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Abelian functions associated with genus three algebraic curves

J. C. Eilbeck, M. England and Y. Onishi

ABSTRACT

We develop the theory of Abelian functions associated with algebraic curves. The growth in
computer power and the advancement of efficient symbolic computation techniques have allowed
for recent progress in this area. In this paper we focus on the genus three cases, comparing the two
canonical classes of hyperelliptic and trigonal curves. We present new addition formulae, derive
bases for the spaces of Abelian functions and discuss the differential equations such functions
satisty.

Supplementary materials are available with this article.

1. Introduction

In this paper we present addition formulae and differential equations satisfied by Abelian
functions with poles along the standard theta divisor, associated with the hyperelliptic and
trigonal curves of genus three. Alongside the presentation of the new results, this paper offers
a comparison of the formulae for the two canonical types of genus three curves.

The most important new results are the addition formulae presented in Theorems 5.3 and 5.4.
The first of these was obtained by following the ideas in [13], while the second requires the
explicit derivation of a basis for the vector space of Abelian functions having poles of order
at most four along the standard theta divisor. They both follow from the recent work in [15],
which introduced new addition formulae for the Weierstrass p- and o-functions along with
generalisations to genus two. We also present and discuss the sets of differential equations
satisfied by the functions. These results can be seen as a continuation of the work started
in [8, 13] using new efficient computational techniques first introduced in [18].

Curves of genus three can be categorised as either hyperelliptic or trigonal. We study two
canonical examples, the (2,7)- and the (3,4)-curves, which are hyperelliptic and trigonal,
respectively. We define these terms and the curves formally in the next section. We develop
the results of [13] for the (3, 4)-curve, completing the key sets of differential equations and
deriving new addition formulae. We compare these results with the corresponding genus three
hyperelliptic results for the (2, 7)-curve, furthering the results in [8] for this case.

Many of the results we present can be viewed as generalisations of classical results for elliptic
functions. We will conclude the introduction below by reminding the reader of the relevant
results from the theory of Weierstrass functions. Then in Section 2 we give the definitions of
the Abelian functions, discussing the general properties they satisfy. We proceed in Section 3
to consider the problem of determining bases for the vector spaces of such functions, presenting
explicit constructions of these for the genus three curves. In Section 4 we derive sets of
differential equations satisfied by the functions and compare the two canonical genus three
cases. Finally, is Section 5 we present the new addition formulae.

The classical results for Weierstrass elliptic functions form a template for our theory. Let
p(u) be the Weierstrass p-function, which as an elliptic function has two complex periods
W1, Wa:

pu+wi) =p(u+ ws) =p(u) forall ueC. (1.1)
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The p-function has the simplest possible pole structure for an elliptic function and satisfies a
number of interesting properties. For example, it can be used to parametrise an elliptic curve,

y? =4a® — gox — g3, (1.2)

where go and g3 are constants. It also satisfies the following well-known differential equations:
(¢'(w)* = 4p(u)® — gap(u) — g5, (1.3)

0" (u) = 6p(uw)* — 592. (1.4)

Weierstrass introduced an auxiliary function, o(u), in his theory which satisfies
2
—— log[o(u)]. 1.5
o ogo(u)] (15)
The o-function plays a crucial role in the generalisation and in applications of the theory. It
satisfies the following two-term addition formula:

p(u) =

In this paper we present generalisations of equations (1.1)—(1.6) for higher genus functions.
Elliptic functions have been the subject of much study since their discovery and have been
extensively used to enumerate solutions of nonlinear wave equations. Recent times have seen a
revival of interest in the theory of Abelian functions, which have multiple independent periods,
and so generalise the elliptic functions. The periodicity property is usually defined in association
with an underlying algebraic curve. These functions have been shown to solve differential
equations arising in mathematical physics and have been used in a variety of applications.

2. Constructing Abelian functions

In this paper we study in detail the case of functions associated with genus three curves.
However, much of the theory is applicable to a wider space of curves and so we will include
some general definitions.

DEFINITION 1. For two coprime integers (n, s) with s >n we define an (n, s)-curve as a
non-singular algebraic curve defined by f(z, y) =0, where

@) =y" +p1(@)y" "+ pa(2)y" 2+ ..+ paei(@)y — pal(2). (2.1)

Here z, y are complex variables and p;(x) are polynomials in x of degree (at most) |js/n|. We
define a simple subclass of the curves by setting p;(x) =0 for 0 <j <n — 1. Such curves are
then defined by

fla,y) =y" — (@ + Amr2™™ o+ Mz + Xo) (2.2)
and are called cyclic (n, s)-curves. We follow tradition and denote the curve constants by A;
for the cyclic (n, s)-curves and by u; for the general (n, s)-curves. Note that in the literature
the word ‘cyclic’ is sometimes replaced by ‘strictly’ or ‘purely (n-gonal)’. Also, some authors

use a different normalisation with the coefficient of x*® chosen to be 4 instead of 1. It is simple
to move between the different normalisations.

We denote the surface defined by such a curve as C. The genus of C' is given by
g=5n-1)(s—1)
and the associated functions to be defined shortly will be multivariate with g variables,

u=(uq,...,uy). For example, the elliptic curve in equation (1.2) is a (2, 3)-curve and the
Weierstrass o- and p-functions depend upon a single variable wu.
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Given this equation for the genus, we see that it can only be three when (n, s)=(2,7) or
(3,4). Hence, the two curves we will investigate in this paper are as follows:

Y2+ (na® + psa® + pse + pr)y

=27 4 poa® + paa® + pert + psa® + p102® + pr2x + paa, (2.3)
y* + (x4 pa)y? + (p2a® + pse + ps)y
= 174 + ,U{;lES + ,LL6{E2 + H9Z + H12- (24)

Their cyclic restrictions are given by

y? =27 + Xz 4+ Asz® + Max? + A3z® + Xoz® + Mz + Ao, (2.5)
y3 =z + )\3.233 + )\2.2?2 + Az + Ag. (26)

We define a weight for the theory, denoted by wt and called the Sato weight. We start with
wt(z)=-n, wt(y)=—s (2.7)

and then choose the weights of the curve parameters to be such that the curve equation is
homogeneous. We see that for cyclic curves this imposes wt(A;) = —n(s — j), while for the
non-cyclic curves (2.3) and (2.4) the constants p; have been labelled with the absolute values
of their weights. The weights of all other objects may then be derived uniquely and will be
commented on throughout the paper. Note that all the objects in this paper have a definite
Sato weight and all the equalities are homogeneous with respect to this weight. A more detailed
discussion of the weight properties may be found for example in [18].

The (n, s)-curves with n = 2 are generally defined to be hyperelliptic curves. Klein developed
an approach to generalise the Weierstrass p-function to Abelian functions associated with
hyperelliptic curves as described in Baker’s classical texts [3, 5]. This approach has motivated
the general definitions in [8, 14] of what we now call Kleinian p-functions. It is the properties
of these and the generalised o-function that are our objects of study.

In the last few years a good deal of progress has been made in the theory of Abelian
functions associated to those (n, s) curves with n =3, which we label trigonal curves. In [10],
the authors of [8] furthered their methods to the trigonal cases, obtaining realisations of the
Jacobian variety and some key differential equations between the functions. More recently, the
two canonical trigonal cases of the (3, 4)- and (3, 5)-curves have been examined in [6, 13],
respectively. Both papers explicitly construct the differentials on the curve, solve the Jacobi
inversion problem and obtain differential equations between the p-functions. Some of the
properties of higher genus trigonal curves have been explored in [16]. The class of (n, s)-
curves with n =4 are defined as tetragonal curves and have been recently considered for the
first time in [18, 19]. The lowest genus tetragonal curve has genus six.

We now discuss how to construct these functions, starting by choosing bases for the space of
differential forms of the first kind. A standard basis may be constructed from the Weierstrass
gap sequence associated to the curve (see for example [7]). For any (2, 7)-curve, the basis is

dx xdx z2dx
du = (fy(rc, y) fy(z, ) fylz, y))’ 28)
while, for any (3, 4)-curve, it is
dx xdx ydx
du = . .
= (5o e e ) 29

We choose a symplectic basis in Hy(C, Z) of cycles (closed paths) upon the compact Riemann
surface defined by C. We denote these by {1, as, as, 81, B2, 83} and ensure that they have
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intersection numbers

1 ifi=j,

0 ifiz#j.

We introduce dr as a basis of meromorphic differentials which have their only pole at co. We
will not explicitly use these in this paper and so for an explicit construction we refer the reader
to [8, §2.2.2] for the (2, 7)-case and to [13, equation (2.22)] for the (3, 4)-case. These bases are
derived alongside a fundamental differential of the second kind which plays an important role
in the theory of p-functions. Again, we will not explicitly use the differential in this paper and

so refer the reader to [7] for an example of its construction and role.
We can now define the standard period matrices associated to the curve as follows:

W = (% dUZ) ; W= (% due) ,
ak k0=1,2,3 % k0=1,2,3

/ "
U] (fi; dw) 3 n' = (fi; dw) :
ag k0=1,2,3 Br k,0=1,2,3

We define the period lattice A formed from ', w” by

- =0, BB =0, ai'ﬁjZ{

A ={mu +nu", m,ncZ?.
The functions we treat in this paper are defined upon C? with coordinates usually given as

u = (u1, us, us). (2.10)

P;
J du,

where the P; are points upon C. The period lattice A is a lattice in the space C3. Then the
Jacobian variety of C' is presented by C3/A, and is denoted by J. We define x as the modulo
A map

Note that any point u € C3 can be given by

3
u =

i=1

k:C3— . (2.11)
For k=1, 2, ... define 2y, the Abel map from the kth symmetric product Sym*(C) to J:
Ay : Sym*(C) — J
P, Py,
(P,...,Py)— (J du+...+J du> (mod A), (2.12)
oo o0
where the P; are again points upon C. Denote the image of the kth Abel map by Wl and
define the kth standard theta subset (often referred to as the kth strata) by
okl — Wik y [,1“}[/[16]7
where [—1] means that

[71}(’[1,1, Uz, Ug) = (7”[1,1, —U2, 7’LL3).

When k = 1, the Abel map gives an embedding of the curve C' upon which we define £ = z=1/"

as the local parameter at the origin, 2 (c0). We can then express y and the basis of differentials
using £ and integrate to give series expansions for u. We can check the weights of w from these
and see that they are prescribed by the Weierstrass gap sequence. In particular, u = (u1, ug, us)
has weights (5, 3, 1) in the (2, 7)-case and weights (5, 2, 1) in the (3, 4)-case.

We now consider functions that are periodic with respect to the lattice A.
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DEFINITION 2. Let 9M(u) be a meromorphic function of w € C9. Then M is a standard
Abelian function associated with C if it has poles only along £~ (©9~1), and satisfies

M(u +£€) =M(u) forall £LeA. (2.13)

Note the comparison with equation (1.1) and that the period matrices play the role of the
scalar periods in the elliptic case. We will define generalisations of the Weierstrass p-function
which satisfy equation (2.13), defined using the quasi-periodic function defined below.

First, let 6 = 8’w’ + 6”’w” be the Riemann constant with base point co. Then [g,l,] is the
theta characteristic presenting the Riemann constant for the curve C' with respect to the base
point oo and generators {«;, §;} of H1(C,Z). For any (2, 7)-curve, we have a classical choice
of {e;, B;} and (from [21] or [11]) we have

o =1314" & =] 1" (2.14)
For any (3, 4)-curve, Shiga computed in [25] that with his choice of {a;, 8;} one has

§=[0Li0" ¢=[030" (2.15)

1
2

DEFINITION 3. The Kleinian o-function associated to a genus three (n, s)-curve may be
defined using a multivariate 6-function with characteristic § as

o) = cexp G (&) ) 081 T () )
— conp /) )

X Y exp [27”'{;(771 + T (W)W (m 4 8) 4+ (m 4+ )T (W) T+ 6")}] .
mez3

The constant ¢ is dependent upon the curve parameters and the basis of cycles and is fixed
later, following Lemma 2.2.

