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Abstract. In this article, we give generalizations of the well-known Fermat’s Little Theorem, Wilson’s
theorem, and the little-known Gegenbauer’s theorem.

1 Introduction

The well-known Fermat’s Little Theorem states that for any prime p and any integer
a,

ap ≡ a (mod p).(1.1)

Wilson’s theorem, on the other hand, states that for any prime p,

(p − 1)! ≡ −1 (mod p).(1.2)

Around 1956, Moser [13] discovered the congruence

(p − 1)!ap + (p − 1)2a ≡ 0 (mod p).(1.3)

By setting a = 1 in (1.3), one obtained (1.2), and using (1.2) in (1.3), we deduced (1.1).
On the other hand, (1.3) follows immediately from (1.2) and (1.1). Moser’s congruence
(1.3) was mentioned in the book of Sierpinski [20, pp. 216 – 217]. Sierpinski appeared
to have mistaken that Moser discovered

(p − 1)!a + ap ≡ 0 (mod p)(1.4)

when it should have been (1.3).
About 30 years later, Moser’s brother, William Moser [14], found a generalization

of Moser’s congruence (1.3) given by

∑
d ∣n

φ2(d) (n
d
)!dn/d an/d ≡ 0 (mod n2),(1.5)
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where

φ(n) =
n
∑

1≤k≤n
gcd(k ,n)=1

1.

When n is a prime p, (1.5) reduces to (1.3). Since the special case of (1.5) is discovered
by L. Moser and (1.5) is discovered by his brother, we will name (1.5) the Moser–Moser
congruence. The Moser–Moser congruence is a generalization of (1.3), while (1.4) is
its analog. In this article, we will derive new generalizations of (1.3) and (1.4).

In 2006, a special case of (1.5) with the value a = 1, namely,

∑
d ∣n

φ2(d) (n
d
)!dn/d ≡ 0 (mod n2),(1.6)

was rediscovered by Evans [9] as a generalization of (1.2). It turns out that Evans’ proof
of (1.6), which is different from Moser’s proof, can be modified to derive (1.5).

The proofs of Evans and Moser of (1.5) are different. Evans used the action of the
group Z/nZ on the set of Hamilton cycles with n vertices, whereas Moser used the
action of the group Z/nZ × Z/nZ on the set of line permutations of {1, 2, . . . , n}.
In this article, we will present a third proof of (1.6). We will then deduce the
Moser–Moser congruence (1.5), which is (1.6) with an extra factor of an/d , from L.
Gegenbauer’s theorem [10] is given as follows.

Theorem 1.1 Let n and a be positive integers. Let F ∶ Z+ → Z. Suppose F(n) ≠ μ(n),
where μ is defined in Section 4 (see Definition 4.1). If

∑
d ∣n

F(d) ≡ 0 (mod n),

then

∑
d ∣n

F(d)an/d ≡ 0 (mod n).

Although

∑
d ∣n

μ(d)an/d ≡ 0 (mod n)(1.7)

is true, it does not follow from Theorem 1.1 and the fact [3, Theorem 2.1] that

∑
d ∣n

μ(d) = 0 ,

for n > 1. This is because (1.7) is used in the proof of Theorem 1.1 and (1.7) needs to be
proved separately as what Gegenbauer did in his article.

In the next section, we state the Frobenius–Burnside theorem, a fundamental tool
used in proving many congruences such as (1.5) and (1.7). In Section 3, we give a new
proof of the Moser–Moser congruence (1.5) using the Frobenius–Burnside. In Section
4, we give a new proof of an interesting result of András [1, p. 267, Remark 2] (see
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Theorem 4.3) and give a brief history of (1.7) and its analogue. In Section 5, we give a
generalization of (1.5). In the final section, we prove a generalization of Theorem 1.1.

