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ON UNSUPERSTABLE THEORIES IN GDST

MIGUEL MORENO

Abstract. We study the κ-Borel-reducibility of isomorphism relations of complete first-order theories
by using coloured trees. Under some cardinality assumptions, we show the following: For all theories T
and T’, if T is classifiable and T’ is unsuperstable, then the isomorphism of models of T’ is strictly above
the isomorphism of models of T with respect to κ-Borel-reducibility.

§1. Introduction. The interaction between Generalized Descriptive Set Theory
(GDST) and Classification theory has been one of the biggest motivation to study
the Borel reducibility in the Generalized Baire spaces. One of the main questions is to
determine if there is a counterpart of Shelah’s Main Gap Theorem in the Generalized
Baire Spaces (provable in ZFC). In [9] Mangraviti and Motto Ros study this for
classifiable shallow theories. In [6] Hyttinen, Weinstein (né Kulikov),1 and Moreno
showed the consistency of a counterpart of Shelah’s Main Gap Theorem in the Borel
reducibility hierarchy of the isomorphism relations (see preliminaries); indeed, it can
be forced.

Fact 1.1 (Hyttinen–Kulikov–Moreno [6, Theorem 7]). Suppose that κ = κ<κ =
�+, 2� > 2� , and �<� = �. There is a forcing notion P which forces the following
statement:

“If T1 is a classifiable theory and T2 is not, then the isomorphism relation of T1

is Borel reducible to the isomorphism relation of T2, and there are 2κ equivalence
relations strictly between them.”

In the same article the authors proved the following in ZFC.

Fact 1.2 (Hyttinen–Kulikov–Moreno [6, Corollary 2]). Suppose that κ = κ<κ =
�+ and �� = �. IfT1 is classifiable andT2 is stable unsuperstable, then the isomorphism
relation of T1 is Borel reducible to the isomorphism relation of T2.

In this article we will extend Fact 1.2 to unsuperstable theories, i.e., the unstable
case.

Theorem A. Suppose that κ = κ<κ = �+ is such that �� = �. If T1 is classifiable
and T2 is unsuperstable, then the isomorphism relation of T1 is Borel reducible to the
isomorphism relation of T2.
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2 MIGUEL MORENO

To prove Theorem A we will use the coloured trees tools developed in [5] by
Hyttinen and Weinstein (né Kulikov), and the tools used by Shelah in [11], to
construct models of unsuperstable theories. In [5] Hyttinen and Weinstein (né
Kulikov) used the coloured trees to construct models of an already fixed stable
unsuperstable theory in the context of the Generalized Baire spaces. In [11]
Shelah used ordered trees with � + 1 levels to construct non-isomorphic models
of unsuperstable theories.

The objective of Hyttinen and Weinstein (né Kulikov) was to use elements of
κκ to construct models of the theory T�+� , which is a stable unsuperstable theory.
The difficulties with this construction appear when we want to apply it to unstable
theories. Hyttinen and Weinstein (né Kulikov) constructed coloured trees for all
the elements of κκ, such that the classes of the isomorphism of coloured trees
are characterized by the classes of the equivalence modulo non-stationary. This
is relevant when we construct a Borel reduction. In [4], similar trees were used
to construct models of stable unsuperstable theories. In [4] the authors used the
isolation of types on stable theories (see F f� in [12, Chapter 4]). This is a limitation
for unstable theories.

On the other hand, the objective of Shelah was to use stationary sets to construct
as many models as possible for unsuperstable theories. Even though for each
unsuperstable theory, Shelah constructs 2κ models, this construction does not define
a Borel reduction. The problem comes when the ordered trees are constructed.

In Section 3 we will combine Hyttinen–Kulikov’s construction with Shela’s
construction. We use coloured trees to construct ordered trees; by doing this, we
ensure that the construction of the models will define a continuous reduction. To
construct the ordered trees from coloured trees we will use similar ideas to ones used
by Abraham in [1] to construct a rigid Aronszajn tree.

In [2] Fernandes, Moreno, and Rinot showed that the isomorphism relation of
unsuperstable theories can be forced to be analytically complete for κ a successor
cardinal. We will extend this result to inaccessible cardinals.

Theorem B. Suppose that κ = κ<κ is an inaccessible cardinal. There exists a< κ-
closed κ+-cc forcing extension in which: If T is unsuperstable, then the isomorphism
relation of T is analytically complete.

1.1. Organization of this paper. In Section 2 we recall the notion of ordered trees
of Shelah [11] and the notion of a (<κ, bs)-stable (κ, bs, bs)-nice linear order. The
notion of colorable orders is introduced and its properties are studied. The notion
of colorable linear orders is introduced to construct ordered trees in Section 3. In
this section we prove the existence of a (<κ, bs)-stable (κ, bs, bs)-nice κ-colorable
linear order, which is crucial for constructing ordered trees from the coloured trees
of Hyttinen–Kulikov [5].

In Section 3 we recall the notion of coloured trees of Hyttinen–Kulikov [5]. We
use a (<κ, bs)-stable (κ, bs, bs)-nice κ-colorable linear order to construct an ordered
coloured tree Af . An ordered coloured tree is both, an ordered tree as in [11] and a
coloured tree as in [5]. We prove that f =�� g holds if and only if Af ∼= Ag .
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ON UNSUPERSTABLE THEORIES IN GDST 3

In Section 4 we use the ordered coloured trees to construct generalized
Ehrenfeucht–Mostowski models. In this section we prove Theorem A and
Theorem B.

1.2. Preliminaries. During this paper we will work under the general assumption
that κ is a regular uncountable cardinal that satisfies κ = κ<κ and for all � < κ, �� <
κ. We will work only with first-order countable complete theories in a countable
language, unless something else is stated.

Let us recall some definitions and results on Generalized Descriptive Set Theory
(from now on GDST); for more on GDST see [4]. We will only review the definitions
and results that are relevant for the article.

The generalized Baire space is the set κκ endowed with the bounded topology; in
this topology the basic open sets are of the form

[�] = {� ∈ κκ | � ⊆ �},

where � ∈ κ<κ. The collection of κ-Borel subsets of κκ is the smallest set that
contains the basic open sets and is closed under union and intersection both of
length κ. A κ-Borel set is any set of this collection.

A function f : κκ → κκ is κ-Borel, if for every open set A ⊆ κκ the inverse image
f–1[A] is a κ-Borel subset of X. Let E1 and E2 be equivalence relations on κκ. We
say that E1 is κ-Borel reducible to E2 if there is a κ-Borel function f : κκ → κκ that
satisfies

(�, 	) ∈ E1 ⇐⇒ (f(�), f(	)) ∈ E2.

We call f a reduction of E1 to E2 and we denote this by E1 ↪→B E2. We will use
this notation instead of (≤B), because we will deal with the equivalence relations
=�S (Definition 1.3) and the notation could become heavy for the reader. In case f
is continuous, we say that E1 is continuously reducible to E2 and we denote it by
E1 ↪→c E2.

A subset X ⊆ κκ is a Σ1
1(κ) set of κκ if there is a closed set Y ⊆ κκ × κκ such

that the projection pr(Y ) := {x ∈ κκ | ∃y ∈ κκ, (x, y) ∈ Y} is equal to X. These
definitions also extend to the product space κκ × κκ. An equivalence relation E
is Σ1

1-complete if E is a Σ1
1(κ) set and every Σ1

1(κ) equivalence relation R is Borel
reducible to E.

The generalized Cantor space is the subspace 2κ. Since in this article we will only
work with κ-Borel and Σ1

1(κ) sets, we will omit κ, and refer to them as Borel and Σ1
1.

Definition 1.3. Given S ⊆ κ and � ≤ κ, we define the equivalence relation =�S
⊆ �κ × �κ, as follows:

� =�S 	 ⇐⇒ {α < κ | �(α) 
= 	(α)} ∩ S is non-stationary.

We will denote by =�� the relation =�S when S = {α < κ | cf(α) = �}. Let us
denote by CUB the club filter on κ and =�CUB the relation =�S when S = κ.

Definition 1.4. Let L = {Qm | m ∈ �} be a countable relational language. Fix
a bijection 
 between κ<� and κ. For every � ∈ κκ define the structure A� with
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4 MIGUEL MORENO

domain κ as follows. For every tuple (a1, a2, ... , an) in κn,

(a1, a2, ... , an) ∈ QA�
m ⇔ Qm has arity n and �(
(m, a1, a2, ... , an)) > 0.

Definition 1.5. Assuming T is a first-order theory in a relational countable
language, we define the isomorphism relation, ∼=T ⊆ κκ × κκ, as the relation

{(�, 	)|(A� |= T,A	 |= T,A� ∼= A	) or (A� 
|= T,A	 
|= T )}.

§2. Ordered trees.

2.1. Background. In [11], Shelah used ordered trees to construct non-isomorphic
models. That construction was focused on obtaining non-isomorphic models. This
is the reason why we have to modify the trees to adapt the construction to the
generalized Cantor space and such that for all f, g ∈ 2κ, f and g are =2

�-equivalent
if and only if the constructed models are isomorphic. Let us start by reviewing the
trees used by Shelah.

Let � be a countable ordinal, and we will denote by K�tr the class of ordered trees
with � + 1 levels.

Definition 2.1. Let K�tr be the class of models (A,≺, (Pn)n≤� , <, h), where:

(1) There is a linear order (I,<I ) such that A ⊆ I≤� .
(2) A is closed under initial segment.
(3) ≺ is the initial segment relation.
(4) h(�, 	) is the maximal common initial segment of � and 	.
(5) Let lg(�) be the length of � (i.e., the domain of �) and Pn = {� ∈ A | lg(�) =
n} for n ≤ �.