We now summarise the key properties of the o-function. See [8] or [22] for the construction
of the o-function to satisfy these properties.
For any point u € C3, we denote by u’ and u” the vectors in R? such that

u=u'w +u'w". (2.16)

Therefore, a point £ € A is written as

L=0 40" e\, ¢ 073 (2.17)
For u,v € C3 and £ € A, define L(u, v) and x(£) as follows:

L(u,v) = u(v'nf +o"n")7,
X(€) = exp[2mi{€(6”)" — €"(5")" + 3£/ (€")"}].
LEMMA 2.1. The o-function has the following properties.

It is an entire function on C3.

— It has zeros of order one along the set x~(0[?). Further, o(u) # 0 outside this set.
— For all u € C3, £ € A, the function o(u) has the following quasi-periodicity property:

o(u+£) = x(€) exp [L(u—i— E,eﬂa(u). (2.18)

2
It has definite parity given by o([—1]u) = +o(u) in the (2, 7)- and (3, 4)-cases, respectively.
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Proof. The function is clearly entire from the definition, while the quasi-periodicity and
zeros of the function are classical results (see [3]) that are fundamental to the definition of
the function. They both follow from the properties of the multivariate 6-function. The parity
property follows from [22, Proposition 4(iv)], which states that for a general (n, s)-curve,

o(—u) = (=1)2 DD (g). (2.19)

O

We next define p-functions using an analogy of equation (1.5). Since there is more than one
variable, we need to be clear which we differentiate with respect to. We actually define several
multivariate p-functions and introduce the following notation.

DEFINITION 4. Define m-index Kleinian g-functions (where m > 2) as

g 0 0
() = — <. <ime{l,... g}
pllﬂ%»--ﬂm (’LL) 8%‘1 8’11,7;2 auim log[a(u)], 1 iy € {1 g}

The m-index p-functions are meromorphic with poles of order m when o(u)=0. We
can check that they satisfy equation (2.13) and hence that they are Abelian. The m-index
p-functions have definite parity with respect to the change of variables u — [—1]u and are odd
if m is odd and even if m is even. Note that the ordering of the indices is irrelevant and so for
simplicity we always order in ascending values.

When the (n, s)-curve is chosen to be the classical elliptic curve, the Kleinian o-function
coincides with the classical o-function and the sole 2-index gp-function coincides with the
Weierstrass p-function. The only difference is the notation with

pi11(u) =p(u), p(u)=¢'(v), enn(e)=p"(w).

Clearly, as the genus of the curve increases so do the number of associated p-functions. For the
curves we study, we set g = 3 to leave six 2-index g-functions, ten 3-index gp-functions, etc. By
considering Definition 4, we see that the weight of the p-functions is the negative of the sum of
the weights of the variables indicated by the indices. So, although the two curves have the same
number of associated p-functions, they are of different weights arising from the different bases
of holomorphic differentials. We will find in the following sections that this leads to variations
in the theory of the two sets of functions.

We now introduce a final result detailing how the functions can be expressed using series
expansions.

LEMMA 2.2. The Taylor series expansion of o(u) about the origin may be written as follows:
for each type of cyclic genus three curve, there are constants K, 7 and K3 4 depending only on
the A\; and {«;, B} such that

Ko7 (SW277(u) + Z Coior(u, /\)> for a cyclic (2, 7)-curve,
o(u) = kst

Ks4- (SW374(u) + Z Cs431(u, )\)> for a cyclic (3, 4)-curve.
k=1

(2.20)

Here SW, s is the Schur-Weierstrass polynomial generated by (n,s) and each C,, is a
polynomial composed of products of monomials in u of weight m multiplied by monomials in
the curve parameters of weights (6 — m) and (5 — m) in the (2, 7)- and (3, 4)-cases, respectively.
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A similar result may be stated for the non-cyclic curves using pu; instead of Aj;, but the
calculations involved in deriving such an expansion are computationally much more difficult.

Proof. We refer the reader to [22] for a proof of the relationship between the o-function
and the Schur—Weierstrass polynomials and note that this was first discussed in [9]. We see
that the remainder of the expansion must depend on the curve parameters and split it up into
the C} using the weight properties. Each Cj must be finite, since the number of possible terms
with the prescribed weight properties is finite. |

Expansions of this type were first introduced in [7] in relation to the study of the Benney
equations. Since then, they have been an integral tool in the investigation of Abelian functions.
Recently, computational techniques based on the weight properties have been used to derive
much larger expansions and we refer the reader to [16, 18] for details of how to construct and
use these expansions.

We fix ¢ in Definition 3 to be the value that makes the constant 1 in the above lemma.
Some other authors working in this area may use a different constant and in general these
choices are not equivalent. However, the constant can be seen to cancel in the definition of the
p-functions, leaving most results independent of c¢. Note that this choice of ¢ ensures that the
Kleinian o-function matches the Weierstrass o-function when the (n, s)-curve is chosen to be
the classical elliptic curve.

The connection with the Schur—Weierstrass polynomials also allows us to determine the
weight of the o-function as (1/24)(n? — 1)(s% — 1). In the (2, 7)-case, this gives o(u) weight 6
while in the (3, 4)-case it has weight 5. The respective Schur—Weierstrass polynomials are

SWoz = geu§ — guius — uj + ugui, (2.21)
SWi4 = gqu3 — uguj +us. (2.22)

The o-function expansion has been calculated up to and including the polynomials C3g in the
(2, 7)-case and Cs5 in the (3,4)-case. These expansions are available from the authors and
should also be available from the journal in the Supplementary Materials to the paper.

3. Bases for the vector spaces of Abelian functions

3.1. General theory

We classify the Abelian functions according to their pole structure. We denote by
I'(J, O(mOM)) the vector space of Abelian functions defined upon J which have poles of
order at most m, occurring only on the kth strata, ©[Fl. The case where k = g — 1 is of interest
since all the Abelian functions we deal with have poles occurring here, on the theta divisor.
A key problem in the theory of Abelian functions is the generation of bases for these vector
spaces.

Note that the dimension of the space I'(J, O(m®©9~1)) is m? by the Riemann-Roch theorem
for Abelian varieties. (See for example [20, p. 99].) Recall that the m-index p-functions all have
poles of order m. We see that the number of m-index gp-functions associated with a genus g curve
is

(g+m—1)!/[m!(g — 1),

which will not grow as fast as the dimension of the space. We hence need to identify a wider
class of Abelian functions than the p-functions in order to construct such bases.

Recall that an entire Abelian function must be a constant and that there is no Abelian
function with a single pole of order one. Hence, those Abelian functions with poles of order
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two are the simplest and so are often referred to as fundamental Abelian functions. The basis
problem has been solved in general for such functions, through the inclusion of the following
extra class of Abelian functions.

DEFINITION 5. Define the operator D; as below. This is now known as Hirota’s bilinear
operator, although it was used much earlier by Baker in [5]:

0 0
Di=—— .
8ui 8’01'
Then an alternative, equivalent, definition of the 2-index gp-functions is given by
1 .
pij(u) = —WDiDjo(u)U(v) - i<je{l,..., g} (3.1)

We extend this approach to define the m-index Q-functions, for m even, by

Qi (1) = 22_(3)2@“@@ Dy owolv)| | (3.2)

v=Uu

where i1 <...<in€{1l,...,9}.

The m-index @-functions are Abelian functions with poles of order two when o(u) = 0. Note
that if you were to apply the definition with m odd then the functions would be identically
zero. A 4-index @Q-function was originally used by Baker with the generic 4-index Q-functions
introduced when research first started on the trigonal curves. (In the literature, they are just
defined as Q-functions.) The definition for m-index @-functions above was developed in [18] as
increasing classes are required to deal with cases of higher genus (see also [16]). In this paper,
we only need to use 4-index Q-functions, which in [13] were shown to satisfy

Qijke = Pijhe — 20i59ke — 20ik0j0 — 2000k (3.3)

Similar expressions have been found for the higher index @-functions (see [18]).

When considering the vector spaces for Abelian functions with poles of higher order, a natural
place to look for extra functions is in the derivatives of the functions with lower order poles.
Note that while the derivatives of m-index p-functions are (m + 1)-index p-functions, the same
is not true for the @-functions. For brevity, we adopt the notation

0
0iQijr(u) = %Qz‘jkl(u)

and similarly for other functions. As discussed in [23], the derivatives of existing basis functions
will not be sufficient to find successive bases in the case where the theta divisor has singular
points. In [13], the authors introduced the following new class of functions to overcome this
problem for the three-pole basis in the (3, 4)-case.

DEFINITION 6. Consider the matrix

P11 P12 P13 P11 P12 £13
[@ij]3x3 = |21 22 P23 = (P12 P22 P23
31 232 33 13 23 £33

Then the function pl¥7] is defined to be the (i, j) minor of [p;;]3x3.

For example,

£

12l = ‘@12 23| _ 12§33 — £23§13-

13 33
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So, each of these functions will be a sum of two pairs of products of 2-index g-functions.
Although each product will have poles of order four, we can check by substituting with
Definition 4 that these cancel so that the function has poles of order three. Although this
class solved the three pole basis problem in the (3, 4)-case, it was not sufficient to complete the
corresponding basis in the (2, 7)-case. We explicitly address this and similar problems for the
four pole vector spaces below. A general method to generate new Abelian functions is currently
being developed with some recent results in [17].

3.2. The general (2, 7)-curve

In this section, we treat the most general (2,7)-curve, namely the curve defined by
equation (2.3). A well-known basis for I'(J, O(20[2))) in the (2, 7)-case is

Cl1 e Cp11 ® Cpia ® Cpi3 & Cpaa @ Cpas & Cpss @ CA, (3.4)
where
A= 11033 — P12023 — P13 + P13P22- (3.5)

The function A has poles of order three in general (we can check this using Definition 4).
However, these cancel to order two in the (2, 7)-case only (which we can check using the
o-expansion). The A-function was introduced by Baker in [4], although he did not use it
explicitly to form such bases. More recently, the A-function has been used in [1] in a covariant
analogue to the theory of hyperelliptic p-functions. It is possible to rewrite the theory to
match the general approach suggested above, by replacing A with a Q-function of weight —12.
However, the use of A is advantageous since it allows the theory to be completely realised
in terms of 2- and 3-index p-functions, with all higher index p-functions given recursively in
these.

The construction of T'(J, O(3012])) has recently been studied by Nakayashiki [23]. The author
was able to enumerate in detail all the terms with the exception of the final one, which was
labelled F5 (see [23, p. 27 onwards]). It was shown that

1+ (lower degree terms)
Fs = 3

o
and that it satisfies certain differential equations involving power series of the u;. In Theorem 3.1
below, we give a new explicit form for this term, which we rename as 7', in terms of p-functions.

THEOREM 3.1. The basis for T'(J, O(302)) is given by

(34) & Cpiin @& Cpriz @ Cpuzs @& Cpirs & Cpias & Cpiss
@ Cpoo @ Cpooz @ Cpozz © Cpzzz © CHA @© ChA
® ChA @ Cplll @ Cpl'? @ Cpi¥l g Cp®l @ CpPl o CT,
(3.6)
where

T = 0390 — 43 — Q2206020 = 20035 + (359 — P2202292. (3.7)

Proof. The dimension of the space is 39 =32 =27 by the Riemann-Roch theorem for
Abelian varieties. All the selected elements belong to the space and we can easily check their
linear independence explicitly in Maple using the o-expansion.

To actually construct the basis, we started by including the eight functions from the
basis (3.4) for the functions with poles of order at most two. We then know that the remaining
entries must have poles of order three. We start by looking for entries from the set of derivatives
of the basis (3.4). We test at decreasing weight levels and look to see whether these functions
can be written as a linear combination upon substitution of the series expansions. (A more
detailed discussion of the algorithm used for this is available in [18].)
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Note that while this theorem holds for the general (2, 7)-curve in equation (2.3), we need only
use the series expansions associated to the cyclic (2, 7)-curve in equation (2.5). This is because
if an element cannot be expressed using the basis with the restriction on the parameters, then
neither will it be expressible with the wider set of parameters. Further, we only need to use
sufficient expansion to give non-zero evaluations of the functions considered in order to check
whether they are linearly independent.