In this article, several congruences such as (1.5) are stated modulo n2, whereas
Theorems such as Theorem 1.1 hold modulo n. We emphasize that in all our examples,
we derive

1
n∑d ∣n

F(d) ≡ 0 (mod n)

using theorems such as Theorem 1.1 and conclude that

∑
d ∣n

F(d) ≡ 0 (mod n2).

We now summarize our contributions. In this article, we present a new proof of the
Moser–Moser congruence with the help of Theorem 1.1. Surprisingly, this theorem has
remained relatively obscure despite its significance. We have also found the origin of
(1.6). We have identified an error in Sierpinski’s book, where he mistakenly attributed
(1.4) instead of (1.3) to L. Moser. Additionally, we have unveiled a comprehensive
generalization that encompasses both (1.3) and (1.4) (see Section 5). By using Theorem
4.3 and Theorem 6.1, we derived many new congruences from well-established ones,
such as Moreau’s congruence.

We would like to thank the anonymous referee for his/her invaluable insights and
the references [4, 23]. These references establish crucial connections between our
work and Dold sequences. Notably, one can see a link between our generalization
of the Gegenbauer theorem (Theorem 6.1) and [23, Theorem 7]. This connection
becomes apparent when we recognize that the function G(n) defined in Theorem 6.1
is Dold sequences, leading to the conclusion that Theorem 8 follows from the equiv-
alence of the statements in [23, Theorem 7]. This connection also shows that many
of the examples discussed in this article are, therefore, examples of Dold sequences.
Some of the sequences contained in (6.4) and in (6.6) might pose challenges for
direct verification as Dold sequences under alternative circumstances. Finally, as
highlighted by the referee, several previous works, including [1, 23], have overlooked
the significance of the Gegenbauer theorem (Theorem 1.1). Our article serves to rectify
this gap in the mathematical discourse.

2 The Frobenius–Burnside theorem

Let (G , ○) be a group with identity 1G , and let X be a nonempty set. A left action of
the group G on X is a function

● ∶ G × X → X ,

which we write g ● x instead of ●(g , x), with the following properties that for all a, b ∈
G and x ∈ X:
(1) a ● (b ● x) = (a ○ b) ● x ,
(2) 1G ● x = x .
We say that G acts on X via ●.
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Given a group G acting (via ●) on a nonempty set X, we define a relation ∼ as
follows:

u ∼ x if and only if there exists a g ∈ G such that g ● x = u.

The relation ∼ is an equivalence relation on X. This implies that X is a disjoint union
of equivalence classes Ox , which are also called G-orbits, where

Ox ∶= {u ∈ X∣u ∼ x}.

When X is a finite set, the number of distinct G-orbits in X is given by the following
theorem.

Theorem 2.1 (The Frobenius–Burnside theorem) Let G be a group acting on a finite
set X, and let

Fix(g) = {x ∈ X∣g ● x = x}.

The number of disjoint G-orbits N in X is given by

N = 1
∣G∣ ∑g∈G

∣Fix(g)∣,

where ∣S∣ denotes the number of elements in the set S.

We emphasize that in the proof of Theorem 2.1, one has to show that if

StabG(x) = {g ∈ G∣g ● x = x},

then

∣Ox ∣ =
∣G∣

∣StabG(x)∣
.

This shows immediately that

∣Ox ∣ divides ∣G∣.(2.1)

For a complete proof of the Frobenius–Burnside theorem, see [17, Chapter 5].

3 A new proof of the Moser–Moser congruence

For any positive integer n, let Sn denote the set of bijections on

{1, 2, . . . , n − 1, n}.

For g ∈ Sn , let

g = τ1τ2⋯τr

be the complete factorization (which is unique up to the arrangement of the cycles)
of g into disjoint cycles. If τ j is a cycle with length λ j , then we say that g has cycle type

(λ1 , λ2 , . . . , λr).

https://doi.org/10.4153/S0008439523000723 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439523000723


308 H. H. Chan, S. H. Chan, T. G. Chua, and C. Y. Ku

If g has a j cycles of length j, we say that g has cycle structure

⟨1a1 2a2⋯nan ⟩.
For example, if

g = (1 2)(3 4)(5 6)(7 8 9),
then the cycle type and cycle structure of g are (3, 2, 2, 2) and ⟨102331⟩, respectively.