(6) For every � ∈ A define SucA(�) as {	 ∈ A | � ≺ 	 ∧ lg(	) = lg(�) + 1}. < is⋃
�∈A(< �SucA(�)), i.e., if 	 < � , then there is � ∈ A such that 	, � ∈ SucA(�).

(7) For every � ∈ A\P� , < �SucA(�) is the induced linear order from I, i.e.,

��〈x〉 < ��〈y〉 ⇔ x <I y.
(8) If � and 	 have no immediate predecessor and {� ∈ A | � ≺ �} = {� ∈ A |
� ≺ 	}, then � = 	.

To construct the models of unsuperstable theories, Shelah study the types of the
ordered trees. To do this study, the notions of κ-representation and CUB-invariant
are crucial.

Definition 2.2 (κ-representation). Let A be an arbitrary set of size at most
κ. The sequence A = 〈Aα | α < κ〉 is a κ-representation of A, if 〈Aα | α < κ〉 is
an increasing continuous sequence of subsets of A, for all α < κ, |Aα | < κ, and⋃
α<κ Aα = A.

Definition 2.3 (CUB-invariant). A functionH isCUB-invariant if the following
holds:

• The domain of H is the class of κ-representations of the models of some model
class K, where K contains only models of size at most κ.

• If I1 and I2 are κ-representations of I1, I2 ∈ K , respectively, and I1
∼= I2, then

H(I1) =2
CUB H(I2).
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ON UNSUPERSTABLE THEORIES IN GDST 5

Let us define for every H CUB-invariant and A ∈ K�tr , H(A) as the =2
CUB -

equivalence class of any A, κ-representation, i.e., [H(A)]=2
CUB

.
We will use some properties of formulas and types. For any L-structure A we

denote by at the set of atomic formulas of L and by bs the set of basic formulas of L
(atomic formulas and negation of atomic formulas). For all L-structures A, a ∈ A,
and B ⊆ A we define

tpbs(a, B,A) = {ϕ(x, b) | A |= ϕ(a, b), ϕ ∈ bs, b ∈ B}.

In the same way tpat(a, B,A) is defined.

Definition 2.4. Let A be a model, a ∈ A, and B,D ⊆ A. We say that
tpbs(a, B,A) (bs,bs)-splits over D ⊆ A if there are b1, b2 ∈ B such that
tpbs(b1, D,A) = tpbs(b2, D,A) but tpbs(a�b1, D,A) 
= tpbs(a�b2, D,A).

Definition 2.5. Let |A| ≤ κ, for a κ-representation A of A. Define Spbs(A) as
the set

{� < κ | � a limit ordinal, ∃a ∈ A [∀� < � (tpbs(a,A�, A) (bs,bs)-splits over A�)]}.

Remark 2.6. The function Spbs isCUB-invariant; this was stated in [11, Remark
1.10A] and proved in [8, Lemma 8.6 and page 232 above Definition 8.8]. This is
generally true under the assumption that for all � < κ, �� < κ, which is one of our
cardinal assumptions on κ above.

Definition 2.7.

• Let A be a model of size at most κ. We say that A is (κ, bs, bs)-nice if
Spbs (A) =2

CUB ∅.
• A ∈ K�tr of size at most κ, is locally (κ, bs, bs)-nice if for every � ∈ A\PA� ,

(SucA(�), <) is (κ, bs, bs)-nice, SucA(�) is infinite, and there is 	 ∈ PA� such
that � ≺ 	.

• A ∈ K�tr is (< κ, bs)-stable if for every B ⊆ A of size smaller than κ,

κ > |{tpbs (a, B,A) | a ∈ A}|.

In [11], Shelah used (<κ, bs)-stable locally (κ, bs, bs)-nice ordered trees to
construct the models of unsuperstable theories. In [8] Hyttinen and Tuuri give a
very good example of a (<κ, bs)-stable (κ, bs, bs)-nice linear order, which is crucial
for the construction of ordered trees.

Definition 2.8 (Hyttinen–Tuuri [8, Definition 3.2]). LetR be the set of functions
f : � → κ for which {n ∈ � | f(n) 
= 0} is finite. If f, g ∈ R, then f < g if and
only if f(n) < g(n), where n is the least number such that f(n) 
= g(n).

Fact 2.9 (Hyttinen–Tuuri [8, Lemma 8.17]).

• The linear order R is (< κ, bs)-stable and (κ, bs, bs)-nice.
• There is a κ-representation 〈Rα | α < κ〉 and a club C ⊆ κ such that for all
� ∈ C and � ∈ R there is � < � which satisfies the following:

∀� ∈ R� [� > � ⇒ ∃�′ ∈ R� (� ≥ �′ ≥ �)].
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6 MIGUEL MORENO

2.2. Colorable orders. As it was mentioned in the previous subsection, the linear
order plays a crucial role when we construct the ordered trees and therefore the
models. For our purpose, constructing ordered trees from coloured trees, we will
need to choose the right linear orders. The linear orders that we will use are the
colorable linear orders.

Definition 2.10. Let I be a linear order of size κ. We say that I is κ-colorable
if there is a function F : I → κ such that for all B ⊆ I , |B | < κ, b ∈ I \B , and p =
tpbs(b, B, I ) such that the following hold: For all α ∈ κ, |{a ∈ I | a |= p & F (a) =
α}| = κ.

We say that F is a κ-coloration of I, if F witnesses that I is a κ-colorable linear
order.

Notice that I is a κ-colorable order if every type over a small set is realizable if
and only if it is realizable by κ many elements. Under the assumption κ<κ = κ the
saturated model of DLO of size κ is κ-colorable but it is not (< κ, bs)-stable (DLO
is unstable). Clearly κ-colorable orders make us think of saturation. The interesting
κ-colorable orders are those in which not all the types over small sets are realizable.

Although the saturated model of DLO of size κ (assuming it exists due to the
cardinal assumptions) is κ-colorable, we cannot use it for our purpose. We need
a (< κ, bs)-stable linear order. We will construct a κ-colorable linear order that is
(< κ, bs)-stable; therefore, it is not κ-saturated (i.e., there are types over small sets
that are not realized).

We will modify the order of Definition 2.8 to construct a (< κ, bs)-stable
(κ, bs, bs)-nice κ-colorable linear order.

Definition 2.11. Let Q be the linear order of the rational numbers. Let κ ×Q

be ordered by the lexicographic order, and let I 0 be the set of functions f : � →
κ ×Q such that f(n) = (f1(n), f2(n)), for which {n ∈ � | f1(n) 
= 0} is finite. If
f, g ∈ I 0, then f < g if and only if f(n) < g(n), where n is the least number such
that f(n) 
= g(n).

Lemma 2.12. There is a κ-representation 〈I 0
α | α < κ〉 such that for all limit � < κ

and � ∈ I 0 there is � < � which satisfies the following:

I. ∀� ∈ I 0
� [� > � ⇒ ∃�′ ∈ I 0

� (� ≥ �′ ≥ �)].
II. If � /∈ I 0

� , then ∀� ∈ I 0
� [� > � ⇒ ∃�′ ∈ I 0

� (� > �′ > �)].

Proof. Let us start by defining the representation κ-representation 〈I 0
α | α < κ〉.

For all � < κ, let us define 〈I 0
α | α < κ〉 by

I 0
� = {� ∈ I 0 | �1(n) < � for all n < �}

it is clear that 〈I 0
α | α < κ〉 is a κ-representation.

Let us show item II, i.e., � /∈ I 0
� .

Suppose � /∈ I 0
� . Let � < � be max{�1(i) | i < n}, where n is the least number

such that �1(n) ≥ �.

Claim 2.12.1. � is as wanted, i.e.,

∀� ∈ I 0
� [� > � ⇒ ∃�′ ∈ I 0

� (� > �′ > �)].
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Proof. Let us suppose � ∈ I 0
� is such that � ≥ �. By the definition of I 0, there is

n < � such that �(n) > �(n) and n is the minimum number such that �(n) 
= �(n).
Since � ∈ I 0

� , for all m ≤ n, �1(m) ≤ �1(m) < �. Thus for all m ≤ n, �1(m) < � .
Let us divide the proof in two cases, �1(n) = �1(n) and �1(n) > �1(n).

Case 1. �1(n) = �1(n).
By the density of Q there is r such that �2(n) > r > �2(n). Let us define �′ by

�′(m) =

⎧⎪⎨
⎪⎩
�(m), if m < n,
(�1(n), r), if m = n,
0, otherwise.

Clearly � > �′ > �. Since �1(m) < � for all m ≤ n, �′ ∈ I 0
� .

Case 2. �1(n) > �1(n).
Let us define �′ by

�′(m) =

⎧⎪⎨
⎪⎩
�(m), if m < n,
(�1(n), �2(n) + 1), if m = n,
0, otherwise.

Clearly � > �′ > �. Since �1(m) < � for all m ≤ n, �′ ∈ I 0
� . �

The previous claim proves item II. From the proof of this claim we can see that
� 
= �′.

To prove item I, it is enough to prove the case � ∈ I 0.
Suppose � < κ is a limit and � ∈ I 0

� . It is clear that there is � < � such that � ∈ I 0
�

and the result follows. �

Now let us used the order I 0 to construct a (<κ, bs)-stable, (κ, bs, bs)-nice, and
κ-colorable linear order. Let us construct the linear orders 〈I i | i < κ〉 by induction,
such that for all i < j, I i ⊆ I j . Suppose i < κ is such that I i has been defined. For
all � ∈ I i let �i+1 be such that

�i+1 |= tpbs(�, I i\{�}, I i) ∪ {� > x}. (1)

Notice that �i+1 is a copy of � that is smaller than �. Let I i+1 = I i ∪ {�i+1 | � ∈ I i}.
Suppose i < κ is a limit ordinal such that for all j < i , I j has been defined, we

define I i by I i =
⋃
j<i I

j .
For all i < κ, let us define the κ-representation 〈I iα | α < κ〉 by induction as

follows:
Suppose i < κ is such that 〈I iα | α < κ〉 has been defined. For all α < κ,

I i+1
α = I iα ∪ {�i+1 | � ∈ I iα}.

