � ∈ Bp, we can

define �� ∈ κ such that S� ∩ S� ⊆ �� for each � ∈ Bp. Since |Bp| < κ we see that⋃
�∈Bp �� ∈ κ. Pick some � ∈

⋃
�∈Ap S� such that � ≥ �sp ∪

⋃
�∈Bp �� .

We define q ≤ p by

sq = sp ∪
(⋃

�∈Ap S� ∩ [�sp , �]
)
,

Aq = Ap ∪ {�},
Bq = Bp.

Note that � ∈ sq , thus �sq = � + 1. Furthermore, note that⋃
�∈Ap S� ∩

⋃
�∈Bp S� ⊆ �sp ≤ �, and

S� ∩
⋃
�∈Bp S� ⊆

⋃
�∈Bp �� ≤ �.

Therefore, q is indeed a condition. �
We need to show that our forcing has several nice properties to satisfy our needs.

Firstly, it is essential that the sad family {S� | � ∈ κ+} will remain a sad family, in
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particular, the forcing should not destroy any stationary sets. Secondly, our forcing
needs to preserve cardinals. In particular, we may not collapse κ+ to κ, since our
goal of proving the consistency of κ+ many distinct cardinal characteristics requires
our sad family to have cardinality κ+. Thirdly, our forcing should preserve 2κ = κ+,
which we need for the forcings of type Shκ afterwards.

All of these properties hold for WX,Yκ under the assumption that |X | = κ, since
we can show that the forcing is<κ-closed and κ-centred in this case, and our forcing
is small enough that it does not increase 2κ.

Lemma 3.3. WX,Yκ is <κ-closed.

Proof. Let � ∈ κ be limit and let 〈p� | � < �〉 be a descending sequence of
conditions. We will write p� = (s�, A�, B�). Let p = (sp, Ap, Bp) be given by
sp =

⋃
�∈� s� and Ap =

⋃
�∈� A� and Bp =

⋃
�∈� B�. That p is a condition and

that p ≤ p� for each � ∈ � are easy to check. �

Corollary 3.4. WX,Y
κ preserves stationary sets.

Proof. See, for example, Lemma 23.7 in [5]. �

Definition 3.5. Let P be a forcing. We will call a set P ⊆ P centred if for every
Q ∈ [P]<κ there exists q ∈ P such that q ≤ p for all p ∈ Q. We say that P is κ-centred
if P =

⋃
α∈κ Pα where each Pα is centred.

Note that our notion of a centred set is not the usual definition: more commonly
P is called centred if every finite Q ⊆ P has a common extension, but since we are
working in the context of κκ we have to replace “finite” by “<κ” to have a proper
analogy.

Clearly if A ⊆ P is an antichain and P =
⋃
α∈κ Pα is κ-centred, then |A| ≤ κ,

since |Pα ∩ A| ≤ 1 for every α ∈ κ. Therefore, if P is κ-centred, it is <κ+-c.c. as
well.

Lemma 3.6. If |X | ≤ κ, then WX,Y
κ is κ-centred.

Proof. For any s ∈ [κ]<κ and A ∈ [X ]<κ we define

Ws,A =
{
p ∈ WX,Y

κ | sp = s ∧ Ap = A
}
.

Since |X | ≤ κ implies that |[κ]<κ × [X ]<κ| = κ, we are done if we show that each
Ws,A is centred. Let Q ∈ [Ws,A]<κ and B =

⋃
p∈Q Bp. We claim that q = 〈s, A, B〉

is a condition and that q ≤ p for all p ∈ Q.
Suppose that α ∈

⋃
�∈A S� ∩

⋃
�∈B S�, then there is p ∈ Q such that α ∈⋃

�∈A S� ∩
⋃
�∈Bp S�, and since p is a condition it follows that α ∈ �sp = �s .

Hence q is a condition. To check that q ≤ p for each p ∈ Q, note that (i)–(iii) of
Definition 3.1 are immediate, while (iv) and (v) hold vacuously by sp = sq . �

Corollary 3.7. If |X | ≤ κ, then WX,Y
κ preserves all cardinalities.