The following lemma is well known [5, p. 244].

Lemma 3.1 Let g ∈ Sn with cycle structure ⟨1a1 2a2⋯nan ⟩, and let

C(g) = {x ∈ Sn ∣g−1x g = x}
be the centralizer of g in Sn . Then

∣C(g)∣ = (1a1 2a2⋯nan)a1!a2!⋯an! =
n
∏
j=1

ja j a j!.

We will use Lemma 3.1 to derive the following lemma.

Lemma 3.2 Suppose g , h ∈ Sn . Let F(g , h) = {x ∈ Sn ∣g−1xh = x}. Then F(g , h) is
nonempty if and only if g and h have the same cycle type, or equivalently, g and h are
conjugate to each other in Sn . Moreover, if F(g , h) is nonempty, then

∣F(g , h)∣ =
n
∏
j=1

ja j a j!,

where ⟨1a1 2a2⋯nan ⟩ is the cycle structure of g (and h).

Proof If g and h are conjugates, then h = y−1 g y for some y ∈ Sn and therefore y ∈
F(g , h) and F(g , h) is nonempty. If F(g , h) is nonempty, then there exists y ∈ F(g , h)
such that g−1 yh = y or g = y−1hy, and so g and h are conjugates.

Suppose h = y−1 g y for some y ∈ Sn . We claim that if z ∈ C(g), then zy ∈ F(g , h).
We need only to check that

g−1zyh = zg−1 yh = zy

since g−1z = zg−1. Define a map

θ ∶ C(g) → F(g , h)
by θ(z) = zy, which is valid since zy ∈ F(g , h). Clearly, θ is injective since zy = z′y
implies that z = z′.

Next, for x ∈ F(g , h), note that g−1xh = x , or xhx−1 = g. Let z = x y−1. Then

zgz−1 = x(y−1 g y)x−1 = xhx−1 = g ,

and therefore z ∈ C(g). It is clear that θ(z) = θ(x y−1) = x y−1 y = x and so θ is
surjective. The second assertion now follows from Lemma 3.1. ∎

We are now ready to give a new proof of (1.6).
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Proof of (1.6) Let Cn be the subgroup of Sn generated by the n-cycle (1 2 ⋯ n).
Consider the action G = Cn × Cn on X = Sn given by (g , h) ● x = g−1xh. Indeed, this
is a group action since

[(g1 , h1) ⋅ (g2 , h2)] ● x = (g1 g2 , h1h2) ● x = (g1 g2)−1x(h1h2)
= g−1

2 (g−1
1 xh1)h2 = (g2 , h2) ● [(g1 , h1) ● x].

By Theorem 2.1, the number of orbits N arising from G acting on Sn is

N = 1
n2 ∑
(g ,h)∈G

∣Fix((g , h))∣.(3.1)

Note that Fix((g , h)) = F(g , h) where F(g , h) is the set defined in Lemma 3.2.
For an element g ∈ G, we will use o(g) to denote the order of g in G. We have

seen that F(g , h) is nonempty if and only if g and h are conjugate to each other. In
other words, F(g , h) is nonempty if and only if o(g) = o(h). Furthermore, o(g)∣n.
Therefore, we may rewrite (3.1) as

N = 1
n2 ∑

d ∣n
∑

(g ,h)∈G
o(g)=o(h)=d

∣F(g , h)∣.(3.2)

Next, it is known that if o(g) = d in Cn , then g has cycle type c(g) = (d , d , . . . , d),
where there are n/d copies of d in c(g). By Lemma 3.2, we conclude that

∣F(g , h)∣ = (n/d)!dn/d

and rewrite (3.2) as

N = 1
n2 ∑

d ∣n
φ2(d)dn/d(n/d)!,

since there are precisely φ2(d) elements (g , h) ∈ G with o(g) = o(h). The congruence
(1.6) now follows immediately. ∎

This new proof of (1.6) explains the presence of (n/d)!dn/d and φ2(d) in (1.6).
This section is motivated by the articles of Evans [9] and András [1]. We are led

to these articles because of our interest in generalizing Petersen’s proof of Wilson’s
theorem [15] found in Andrews’ book [2, Section 3.3].