Suppose i < κ is a limit ordinal such that for all j < i , 〈I jα | α < κ〉 has been defined,
we define 〈I iα | α < κ〉 by

I iα =
⋃
j<i

I jα .
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8 MIGUEL MORENO

Finally, let us define I as

I =
⋃
j<κ

I j

and the κ-representation 〈Iα | α < κ〉 as

Iα = I αα .

The linear order I can be constructed in a non-inductive way. For every � in I 0

we define a linear order L� , and we use I 0 to glue all these linear orders. To show
this construction in more detail (it will be useful in the proof of Lemma 2.23) and
be able to prove the main result of this section, we will need to develop the theory
of I.

Definition 2.13 (Generator). For all � ∈ I let us denote by o(�) the least ordinal
α < κ such that � ∈ I α . Let us denote the generator of � by Gen(�) and define it by
induction as follows:

• Geni (�) = ∅, for all i < o(�).
• Geni (�) = {�}, for i = o(�).
• For all i ≥ o(�),

Geni+1(�) = Geni (�) ∪ {� ∈ I i+1 | ∃� ∈ Geni (�) [�i+1 = �]}.
• For all i < κ limit,

Geni (�) =
⋃
j<i

Genj(�).

Finally, let

Gen(�) =
⋃
i<κ

Geni(�).

Notice that o(�) is a successor ordinal for all �. For clarity purposes let us fix the
following notation.

Notation. For all i < κ and � ∈ I i , we have defined �i+1 (see (1) above) as the
element generated by � in I i+1. We will also denote by (�)i+1 the element �i+1.
This is to avoid a saturated notation, such as �′i+1 when we work with the element
generated by �′ in I i+1.

Fact 2.14. Suppose � ∈ I . For all � ∈ Gen(�), � 
= �, there is n < � and a
sequence {�i}i≤n such that the following holds:

• �0 = �.
• For all j < n,

�j+1 = (�j)o(�j+1).

• � = �n = (�n–1)o(�).

Proof. Let � 
= � be such that � ∈ Gen(�). From Definition 2.13, we know that
� ∈ Geno(�)(�) andGeno(�)(�) ⊆ I o(�). Let us proceed by induction on o(�). Notice
that o(�) < o(�), so the induction starts with the case o(�) = o(�) + 1. Since o(�)
is a successor ordinal, the limit step of the induction is not required.
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For the case o(�) = o(�) + 1 it is easy to see from Definition 2.13 that � = �o(�)+1.
Thus �0 = � and � = �1 = (�0)o(�1) is the desire sequence, and n = 1.

Let o(�) = i + 1 > o(�) + 1 be such that for any � ∈ Geni(�) there are n < � and
a sequence {�j}j≤n such that the following holds:

• �0 = �;
• for all j < n,

�j+1 = (�j)o(�j+1);

• � = �n = (�n–1)o(�).

We know that � ∈ Geno(�)(�) = Geni+1(�). By Definition 2.13, there is � ∈
Geni(�) such that �i+1 = �. We conclude that n + 1 < � and the sequence {�i}i≤n+1

defined by:

• �0 = �0 = �;
• for all j ≤ n, �j = �j ;
• � = �n+1 = (�n)i+1

are as wanted. �
For every � ∈ I , � ∈ Gen(�), and � 
= �, we call the sequence {�i}i≤n of the

previous fact, the road from � to �. It is clear that for all � ∈ I \I 0, there is � ′ ∈ I 0

such that � ∈ Gen(� ′). Notice that for all � ∈ I , if � ∈ Gen(�), then � and � have
the same type of basic formulas over I o(�)\{�}. Even more, if {�i}i≤n is the road
from � to �, then for all i < n, �i and � have the same type of basic formulas over
I �\{�i}, where o(�i+1) = � + 1. Let us define the road from � to � by {�}.

It is clear that I is the orders Gen(�), for � ∈ I 0, glued by I 0. Let us show the
non-inductive construction of I in more detail.

Let us fix � ∈ I 0, � ∈ Gen(�), and let {�i}i≤n be the road from � to �. Let us
define f� : � → κ by

f�(i) =

{
o(�i), if i ≤ n,
0, otherwise.

Notice that for all �, �′ ∈ Gen(�), f� and f�′ are equal if and only if the road from
� to � is the same road from � to �′. Thus f� = f�′ if and only if � = �′. Since the
road from � to � is finite, {i < � | f�(i) 
= 0} is finite.

Let �, �′ ∈ Gen(�), and i the least number such that f�(i) 
= f�′(i). By the
construction of I, � > �′ holds if and only if one of the following holds:

• f�(i) = 0.
• f�(i) > f�′(i).

From the previous discussion on the functions f� , we can conclude that for all
�, � ′ ∈ I 0, the orders and (Gen(� ′), <) are isomorphic. Even more, this holds for all
�, �′ ∈ I .

Definition 2.15 (Generator order). Let Gen be the set of functions f : � → κ
such that the following holds:

• f(0) = 0.
• For all n < �, f(n) is either 0 or a successor ordinal.
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• There is n < � such that for all m > n, f(m) = 0.
• f�n + 1\{0} is strictly increasing.

Let f, g ∈ Gen and i the least number such that f(i) 
= g(i). Let us define <Gen
as follows: g <Gen f if and only if one of the following holds:

• f(i) = 0.
• g(i) < f(i).

From the discussion above, it is clear that for all � ∈ I 0, (Gen(�), <) andGen,<Gen
are isomorphic. Therefore I is isomorphic to I 0 ×Gen with the lexicographic order.
Notice that I is the ordersL� = {�} ×Gen glued by I 0; in particularL� andGen(�)
are isomorphic.

Now we proceed with the study of other properties of I. All the properties of I that
we will prove, can be proved using I 0 ×Gen. Nevertheless, we will use the inductive
construction in the proofs, to provide an intuitive point of view.

Fact 2.16. Let i, �, � be such that � ∈ I i� . Then for all � ∈ Gen(�), � ∈ I o(�)
� . In

particular for all j < κ

� /∈ I j� ⇒ � /∈ I j .

Proof. It follows from the construction of I o(�) and the κ-representation 〈I o(�)
α |

α < κ〉. �
Fact 2.17. For all �, � ∈ I , � ∈ Gen(�), if �′ ∈ I is such that � ≥ �′ ≥ �, then

�′ ∈ Gen(�).

Proof. If � = �, the result follows. Thus we only need to prove the case � 
= �.
Let us suppose towards contradiction that �′ /∈ Gen(�).

Case o(�) = o(�′). Since � and � have the same type of basic formulas over
I o(�)\{�}, � and � have the same type of basic formulas over I o(�

′)\{�}. Since
� ≥ �′ ≥ �, � = �′ a contradiction.

Case o(�′) < o(�). Since � ≥ �′, there is � ′ 
= �′ such that � ′ > �, o(� ′) = o(�′)
and � ∈ Gen(� ′). Thus � ′, �′, and � satisfy � ′ ≥ �′ ≥ �, o(� ′) = o(�′), and � ∈
Gen(� ′). The result follows from the previous case.

Case o(�) < o(�′). There is �0 ∈ I such that �0 > �′, o(�0) = o(�) and �′ ∈
Gen(�0). If � ≥ �0 ≥ �, then the result follows from the previous cases. Therefore,
we are only missing the case �0 ≥ � ≥ �′ ≥ �. Since �0 and �′ have the same type
of basic formulas of basic formulas over I o(�

0)\{�0}, �0 = � and �′ ∈ Gen(�) a
contradiction. �

From the previous fact we can conclude that for all �, � ∈ I such that � ∈ Gen(�),
� and � have the same type of basic formulas over I \Gen(�).

Lemma 2.18. For all i < κ, � < κ a limit ordinal, and � ∈ I i , there is � < � that
satisfies the following:

I. ∀� ∈ I i� [� > � ⇒ ∃�′ ∈ I i� (� ≥ �′ ≥ �)].
II. In particular, for all i < κ, � < κ a limit ordinal, and � ∈ I i\I i� , there is � < �

that satisfies the following:

∀� ∈ I i� [� > � ⇒ ∃�′ ∈ I 0
� (� > �′ > �)].
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Proof. Notice that if � ∈ I i� , then there is � < � such that � ∈ I i� and the result
follows for � = �. So we only have to prove the lemma when � ∈ I i\I i� (the second
part of the lemma).

We will proceed by induction over i. The case i = 0 is precisely Lemma 2.12 II.
Let us suppose i < κ is such that for all limit ordinal � < κ and � ∈ I i\I i� , there is
� < � that satisfies II. Let � < κ be a limit ordinal and � ∈ I i+1\I i+1

� . We have two
cases, � ∈ I i and � ∈ I i+1\I i .

Case � ∈ I i . By the induction hypothesis, we know that there is � < � such that
II holds. Let us prove that this � is the one we are looking for. Let � ∈ I i+1

� be such
that � > �. The subcase � ∈ I i� follows from the way � was chosen.