After examining all these functions, we find that 21 basis elements have been identified.
We identify a further five by considering the class given in Definition 6. Note that, unlike the
(3, 4)-case, here

n3) _ [22) _

§© P12923 — P22913 and p 11433 — @%3

have the same weight, (—12). Further, they are linearly dependent and so only one can be
included in the basis (either may be chosen).
To find the final function, the following new class of functions is considered:

Tijkzmn = QijkPimn — %@z‘jmz@mn - %@ijmm@ln - %K%‘jmngﬂlm - %@ik@jl@mn
- %Pikpjm@ln - %@ik@jn@lm - %@iz@jk@mn + %@il@jm@kn + %pilpjn@km
— 20im©jkPIn + FPimP5iPkn + FPimOin Okl — 2Pin@ikPIm + §Pin @51 Pkm
+ 30in@imOr — 3QijkiPmn — 3 QijkmPin — 3 QijknPim + 3 QijimPkn
+ 3Qijin®km + 3Qijmn®ri + 3 Qikim®in + 3Qikin®jm + 3 Qikmnji
= 2Qitmn9jk + 3Qikim®in + 3 QjkinPim
+ 3 Qjkmn it — 2Qjimn®ik — 3 Qkimnij- (3-8)

Substituting with Definition 4 shows these functions to have poles of order at most three.
We stress that this is the case for the 7-functions associated to any curve, and not just the
genus three case we consider here. The functions were derived through an attempt to match in
general the poles of a quadratic term in the 3-index p-functions with a polynomial in 2-index
p-functions. Although this is not possible, we can match by including @-functions as well. A
general polynomial of this type was constructed and the coeflicients then determined as above
to ensure that the poles of order greater than three vanish. A method to generate new basis
functions is currently being developed with some recent results published in [17].

The new class of functions is examined at decreasing weight levels. We find that all can
expressed as a linear combination of existing basis entries except for those at weight —18. We
can choose any 7 -function at weight —18 to complete the basis and use the simplest of these,
Tao2902 =T, as given in equation (3.7). O

THEOREM 3.2. The basis for I'(J, O(401%)) is given by

(36) & Cpi1in @ Cpriiz & Cpiz @ Cprize @ Cprios
D Cpuzzs @& Cpiazza @& Cproaz @& Cpiozz & Cpizss
@ Cpozz @& Cpazaz @® Cpoazz & Cpozzs & Cpasas
b Co13A P Coa3 A (o) Cos3A (&%) C012A P COaa A
® CouA @ Copll @ Copll @ Cospll @ Coplt?
D Cagp[u] D C@lp[ls] D (C(%p[l?’] D Cagp[l?’] D C@lp[zﬂ
© Copll o Cophl o Copll © CcoT @ CoT
® ChT @ CaG,

where G = 092922922 — 14003955.

Proof. We follow the proof of Theorem 3.1. This time the dimension is 49 =43 =64 and
we find that we can identify 63 functions using the basis (3.6) and its derivatives.
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To find the final basis function, the following new class of Abelian functions was examined:

gijklmnop = Pijklmnop — 4(mjnomlmp + QijnpPkimo T PijlpPkmno T PijmnPklop

+ PijmoPkinp + PijmpPkino + PijkmPlnop T PijknPimop + PijkoPlmnyp
+ PijkpPimno T QijimPknop T QijinPkmop T PijloPkmnp T QijklPmnop
+ QijopPkimn T QiklmPjinop T Qikin®jmop T Piklo®jmnp T Piklp§jmno
+ QikmnQjlop T QPikmoPjinp T PikmpPilno T PiknoPjimp T PiknpPjimo
+ PikopPjimn + PilmnPjikop T PilmoQiknp T PilmpPikno T Qilno®Pjkmp
+ QilnpPjkmo T QilopPjkmn T PimnoPjklp T PimnpPjikio T PimopPjkin
+ pinoppjklm)~

The G-functions associated with any curve have poles of order at most four (using Definition 4)
and were derived by matching the higher order poles in an 8-index p-function using arbitrary
sums of quadratic terms in the 4-index p-functions. Examining at decreasing weight levels, we
see that we need to include a function at weight —24 and choose Ga2929900 = G as given in the
theorem to complete the basis. ]

We note that these bases are not unique. As discussed at the start of the section, we could
replace the A-function with a Q-function if desired. Similarly, in the theorems above we could
have used any 7-function at weight —18 and any G-function at weight —24 to complete the
3- and 4-pole bases, respectively. However, we can conclude that the weight structure of each
basis is unique.

LeEMMA 3.3, Consider a basis for I'(J, O(kOW¥~1)), associated to any (n, s)-curve. Scale
the functions so that they do not depend on any curve constants. Then the set of weights of
the functions is unique.

For example, the basis (3.4) has weights [—12, —10, —8, —6, —6, —4, —2,0]. While the
functions for this basis may be changed, this set of weights cannot.

Proof. Suppose that we could replace a basis entry with another of different weight. The
replacement function would have to be linearly independent of the other basis entries, and
hence a constant multiple of the original function. This would lead to equations that are
inhomogeneous in the Sato weights. |

We can also determine a minimal bound of these weights, as detailed in the following lemma.

LEMMA 3.4. The basis for the space I'(J, O(kOY~1)) associated to an (n, s)-curve will
contain functions with weights no lower than —kwt(c).

Proof. Such basis functions may be written as a rational function in o(w) with overall
denominator o(u)*. The simplest possible numerator is a constant, which gives a function
with weight —kwt(o). Any other numerator would depend on w and so have a higher
weight. ]

Lemma 3.4 stops us from testing those functions at a lower weight, thus drastically reducing
the amount of computation required to find such bases. These lower weight functions must be
expressible as a linear combination of the basis functions in which every term depends on the
curve parameters.

We conjecture that every such basis may be evaluated using polynomials of p-functions. This
is known to be true for the curves considered here (see [8, 10]) and should follow similarly
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for all (n, s)-curves. All such polynomials have negative weight except the constant function,
which will take the maximal weight of zero. Together with Lemma 3.4, this would restrict basis
entries to the weight range —kwt (o), ..., 0.

We note that in the (2, 7)-case the weight of o(u) is +6 and the functions A, T" and G have
weights 12, 18 and 24, respectively. They are hence the minimal weight entries in their respective
bases. By considering the rational limit of these functions, where o(u) = SWas 7(u), we can
check that these functions each have leading term of a constant over o(u)* with k=2,3, 4,
respectively.

It is clear that functions of the form (const + O(u;))/c* play a special role in completing
the construction of T'(.J, O(k©9~1)). Such functions are straightforward to construct using the
rational limit and the method of undetermined coefficients. For example, the following function
evaluates to a constant over o and we expect that such a function will be needed for the 5-pole
basis:

1203, — 85,2202 + 600390590 + 92205200 — £22220320-

3.3. The general (3, 4)-curve

Here we treat the most general (3,4)-curve, namely the curve defined by equation (2.4).
Lemma 8.1 in [13] identified the basis for I'(J, O(20[))) in the (3, 4)-case as

Cl & Cp11 @ Cpia & Cpiz & Cpar & Cpaz & Cpzz & CQizss, (3.9)
and the basis for I'(J, O(30[])) as

39) @ Cpin @ Cpiz2 @& Cpus @ Cpraz & Cpios
@& Cpiss @® Cpaa & Cpaaz @ Cpags @ Cpsss (3.10)
& C01Qi333 ® ChQizz3 & ChQizzzs @& Cpll @ Cpl '

&) &)

@ (Cp[lg] @ (Cp[zZ] (Cp[zs] (Cp[gd]

Note that here the functions p'3l and 22 have weights —10 and —12, respectively. They
were hence independent, meaning that this class was sufficient to complete the basis and no
T -functions were required. However, we find that upon proceeding to the four-pole basis we
will have to define an extra class.

THEOREM 3.5. The basis for T'(J, O(40R)) is given by

(310) D (Cpllll ® C@lllZ ) C@lll?, P (Cp1122
@ Cori2s @ Cprizs ® Cpr222 ® Cp1223
@ Cor233 & Cpr333 ® Cpazaz ® Cpaoa3
@ Cp2233 © (Cp2333 ® (C@3333 @ C8181Q1333
® Co102Quszs & C0103Qu333 & C020:Qu333 & CO203Q1333
® Ch05Qu33 ® Coplll @ Copld @  Copld (3.11)
& CoplPl @ CopPl @ CopPl @ Coptl
®  Chpl? @ Cohp® & Copld ¢ Cohp2d
® Cohpll @ Copltl @ Cozpld @  Cospl?
Sv CF,

where
F = p11p22033 — PllpgS - p%2@33 + 2012013023 — P%3@22~ (3.12)

Proof. We follow the proof of Theorem 3.1. This time the dimension is 49 =43 =64 and
we find that we can identify 63 functions using the basis (3.10) and its derivatives.
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To find the final basis function, the following new class of Abelian functions was examined:

Fijkimn = Qij PklPmn — QijPknPlm — PilPikPmn + PilQinPkm
+ Eim Q518kn — PimPin Pkl + PinQikPim — Pin§5l10km-

The F-functions associated with any curve can be seen to have poles of order at most four
by substituting with Definition 4 and were derived by matching the higher order poles in an
arbitrary sum of cubic terms in the 2-index p-functions. Examining at decreasing weight levels,
we see that we need to include a function at weight —16 and choose Fj12033 = F as given in
equation (3.12) to complete the basis. O

This new basis allows us to derive the new addition formula in Theorem 5.3.

The problem of determining such bases is of importance and is a barrier to further
development of the theory. The construction of the 7-, F- and G-functions in this section
represents great progress towards a general solution of the problem. We have used these
functions, along with another new class, to solve the 2- and 3-pole basis problems for the
(2,9)-curve (genus four) and present these in Appendix A.

4. Differential equations

The p-functions associated to (n, s)-curves satisfy a variety of differential equations, which we
review in this section. Some of these differential equations can be found occurring naturally in
areas of mathematical physics, so the p-functions can be used to give solutions to a variety of
important problems. In this section, we consider the three main classes of differential equations
and compare the explicit equations for the two genus three cases. Note that although the
functions associated to the (2,7)- and (3, 4)-curves are notationally the same, they behave
differently and satisfy different equations. This is most apparent from the different weights
assigned to the functions, summarised for the fundamental functions in the table below.

11 P12 013 022 23 33 A Q1333
-case — — - — - — —
(2,7) 10 8 6 6 4 2 12
, 4)-case - - - — — — —
(3, 4) 10 7 6 4 3 2 8

The sets of differential equations in this paper are presented in decreasing weight order, as
indicated by the bold numbers in brackets. They have all been made available in text files
in the supplementary material. Note that they refer to the functions associated with cyclic
curves, but that relations for the general curves can be derived in a similar fashion at a greater
computational cost.

We first consider the set of differential equations to express the 4-index g-functions. These
4-index relations are the generalisation of equation (1.4) from the elliptic case. We aim
to express each 4-index g-function as a degree-two polynomial in the 2-index gp-functions,
in comparison with equation (1.4). Then, through differentiation and manipulation of this
set, we could express all higher index g-functions as polynomials in the 2- and 3-index g-
functions, analogous to the elliptic case. A complete set of such relations can be obtained for
the (2, 7)-case, as first presented by Buchstaber, Enolskii and Leykin [8].