4 Some facts about arithmetic functions and András’ theorem

An arithmetic function f is a function from the set of positive integers to the set of
complex numbers. One of the most important arithmetic functions is the Möbius
function defined as follows.
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Definition 4.1 Let μ(1) = 1 and for n =
m
∏
k=1

pαk
k , let

μ(n) =
⎧⎪⎪⎨⎪⎪⎩

(−1)m , if αk = 1, 1 ≤ k ≤ m,
0, otherwise.

The Dirichlet product of two arithmetic functions is a binary operation defined as
follows.

Definition 4.2 Let f and g be two arithmetical functions. We define the Dirichlet
product of f and g, denoted by f ∗ g, as

( f ∗ g)(n) = ∑
d ∣n

f (d)g(n
d
).

From now on, we will use f ∗ g(n) to represent ( f ∗ g)(n), removing the use of
brackets. We will record a few facts regarding several arithmetic functions that we
need for this article.

Lemma 4.1 For any n ∈ Z+, let u(n) = 1, N(n) = n, and I(n) = [1/n], where [⋅] is
the greatest integer function. Then:
(1) u ∗ μ(n) = I(n),
(2) μ ∗N(n) = φ(n),
(3) μN ∗N(n) = I(n).

The proofs of Lemma 4.1(a)–(c) can be found in Apostol’s book [3, Theorem 2.1],
[3, Theorem 2.3], and [3, Theorem 2.17], respectively.

Lemma 4.2 Let f and g be two arithmetic functions. Then

f (n) = g ∗ u(n)
if and only if

g(n) = f ∗ μ(n).

The proof of Lemma 4.2 can be found in [3, Theorem 2.9].
Around 2011, András [1] revisited Evans’ work and discovered the following

interesting result.

Theorem 4.3 Let F(n) be an arithmetic function. Then

∑
d ∣n

φ(d)F(n/d) ≡ 0 (mod n)(4.1)

if and only if

∑
d ∣n

μ(d)F(n/d) ≡ 0 (mod n).(4.2)
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András has a complete proof of the above, but (4.1) implies (4.2) was not presented
in his article. We now give our proof of Theorem 4.3 using Lemma 4.1.

Proof Suppose (4.1) holds. Then there exists an integer-valued arithmetic function
G such that

φ ∗ F(n) = N(n)G(n).

This implies that

μN ∗ φ ∗ F(n) = μN ∗N(n)G(n).(4.3)

Applying Lemma 4.1(b) followed by Lemma 4.1(c), we may rewrite the left-hand side
of (4.3) as

μN ∗ φ ∗ F(n) = μN ∗N ∗ μ ∗ F(n) = I ∗ μ ∗ F(n) = μ ∗ F(n).

The right-hand side of (4.3) is

μN ∗NG(n) = ∑
d ∣n

μ(d)d n
d

G (n
d
) = n∑

d ∣n
μ(d)G (n

d
) ≡ 0 (mod n).

Therefore, (4.2) holds.
Next, suppose (4.2) holds. Then

μ ∗ F(n) = N(n)G(n)

for some integer-valued arithmetic function G. This implies that

N ∗ μ ∗ F(n) = N ∗NG(n).(4.4)

Using Lemma 4.1(b), we deduce that the left-hand side of (4.4) is

N ∗ μ ∗ F(n) = φ ∗ F(n),

whereas the right-hand side of (4.4) is

N ∗NG(n) = ∑
d ∣n

d n
d

G (n
d
) = n∑

d ∣n
G(n/d) ≡ 0 (mod n).