Finally, we have to look at adding multiple generics of forcings of the type WX,Yκ .
Our goal is to define functionsH� for each � ∈ κ+. Fix some bijection � : κ+ → κ+,

then we want to add a generic set z for the forcing W
X�,Y�
κ for each � ∈ κ+, where
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X� = �(�) and Y� = κ+ \ X . This means that we also need to guarantee that a
<κ-support products of size κ+ of forcings of the form WX,Yκ behaves nicely, in the
sense that it preserves cardinals, stationary sets and 2κ = κ+.

Lemma 3.8. Let 〈{X�,Y�} | � ∈ κ+〉 be a sequence of partitions of κ+ such that

|X� | ≤ κ for each � ∈ κ+ and let W =
∏
�∈κ+ W

X�,Y�
κ be the <κ-support product of

the forcings W
X�,Y�
κ . Then W is <κ-closed, <κ+-c.c. and if G is W-generic over V and

V � “ 2κ = κ+ ”, then V[G ] � “ 2κ = κ+ ”.

Proof. Note that each term W
X�,Y�
κ is <κ-closed and <κ+-c.c. (the latter as

a consequence of κ-centredness), thus a <κ-support product of length κ+ is also
<κ-closed, which is easily proved, and <κ+-c.c., which is proved using a Δ-system
argument. That 2κ = κ+ will remain true, follows from an argument by counting
names, using that |WX�,Y�

κ | = κ+ for each � ∈ κ+, and that the product has κ+ many
terms, thus |W| = κ+. �

Corollary 3.9. W preserves cardinals and stationary sets.

Now we are finally ready to prove our last theorem, which is an extension of
Theorem 2.9, and shows that there can be consistently κ+ many distinct cardinal
characteristics of the form dhκ(∈∗).

Theorem 3.10. Assuming 2κ = κ+ and �κ, there exists a family of functions
{g� | � ∈ κ+} ⊆ κκ such that for any increasing sequence 〈�� | � ∈ κ+〉 of cardinals
with κ < cf(��) and any function � : κ+ → κ+, there exists a forcing extension in
which d

g�
κ (∈∗) = ��(�) for all � ∈ κ+.

Proof. We start with a model V � “ 2κ = κ+ and �κ ” containing a sad family
S = 〈S� | � ∈ κ+〉, and we will assume without loss of generality that � : κ+ → κ+

is a bijection. We define the functions g� for each � ∈ κ+ as

g�(α) =

{
F (α), if α ∈ S�,
2F (α), otherwise.

For each � ∈ κ+ we define the partition {X�,Y�} of κ+ by

X� = �–1[�(�)] =
{
� ∈ κ+ | �(�) ∈ �(�)

}
,

Y� = κ+ \ X�.

We then force with a <κ-support product W =
∏
�∈κ+ W

X�,Y�
κ . Note, in particular,

that |X�| ≤ κ. Let G be W-generic, then we will work in V[G ]. We define z�(�) =⋃
p∈G sp(�), then z�(�) is WX�,Y�

κ -generic over V.

By Lemma 3.8, we know that V[G ] � “ 2κ = κ+ + Š is a sad family ”. Therefore
by Lemma 3.2, if � ∈ κ+, then we haveS� ⊆∗ z�(�) for all � ∈ X� and |S� ∩ z�(�)| < κ
for all � ∈ Y�. Equivalently, using the definition of X� and Y�, if � ∈ κ+, then we
have S� ⊆∗ z� for all � ∈ κ+ such that �(�) ∈ � and |S� ∩ z� | < κ for all � ∈ κ+

such that �(�) ∈ [�, κ+).
For each � ∈ κ+ we defineH� ∈ κκ as follows:
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H�(α) =

{
F (α), if α ∈ z�,
2F (α), otherwise.

The remainder of the proof mirrors the proof of Theorem 2.9 almost exactly.
For each � ∈ κ+ letA� be a set of ordinals with |A� | = �� , such that 〈A� | � ∈ κ+〉

is a sequence of mutually disjoint sets, and let A =
⋃
�∈κ+ A� . For each � ∈ κ+ and

	 ∈ A� , we define h	 = H� .