Subcase � ∈ I i+1
� \I i� . By the construction of I i+1, there is �0 ∈ I i� such that � =

(�0)i+1 (so �0 > �). Thus �0 > � > �, and by the way � was chosen, there is �′ ∈ I 0
�

such that �0 > �
′ > �. Since �0 and � have the same type of basic formulas over

I i\{�0}, � > �′ > � as we wanted.
Case � ∈ I i+1\I i . By the construction of I i+1, there is �0 ∈ I i such that (�0)i+1 =

�. Since � ∈ Gen(�0) and � ∈ I i+1\I i+1
� , by Fact 2.16 �0 ∈ I i\I i� . Thus, by the

previous case, there is � < � such that for all � ∈ I i+1
� ,

� > �0 ⇒ ∃�′ ∈ I 0
� (� > �′ > �0).

Let us show that this � is as wanted.

Claim 2.18.1. If � ∈ I i+1
� is such that � > �, then � > �0.

Proof. Let us suppose, towards contradiction, that there is � ∈ I i+1
� such that

�0 > � > �. Since �0 and � have the same type of basic formulas over I i\{�0},
� ∈ I i+1

� \I i . Therefore, there is �0 ∈ I i such that (�0)i+1 = �. Since � ∈ Gen(�0)
and � ∈ I i+1

� , �0 ∈ I i� . We conclude that �0 
= �0. Finally, �0 and � have the same type
of basic formulas over I i\{�0}, which implies �0 > �0 > � > �. This contradicts the
fact that �0 and � have the same type of basic formulas over I i\{�0}. �

From the previous claim, we know that for all � ∈ I i+1
� , � > � implies � > �0. By

the way � was chosen we conclude that for all � ∈ I i+1
� , � > � implies the existence

of �′ ∈ I 0
� such that � > �′ > �0 > �, as we wanted.

Let us proceed with the limit case. Suppose i < κ is a limit ordinal such that for
all j < i , for all limit ordinal � < κ, and � ∈ I j\I j� , there is � < � such that II holds
for j. Let � < κ be a limit ordinal and � ∈ I i\I i� . Since i is a limit, o(�) < i , by the
induction hypothesis, there is � such that II holds for o(�).

Claim 2.18.2. � is as wanted.

Proof. Let � ∈ I i� be such that � > �.

Case � ∈ I o(�)� . This case follows from the way � was chosen.

Case � ∈ I i� \I
o(�)
� . There is �0 ∈ I o(�)� such that � ∈ Gen(�0), with road to �

equal to {�i}i≤n such that �1 /∈ I o(�). Therefore �0 and � have the same type of
basic formulas over I �\{�0}, where o(�1) = � + 1. In particular �0 and � have the
same type of basic formulas over I o(�)\{�0}. By the way � was chosen, there is
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�′ ∈ I 0
� ⊆ I o(�)� such that �0 > �

′ > �. Since �0 and � have the same type of basic

formulas over I o(�)\{�0}, � > �′ > � as wanted. �
�

As it can be seen in the previous lemma, the witness �′ can be chosen in I 0
� , when

� /∈ I i� .
Lemma 2.19. For all � < κ limit, and � ∈ I , there is � < � that satisfies the

following:

∀� ∈ I� [� > � ⇒ ∃�′ ∈ I� (� ≥ �′ ≥ �)].

Proof. Let � < κ be a limit ordinal, and � ∈ I . We have three different cases:
� ∈ I� , � ∈ I o(�)� \I� , and � /∈ I o(�)� .

Case � ∈ I� . Since � is a limit, o(�) < � and there is � < � such that � ∈ I o(�)� . Let
� = max{o(�), �}; it is clear that � is as wanted.

Case � ∈ I o(�)� \I� . Recall I� = I �� ; clearly � < o(�). There is �0 ∈ I� , such that
� ∈ Gen(�0), with the road to � equal to {�i}i≤n, and �1 /∈ I � . Since �0 ∈ I �� and � is

a limit, o(�0) < � and there is � < � such that �0 ∈ I o(�0)
� . Let � = max{o(�0), �}.

Claim 2.19.1. � is as wanted.

Proof. Let � ∈ I �� be such that � > �. Since �1 /∈ I � , o(�1) = � + 1 > �, and �0
and � have the same type of basic formulas over I �\{�0}. In particular �0 and � have
the same type of basic formulas over I �\{�0}, so � > �0 > �. Since �0 ∈ I �� , �′ = �0
is as wanted. �

Case � /∈ I o(�)� . Let � = max{o(�), �}; thus � ∈ I � (notice that we are talking
about the order I � and not the element I� of the κ-representation 〈Iα | α < κ〉) and
by Lemma 2.18 there is � < � which satisfies the following:

∀� ∈ I �� [� > � ⇒ ∃�′ ∈ I 0
� (� > �′ > �)].

Claim 2.19.2. � is as wanted.

Proof. Let � ∈ I �� be such that � > �. Since � ≤ �, � ∈ I �� . Therefore, there is
�′ ∈ I 0

� such that � > �′ > �. The claim follows from I 0
� ⊆ I �� = I� . �

�
Fact 2.20 (Hyttinen–Tuuri [8, Lemma 8.12]). Let A be a linear order of size κ

and 〈Aα | α < κ〉 a κ-representation. Then the following are equivalent:
(1) A is (κ, bs, bs)-nice.
(2) There is a club C ⊆ κ, such that for all limit � ∈ C , for all x ∈ A there is � < �

such that one of the following holds:
• ∀� ∈ A� [� ≥ x ⇒ ∃�′ ∈ A� (� ≥ �′ ≥ x)].
• ∀� ∈ A� [� ≤ x ⇒ ∃�′ ∈ A� (� ≤ �′ ≤ x)].

The previous fact is stated as it is in [8]. Due to Lemma 2.19, the second bullet
point of item (2) is not needed for our purposes. The following corollary follows
from Lemma 2.19.
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Corollary 2.21. I is (κ, bs, bs)-nice.

Notice that if κ is inaccessible, I is (< κ, bs)-stable. This can be generalize to
successors κ.

Lemma 2.22. Suppose κ = �+. I 0 is (< κ, bs)-stable.

Proof. Recall the linear order R from Definition 2.8. From the general
assumption on κ, we know that �� = �.

For allA ⊆ I 0 definePr(A) as the set {f1 | f ∈ A}. LetA ⊆ I 0 be such that |A| <
κ. Since |Q| = �, |{tpbs(a,A, I 0) | a ∈ I 0}| ≤ |{tpbs(a, Pr(A),R) | a ∈ R} × 2�|.
By Fact 2.9 and since �� = �, |{tpbs(a,A, I 0) | a ∈ I }| < κ. �

Lemma 2.23. Suppose κ = �+. I is (< κ, bs)-stable.

Proof. Let us fix A ⊂ I such that |A| < κ. From Fact 2.17, for all a ∈ I and
� ∈ I 0 such that a ∈ Gen(�) the following holds:

b |= tpbs(a,A, I ) ⇔ b |= tpbs(�, A\Gen(�), I ) ∪ tpbs(a,A ∩Gen(�), Gen(�)).

Thus for all a ∈ I and � ∈ I 0 with a ∈ Gen(�), the type of a is determined by
tpbs(�, A\Gen(�), I ) and tpbs(a,A ∩Gen(�), Gen(�)). Let A′ ⊆ I 0 be such that the
following hold:

• For all x ∈ A there is y ∈ A′, x ∈ Gen(y).
• For all y ∈ A′ there is x ∈ A, x ∈ Gen(y).

Clearly |A′| ≤ |A|, and by Fact 2.17, for all � ∈ I 0, tpbs(�, A\Gen(�), I ) is
determined by tpbs(�, A′\{�}, I 0). So for all a ∈ I and � ∈ I 0 with a ∈ Gen(�),
tpbs(a,A, I ) is determined by tpbs(�, A′\{�}, I 0) and tpbs(a,A ∩Gen(�), Gen(�)).
Therefore |{tpbs(a,A, I ) | a ∈ I }| is bounded by

|{tpbs(�, A′, I 0) | � ∈ I 0}| × Sup({α� | � ∈ I 0}),

where

α� = |{tpbs(a,A ∩Gen(�), Gen(�)) | a ∈ Gen(�)}|.

Claim 2.23.1. For all � ∈ I 0, Gen(�) with the induced order is (< κ, bs)-stable.

Proof. Recall the order (Gen,<Gen). By the non-inductive construction of I, it
is enough to show that (Gen,<Gen) is (<κ, bs)-stable.

Let D ⊆ Gen be such that |D| < κ, and let

� = sup{f(n) + 1 | f ∈ D & n < �}.

Since for all f ∈ A, f is constant to 0 starting at some m, � < κ. On the other
hand, for all f, g ∈ Gen, f and g eventually become constants to 0, and the order
f <Gen g (or g <Gen f) is determined by the values of f(i) and g(i), where i is the
least ordinal such thatf(i) 
= g(i). Therefore, for all f ∈ Gen, tpbs(f,D,Gen) is
entirely determined by the coordinates n of f in which f(n) is smaller than � + 1.
Since �� = �, and � < κ, |{tpbs(f,D,Gen) | f ∈ Gen}| ≤ |�<�| ≤ � < κ. �

From the previous claim, we conclude that for all � ∈ I 0, α� < κ. Since κ =
�+, Sup({α� | � ∈ I 0}) ≤ �. From Lemma 2.22 we know that |{tpbs(�, A′, I 0) | � ∈
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I 0}| < κ, so |{tpbs(�, A′, I 0) | � ∈ I 0}| ≤ �. We conclude |{tpbs(a,A, I ) | a ∈ I }| <
κ. �

Theorem 2.24. There is a (<κ, bs)-stable (κ, bs, bs)-nice κ-colorable linear order.