(—4) 3333 = 4923 + 4p33h6 + 2X5 + 633, (4.1)
(—6) 2333 = 6013 — 2022 + 4236 + 623033, (4.2)

(—18) 1112 = 6p11p12 — 4AsA0 — 2221 + 6p13 A1 — 8paszAo + 4pi12Ae,
(—20) ©1111 = 6@%1 + 2)\3)\1 — 8)\4)\0 + 4@11)\2 =+ 4@12)\1 — 12@22/\0 + 16@13)\0.
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The complete set is displayed in Appendix B. There are various ways to derive such relations,
with a recent survey given in [12]. A constructive way is to consider the basis for I'(.J, O(20[2]))
and the set of 4-index @-functions. Each @Q-function has poles of order at most two and so
belongs to the vector space I'(J, O(20[])). Hence, each Q-function can be expressed as a
linear combination of basis entries. (The explicit linear combination can be identified using the
o-expansion, as discussed in [18].) In the (2, 7)-case, we have the basis (3.4) containing 2-index
p-functions and A. Hence, we can substitute for the Q-functions and A using equations (3.3)
and (3.5) to leave the desired set of 4-index relations.

The corresponding set of equations for the (3, 4)-case was derived in [13, Lemma 6.1] and is
also presented for comparison in Appendix B.

(—4) 3333 = —3p22 + 6033,
(—=5) 2333 = 3p33A3 + 623033,

(=17)  pi112 = —Q1333A1 + 6933 A3M0 + 6011012,
(—20) 1111 = —4Q1333M0 — 3p33 M1 > + 12033000 + 697,

Note that here the function (1333 is used in some of the expressions. The reason for its inclusion
can be explained by considering the constructive method discussed above. Since Q1333 was used
in the basis (3.9) for I'(J, O(20P])), it will appear in the expressions following from this basis.
The ability to construct 4-index relations using only 2-index p-functions as in the (2, 7)-case
is a feature that appears to be unique to the hyperelliptic cases. We have explicitly checked
that such relations cannot be achieved at certain weights in the (3, 4)-case. A more appropriate
definition for 4-index relations seems to be a set that expresses all the 4-index g-functions
using a degree-two polynomial in the fundamental basis functions. (Note that the Q-functions
used will only need to appear linearly.)

It is natural to next consider a set of differential equations to generalise equation (1.3).
Such a set should give expressions for the product of two 3-index p-functions and so we refer
to them as quadratic 3-index relations. The natural generalisation would express each
product as a degree-three polynomial in 2-index gp-functions but, as in the previous case, this
appears to only be possible for the hyperelliptic functions. We have again explicitly checked
that such relations do not exist at certain weights in the (3, 4)-case and so propose the modified
definition of quadratic 3-index relations to be a set of differential equations that expresses
all the products of 3-index gp-functions using a degree-three polynomial in the fundamental
basis functions.

The quadratic 3-index relations for the (2, 7)-case were considered in [8], but a complete
set was not presented. In [1], the corresponding relations for functions associated to covariant
curves have been considered, but again a complete set is not directly obtainable from the results
published there.

THEOREM 4.1. The quadratic 3-index relations associated to the cyclic (2, 7)-curve start
with those below, with the complete set as displayed in Appendix C.

(—6) ©333 = 4033 + 4As + 5033 + A6 P33 — 4p13 + 42 + Apszpos,
(—8)  pos3pass = 2(2023033 + A3 + Aspas + 2X6ps3p23 + P12
+ 2033013 — P33922 + 933)
(—10) ©333 = 8pa3p13 — 4paspaz + 4p11 + 4o + 4p33ps3 + 4633, (4.3)
(—10)  o23p333 = —4pE33p12 — 2023013 + 4p23Poa + 4X6 033013 + 2X5 0336023
+ 44023 — 2011 + 2X5013 — 2X3033 + 2022035 + 2035033,
(—10) 1330333 = —2P33012 + 2023013 + 4X6P33013 — 2011 + 25013 + 413033
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Proof. Once again, these relations can be derived through a variety of methods as discussed
n [12]. They can again be found constructively using the o-expansion, although in this case
there is no simple linear algebra result to dictate that such relations exist. Instead we may
just search for them using arbitrary polynomials of 2-index p-functions. The computations
involved can be heavy and so simplifications are made by ensuring that the polynomials are
homogeneous in weight. Additionally, it is often possible to allocate the cubic terms to cancel
higher order poles using Definition 4 at a low computational cost. ]

LEMMA 4.2. Theorem 4.1 may be written concisely as a determinantal formula

1 H U K
(ITAR)UTAKY=—[1" 0 0], (4.4)
KT 0 0
using the matrices
0 —§9333 ©233  —223 T P133 P22 — 2123
333 0 — 133 9123 —p122 + 9113
A= — 233 133 0 —p113 0112 ,
§223 — 133 —§2123 113 0 —P111
—222 + 20123 P122 — P113  —P112 111 0
4o 21 —2p11 —2p12 —2p13
2\ 4 +4pn 2X3 + 212 —2p22 + 4913  —2¢23
H = |-2p11  2X\3+2p12 4\ +4pa0 —4p13 2X5 +2p23  —2p33
—2p12  —2p22 + 413 2X5 + 2¢23 47 + 4¢33 2
—2p13 =293 —2p33 2 0

and arbitrary vectors I, k,l’, k' of dimension five. Each of the 55 relations in Appendix C may
be obtained using appropriate choices of the vectors.

Proof. The formula (4.4) may be verified directly by expanding and substituting with the
relations of Theorem 4.1. To derive the individual relations from the determinantal formula,
one must make suitable choices of the vectors I, k,1’, k’ with only one entry in each vector
non-zero. For example, setting

E=k"=(1,0,0,0,0), 1=1"=(0,1,0,0,0)

into equation (4.4) leaves relation (4.3) for p255. One restriction on this approach is that some
equations must be derived before others. For example, the equation for p?,5 must be derived
before the equation for 133992903 as the choice of vectors to give 1339223 on the left-hand side
will introduce 235 as well. However, when this is the case it is always possible to derive one
of the other quadratic terms independently and then substitute for it to find the other. Hence,
all the 55 individual relations may be derived from the formula. |

Lemma 4.2 was inspired by the results of Athorne in [1] for covariant hyperelliptic curves
and the corresponding g-functions. These curves and functions belong to generic families
permuted under an sl action, which can be easily mapped to the standard curves and functions
considered here. Recently, the covariant result corresponding to Lemma 4.2 was developed [2].

The corresponding quadratic relations for the (3, 4)-case were first considered in [13], but
again a complete set has not been available until now. These relations include the basis function
(21333, which occurs only linearly or multiplied by a single 2-index p-function. A determinantal
version of these equations, one similar to equation (4.4), has not been identified. One may
follow from development of the corresponding covariant theory to trigonal curves.
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THEOREM 4.3. The quadratic 3-index relations associated to the cyclic (3, 4)-curve start
with those below with the complete set as given in Appendix D.

(—6) 0333 = 4935 + 4p13 + P33 — 4P22033,
(—7) 2339333 = 4023033 — 2012 — P23 + 2A3033,
(—8) 0333 = 4933033 + P39 + 4A3p23033 + 4p33 X2 — 3 Q1333

(—8) 2030333 = 2033033 + 2022033 — 2050 + Aspaspss + 4p13033 + 5 Q13835
(—9)  P223p233 = 2013A3 + 2A1 + 4P13023 + 2023022033 + 2035

+ P22033A3 + 2033A3 + 20232,
(—9) 2220333 = 62322033 — 4P12033 — 2035 + 40220333

— 81323 — P33A3 — 4p13 3.

Proof. These relations can be derived using a variety of methods as in Theorem 4.1. |

The final set of differential equations that we consider here are a set bilinear in the
2- and 3-index g-functions. Due to the parity properties of the gp-functions, we know that
these bilinear relations cannot contain any constant terms, or terms dependent only on the
2-index p-functions. There is no analogue of these relations in the genus one case. Three of the
(2,7) bilinear relations displayed below were derived in [8] as part of a larger computation,
but the complete set below is a new result.

THEOREM 4.4. Every bilinear relation associated with the cyclic (2, 7)-curve may be given
as a linear combination of the 24 below.

(=7 0 = 233933 + V223 — 3336023 — ©133,
(—=9) 0= pi133p33 + P123 — P333013,
(—9) 0= —2p3309203 + P22333 + 230233 + AsP233 — 4p123 + 2X60133 + P222 — 26203,
(—11) 0 = —p133923 — P113 T V233013,
(—=11) 0 = E33p222 — 2022233 + P23§223 + As223 — P122 + 2A60123 + 3P113 — 2A50133
+ 9333A3 — 202334,
(—=11) 0= —p133023 — 20330123 — 3P113 + P122 — 2A60123 + P120333 + 20233013 + A5133,
(—13) 0 = p112 — P22223 + P22223 + P233A3 + 20133913 — 20220133 + 20126233
— 20119333 — 203332 — 260113,
(—=13) 0= —p123p23 — P133013 + P13§223 + P330113,
(—13) 0 = —p22p133 — 20123023 + P112 — 2A60113 + P120233 + 20130223,
(—13) 0 = p122033 — 20220133 + Asp123 + P133913 + P130223 — P119333 — 201334,
(=15) 0= —Asp113 + 2013323 + 20126223 + P22123 — 393331 + 20123013
— 209222013 — ©1226023 — 91126933 — P11£233;
(—=15) 0= —As5p0113 + P133A3 + P12§223 — P333A1 + P111 — P122§923,
(—=15) 0 = —p133A3 + 4123013 — 20120133 — P11§233 — P230113 T P122623
+ 1260223 — ©222013 — ©220123,
(—=15) 0= Pi33A3 + P120133 + P110233 — P239113 — 112033 — A50113,
(—=17) 0= —Asp112 + 12222 — P22P122 — P233A1 — 4130113 + 20130122 + 20220113
— 20230112 — 20120123 + 20330111 + 20110133 + 2p133A2 + 2A601115
(—17) 0= —poap113 + P11P223 + 3P120123 — P233A1 + 2013302 — 433300 + P123A3
+ 20139113 — 290130122 — P23P112 — P330111 — P119133 — 201134,
(—=17) 0 = paap113 + 20120123 — P233A1 + 20133 A2 — 4333 A0 — 20139122 — P230112,
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(=17) 0= —po33A1 — 3p1390113 + 3P1190133 + 201332 + 20333 0 — P23P112 — P120123
+ P130122 T P220113,

(=19) 0= —2p20p112 + P11P222 + P12P122 — A1P223 + 220123 — 49233 A0 + P122A3
+ Asp111 — 2Map112 — 29011373 + 3P133A1,

(=19) 0= p133\1 + P120113 — 2023300 — P139112,

(—=19) 0= —3pi33A1 + A\1g203 — 120113 — 201190123 — 22123 + 492330 + P113A3
+ 2p130112 + P2390111,

(—21) 0= —4l1p123 + Ao + Pra@112 — 20110122 — 20122 A2 + 42230 + P229111
+ 2X2p113 — 4p133A0 + P112A3,

(=21) 0= —p11p113 — A1p123 — 2p133A0 + 20223 N0 + P139111,

(=23) 0= —pr1p112 — P122A1 — 4Aop123 + 2X0p222 + 19113 + Pr2P111-

Proof. The simplest way to construct these relations is through cross multiplication of the
4-index relations. For example, substituting using equations (4.1) and (4.2) into

0 0
%(@3333) - 8763(@2333) =0

gives the first relation in the set above. ]

The bilinear relations in the (3, 4)-case were considered in [13] but, again, a complete set
was not available until now.

THEOREM 4.5. Every bilinear relation associated with the cyclic (3, 4)-curve may be given
as a linear combination of the 21 below.