Therefore, (4.1) holds. ∎

András used Theorem 4.3 to deduce from (1.6) that

∑
d ∣n

μ(d)φ(d) (n
d
)!dn/d ≡ 0 (mod n2).

We observe that András’ congruence is also a generalization of (1.3). If we apply
Theorem 4.3 to (1.5), we deduce the new congruence

∑
d ∣n

μ(d)φ(d) (n
d
)!dn/d an/d ≡ 0 (mod n2).(4.5)
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Applying Theorem 4.3 one more time to (4.5), we conclude that

∑
d ∣n

μ2(d) (n
d
)!dn/d an/d ≡ 0 (mod n2).(4.6)

Both congruences (4.5) and (4.6) are also generalizations of (1.3).
In the next section, we give a generalization of (4.5) and hence generalizations of

(1.5) and (4.6) using Theorem 4.3.
With Theorem 4.3, we can now conclude that the congruences

∑
d ∣n

φ(d)an/d ≡ 0 (mod n)(4.7)

and (1.7) are equivalent. Both (4.7) and (1.7) are generalizations of (1.1). We will now
give a brief history of (4.7) and (1.7). Congruence (4.7) was discovered by MacMahon
[11] using the following result of Moreau [12, p. 313].

Theorem 4.4 Let n be a positive integer, and let

n = α1 + α2 +⋯+ αs ,

where α1 , α2 , . . . , αs are positive integers. Let D = gcd(α1 , α2 , . . . , αs). Then

∑
d ∣D

φ(d) (n/d)!
(α1/d)!(α2/d)!⋯(αs/d)!

≡ 0 (mod n).

The works of MacMahon and Moreau are mentioned in Riordan’s book [16, p. 162,
Problem 37]. The approach to these congruences in [16] involves using the Redfield–
Polya theorem (see Stanley’s book [21, p. 394, Theorem 7.24.4]). Another proof of (4.7)
was given by Gegenbauer [10]. He used Theorem 1.1 and the identity [3, p. 26, Theorem
2.2]

∑
d ∣n

φ(d) = n ≡ 0 (mod n)(4.8)

to derive (4.7).
We now discuss (1.7). Congruence (1.7) in the case when a is a prime number is

probably known to C.F. Gauss. The expression
1
n∑d ∣n

μ(d)pn/d

counts the number of irreducible polynomials of degree n over the finite field of p
elements (see Cox’s book [6, p. 300, Theorem 11.2.4]). This means that (1.7), after
applying Dirichlet’s theorem of primes in arithmetic progression, is true for any
integer n such that (a, n) = 1. According to Dickson [7, p. 84], (1.7) was first stated
by Serret [19, p. 262] in 1855. One of the simplest proofs of (1.7) can be found in Szele’s
article [22] and Gegenbauer’s article [10]. See also an exercise in Rose’s book [18, p. 55,
Problem 11].

Another proof of (1.7), using Theorem 2.1, relies on counting the number of orbits
with exactly n elements for the group Z/nZ acting on X, the set of all necklaces
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obtained from beads which can be colored using a colors. Note that ∣X∣ = an . Let Nm
be the number of orbits with exactly m elements. Note that by (2.1), Nm is nonempty
if and only if m∣n. Therefore,

an = ∑
d ∣n

dNd .

Applying Lemma 4.2, we deduce that

nNn = ∑
d ∣n

μ(d)an/d ,

and (1.7) follows. For yet another proof of (1.7) using periodic points of a function,
see [1, p. 268].

5 A generalization of the Moser–Moser congruence

In this section, we derive the following generalization of the Moser–Moser congru-
ence.