Proof. From Corollary 2.21 and Lemma 2.23, we only need to show that I is
κ-colorable. For all � ∈ I let us define SuccI (�) as follows:

SuccI (�) = {� ∈ I | � = �o(�)}.
We use the same notation of ordered trees because I can be seen as an ordered tree.
Notice that for all � ∈ I , |SuccI (�)| = κ and either o(�) = 0, or there is a unique
� ′ ∈ I such that � = (� ′)o(�) (i.e. � ∈ SuccI (� ′)).

Let us fix G : κ → κ × κ a bijection, and G1, G2 be the functions such that
G(α) = (G1(α), G2(α)). For all � ∈ I let us fix a bijection g� : SuccI (�) → κ. Let
us define F : I → κ by

F (�) =

{
0, if o(�) = 0,
G1(g�′(�)), where (� ′)o(�) = �.

Claim 2.24.1. F is a κ-coloration of I.

Proof. LetB ⊆ I , |B | < κ, b ∈ I \B , and p = tpbs(b, B, I ). Since |B | < κ, there
is � < κ such that B ⊂ I � . Let � = max{o(b), �}, so for all � ∈ {a ∈ SuccI (b) |
o(a) > �}, b and � have the same type of basic formulas over I �\{b}. In particular
for all � ∈ {a ∈ SuccI (b) | o(a) > �}, � |= p. By the way F was defined, we conclude
that for any α < κ, |{a ∈ SuccI (b) | o(a) > � & F (a) = α}| = κ. Which implies
that for any α < κ, |{a ∈ SuccI (b) | a |= p & F (a) = α}| = κ. �

�

§3. Ordered coloured trees.

3.1. Coloured trees. We will use the κ-colorable linear order I to construct trees
with � + 1 levels, Af(I ), for every f ∈ κκ with the property Af(I ) ∼= Ag(I ) if
and only if f =κ� g. These tress will be a mix of coloured tree and ordered trees.
For clarity and to avoid misunderstandings, in this section we will denote trees by
(T,≺). Later on we will see that ≺ is the initial segment relation of the trees that
we construct. The coloured trees that we will use in this section, are essentially the
same trees used by Hyttinen and Weinstein (né Kulikov) in [5] and by Hyttinen and
Moreno in [7].

Let t be a tree; for every x ∈ t we denote by ht(x) the height of x, the order type
of {y ∈ t|y ≺ x}. Define (t)α = {x ∈ t|ht(x) = α} and (t)<α = ∪�<α(t)� , denote
by x�α the unique y ∈ t such that y ∈ (t)α and y ≺ x. If x, y ∈ t and {z ∈ t|z ≺
x} = {z ∈ t|z ≺ y}, then we say that x and y are ∼-related, x ∼ y, and we denote
by [x] the equivalence class of x for ∼.

An α, �-tree is a tree t with the following properties:

• |[x]| < α for every x ∈ t.
• All the branches have order type less than � in t.
• t has a unique root.
• If x, y ∈ t, x and y have no immediate predecessors and x ∼ y, then x = y.
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Definition 3.1. Let � be a cardinal smaller than κ, and � a cardinal smaller
than or equal to κ. A coloured tree with � colors is a pair (t, c), where t is a κ+,
(�+ 2)-tree and c is a map c : (t)� → � (the color function).

Two coloured trees (t, c) and (t′, c′) are isomorphic, if there is a tree isomorphism
f : t → t′ such that for every x ∈ (t)�, c(x) = c′(f(x)). We will denote by ∼=ct the
isomorphism of coloured trees

We will only consider trees in which every element with height less than �, has
infinitely many immediate successors, and every maximal branch has order type
�+ 1. Notice that the intersection of two distinct branches has order type less than
�. We can see every coloured tree as a downward closed subset of κ≤�. In this section
all the coloured trees have � = �.

An ordered coloured tree with � colors, � ≤ κ, is a tree T ∈ K�tr with a color
function c : (t)� → � .

We will follow the construction used in [5, 7].
Let us start from coloured trees which are subsets of (� × κ4)≤� , and let us make

some preparation before the actual construction. Order the set � × κ × κ × κ ×
κ lexicographically, (α1, α2, α3, α4, α5) > (�1, �2, �3, �4, �5) if for some 1 ≤ k ≤ 5,
αk > �k and for every i < k, αi = �i . Order the set (� × κ × κ × κ × κ)≤� as a tree
by initial segments.

For all f ∈ �κ, define the tree (Rf, rf) as: Rf be the set of all strictly increasing
functions from some n ≤ � to κ, and rf be the color function such that for each �
with domain �, rf(�) = f(sup(rng(�))).

For every pair of ordinals α and �, α < � < κ, and i < �, define

R(α, �, i) =
⋃
i<j≤�

{� : [i, j) → [α, �) | � strictly increasing}.

Definition 3.2. Ifα < � < κ andα, �, � 
= 0, let {Zα,�� |� < κ} be an enumeration
of all downward closed subtrees of R(α, �, i) for all i, in such a way that each
possible coloured tree appears cofinally often in the enumeration. Let Z0,0

0 be the
tree (Rf, rf).

This enumeration is possible because there are at most |
⋃
i<� P(R(α, �, i))| ≤

� × κ = κ downward closed coloured subtrees. Since for all � < κ, |R(α, �, i)| < κ
there are at most κ × κ<κ = κ coloured trees.

Definition 3.3. Let � ≤ κ be a cardinal. Define for every f ∈ �κ the coloured
tree (Jf, cf) with � colors, by the following construction. Let Jf = (Jf, cf) as the
tree of all � : s → � × κ4, where s ≤ �, ordered by endextension, and such that
the following conditions hold for all i, j < s : Denote by �i , 1 < i < 5, the functions
from s to κ that satisfies

�(n) = (�1(n), �2(n), �3(n), �4(n), �5(n)).

(1) ��n ∈ Jf for all n < s .
(2) � is strictly increasing with respect to the lexicographical order on � × κ4.
(3) �1(i) ≤ �1(i + 1) ≤ �1(i) + 1.
(4) �1(i) = 0 implies �2(i) = �3(i) = �4(i) = 0.
(5) �1(i) < �1(i + 1) implies �2(i + 1) ≥ �3(i) + �4(i).
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(6) �1(i) = �1(i + 1) implies �k(i) = �k(i + 1) for k ∈ {2, 3, 4}.
(7) If for some k < �, [i, j) = �–1

1 {k}, then

�5�[i,j) ∈ Z
�2(i),�3(i)
�4(i) .

Note that (7) implies Z�2(i),�3(i)
�4(i) ⊂ R(α, �, i).

(8) If s = �, then either
(a) there exists a natural number m such that �1(m – 1) < �1(m), for every
k ≥ m �1(k) = �1(k + 1), and the color of � is determined byZ�2(m),�3(m)

�4(m) :

cf(�) = c(�5�[m,�)),

where c is the coloring function of Z�2(m),�3(m)
�4(m) ,

or
(b) there is no such m and then cf(�) = f(sup(rng(�5))).

Notice that for every f ∈ �κ and � < κ with cf(�) = �, there is � ∈ Jf such that
rng(�1) = � and �5 is cofinal to �. This � can be constructed by taking 〈	(i) | i < �〉
a cofinal sequence to �, let �1 = id ; let �2, �3, and �4 be such that for every i < �,
	�{i} ∈ Z�2(i),�3(i)

�4(i) . Finally let �5�{i} = 	�{i}. It is clear that � ∈ Jf , rng(�1) = �,

and �5 is cofinal to �. In particular this � satisfies cf(�) = f(�).

Fact 3.4 (Hyttinen–Kulikov [5, Lemma 2.5]; Hyttinen–Moreno [7, Lemma 4.7]).
Suppose κ is such that for all � < κ, �� < κ. For every f, g ∈ �κ the following holds:

f =�� g ⇔ Jf ∼=ct Jg ,

where ∼=ct is the isomorphism of coloured trees.

The previous fact is an important step in [5, 7] to construct a reductions from =2
�

to the isomorphism relation of different stable unsuperstable theories. We will use
the coloured trees Jf to construct ordered coloured trees. Before we start with the
construction of the ordered coloured trees, let us prove an important property of
the coloured trees.

Lemma 3.5. For every f ∈ �κ, � < � , and � ∈ (Jf)<� , there is 	 ∈ (Jf)� such
that � ≺ 	 and cf(	) = �.

Proof. Let f ∈ �κ, such that � ∈ (Jg)<� , and n = dom(�).
Let us construct 	, � ≺ 	 and cf(	) = �.

• 	�n = �.
• If n ≤ m < �,

– 	1(m) = 	1(n – 1) + 1.
– 	2(m) = 	3(n – 1) + 	4(n – 1).
– 	3(m) = 	2(n) + �.
– Let � and � be such that dom(�) = [n,�), � ∈ Z	2(n),	3(n)

� with c(�) = �.
Such � and � exist by Definition 3.2.

– 	4(m) = �.
– 	5�[n,�) = �.
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By the way we defined 	, we know that 	 ∈ Jf and � ≺ 	. By the item (8)(a) on
the construction of Jf , we know that cf(	) = c(	5�[n,�)) = �. �

Notice that for any f, g ∈ �κ, Jf and Jg are isomorphic as trees but not as
coloured trees. This is because f is only used to define the color function of Jf .

3.2. Construction of ordered coloured trees. For each f ∈ �κ we will use the
coloured trees Jf to construct ordered coloured trees, which will be the base for the
construction of the models in Section 4.

Let us define the following subtrees:

Jαf = {� ∈ Jf | ∃� < α (rng(�) ⊂ � × �4)}.