(—=6) 0= a2 + A\30333 + 20230333 — 2033233,
(=7)  0=20p133 + P220333 + 239233 — 202330223,
(—=8) 0= —4p123 + 42233 — 20230223 — 20338222,
(—9) 0 =4p122 — A3p202 — A3’ 333 + 4Aag333 — 2023022 + 20020223
+8p1360333 — 8330133,
(—=10) 0= —p120333 + P230133 + 20330123 — 2013233,
(—11) 0= 4p113 — 3P120233 — P220133 + 20239123 + 20339122,
(—=11) 0= p113 — 3P130223 + 20220133 + 20230123 — 330122,
(—12) 0 = A3(p130333 — P330133) + A19333 + 120223 — P23 0122,
(—12) 0= p13p222 — P112 — 2A3(P130333 — P339133) — 2A10333 — 2P220123 + P23P122,
(—13) 0 =3X3(p130233 — P230133) — 2A20133 + A1P233 + 3P1260222
—3p22p0102 + 4119333 + 4P130133 — BP33P113,
(—14) 0= —4p12p133 +4P130123 — 20230113 + 20330112,
(—14) 0= 230113 — 32123 + 2A1 0203 — 3P110233 — P120133 — 20130123
+ 4230113 + 20330112,
(=15) 0= —p11p223 — %@12@12 - %@13@122 + %@22@113 + %@23@112 + %Almm — P
+ 330112 — 2 X2 (P13p333 — P330133) — A2pP122 — A3A10333 — 30333,
(—15) 0= —§P12@123 + %@13@122 - %@22@113 + %@23@112
— 2X2(p130333 — P330133) — FA1P222 — gA3A1P333 — 3 A0P333,
(—=16) 0= —A3(p110333 + P130133 — 20330113) — 2A2(P13§233 — P230133)
+ 3A10133 — 40233 — P110222 — P120122 + 20220112,
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(—17) 0= 2Xp113 — 3A19123 + 20223 — 39110133 + 29130113 T 29330111,
(—18) 0= —X3Aop333 + AoP2o2 + SA2p112 — 30110123 + 3 P1260113
+ 39130112 + 50230111 — 3M10122 — A1 (9130333 — P33133),
(—18) 0= —A3A0p333 — 2X0p222 — 3A20112 — 59120113 + 29110123
+ 39139112 — 50230111 + M1 0122 — A1 (9130333 — P33133),
(—19) 0= X133 — 2X2% 133 — 21 (P130233 — P230133) + P130133 — 20330113)
+ ZX2 A 10233 + 3A3A10133 — 2A3 00233 — FP11P122 T 2P120112 + 202201115
(—21) 0 = $A1%ps33 — 2X2A00333 — 3Aop122 — 4No(P130333 — P339133)
+ 3A1p112 + P139111 — P11O1135
(—22) 0= —3X\Aip133 — Pr1p112 + Pr2e111 — 4ho(P13P233 — P230133)
— X1 (p110333 + P130133 — 20330113) + 2A1 70233 + BA3Aop1ss — 2A2X0p233.

Proof. Similarly to Theorem 4.4, these can be derived through cross multiplication of the
4-index relations. However, the existence of Q1333 in the 4-index relations means that more care
has to be taken in the choice of cross products. In higher genus trigonal cases (or in the case
where n > 3) the inclusion of further @Q-functions in the basis makes this method increasingly
tricky. An alternative method to systematically find bilinear relations has been developed and
is discussed in [17]. O

5. Addition formulae

Here we discuss the addition formulae satisfied by the Abelian functions and present some new
formulae associated with automorphisms of the curves. We start by considering the formulae
which generalise equation (1.6) from the elliptic case. Such a formula will exist for every
(n, s)-curve, as demonstrated by the following theorem.

THEOREM 5.1. Given an (n, s)-curve, the associated functions satisfy a two-term, two-
variable addition formula of the form

o(u+v)o
o(u)?o

((:;; v) _ Z i As(u) Bi(v), (5.1)

where the functions A;(u), Bi(v) belong to the basis for T'(J,O(2019~1)) and the ¢; are
constants. Further, the polynomial on the right-hand side will be either symmetric or anti-
symmetric with respect to the change of variables (u, v) — (v, w) when the o-function is odd
or even, respectively.

Proof. Denote the left-hand side of equation (5.1) by LHS(u, v). Clearly, this has poles
of order at most two and so we just need to prove that it is Abelian. We let ¢ be a
point in the lattice and use the quasi-periodicity condition (2.18) with ¥ = ('’ 4+ "€"")T to
check that
olu+tl+v)o(u+l—v)

o(u+ £)%0(v)?
X(0)e?# v+ 3l (u 4 v)x(0)e ¥+ 3o (u — v)
X(0)2e2 71t 5lg ()20 (v)?
_ U(“ + v)a(u — 'U) e\D[u+v+%+u—v+§—2u—€]
o(u)?o(v)?
LHS(u, v).

LHS(u + ¢, v) =
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Then, using the parity property (2.19) with k= 1/24(n? — 1)(s*> — 1), we can check that

clutv+Oolu—v—10) ow+Ll+u)(—1)ro(v+—u)
o(u)?o(v+¢)? N o(v+0)20(u)?

= (—1)*LHS(v + ¢, u) = (-1)*LHS (v, u) = (-1)" ‘7(1’;(';;2)222); “

LHS(u, v + £) =

_ (71)2190('“ + ’U)O’(’u, —

o(u)?o(v)?

Hence, the left-hand side is Abelian with respect to both w and v and so the right-hand side
must be expressed using the basis elements for I'(J, (’)(26[9_1])), as described. The further
symmetry property of the right-hand side can be concluded by simply applying the symmetry
property of o(u) to LHS(v, u). O

Y) _ LHS(u, v).

The coefficients in the right-hand side of the formulae can be explicitly determined using the
o-expansion. (See [18] for details of such calculations.) In [13], the authors showed that the
functions associated with the cyclic (3, 4)-curve satisfy

U(ua?uz)}gﬁ:); v _ —p11(u) — %Q1333(U)@33(u) + p12(v) P23(1) + P13(V)P22(u)

+ p11(v) + %Q1333(U)@33(’U) — p12(u)pa3(v) — p13(u)paa(v). (5.2)

Note that the (3, 4) o-function is odd and hence the addition formula here is anti-symmetric
in (u, v). The corresponding formula for the functions associated to the cyclic (2, 7)-curve is

o(u+v)o(u —v)

U(U)QO'(’U)2 = A(u) - @11(”)@33(“') - @22(“)@13(”) + @12(”)@23(“)
+ 2p13(w)p13(v) + A(v) — p11(w)p33(v) — P22(v)p13(u)
+ p12(u)p23(v), (5.3)
as first established in [8]. This time the o-function is even and hence the formula is symmetric

in (u, v).

In some cases there are more addition formulae associated with the functions, resulting from
automorphisms of the curve equation. Such addition formulae were the topic of [15], which
gave a thorough treatment of the genus one and two cases. We will present two new genus
three addition formulae associated with the cyclic (3, 4)-curve. The first of these is related to
the automorphism on the curve (2.6) given by the operator

(€] (2, 9) — (2, Cy) where ¢ = Xp@)

So, € is a cube root of unity and [{] an operator which multiplies y by the root leaving the curve
unchanged. We extend this notation to define the sequence of operators and automorphisms

(<] : (z,9) — (x,y) for j € Z.

We can check using the basis of differentials (2.9) that these operators act on the variables u
as follows:

[u = (ur, Cug, (Fus). (5.4)

The action of such operators on the lattice A is stable (it moves the points around but does
not change the overall lattice). This can be checked by considering the effect on the individual
elements of the period matrices (see [24] for more details). We can now derive the following
result for the o-function which follows [24, Lemma 4.2.5].
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LEMMA 5.2. The o-function associated to the cyclic (3, 4)-curve satisfies
o([¢7]u) = (o (). (5.5)
Proof. Consider the quasi-periodicity of o([¢/]u). If £ is a point on the lattice, then
o([¢)(w + 0) = o ([¢]u + [¢7]6).

Since the lattice is stable under the action, we know that [¢?]¢ is also on the lattice. Hence, by
equation (2.18),

(€ + ) = (00 () exp | 21w+ 5 ). 1) |
In [24], the author showed that for an automorphism of a cyclic curve we have
L([(Ju, v) = L(uw, [(']v)
and hence
L([¢’]u, [("]v) = L(u, [(][¢]v) = L(u, v).
Therefore, we have
() + ) = (00 () exp | 2w+ 5.0 |
We now consider the quotient

o([Clu+0) _ x(€10) o([¢]w) _  o([¢]w)
(

o((u+1)) x(0)  o(u) o(u)
since x(¢) = £1. So, we see that the function
o([¢7]w)
o(u)

is bounded and entire (since the zero sets coincide). Hence, by Liouville’s theorem, the function
is a constant. Using the Schur—Weierstrass polynomial (2.22), we see that this constant
is (7. U

We can now derive the addition formula associated with these automorphisms. Note that
this is a more general version of the formula presented in [13, Theorem 10.1].

THEOREM 5.3. The functions associated to the cyclic (3, 4)-curve satisfy

o(u+v+w)o(u+ [(Jv + [(Jw)o(u + [(Pv + [(Jw)
o(u)do(v)3o(w)?

= f(u, v, w) + f(u, w,v) + f(v, u, w) + f(v, w, u) + f(w, u,v) + f(w, v, u),

where
flu,v,w) =[Psp + Pay + Pay + Poy + Pig + P15 + Pia + Py + Ps + P5 + Byl(u, v, w)

and the polynomials Py(u, v, w) are as presented in Appendix E.

Proof. Denote the left-hand side of the formula by LHS(u, v, w). Using Lemma 5.2 and
the parity property of the o-function, we first check that LHS(u, v, w) is symmetric under all
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permutations of (u, v, w). Next consider the effect of u+— u + ¢:

LHS(u + ¢, v, w)
_a(u+£+v+w) o(u+ L+ [(Jv + [CPlw)o(u+ £+ [¢P]v + [¢Jw)
o(u+()3c(v)’o(w)?
X(E)e [u+v+w+e/2]x(g)e [u+[<]v+[<2]w+e/2]X(g)eﬁf[u+[<2]v+[<]w+£/2]
X(€)363\I/[u+é/2]
=LHS(u, v, w)e\llv[H[C]ch]]e\llw[1+[<]+[<2]1.

=LHS(u, v, w)

However, from (5.4), we see that

vi(1+¢+¢?)
v+ [+ = vl +¢+ ) | =
v3(1+¢*+¢)

o O O

and so LHS(u, v, w) is Abelian with respect to w. Further, since it is symmetric in (u, v, w),
we can conclude that it is Abelian in v and w as well. Hence, it may be expressed as

LHS(u, v, w) ZCZ i(u)B;(v)C;(w)

such that the ¢; are constants and the functions A4;(u), B;(v), C;(w) belong to the basis for
['(J, O(30R])), presented earlier in equation (3.10). To determine the constants ¢;, we use the
o-expansion. The computations involved can be heavy and so it is essential that we take into
account all the available simplifications. We have already noted that LHS(u, v, w) is symmetric
under all permutations of (u, v, w) and we reduce the number of independent ¢; by applying
this property to the sum. We can also check using the parity property of o(u) that LHS(u, v, w)
is even under (u,v,w)+— [—1](u, v, w). Since we know that the parity of the p-functions
matches that of the number of their indices, we can check the parity of all basis functions
and hence only include suitable combinations. The biggest computational simplification comes
from the knowledge that LHS(u, v, w) has total weight —30, which will drastically reduce the
number of possible terms. To further ease the time and memory constraints, we implement
code in Maple to efficiently expand the products of series so that only the relevant terms are
considered.

We find that LHS(u, v, w) is given as stated in the theorem. For simplicity, we group together
the terms with common weight ratios into the polynomials P (u,v,w) which contain the
terms with weight —k in the Abelian functions and weight (—30 — k) in the curve parameters.
These polynomials are presented in Appendix E and are made available in the supplementary
material. |

If we were to try and derive the corresponding addition formula for the (2, 7)-case, then we
would be led to consider a curve automorphism [(], where the constant ( = —1 instead. The
automorphism addition formula would then coincide with the standard addition formula (5.3).
Hence, there is no corresponding addition formula to Theorem 5.3 in the (2, 7)-case, or rather
it is the same as the traditional addition formula in equation (5.3).