Theorem 5.1 Let n, a, and b be positive integers. Then

∑
d ∣n

φ2(d) (n
d
)!dn/d an/d bd ≡ 0 (mod n2).(5.1)

It is immediate that (1.5) is a special case of (5.1) with b = 1.
By Theorem 1.1, we see that congruence (5.1) follows immediately from the follow-

ing.

Theorem 5.2 Let n and b be positive integers. Then

∑
d ∣n

φ2(d) (n
d
)!dn/d bd ≡ 0 (mod n2).(5.2)

We should note the difference between (5.2) and (1.5). Our congruence (5.2) is a
generalization of (1.4) in exactly the same manner that (1.5) is a generalization of (1.3).
We have not been able to find a proof of (5.2) which involves Theorem 2.1.

Proof Let n =
s
∏
j=1

pα j
j . Our aim is to show that for 1 ≤ j ≤ s,

∑
d ∣n

μ(d)φ(d) (n/d)!dn/d ad ≡ 0 (mod p2α j
j ).(5.3)

We note that it suffices to prove (5.3) for a fixed j. Let p = p1 and α = α1. We first
observe that the presence of μ(n) implies that

∑
d ∣n

μ(d)φ(d) (n/d)!dn/d ad = ∑
d ∣pp2⋯ps

μ(d)φ(d) (n/d)!dn/d ad .
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We pair up the divisors of pp2⋯ps as pν and ν, where (ν, p) = 1. We claim that for
each such pair of divisors, the terms corresponding to them satisfy

μ(pν)φ(pν)(pα−1�/ν)!(pν)pα−1�/ν apν + μ(ν)φ(ν)(pα�/ν)!νpα�/ν aν(5.4)
≡ 0 (mod p2α),

where � is given by � = n/pα . Congruence (5.4) would imply (5.3). Note that from
(5.4), we find that

μ(pν)φ(pν)(pα−1�/ν)!(pν)pα−1�/ν apν + μ(ν)φ(ν)(pα�/ν)!νpα�/ν aν

= μ(ν)φ(ν) (−φ(p)(pα−1�/ν)!(pν)pα−1�/ν apν + (pα�/ν)!νpα�/ν aν) .

Let

S1 = (pα�/ν)!νpα�/ν aν and S2 = φ(p)(pα−1�/ν)!(pν)pα−1�/ν apν .

It suffices to show that

S1 − S2 ≡ 0 (mod p2α).(5.5)

We divide our arguments into the following cases, according to the values of �/ν, α,
and p.

Case 1: �/ν ≥ 2. We note that (pα�/ν)! contains the factors 2pα and pα . Therefore,
p2α is a factor of S1. On the other hand, we see that

pα−1 �

ν
≥ 2α ≥ 2α.

Therefore, p2α divides ppα−1�/ν , and so is a factor of S2. Hence, (5.5) is true.
Case 2a: �/ν = 1 and α = 1. In this subcase, we find that

S1 − S2 = p!νp aν − (p − 1)νpapν = p((p − 1)!νp aν − (p − 1)νapν) ≡ 0 (mod p2),

where we have used Wilson’s theorem and Fermat’s Little Theorem.
Case 2b(i): �/ν = 1, α = 2 and p = 2. For these values, we see that

S1 − S2 = 4!ν4aν − 2!ν222a2ν = 23ν2aν(3ν2 − aν) ≡ 0 (mod 24)

since ν2aν(3ν2 − aν)must be even.
Case 2b(ii): �/ν = 1, α = 2, and p ≥ 3. We note that (p2)! contains the factors p2,

2p, and p. Hence, p4 divides S1. On the other hand, clearly, p3 divides (pν)p and so
p4 divides S2.

Case 2c: �/ν = 1 and α ≥ 3. We note that (pα)! contains the factors pα , pα−1, and p.
Hence, p2α divides S1. On the other hand,

pα−1 ≥ 2α−1 ≥ 2(α − 2).