Notice that J 0
f = {∅} and dom(∅) = 0. Let us denote by acc(κ) = {α < κ | α = 0

orα is a limit ordinal}. For all α ∈ acc(κ) and � ∈ Jαf with dom(�) = m < � define

Wα
� = {� | dom(�) = [m, s), m ≤ s ≤ �, ��� ∈ Jα+�

f , ��(� � {m}) /∈ Jαf }.

Notice that by the way Jf was constructed, for every � ∈ Jf with finite domain and
α < κ, the set

{(�1, �2, �3, �4, �5) ∈ (� × κ4)\(� × α4) | ��(�1, �2, �3, �4, �5) ∈ Jα+�
f }

is either empty or has size �. Let �α� be an enumeration of this set, when this set is
not empty.

Let us denote by T = (κ × � × acc(κ) × � × κ × κ × κ × κ)≤� . For every 	 ∈
T there are functions {	i ∈ κ≤� | 0 < i ≤ 8} such that for all i ≤ 8, dom(	i) =
dom(	) and for all n ∈ dom(	), 	(n) = (	1(n), 	2(n), 	3(n), 	4(n), 	5(n), 	6(n),
	7(n), 	8(n)). For every 	 ∈ T let us denote (	4, 	5, 	6, 	7, 	8) by 	.

Definition 3.6. For all α ∈ acc(κ) and � ∈ T with � ∈ Jf , dom(�) = m < �
define Γα� as follows:

If � ∈ Jαf , then Γα� is the set of elements 	 of T such that:

(1) 	�m = �,
(2) 	�dom(	)\m ∈Wα

� ,

(3) 	3 is constant on dom(	)\m,
(4) 	3(m) = α,
(5) for all n ∈ dom(	)\m, let 	2(n) be the unique r < � such that �α� (r) = 	(n),

where � = 	�n.

If � /∈ Jαf , then Γα� = ∅.

Notice that 	2(n) and 	3(n) can be calculated from 	(n) and �.
For � ∈ T with � ∈ Jf , dom(�) = m < � define

Γ(�) =
⋃

α∈acc(κ)

Γα� .

Finally we can define Af by induction. Let Tf(0) = {∅} and for all n < �,

Tf(n + 1) = Tf(n) ∪
⋃

�∈Tf (n) dom(�)=n

Γ(�),
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and for n = �,

Tf(�) =
⋃
n<�

Tf(n).

For 0 < i ≤ 8 let us denote by si(�) = sup{�i(n) | n < �} and s�(�) =
sup{si(�) | i ≤ 8}, finally

Af = Tf(�) ∪ {� ∈ T | dom(�) = �,∀m < �(� �m ∈ Tf(�))}.
Define the color function df by

df(�) =

{
cf(�), if s1(�) < s�(�),
f(s1(�)), if s1(�) = s�(�).

(2)

It is clear thatAf is closed under initial segments; indeed, the relations≺, (Pn)n≤� ,
and h of Definition 2.1 have a canonical interpretation in Af .

Now we finish the construction of Af by using the κ-colorable linear order I.
We only have to define < �SucAf (�) for all � ∈ Af with finite domain. Properly
speaking, Af will not be an ordered coloured tree as in Definition 2.1, but it will be
isomorphic to an ordered coloured tree as in Definition 2.1.

Let us proceed to define < �SucAf (�). Let F : I → κ be a κ-coloration of I.
For any � ∈ Af with domain m < �, we will define the order < �SucAf (�) such

that it is isomorphic to I and satisfies the following:
(∗) For any setB ⊂ SucAf (�) of size less than κ, p(x) a type of basic formulas over

B in the variable x, and any tuple (�2, �3) ∈ � × acc(κ) with �3 ≥ �3(m – 1), if p(x)
is realized in SucAf (�), then there are κ many � < κ such that ��(�, �2, �3, �

�3
� (�2)) |=

p(x).
By the construction of Af , an isomorphism between {(�1, �2, �3) ∈ κ × � ×

acc(κ) | �3 ≥ �3(m – 1)} and I, induces an order in SucAf (�).

Definition 3.7. Recall the coloration F of I in Theorem 2.24. For all �, α < κ,
let fix bijections G̃� : {(�2, �3) ∈ � × acc(κ) | �3 ≥ �} → κ and H̃α : F –1[α] → κ.
Notice that these functions exist because F is a κ-coloration of I and there are κ
tuples (�2, �3) of this form.

Let us define G̃� : {(�1, �2, �3) ∈ κ × � × acc(κ) | �3 ≥ �} → I , by G̃�((�1, �2, �3))
= a where a and α are the unique elements that satisfy:

• G̃�((�2, �3)) = α;
• H̃α(a) = �1.

For any � ∈ Af with domain m < � and �3(m – 1) = �, the isomorphism G̃�
induces an order in SucAf (�). Let us define< �SucAf (�) as the induced order given
by G̃� .

Fact 3.8. Suppose � ∈ Af has domain m < � and �3(m – 1) = �. Then
< �SucAf (�) satisfies (∗).

Proof. Let b ∈ SucAf (�), (�2, �2) ∈ � × acc(κ) such that �3 ≥ �3(m – 1) = �,
and B ⊆ SucAf (�) have size less than κ. Let us denote by q the type

tpbs(G̃�(b1, b2, b3), G̃�(B ∩ (κ × � × acc(κ))), I ).
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By the construction of G̃� , since F is a κ-coloration of I,

|{a ∈ I | a |= q & F (a) = G̃�(�2, �3)}| = κ.

Therefore, for all a such that a |= q and F (a) = G̃�(�2, �3),

��(H̃G̃� ((�2,�3))(a), �2, �3, �
�3
� (�2)) |= p. �

It is clear that (Af,≺, (Pn)n≤�,<, h) is isomorphic to a subtree of I≤� in the
sense of Definition 2.1.

Remark 3.9. Notice that for any � ∈ Af , < �SucAf (�) is isomorphic to I.
Therefore, for any �, � ∈ Af , < �SucAf (�) and < �SucAf (�) are isomorphic. Even
more, the construction of < �SucAf (�) only depends on �3(m – 1), where m < � is
the domain of �.

Notice that the only property we used from I to construct the ordered coloured
trees was that it is a κ-colorable linear order. Therefore the construction can be done
with any κ-colorable linear order.

Theorem 3.10. Suppose f, g ∈ �κ, then f =�� g if and only if Af ∼= Ag (as
ordered coloured trees).

Proof. For every f ∈ �κ let us define the κ-representation Af = 〈Afα | α < κ〉
of Af ,

Afα = {� ∈ Af | rng(�) ⊆ � × � × � × � × �4 for some � < α}.

Let f and g be such that f =�� g. Thus, there is G a coloured tree isomorphism
between Jf and Jg . LetC ⊆ κ be a club such that {α ∈ C | cf(α) = �} ⊆ {α < κ |
f(α) = g(α)}. We will show that there are sequences {αi}i<κ and {Fi}i<κ with the
following properties:

• {αi}i<κ is a club.
• If i is a successor, then there is � ∈ C such that αi–1 < � < αi .
• If i = � + n and n is odd, Fi is a partial isomorphism between Af and Ag , and
A
f
αi ⊆ dom(Fi ).

• If i = � + n and n is even, Fi is a partial isomorphism betweenAf andAg , and
Agαi ⊆ rng(Fi ).

• If i is limit, then Fi : Afαi → A
g
αi .

• If i < j, then Fi ⊆ Fj .
• For all � ∈ dom(Fi ), G(�) = Fi (�).

We will proceed by induction over i, for the case i = 0, let α0 = 0 and F0(∅) = ∅.
Suppose i = � + n with n even is such that Fi is a partial isomorphism, Agαi ⊆
rng(Fi) for all j < i , Fj ⊆ Fi , and G(�) = Fi(�) for all � ∈ dom(Fi).

Let us choose αi+1 to be a successor ordinal such that αi < � < αi+1 holds for
some � ∈ C and enumerate Afαi by {�j | j < Ω} for some Ω < κ. Denote by Bj the
set {x ∈ Afαi+1\dom(Fi) | �j ≺ x}.

By the induction hypothesis, we know that for all j < Ω, x ∈ Bj , Fi(�j) ≺ G(x).
By Remark 3.9, for all � ∈ Af and 	 ∈ Ag , < �SucAf (�) and < �SucAg (	) are
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isomorphic. Thus, since |Afαi |, |B0| < κ, by (∗) there is an embedding F 0
i from

(Afαi ∪ B0,≺, <) to (Ag,≺, <) that extends Fi and for all � ∈ dom(F 0
i ), F 0

i (�) =
G(�).

For the case Bj for j > 0, let us suppose that t < Ω is such that the following
hold:

• There is a sequence of embeddings {F ji | j < t}, where F ji is an embedding

from (Afαi ∪
⋃
l≤j Bl ,≺, <) into Ag .

• F li ⊆ F
j
i holds for all l < j < t.

• For all � ∈ dom(F ji ), F ji (�) = G(�).

Since |Afαi ∪
⋃
j<t Bj |, |Bt | < κ, by (∗) there is an embedding F ti from (Afαi ∪⋃

j≤t Bj,≺, <) to (Ag,≺, <) that extends
⋃
j<t F

j
i and for all � ∈ dom(F ti ),F ti (�) =

G(�).
Finally Fi+1 =

⋃
j<Ω F

j
i is as wanted.

The case i = � + n with n odd is similar. For i limit, we define αi =
⋃
j<i αj and

Fαi =
⋃
j<i Fj .