The final addition formula presented in this paper is satisfied by the functions associated to
the reduction of the (3, 4)-curve given by y* = x* 4+ \¢. This has a family of automorphisms

(7] (@, y) = (=i 2, ),

where ¢ is the complex variable and j € Z. The functions then satisfy the following formula.
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THEOREM 5.4. The functions associated to the restricted (3, 4)-curve, y> = x* + Ao, satisfy

o(u+v)o(u+ [ijv)o(u + [i2]v)o(u + [i%]v)
o(u)to(v)*

:f('u’ﬂ 'U) —f('v,u),

where

flu,v) = =To112(v)p1as(u) — 2o1111(w) + L p112(w)dap!™ (v) — LF(u)p22(v)
+ > p1113(w)pssss(v) — 1*1852@[11] (w)d2 M) () — 7150202Q1333 (1) 2222 (V)
+ %32p[33] (u)p233(v)— Zp1113(0) P22 (V) + %@m] (1)Q1333(v)— 2 1133 (1) Q1333 (V)
+ 250205Q1333 () P1333(v) — T503333(V) F(u) + %Pm] (v)p1333(0)
— 205p113)(w)p123(V) — 5501133 (W) 2222(V) + [£92222(V) + 1593333 (V) P22 (w)] Ao.

Proof. Using a similar approach to Lemma 5.2, we see that o([iju) = —io(u). We can then
check that the left-hand side is anti-symmetric under (u, v) — (v, u) and is Abelian. We can
hence express it as a quadratic polynomial in the elements of the basis for T'(J, O(4012)),
derived earlier in Theorem 3.5.

We use the o-function to determine the coeflicients of each term. Due to the restriction on
the curve parameters, determining the coefficients is computationally easy in comparison to
Theorem 5.3. (However, the construction of the basis in Theorem 3.5 required much effort.) [

There is a similar formula associated to the restricted (2, 7)-curve y? = 27 + Ao, which has
automorphisms [¢?] : (z,y) — (&, y). Here ¢ is a seventh root of unity and we consider

[T o(u + [i*)v)
o(u)’o(v)”

To evaluate this, we will require a basis for the 7-pole vector space which has dimension
73 = 343.
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Appendix A. Bases for the functions associated with the hyperelliptic curve of genus four
In this appendix, we consider the general (2,9)-curve
v+ (e’ + psz® + psa® + prx + po)y
=2 + po2® + paa” + pea® + psa® + prort + poa® + praa® + g + s,
which has genus four. We construct the bases for standard Abelian functions associated with
this curve, following the approach in Section 3.
THEOREM A.1. The basis for T'(J, O(201)) is given by

@ Cl & Cpu @ Cpiz @& Cpiz & Cpuu @ Cpx
D (szs (o) C924 ($) C@Bd ] (C@dél @ (CP44 (&) CAl (A1>
® CAy, @& CA; & CA, & CAEH

where

A1 = p3ap23 — P34914 + @34 — 33024 T Q44013 — 22§44,
Ag = 034013 + 924014 — 933014 — P12644,
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As = —puap11 + @%4 — 923914 + 136024,
Ay = —2p31911 + 2013914 — 29022014 + 2012024,
As = —p12023 + P13 — @%3 + 126014 — P11024 T P119033-

Proof. We follow the proof of Theorem 3.1. This time the dimension is 29 = 24 = 16 and
we have ten 2-index p-functions. By testing arbitrary sums of quadratic terms in the 2-index
p-functions, we find that we can identify combinations that have poles of order only two. We
find five linearly independent combinations which can fill the missing basis entries. ]

Note that we could have alternatively used @-functions, as discussed in Section 3.1. However,
the A-functions are advantageous since this allows the theory to be completely realised in terms
of 2- and 3-index g-functions. As discussed in Section 4, this appears to be a feature unique
to the hyperelliptic cases. Note that while the 7-, F- and G-functions introduced in Section 3
had reduced pole structures in general, these A-functions have poles of order two only in the
(2,9)-case.

THEOREM A.2. The basis for I'(.J, O(301))) is given by

Al) @ Copin @ Cpnz @ Cpuzs @ Cpia @  Cpi
® Cpiaz @ Cpraa @ Cpizz @ Cpiza @& Cpru
® Cpao @ Cpoz @ Cpoau @ Cpozz @ Cpo
® Cpouy & Cpzzz @ Cpzza @& Cpzag & Cpyyy
D Co1 A, o CoA; @ CozA; ®  CosA (S5 Co3A,
@ CoAy @ CohA; @ CoOA; @ CozA;3 @ CosAs
® CoHAy @ CohAy @ CoAy @ CoAy @ CoAj (A.2)
& CohA; @ ChA; & CoAs & Cliusss @ CTiiizs
® CTiiizaa ® CTiiossa @ CTioooas @© CTigossy @ CTligosus
© CTigogaa @ CTiozszzs @ CTiosgsa @ CTiozuas © CTiogauy
® CTizzzzz @ CTiggaas © CTooozas @ Clogosss @ CTozzgua
® CTaog44s @ CTozzzzs © CTazzzzy @ Claggaas @ CTzzazsg
® CT333444 O CTagggas © CTagaa4qa @ CUy ® CU,,

where

U1 = 292332223 — 922292333 — %@223@2233 — 933622223 + 9226022333 + %@333@2222
+ 60220330223 + 623330222 + 30330223 — 120220230233 — 30320333,

Us = 2093492203 — 22272334 — %@224@2233 — §9223§92234 — 346922223 + 22622334
+ 3033002222 + 69220340203 + 6230310222 + 39330224
— 120020230234 — 39320334

Proof. This time the dimension is 39 = 3* = 81 and we find that we can identify 54 functions
using the basis (3.4) and its derivatives. We then proceed to add 36 of the 7-functions defined
in equation (3.8). To find the final two functions, we used a new class formed from a sum of
p-functions in which each term has seven indices. |

In the (2,9)-case, o(u) has weight ten and hence the minimal weight for functions in this
basis is 30, in accordance with Lemma 3.4. This is achieved by the function 7711333, although
this is not a unique choice. For example, it could be replaced by 7329295. Both functions will
reduce to a constant over o(u)3.

https://doi.org/10.1112/51461157010000355 Published online by Cambridge University Press


https://doi.org/10.1112/S1461157010000355

314 J. C. EILBECK ET AL.

Appendix B. The 4-index relations associated to genus three curves

The complete set of 4-index relations associated to the (2, 7)-curve is given below.

(—4) 3333 = 423 + 4p33A6 + 2X5 + 6033,

(=6) (2333 = 6913 — 2022 + 4236 + 623033,

(—8) 2233 = —2p12 + 4pP13A6 + 2023A5 + 2022033 + 4033,

(—8) 1333 = —2p12 + 4136 + 613033,

(—10) 2293 = —6p11 + 4p13As5 + 4pasAa — 2033 3 — 4o + 62223,

(—10) 1233 = 20135 + 2012033 + 4p130023,

(—12) 1223 = 2012023 + 4P13022 + 4P13M1 — 2X\1 — 2 PT5 + 2011033,

(—=12)  pag9a = 6935 — 61 + 12012003 + 12075 — 12013090 — 12011033 + 2X5A3
— 8Ag A2 + 422 s — 120330 + 4p12A5 + 4oz A3 — 12011 A6,

(—12)  p1133 = 2012023 + 6973 — 2p13022,

(—14) p1123 = 2p11023 + 4p12013 + 201303 — 4o,

(—14) 1222 = 6p12p22 — 201105 + 4p13A3 — 69033 A1 + 4p12As — 8Xg — 461,

(—16) @113 = —2p23 1 + 4ps3Ao + 4p13A2 + 6p11913,

(—16) 1122 = —2p23\1 + 2p12A3 — 8pP3s Ao + 4p13A2 + 2011022 + 4975 — 8As Ao,

(—18) p1112 = 6p119012 — 4A5M0 — 20201 + 6131 — 8oz Ao + 4p12a,

(=20) 1111 = 692, +2X3A1 — 8A\ghg + 4p11 A2 + 4p1ad1 — 120900 + 169013 )\0.

The complete set of 4-index relations associated to the (3, 4)-curve is given below.

(—4) 3333 = —3p22 + 63,

(—=5) 2333 = 3333 + 603033,

(—6) 2233 = 413 + 3P23A3 + 2X2 + 2022033 + 4033,
(=7) o223 = 3p22)3 + 6022923,

(—8) 2202 = —3p333” + 1203300 — 4Q1333 + 69,,
(—8) 1333 = Q333 + 6013033,

(—=9) 1233 = 3p13A3 + A1 + 2012033 + 4p13023,

(—=10) 1223 = —2p11 + 3P12A3 + 412023 + 2013022,
(—11) 1222 = —Q1333A3 + 6331 + 612620,

(—12) 1133 = 2p13X2 — 231 + 2p11033 + 4pis,

(—13) 1123 = 2p12\2 — P22 A1 + 2011923 + 412013,
(—14) 1122 = —3Q1333\2 + P33AsA1 + 8pssAo + 2011022 + 49Ty,
(—=16) 1113 = 3p12A1 — 6pao Ao + 6p11913,

(=17) 1112 = —Qu333A\1 + 633300 + 6011012,

(—20) 111 = —4Q133300 — 3p33M” + 12033000 + 607

Appendix C. Quadratic 3-index relations associated with the cyclic hyperelliptic curve of
genus three

This appendix contains the complete set of quadratic 3-index relations associated to the cyclic
(2, 7)-curve. Note that A is a function quadratic in the 2-index p-functions, as defined in
equation (3.5). It was used in the basis of fundamental Abelian functions (3.4), and occurs
here only linearly or multiplied by a single 2-index g-function. Hence, each relation can be
rewritten as a polynomial in 2-index p-functions of degree three. The relations are presented
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in weight order, as indicated by the numbers in brackets.