We now consider the product forcing S =
∏
	∈A S

h	
κ with ≤κ-support. Let K be

S-generic. We will fix some � ∈ κ+, and let B =
⋃
�∈�(�)+1A� and Bc = A \ B . By

Lemma 2.8 we see that (Locg� )
V[G ][K�B] has cardinality

κ+ · |B | = κ+ ·
∣∣sup�≤�(�)A�

∣∣ = κ+ ·
∣∣A�(�)

∣∣ = ��(�).

To use Lemma 2.5, we need that h	 ≤∗ g� for all 	 ∈ Bc , equivalently, thatH� ≤∗ g�
for all � ∈ (�(�), κ+). But this is true for any � ∈ (�(�), κ+), since g� = F (α) iff
α ∈ S�, while H�(α) = F (α) iff α ∈ z� , and because �(�) ∈ � we have S� ⊆∗ z� .
Therefore Lemma 2.5 shows that (Locg� )

V[G ][K�B] is a family in V[G ][K ] of size ��(�)
that forms a witness for

V[G ][K ] � “ dg�κ (∈∗) ≤ ��(�) ”.

On the other hand, if 	 ∈ A�(�), then h	 = H�(�) and thus �(�) ∈ [�(�), κ+) implies
that |S� ∩ z�(�)| < κ. In particular, S� \ z�(�) is stationary and if α ∈ S� \ z�(�), then
g�(α) < H�(�)(α). Hence by Lemma 2.7 we see that

V[G ][K ] � “ ��(�) = |A�(�)| ≤ d
g�
κ (∈∗) ”.

In conclusion, we get for every � ∈ κ that

V[G ][K ] � “ ��(�) = d
g�
κ (∈∗) ”. �

§4. Concluding remarks. With Theorem 3.10 we improved the known consistency
of dpowκ (∈∗) < didκ (∈∗) to a family of κ+ many cardinal invariants that are mutually
independent in the sense that any ordering of the cardinals with order-type κ+ is
consistent. This answers Questions 72 and 73 from [3] positively. Moreover, we have
shown that there exist functions h, h′ ∈ κκ for which it is consistent that dhκ(∈∗) <
dh

′
κ (∈∗), but also that it is consistent that dh

′
κ (∈∗) < dhκ(∈∗).

It is natural to ask if we can do better than this.

Question 4.1. Is it consistent that there exists a family of functions {h� | � ∈ κ++}
such that each d

h�
κ (∈∗) has a distinct value? Is it consistent that there is a model with

2κ many distinct values for cardinals of the form dhκ(∈∗)?

Our method of separating cardinals uses a forcing Shκ that requires 2κ = κ+ in the
ground model to have the <κ++-c.c., hence if we start with a family of functions
of size κ++, our forcing may collapse κ++. This makes it hard to answer the above
question using the method presented in this paper.

Another limitation of our method, is that we restrict our attention to forcings
that have the F-Sacks properties where F (α) = F (α)|α|. Essentially, we know how
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to separate cardinals with a parameter h from cardinals with a parameter 2h , and
thus we make a jump on the order of a power set operation. It is unclear whether a
finer structure can be discovered between these cardinals, motivating the following
question:

Question 4.2. Is it consistent that there exist h0, h1, h2 ∈ κκ such that |h0(α)| <
|h1(α)| < 2|h0(α)| = h2(α) and d

h2
κ (∈∗) < d

h1
κ (∈∗) < d

h0
κ (∈∗)?

The localisation cardinals dhκ(∈∗) have a natural dual form bhκ(∈∗) defined in the
introduction, where duality is taken with respect to relational systems, as described
in [2]. In general, for many cardinal characteristics x, y with duals x′, y′ it is the
case that if x < y is consistent, then y′ < x′ is consistent as well. This motivates the
following question, which has also been asked as Question 71 from [3]:

Question 4.3. Do there exist functions h, h′ such that bhκ(∈∗) < bh
′
κ (∈∗) is

consistent?

Indeed, despite being able to separate κ+ many cardinals of the form dhκ(∈∗),
it is currently unknown how to separate even two cardinals of the form bhκ(∈∗).
The main obstacle to this is the lack of preservation theorems for forcings related
to the generalised Baire space. Without such theorems, the preservation of, for
example, bidκ (∈∗) = κ+ under a forcing that increases b

pow
κ (∈∗) needs an analogue

of Lemma 2.5. However, it is unclear what this forcing should be.
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