It is clear that F =
⋃
j<κ Fj witnesses that Af and Ag are isomorphic as ordered

trees. Let us show that df(�) = dg(F (�)), and suppose � ∈ Af is a leaf. Let l be the
least ordinal such that � ∈ Afαl . If there is n < � such that for all j < l , ��n /∈ Afαj ,
then by the way F was constructed, df(�) = dg(F (�)). On the other hand, if for all
n < � there is j < l such that ��n ∈ Afαj , then there is an �-cofinal ordinal i such
that s�(�) = αi and i + 1 = l .

By the construction of Af (recall equation (2)) we know that

df(�) =

{
cf(�), if s1(�) < s�(�),
f(s1(�)), if s1(�) = s�(�).

Since s�(�) = αi , either df(�) = f(s1(�)) (if s1(�) = αi) or df(�) = cf(�) (if
s1(�) < αi).

Therefore, if s1(�) = αi , then df(�) = f(αi).
Let us calculate df(�), when s1(�) < s�(�). Notice that � ∈ Jj , so there is � =

(�1, �2, �3, �4, �5) such that � = � ∈ Jj .
From Definition 3.3 items (5) and (7), since � ∈ (Jf)�\Jαif and for all n < �,

��n ∈ Jαif holds,

sup(rng(�4)) ≤ sup(rng(�2)) = sup(rng(�3)) = sup(rng(�5)).

Since � = � ,
s7(�) ≤ s8(�) = s6(�) = s8(�) = sup(rng(�5).

It is easy to see that s2(�), s3(�), s4(�) ≤ s5(�).
We conclude that s�(�) = s8(�) = sup(rng(�5)) and αi = sup(rng(�5)). From

Definition 3.3(8),

cf(�) = cf(�) = f(sup(rng(�5))) = f(αi).

Therefore df(�) = f(αi) in both cases (s1(�) = s�(�) and s1(�) < s�(�)).
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By the same argument and using the definition of F, we can conclude that
dg(F (�)) = g(αi). Finally since i is a limit ordinal with cofinality �, αi is an
�-limit of C. Thus df(�) = f(αi) = g(αi) = dg(F (�)) and F is a coloured tree
isomorphism.

Now let us prove that if Af and Ag are isomorphic ordered coloured trees, then
f =�� g.

Let us start by defining the following function Hf ∈ �κ. For every α ∈ κ
with cofinality�, define Bα = {� ∈ Af\Afα | dom(�) = � ∧ ∀n < � (��n ∈ Afα )}.
Notice that by the construction of Af and the definition of Afα , for all � ∈ Bα we
have df(�) = f(s�(�)) = f(α). Therefore, the value of f(α) can be obtained from
Bα and df , and we can define the functionHf ∈ �κ as:

Hf(α) =

{
f(α), if cf(α) = �,
0, otherwise.

This function can be obtained from the κ-representation {Afα}α<κ and df . It is clear
that f =�� Hf .

Claim 3.10.1. If Af and Ag are isomorphic ordered coloured trees, then
Hf =�� Hg .

Proof. Let F be an ordered coloured tree isomorphism. It is easy to see that
{F [Afα ]}α<κ is a κ-representation. Define C = {α < κ | F [Afα ] = Agα}. Since F is
an isomorphism, for all α ∈ C , Hf(α) = Hg(α). Therefore it is enough to show
that C is �-closed and unbounded. By the definition of κ-representation, if (αn)n<�
is a sequence of elements of C cofinal to �, then Ag� =

⋃
n<� A

g
αn =

⋃
n<� F [Afαn ] =

F [Af� ]. We conclude that C is �-closed.
Let us finish by showing that C is unbounded. Fix an ordinal α < κ, and let us

construct a sequence (αn)n≤� such that α� ∈ C and α� > α. Define α0 = α. For
every odd n, define αn+1 to be the least ordinal bigger than αn such that F [Afαn ] ⊆
Agα+1. For every even n, define αn+1 to be the least ordinal bigger than αn such

that Agαn ⊆ F [Afα+1]. Define α� =
⋃
n<� αn. Clearly

⋃
i<� F [Afα2i ] =

⋃
i<� A

g
α2i+1 .

We conclude that α� ∈ C . �
�

Remark 3.11. Same as in the construction of the coloured trees Jf , the
functionf ∈ �κ is only used to define the color function in the construction of Af .
So if f, g ∈ �κ and α are such that f�α = g�α, then Jαf = Jαg . As a consequence

f�α = g�α implies that Afα = Agα .

Notice that the only property of < �SucAf (�) that we used in the previous
theorem was (∗). Therefore, the previous theorem can be generalized to the following
corollary.

Corollary 3.12. Suppose l is a κ-colorable linear order and � ≤ κ. Then for any
f ∈ �κ, there is an ordered coloured tree Af(l) that satisfies: For all f, g ∈ �κ,

f =�� g ⇔ Af(l) ∼= Ag(l).
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§4. The models.

4.1. Generalized Ehrenfeucht–Mostowski models. In this section we will use the
generalized Ehrenfeucht–Mostowski models (see [12, Chapter VII.2] or [8, Section
8]) to construct the models of unsuperstable theories, and we will use the previous
constructed ordered coloured trees (from I) as the skeleton of the construction.

Definition 4.1 (Generalized Ehrenfeucht–Mostowski models). We say that a
function Φ is proper for K�tr , if there is a vocabulary L1 and for each A ∈ K�tr , there
is a model M1 and tuples as , s ∈ A, of elements of M1 such that the following two
hold:

• Every element of M1 is an interpretation of some�(as ), where� is an L1-term.
• tpat(as , ∅,M1) = Φ(tpat(s, ∅, A)).

Notice that for each A, the previous conditions determineM1 up to isomorphism.
We may assumeM1, as , s ∈ A, are unique for each A. We denoteM1 byEM 1(A,Φ).
We call EM 1(A,Φ) an Ehrenfeucht–Mostowski model.

Suppose T is a countable complete theory in a countable vocabulary L, L1 a
Skolemization of L, and T 1 the Skolemization of T by L1. If there is Φ a proper
function forK�tr , then for everyA ∈ K�tr , we will denote by EM(A,Φ) theL-reduction
ofEM 1(A,Φ). The following result ensures the existence of a proper function Φ for
unsuperstable theories T and � = �.

Fact 4.2 (Shelah [11, Theorem 1.3], proof in [12, Chapter VII.3]). Suppose
L ⊆ L1 are vocabularies, T is a complete first order theory in L, and T 1 is a complete
theory in L1 extending T and with Skolem-functions. Suppose T is unsuperstable and
{φn(x, yn) | n < �} witnesses this. Then there is a proper function Φ such that for
all A ∈ K�tr , EM 1(A,Φ) is a model of T 1, and for s ∈ PAn , t ∈ PA� , EM 1(A,Φ) |=
φn(at, as) if and only if A |= s ≺ t.

The models that we will construct are of the form EM (A,Φ).

4.2. Reduction of the isomorphism relation. Before we deal with the construction
of the models and the reduction, we need to do some preparations.

Definition 4.3. For any A ∈ K�tr with size κ and A a κ-representation of A, we
define S(A) as the set ordinal � < κ that satisfies:

• � is a limit ordinal,
• ∃� ∈ PA�, {��n | n < �} ⊆ A� ∧ ∀α < �({��n | n < �} 
⊆ Aα).

Fact 4.4 (Shelah [11, Fact 2.3], Hyttinen–Tuuri [8, Lemma 8.6]). S is a CUB-
invariant function.

This fact allows us to define S(A) for A ∈ K�tr as
[
S(A)

]
=2
CUB

for any A

κ-representation of A.
Notice that for a function f ∈ κκ and A = 〈Afα | α < κ〉, the κ-representation

from Theorem 3.10, S(Af) is the set of �-cofinal ordinals � for which there is
� ∈ (Af)�\Af� , such that for all n < �, ��n ∈ Af� . Thus, S(Af) does not depend
on the color function. This can be fixed by restricting ourselves to the generalized
Cantor space 2κ and making a small modification to the trees Af .
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Definition 4.5. Let I be the (< κ, bs)-stable (κ, bs, bs)-nice κ-colorable linear
order from Section 2. For every f ∈ 2κ, let Af be the tree constructed in Section 3.
Define the tree Af ⊆ Af by: x ∈ Af if and only if x is not a leaf of Af or x is a leaf
such that df(x) = 1. Denote by Af the model EM(Af,Φ).

Notice that for all � ∈ Af such that � /∈ PAf� , SucAf (�) is infinite. On the other

hand by Lemma 3.5, there is 	 ∈ PAf� such that � ≺ 	. Therefore, since I is (κ, bs, bs)-
nice, by Fact 3.8 the trees Af are locally (κ, bs, bs)-nice. Notice that since the
branches of the trees Af have length at most � + 1 and I is (< κ, bs)-stable, then
the trees Af are (< κ, bs)-stable.

By the way the models EM(A,Φ) were defined, we know that if A,A′ ∈ K�tr are
isomorphic, then EM(A,Φ) and EM(A′,Φ) are isomorphic. Thus if Af and Ag are
isomorphic, then Af and Ag are isomorphic.

Notice that since we are working under the assumption that κ is an uncountable
cardinal satisfying κ<κ = κ, κ > |L1|.

From Theorem 3.10 we know that for all f, g ∈ 2κ,

f =2
� g ⇔ Af ∼= Ag.

By using Fact 4.4 we can obtain a similar characterization of =2
� , with the operator

S. The following lemma states this characterization and relies essentially on Fact
4.4.

Lemma 4.6. For every f, g ∈ 2κ,

f =2
� g if and only if S(Af) = S(Ag).