(—6) 0333 = 4pis + 40 + A5 033 + 46033 — 413 + 4pao + 43393,
(—8) 233333 = 42333 + 2A3 + 2A5023 + AA6 033023 + 2012 + 4033013
— 2033022 + 203,
(—10) ©333 = Bpa3p13 — 4p23p20 + 4p11 + 4ha + 433033 + 4X6 33,
(—10) 223333 = —4E33p12 — 2023013 + P32 + 4N6 033013 + 2A5033023 + 43
— 2011 + 2X5013 — 2A3033 + 2022033 + 2033033,
(—10) 1330333 = —2033012 + 2023013 + 4A6P339013 — 2011 + 2X5013 + 4P139%3,
(—12) 23233 = 2X1 + 4X6023013 + 2022023033 + 2033 — 2013022 + 4pTs — 411033
+ 2X5033 — 4A2p33 + 23003,
(—=12)  pas2pa33 = —16075 — 495, + 20013020 — 2012023 + BpaoPazPas + 4p11033 — 203,
— 2X5A3 — 8Ae023013 — 2AZ023 — 2A5012 — AAsp22 + 164013 — 43033
+ 8A1p33023 — 2A5033022 — 4A633912 + 8A5033013 + BA6p23 022
+ 8AsAag23 — 4N A3033 — 45035 — 2A36023,
(—12)  pi33p233 = 2M1 + 4X6P23013 + 4P13023033 — 2013022 — 2012023 + 4073,
(—12)  pra3psss = 2011033 — 4pis + 4p13022 + ANap13 + 2012033
+ 2013923033 + 2A5033013,
(—14) P393 = 433 A — Aposp11 — 4p13pr2 + 4ho — AA3psapas + 46l
+ 4Xs 003013 + 4A2p35 + 4Nady — A1 p33 + 4p20pds,
(—14)  pis3pa23 = 4ho — 2023011 — 4p13P12 + 4h6pi3 + 25023013 — 21033
+ 2013033 + 2013033022,
(—14) Plag = 4pizpas — 4p13p12 + 4o + 4Aepls,
(—14) 202233 = —8p33A — dpa3p11 + A6 3023 — 4A6A — 4XgpT5 — 8AsA2g33
+ 2X5 023022 + 8P13012 — 2022012 — X2 A5 + 4A3033023 + 2035033
+ 2020033 — 8A233 + AN P13022 — AA6P11033 — 4A1 33 — AAsp11
+ 8A3013 — 2A3¢22 — 4 X223,
(—14)  p123p233 = 2013012 + 2A\5023013 — 2A1033 + 2013035 + 2012033023 + 2A3013,
(—14) 1220333 = 4p33A — 2X5033012 — 8A6pTs + BAsAap13 + 8Aaps3p13 + 613012
— 5023013 — 2X5° 013 — AAap12 + 2X5011 + 2X3013 + 8A6P13022
+ 4X6 0110332013033+ 2013033022 4012033023 — 4220124023011,
(—14) 1130333 = —2033A + 2023011 + 2013012 + 2075033 + 20119033 + 2A3013,
(—16) ooz = —4X6pa3P11 — 49230 + 4Xs 012003 — 4X5011033 + 4AaP236020
— 2X3033¢22 — 46 A 1033 + 2A5 3023 — 4A29033¢023 — A2 A5033 — 8Aap11
+ 2X3935 + 43912 + 8213 — 8Aapa2 — 2A1 023 — 8Aop33
+ 4935023 + A5 073 — 620011 + 2075 + 2037 — 8Aa Ay — 2A5A1,
(—16) 1330220 = —4X6p23p11 — 4232 + 2X5012023 — AN A 1033 — 2012033
— 21023 — 8Aows3 + 4Asp13 — Sp13P11 + 2020011
— 2X5 A1 + 413023022 + 2012033022 — 4A1 033,
(—16) 1230223 = 20230 + 2012033 — AAopss — 2013011 + 2A5075 — 2A3p33013
+ A\ p23p13 + 2013023022 + 2A1 033,
(—16) pi23p133 = —4Xopss — 2013011 + 2073023 + 2012013033 + 2X5013,
(—16) 1220233 = 2X5012023 — 2A5011033 — 4A6A 1033 + 2012035 — 2A3012 + 4A2013
— 4N\ p23 — 2X5075 + 4p13011 — 2075 — 2As A1 + 613012
+ 4X6A3013 + 4A3p033013 + 2012033022 + 2A5A — 4A1 033,
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(~16)
(~16)

(—18)

(—18)

(—18)
(—18)

(~18)
(~18)
(~18)
(~18)

(—18)

(—20)

(—20)

(—20)

(—20)

§£1136233 =
1124333 =

2 _
222 =

§2123§9222 =

2 _
$123 =

§122§223 =

01226133 =
01136223 =
91136133 =
§9112§9233 =

91114333 =

P122§0222 =

§1226€123 =

911349222 =

01138123 =

J. C. EILBECK ET AL.

—2023A + 42013 — 2X1 923 + 413911 + 2073023 + 2011023033,

AXe 23011 + 2023 — 2X5011033 — 2A3012 — 2075023 — 2A5075

+ 4p13011 — 2020011 — 2075 + 613012 + A6 A3013

+4A3933013 + 4012013033 + 2011923033 + 2A54,

—8A302313 + 823 A5 A2 — 8A5A3013 + 423223 — 16X 111

— 166 A2g22 + 4X5 X3922 — 162433 — 8033 1 A5 + 8A3p12A6

+ 16X 033 — 4pTapss — 411933 + 8pP12013023 — A1 338923

+ 16A6p13011 + 16A6 X213 + 4p11 922033 — 4pT3022 + 16A1 013

— 16A1 A4 — 16X A4A2 — 16922011 A6 — 160222033 + 45022012

+ 46 As” + A7 Ao + 4p3sdo + 4pd A + dpTade + AT o1

+ 4032033 — 16M4A — 8A3011 + 320134 — 20020 — 8As 13012 + 493,
— 16X 1022 + 16X2p33013 — 8p12911 + 16A4p73,

—2033A1 A5 + 4p139P22 A1 + 4A4P11933 — 2023 5011 — 4A1 922

+8p13A — 2090 A — 2012011 + 4P12013023 — 2A1033023 + 2011022633
+ 415 + 8Xop3s — 2072033 — 2011055 — 2X3P33012 + 201305,

— 2X3011 — 4MA — 2035000 + 4N 113 — AN Mg + 20120239022,

4p13A + 4p12p13023 + AAapTg + Aol

—4M Ay — 203301 A5 + 45013012 + 4A3023013 + 413020 4 — 4A1 022
—8A6A0p33 — 4A6p13011 — A5 0 — 12013A + 42 A — 4120130023

+ 2073002 + 6A1013 — 8Nop2s — 8AapTs — 8Aopss + 2072033 + 201105,
— 42033013 — 20119226033 — 2A3011 + 2A5A3013 + 4dp12023022,
—40130 + 2012011 — 4A5 0 + 2075033 + 2073020

— 86 A3 + 25013912 — 4A6P13911 + 2A1013 — 8Xop2s — 8Aogis,
—40130 + 2011933 + 2X3023013 + 2A1 033023 — 4A2033013 + 2075022
+ 2A 1913 — 4023,

—2013A + 20110139033 + 2035 + 2A1 013 — 4023,

80138 — 2000 A — 4p12p11 + 4p12913023 — 4N 1933023 + 82336013

+ 8613911 + 8AsA2p013 + 20110226033 — dAeA1023 — 4A2p12

— 2075000 — 41913 + 21022,

2X5013012 + 2A3023013 + 6011013033 — 4Aap11933 + 2023 5011

— 412013023 — 2011922033 + 2073022 — 4MapT3 + 2072033 + 2011033
+ 2253013 + 4AA — 100134 + 4o A — 2035 4+ 2X3033012,

—8A6 A1 — 42033012 — 6A1P33022 + AA3P13022 — 16X0g22 + 2X1 933
+ 45 1923 + 8As A 1013 — 8AsAop33 + dAap22012 — 8A1A49033

— AX6p12011 — BAeA1p22 — A6 Asp11 + 4p12030 + 2X5075 — 4p12A

— 16X120 — 2X1p12 — 4A3A — Ahop11 + 2A5 3012 + 16X0p013 + 2X5° Ay
— 2A5922011 — 2231,

207023 — 8AaAo + 20124 + 20T + 2012020013 + AAap13912

— 2X5013011 — 2A1033013 — 4As 0033 — BAoP22 + 2A3075 + BAop1s,
223011933 + 8NoP3zas — 20Tapa3 — 2A3 A1 — 4p12A — 4T,

— 8A1p33p13 — 4ho@a3pi2 + 2A1 033022 + 2A3013022 + 23075 — 2A1 012
+4p12p20013 + 2011022023 — 2230 — ddapn1,

ANop33pa3 + 2073012 + 2011013023 — 2A1 033013 + 2A373,
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(—20)

(—20)

(—20)

(—22)

(—22)

(—22)
(—22)

(—22)

(—22)

(—22)

(—24)

(—24)

(—24)

(—24)

(—26)
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P1120223 = —8Xows3pa3 + 2012023 — 2A3M1 — 4pT) + 2011922023 + AAsp13011
+ 41 33013 +4X2 A5013—8A6 Ao 23 +4A2 023013 +2A3 013022 —4 A2 011
+ 4X6 A1 p13+4M0 P20 —2X1 P33~ 43073 — 4N P12 —8hoP13—2A5 A1 P23,

P1120133 = —8Xopsspas + 2073012 — 20122 + 2011 p33012 + 4A1 033013
— 8AgAop23 + 4A6 A 113 + 4Aop22 — 2A1 012 — BAops,

P1110233 = —2X3011933 — 2073012 + 20122 + 4p11P13023 + 2011033012
+ 44X 5013 + 4A2p23013 + 4A2p33012 — 2A1 033022 — 2A5A 19023
+ 45013011 + 4A1p33013 — 2A1053 — 2A3p73 + 2A3A,

020y = —16X6Mao + 4920090 + 4011 A + 4X5% Ao — 8A3 g — 4As 010011
— 4X1p11 + Adopls — 16A4A0ps3 — 41 P23 P13 + 8As Aopos
— 8Xops3p22 — 8hopi2 + 4Asp13012 — 4N P33012 + 46T,
+ 8033 + 16X6 X013 + 4Aapls — 16X6A0p22,

P1139122 = 2013070 — 4A3A0 + 2011013022 — 8Aops3P13 + 4AopP3s — 2A1 011
+ 42075 — AN P23013 + dNoP33P22 — ANoP12 + 23013012 — 21 P33012,

Pz = 4p11973 + 4033 + Ahapls — 4hpasprs,

P1120222 = 2011935 + 2079022 — AAeAs A1 — 8p11A — 8A3 A — 8Aa11 33
— 4A3A 1033 — 8AeA2011 + 2A3022012 — 2A5A 19022 + BAsA1p13
— 8033 — 41011 + 8A1P23P13 — 8AsAopas — Bhowiz — 4A1P33012
+ A2 p12023H 45012011 —2X1 P23 P22 —4A6 A1 P12—8A6 0T, 42 A5 012,

P1120123 = 2013072 — 4A3X0 + 211023012 + 2As A1 013 — X035
— 2A1p11 + 219023013 — A5 0923 — 4Aop12 + 2A3913012,

P1119223 = —20130% + 4P11A + 20119139022 + 411023012 — Ahopr1gss — 2037013
+ 2A3A 19033 + 8 up13p11 — 2A3023011 — 4A1 A4g23 + 2A5 A1 013
+6A1p23013 — 4As A0gr23 — 4Aopasp2e — dAsp13012 + 4A1 033012
+ 8X2 1013 + 8A2A — 4X1 pa322 + 8AoP33913 + 8A2p12023 — 4N 33,

P1110133 = 2071033 — 20110 + 8XoP33913 + 2011053 + 2As5 1013
— AXops3 + 2M 1023013 — 450023 — AAoPs3P22 + 2A1 P33P12,

P1120122 = 2011912022 + 2017 — 8XaXg — 8AeAzho + 203, — 8A3Xopss
+2X5 1012 + 4A1 975 — 8AsAop12 + Aopi3p12 + 8AsAop13 — 4A1p11933
— 2X1 13022 — 8howsszprz — 4AeA1p11 — 8Aop11 — 4AAsAopa + 2X3p7,,

P1120113 = 4p11912013 + 2017 — 82X + 4Aopa3p22 + 2A1 A
— 8Aop2313 + 61975 + Ahap13p12 — 2A1 011033 — 4A1913022 — 8Nop11,

P1110222 = 18113022 + 8A3013011 + 2A1p11933 + 6011012022 — 16 A4 A0 23
+ 8A4p12011 + 8AsAopsz — 14A1pTs — dAgpls + 2M A — 4X507)

— 16Xgp23p22 + 16A0p23013 + 16A1 Aa013 + 8Aop33012 — 2A5 1012
— 2X3A1 23— 4 A5 011 — 4N 023011 +8 N2 A p12—2X3022011 —2X3 P12
—4M A2z + 8hagaapiz — 41039 — 8hapispia — 2As A3 A1 — 207,

P11190123 = 2071023 + 20119012013 — 8Aow2sP2z + 8Aopaspis + 4A1 Aapis
+ 4X3X0033 — 4A1 915 + 2M1 11933 + A1 13022 — BAaAop23
+ 2X3013011 + 4AoP33012,

P30 = —16XA + 4X6A1% — 16X A2 Ao + 4p11975 + 8A1p13012 — 16X6A0p11
— 16X0p12023 — 16A2 o33 + 4Aop3s — 4A1 022012 + 4Xapy + 4N %33,
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(—26) pr1p122 = 207122 — 4As X300 + 2011075 — 8A3Aopas — 4A1paspr1 + 4hepizpi
+ 811933 — 2A1013012 + 41 Aap12 — 2A5 A1 011 — 4A5 0012
— 8A1Aop2z — 8hopi2g2s + 8A2Xogss — 8Aopdy + 412212 — 2M1 a3
+ 24X 0@13022 + 16A4 X013 + 23\ 1913 + 2X3012011 — 160975,
(—26) 1119113 = 4071013 — 4A3h0P23 — 21023011 + 42013011 + BAoP11033
+ 2\ 013012 + 2X3 1013 — ANop12023 + 8A2opss — 2A1 pss,
(—28) pri1pi2 = 225017 — 8 A5\ + 493 12 — 8hopaspir + 2A3 P12 — AAoga2pi2
— 8A2Agp23 + 8Aop13p12 + 4A1p139011 — 4A3A0p22 + 4A2p12011
— 2\ 022011 + 8A3op13 — 8Ashopi1 + 2A1 035 + 2X1 s,
(—30) Oh1 = 4pd + 407 M 4+ 40500 — 16Xa )Xo + 8AsAop1a + 4Nopls + 4Napt
— 16A2A0p22 + 16A0p13¢911 — 16022011 + 41012011 + 16A2 00013
+ AN\ p11 — 16Aadopr1 — 4N 2p1s + 4N *poo.