Therefore, p2α−2 divides ppα−1
. Also, clearly, p2∣pα−1. Collectively, we see that p2α

divides S2.
Thus, all cases of the congruence (5.5) are proved, and this completes the proof of

the theorem. ∎
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Once again, by Theorem 4.3, we deduce the following theorem.

Theorem 5.3 Let n and b be positive integers. Then

∑
d ∣n

μ(d)φ(d) (n
d
)!dn/d bd an/d ≡ 0 (mod n2).(5.6)

By using Theorem 4.3 yet again, we deduce from (5.6) the following congruence:

∑
d ∣n

μ2(d) (n
d
)!dn/d bd an/d ≡ 0 (mod n2).

6 Analogues of Gegenbauer’s theorem

In this final section, we will derive a generalization of Gegenbauer’s theorem.

Theorem 6.1 Let n be a positive integer. Let F ∶ Z+ → Z and G be an arithmetic
function. Suppose

∑
d ∣n

μ(d)G(n/d) ≡ 0 (mod n).(6.1)

If

∑
d ∣n

F(d) ≡ 0 (mod n),(6.2)

then

∑
d ∣n

F(d)G(n/d) ≡ 0 (mod n).

The function G(n)which appears in Theorem 6.1 is known as a Dold sequence [4,
Definition 2.1].

Let a be a positive integer, and let

G(k) =
⎧⎪⎪⎨⎪⎪⎩

ak , if k∣n,
0, otherwise.

Then since (1.7) holds, we see that Theorem 6.1 implies Theorem 1.1.
Our proof of Theorem 6.1 follows Gegenbauer’s proof of Theorem 1.1. Another

proof of Theorem 6.1 can be found in a recent article of Wójcik [23]. The proof
given there is dependent on the equivalence of Newton sequence and Dold sequence
established by Du, Huang, and Li [8].

Proof of Theorem 6.1 We write (6.1) and (6.2) as

μ ∗G(n) = NH(n)
and

F ∗ u(n) = NK(n),(6.3)
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respectively, where H(�), K(�) ∈ Z for all � ∈ Z+. From (6.3) and Lemma 4.2, we
deduce that

F(n) = NK ∗ μ(n).

This implies that

F ∗G(n) = NK ∗ μ ∗G(n) = NK ∗NH(n)

= ∑
d ∣n

dH(d)n
d

K (n
d
) = nH ∗ K(n) ≡ 0 (mod n),

and the proof of Theorem 6.1 is complete. ∎

There are already several G(n) which we can choose from the congruences we
discussed in the previous sections. For example, we could identify G(n) from (5.6)
and deduce using Theorem 6.1 that if (6.2) holds, then

∑
d ∣n

F(d)φ(d) (n
d
)!dn/d bd ≡ 0 (mod n2).(6.4)

We may also apply Theorem 6.1 to a variant of Theorem 4.4, which we state as
follows (with φ replaced by μ via Theorem 4.3).

Theorem 6.2 Let n be a positive integer, and let

n = α1 + α2 +⋯+ αs ,

where α1 , α2 , . . . , αs are positive integers. Let D = gcd(α1 , α2 , . . . , αs). Then

∑
d ∣D

μ(d) (n/d)!
(α1/d)!(α2/d)!⋯(αs/d)!

≡ 0 (mod n).(6.5)

The function G(n) in (6.1) can now be identified from (6.5), allowing us to deduce
from Theorem 6.1 that if (6.2) holds, then

∑
d ∣D

F(d) (n/d)!
(α1/d)!(α2/d)!⋯(αs/d)!

≡ 0 (mod n).(6.6)

We may use combinations of Theorem 1.1, (6.4), and (6.6) to derive many new
congruences. For example, we have

∑
d ∣D

φ2(d) (n/d)!
(α1/d)!(α2/d)!⋯(αs/d)!

(n
d
)!dn/d bd an/d ≡ 0 (mod n2).
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