Proof. By Fact 4.4, S is CUB-invariant; therefore, it is enough to find a
κ-representation Af of Af for every f ∈ 2κ, such that for all f, g ∈ 2κ, f =2

� g if
and only Af =2

CUB Ag .
Similar as in the proof of Theorem 3.10, for all f ∈ 2κ let us define the

κ-representation Af = 〈Af,α | α < κ〉 by

Af,α = {� ∈ Af | rng(�) ⊆ � × � × � × � × �4 for some � < α}.
By definition,

S(Af) = {� < κ | ∃� ∈ PAf� , {� � n | n < �} ⊆ (Af,� & ∀α < �({� � n | n < �} �⊆ Af,α)}.

Claim 4.6.1. � ∈ S(Af) if and only if cf(�) = � and there is � ∈ PAf� with
max({sup(rng(�i)) | i ≤ 8}) = � .

Proof. The direction from right to left follows from Definition 4.3. The other
direction follows from the definition of S(Af) and Af,α . �

By the way Af was constructed, � ∈ PAf� if and only if � ∈ PAf� and df(�) = 1.

By the previous claim we know that if � ∈ S(Af) and � ∈ PAf� witnesses it, then

� ∈ PAf� and 1 = df(�). In the same way as in the proof of Theorem 3.10, we can
conclude that df(�) = f(max{s1(�), s8(�)}), so

1 = f(max{sup(rng(�1)), sup(rng(�8))}).
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Recall from the proof of Theorem 3.10 that

max({sup(rng(�i )) | i ≤ 8}) = max{sup(rng(�1)), sup(rng(�8))}.

We conclude that 1 = f(�).
Therefore we can rewrite S(Af) as

S(Af) = {� < κ | cf(�) = � ∧ f(�) = 1}.

It follows that S(Af) =2
CUB S(Ag) holds if and only if f =2

� g. �

Now we proceed to prove that the models Af are as wanted, i.e., f =2
� g if and

only if Af ∼=T Ag .

Fact 4.7 (Shelah [11, Theorem 2.4]). Suppose T is a countable complete
unsuperstable theory in a countable vocabulary. If κ is a regular uncountable cardinal,
A1, A2 ∈ K�tr have size κ, A1, A2 are locally (κ, bs, bs)-nice and (< κ, bs)-stable,
EM(A1,Φ) is isomorphic to EM(A2,Φ), then S(A1) = S(A2).

Lemma 4.8. If T is a countable complete unsuperstable theory over a countable
vocabulary, then for all f, g ∈ 2κ, f =2

� g if and only if Af and Ag are isomorphic.

Proof. From left to right. Supposef, g ∈ 2κ are such thatf =2
� g. By Theorem

3.10 and Definition 4.5 we know that f =2
� g if and only if Af ∼= Ag . Finally

Af ∼= Ag implies that Af and Ag are isomorphic.
From right to left. Suppose f, g ∈ 2κ are such that Af and Ag are isomorphic.

By Definition 4.5 and Fact 4.7, S(Af) = S(Ag). From Lemma 4.6 we conclude
f =2

� g. �

Theorem 4.9. If T is a countable complete unsuperstable theory over a countable
vocabulary, L, then =2

� ↪→c
∼=T .

Proof. Let us construct a continuous function G : 2κ → 2κ with AG(f)
∼=

EM (Af,Φ).
By Remark 3.11, Definition 4.5, and the definition of Af,α ,

f � α = g � α ⇔ Af,α = Ag,α.

Let us denote by SH (X ) the Skolem-hull of X, i.e., {�(a) | a ∈ X,� an L1-term}.
For all α, A ∈ K�tr , and a κ-representation A = 〈Aα | α < κ〉 of A, let us denote by
Ãα the set {as | s ∈ Aα} (recall the construction of EM 1(A,Φ) in Definition 4.1).
Since for all α < κ,

Af,α = Ag,α ⇔ SH (Ãf,α) = SH (Ãg,α).

Thus

f � α = g � α ⇔ SH (Ãf,α) � L = SH (Ãg,α) � L.

For every f ∈ 2κ there is a bijection Ef : dom(EM (Af,Φ)) → κ, such that for
every f, g ∈ 2κ and α < κ it holds that: If f�α = g�α, then

Ef � dom(SH (Ãf,α) � L) = Eg � dom(SH (Ãg,α) � L)

(see [10]).
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Let 
 be the bijection in Definition 1.4, and define the function G by

G(f)(α) =

⎧⎪⎨
⎪⎩

1, if α = 
(m, a1, a2, ... , an) and
EM (Af,Φ) |= Qm(E–1

f (a1), E–1
f (a2), ... , E–1

f (an)),

0, otherwise.

Clearly AG(f)
∼= EM (Af,Φ).

To show that G : 2κ → 2κ is continuous, let [��α] be a basic open set and
	 ∈ G–1[[��α]]. There is � < κ such that for all � < α, if � = 
(m, a1, ... , an), then
E–1
	 (ai) ∈ dom(SH (Ã	,�)�L) holds for all i ≤ n. Since for all � ∈ [	��] it holds that

SH (Ã�,�)�L = SH (Ã	,�)�L, for any � < α that satisfies � = 
(m, a1, ... , an)

EM (A�,Φ) |= Qm(E–1
� (a1), E–1

� (a2), ... , E–1
� (an))

if and only if

EM (A	,Φ) |= Qm(E–1
	 (a1), E–1

	 (a2), ... , E–1
	 (an)).

We conclude that G is continuous. �

4.3. Corollaries. In this section we will prove Theorem A and Theorem B. For
any stationary set X ⊆ κ, let us denote by ♦X the following principle:

There is a sequence {Dα ⊂ α | α ∈ X} such that for all B ⊆ κ, the set {α ∈ X |
Dα = B ∩ α} is stationary.

Let us denote by ♦� the diamond principle ♦X whenX = {α < κ | cf(α) = �}.

Fact 4.10 (Hyttinen–Kulikov–Moreno,[6, Lemma 2]). Assume T is a countable
complete classifiable theory over a countable vocabulary. If ♦� holds, then ∼=T ↪→c =2

� .

Fact 4.11 (Friedman–Hyttinen–Kulikov [4, Theorem 77]). If a first-order
countable complete theory over a countable vocabulary T is classifiable, then =2

�


↪→c
∼=T .

Corollary 4.12. Suppose κ = �+ = 2� and �� = �. If T1 is a countable complete
classifiable theory, and T2 is a countable complete unsuperstable theory, then ∼=T1 ↪→c
∼=T2 and ∼=T2 
↪→c

∼=T1 .

Proof. Since �� = �, cf(�) > �. By [13] we know that if κ = �+ = 2� and
cf(�) > �, then ♦� holds. The proof follows from Theorem 4.9, Fact 4.10, and
Fact 4.11. �

We will finish this section with a corollary about Σ1
1-completeness. Before we state

the corollary we need to recall some definitions from [2], in particular the definition
of Dl∗S(Π1

2). For more on Dl∗S(Π1
2) see [2].

A Π1
2-sentence φ is a formula of the form ∀X∃Yϕ whereϕ is a first-order sentence

over a relational language L as follows:

• L has a predicate symbol � of arity 2.
• L has a predicate symbol X of arity m(X).
• L has a predicate symbol Y of arity m(Y).
• L has infinitely many predicate symbols (Bn)n∈� , each Bn is of arity m(Bn).
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Definition 4.13. For sets N and x, we say that N sees x iff N is transitive,
p.r.-closed, and x ∪ {x} ⊆ N .

Suppose that a set N sees an ordinal α, and that φ = ∀X∃Yϕ is a Π1
2-sentence,

where ϕ is a first-order sentence in the above-mentioned language L. For every
sequence (Bn)n∈� such that, for all n ∈ �, Bn ⊆ αm(Bn), we write

〈α,∈, (Bn)n∈�〉 |=N φ
to express that the two hold:

(1) (Bn)n∈� ∈ N .
(2) 〈N,∈〉 |= (∀X ⊆ αm(X))(∃Y ⊆ αm(Y))[〈α,∈, X, Y, (Bn)n∈�〉 |= ϕ], where:

• ∈ is the interpretation of �;
• X is the interpretation of X;
• Y is the interpretation of Y, and
• for all n ∈ �, Bn is the interpretation of Bn.

Definition 4.14. Let κ be a regular and uncountable cardinal, and S ⊆ κ
stationary.

Dl∗S(Π1
2) asserts the existence of a sequence �N = 〈Nα | α ∈ S〉 satisfying the

following:
(1) For every α ∈ S, Nα is a set of cardinality < κ that sees α.
(2) For every X ⊆ κ, there exists a club C ⊆ κ such that, for all α ∈ C ∩ S,
X ∩ α ∈ Nα .

(3) Whenever 〈κ,∈, (Bn)n∈�〉 |= φ, with φ a Π1
2-sentence, there are stationarily

many α ∈ S such that |Nα | = |α| and 〈α,∈, (Bn ∩ (αm(Bn)))n∈�〉 |=Nα φ.

Fact 4.15 (Fernandes–Moreno–Rinot [2, Theorem C]). If Dl∗S(Π1
2) holds for

S = {α < κ | cf(α) = �}, then =2
� is Σ1

1-complete.

Corollary 4.16. If Dl∗S(Π1
2) holds for S = {α < κ | cf(α) = �}, and T is a

countable complete unsuperstable theory, then ∼=T is Σ1
1-complete.

Proof. It follows from Fact 4.15 and Theorem 4.9. �
Fact 4.17 (Fernandes–Moreno–Rinot [3, Lemma 4.10 and Proposition 4.14]).

There exists a < κ-closed κ+-cc forcing extension in which Dl∗S(Π1
2) holds.

Corollary 4.18. There exists a < κ-closed κ+-cc forcing extension in which for
all countable complete unsuperstable theory T, ∼=T is Σ1

1-complete.
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