Appendix D. Quadratic 3-index relations associated with the cyclic trigonal curve of genus
three

This appendix contains the complete set of quadratic 3-index relations associated to the cyclic
(3, 4)-curve. Note that Q1333 was the sole @Q-function used in the basis of fundamental Abelian
functions (3.9). It appears here as a linear term or multiplied by a single 2-index p-function.
The relations are presented in decreasing weight order, as indicated by the numbers in brackets.

(—6) 0335 = 4pis + 4913 + P33 — 4P22033,
(—7) 2330333 = 4P23035 — 2012 — P226023 + 2A3033,
(—8) 0333 = 4933033 + P39 + 4A3p23033 + 4p33 N2 — 3 Q1333

(—8)  p223p333 = 2053033 + 2022033 — 2030 + A3p23 P33 + 4013033 + 5 Q1333,
(—9) 223233 = 2013A3 + 2A1 + 4P13023 + 2023022033 + 2035
+ wp22ps3As + 2033A3 + 2023 A2,
(—9)  p2226333 = Opa3po2p3s — 412033 — 2033
+ 42033 A3 — 8p13023 — P33A3 — 4P13 )3,
(—10) P393 = 4033022 + 4011 — 4p12023 + 413022 — 4P12A3
+ 4309206023 + A%@%g + 42920 — 4)\2933 + %@33@1333;
(—10) 222233 = 2033002 + 2032033 + 4P12023 + 2012A3 + A3P22g23
— 2X303; + 8203 — §933Q1333,
(—10) 1330333 = P12023 — 2013022 + 4P13033 + 3933Q1333,
(—11)  pogogass = 20353 — A3pa3p3s + 4323 + 4A2p23033 + 4p33A1
— 2X3Q1333 — 323Q1333,
(—11)  pi33p233 = 2X3013033 + 20331 + P12022 + 4033023013 + 5 P23 Q1333
(—11)  p123p333 = 2012033 — 2012022 + 2033023013 + 23013033 — 5923CQ 1333,
(—12) P5a2 = 405y + 8p11033 — 8015 — 4psapias + 4paspi3ds + 4p1303
— 49203373 + P33A3 — 8p13A2 + 16033 2022 — 4033 \2
— 80 — 4922Q1333 — 4231,
(—12) 1330223 = 2013033022 + 20130953 + 2011933 + 2073 — P33P12A3
+ 2013A2 + 202301343 + 2X0 + 2 022Q1333,
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(~12)
(~12)
(~13)
(~13)
(~13)
(~14)
(~14)
(~14)
(~14)
(~15)
(~15)
(~15)
(~15)
(~16)
(~16)
(~16)
(~16)
(~17)
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P1230233 = 2013\ + 2075 + 2033012A3 + 2023033012 + 2013053
— 2011033 + 202391323 + 2A0 — 3 22Q1333,
P1220333 = 2013033022 — 2013053 + 423 P339012 — 2011933 — 6pT5 + 2X0
+ 203301203 — P23P13A3 — 2013A2 + P23A1 + 2p22Q1333,
P1330222 = —2012033 + 4P23013P22 — P23P12A3 + 20220133
+ 2033012022 + 493301 — 5 P33 A3Q 1333,
P1230223 = 202001 + 202001303 — 20331 + 2012033 + 2023013022
— 2011023 + 202301273 + 3933A3Q1333,
P1220233 = — 02201303 + 4P12013 + 2012053 + 201202 — P22\
+ 2023012A3 + 4033 M1 + 2033012022 — 3933 X3Q1333,
plss = Py + 403300 + 4033075 + 3013Q1333,
P1230222 = 2022023012 — 2075 + 2013030 — 202303301 — 2A3013033
+ 2020012A3 + 83301302 — F013Q1333 + 3 23A3Q1333,
P1220223 = dp22pa3Pr2 — 2011922 + 2075 + 202201223 + A3P13033
+ 4pa3p3sA1 + P33AsA1 + 8pssho + 5013Q1333
— 2023 A3Q1333 — 43301302 — ZA2Q1333,
P1130333 = 2033973 + 2033011 — 2072 + 20330132 — P23Pa3 M
— 203300 — 2013Q1333,
P1230133 = 2023073 + 2013A1 + 207373 — 202300 + 2033012013 + 3 P12Q1333,
P1220222 = 63320\ — PasAsAi — 203301203 — 2033M1 + 2A3p13A0
+ 2X3011033 + 2391303 — 2073A3 — 2 022A3Q1333
+ 43301000 — 20300 + 4932012 — 5012Q1333 — 8P13A1,
P1130233 = 20733 + 2023073 + 2p33p12A2 + 2013A1 + 2033023011
— 2023A0 — P33P22 1 — 2912Q1333,
P1120333 = 20230132 — P33A1 — 4pT3A3 + 4ps3P12013 — 20230
+ 2033023011 — 2023033 + 3912Q1333,
Plas = Sp23p12A2 — Sp11013 + 213023012 — SP33011022 + ZP33A2Q1333
- %@23@22)\1 + %@22@13)\2 + 3220 + %@12>\1 =+ %@%3@11
+ 203022 — S350 + 2033075 + 3P1201303 — F033A3A1,
£1224133 = —%@11@13 + %@13@23@12 + %@33@11@22 - %@%3@11
+ 3073022 + 3033070 + 2p23P22A1 — ZP22p13A2 — 2P23P1202
+ 301201303 + 2033 A3 A1 + $P12A1 + K P33h0 — §5033A2Q1333,
£1136223 = %@11@13 + %@13{023@12 + %@33{011@22 + %@%3@11 + %pz:spu)\z
+ 3073022 — 2033072 — 5923022 M1 + 302201300
— 3933 A3 A1 + 301201 — S350 + 2033 A2Q1333,
$112§233 = 1*36@11@13 + %@13@23@12 + %@33@11@22 + %@%3@11 - %P33)\2Q1333
- %p%;;@m + %@33@%2 - %923@22& - %@22@13)\2 — 6220
+ 3p23p12X2 + 2033031 + Lp12A1 + L2,
P1220123 = 2033A3N0 + 2012013022 — 20119012 + 2\1 P13033 + 2A307,
+ 2023075 — 3A1Q1333 — 3913A3Q1333,
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(=17)

(—=17)

(~18)

(—18)

(—18)

(~18)

(—19)

(—19)

(—19)

(—20)

(—20)

(—20)

(—21)

§911369222

11269223

2
2122

£111§333

§911362133

§911262222

1136123

£111§233

1126133

§911362122

§911262123

911162223

211169222

J. C. EILBECK ET AL.

—8p23p33A0 — 4033A3 00 + 8X1 913033 + 402201202 + F A1 Q1333
+ 4p12013022 + 4P11012 — A3923033 M1 — 2023075 + 2022023011
— 4335 — 203,01 + 202302Q1333 — 3013A3Q1333,

833 A3 A0 + A3p23033 A1 — 4A1 013033 + 2023075 + 2 013A3Q1333
+ 2022023011 + 8p23p3sto + 2A3p0Ts — 2023 X2Q 1333 — 3 A1 Q1333
—4AXop2s — 4Xa Ao + AT — 16X0p13 — 8Aop33 + 422970

+ 2X3013M1 + P33 + 4N 13023 + 4N P12033

+ 803302200 — 3012A3Q1333 + 3911 Q1333 — 4A3023 M0,
—9A302300 — 201303 + A2p2sA1 — 2X2011033 + 2011 Q1333

— 100033 + 6ps3p13011 — 10X0p13 — 2085 + TA1 9136023

+ 21 P12033 — 20330220 + 6A3P13A1 + 207 — 62N — AAopis,
2033013011 + 2X2073 + 2X0013 + 2M0033 + 2013

+ AM1P12033 — 2033022A0 — 2A1013¢023,

AXopls + 2023 301302 — 2hop23 A1 + 4hop1133 — Pa3A3 AL

+ 4X2X0 — 2A7 4 8Aop3s + 2011035 + 2022075 + 2P12A3Q1333

— 2X3033012A2 + 2A3033020 A1 + 491303 — 8A3013M1 — S911Q1333
— 8A\1913023 + X1 126033 + 8A3p23 A0 — 3 A2022Q1333 — 20733,
—2033 300 + 2X2012013 + 2012073 + 201200 — 202302000

+ 2013023011 + 5 P33 Q1333

2012033011 — 2012075 + 6A1p12A3 + 6A1 129023

+ 4p13p23011 — 201273 — 21101 — 4A2p12013 + A2p22 M1

— 2X2023011 — BP23Pa2 X0 + P13P22 A1 + 4P33A3 A0

+ 6911913A3 — 930220 + 201200 — 3 P33M1 Q1333,

4935 A300 + 2012033011 + 2X2012013 — 2013022 A1 + 201200

+ 2012075 + 4p23022 00 — 2033A1 Q1333 — A1P12023,

2020013011 — 4p33X2 A0 + 2075013 — 4P35 A0 + P33T

+ 2012022A1 — 4023033 A3 00 + M A3p13033 — 2013A2Q1333

+ 801303300 + 3A0Q1333 + 2 P23 M1 Q1333

833 20 + 2075013 + 2012023011 + 203500 — 20337

+ 202075 — 2012022 M1 + 2023033A300 — SA0Q1333 — 5 023A1 Q1333,
—12033 000 + 2020013011 + 6p11 A3012 — 4971 + 433\

— 4935 M0 — 2X2011 922 — 81303300 — 323 M1 Q1333

— A233A3A1 + 823033 X300 + 2013X2Q1333 + 2A3Q1333

— 2Xopy — 2079013 + 4p12023011 — M AsP13633

— 22301 Q1333 + 4p12022M1 + FA0Q1333 + 9P33A3 N0,

6A3A2A0 — 6A1 X0 — 2A3AT — 202001 Q1333 — 6AFP13A1 — 8A3Aop1s
— 207y + 201222Q1333 + 10A3 00055 + 4p23A\5013 — 2A3011 Q1333
+ 611022012 — 43301205 — 160 P13023 + INF P23 A0 — 423 AT
— 2X3X2073 + 2301373 + 6X201301 — 8XoP12933 + 10X P74

+ 22320119033 — 2033 2A1 + 4A3A1 12033 + 2X2033022 1

— A3A2023A1 + 201103301 — TA3A 1913023 + 2A3A060226033,
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(—21)
(—22)
(—22)
(—23)
(—23)
(—24)
(—24)
(—26)
(—27)
(—30)
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Pr120122 = 2011022012 + 201103301 — 2M1 A0 — 8A3 013 + 205,

— 2230933 + 8Nop12033 + 2A3 0022033 + 2A2p13 M1
+ AsA 113023 — 9230 — 2A19073 — 2012 A0 Q1333,

P15 = 4pTap11 — ANopi3P22 — dAopi2923 — 4P33A2 A0 + P33T

§911140133 =

911262113

§911162123

91116122

2 _
0112

01110113 =

91116112

2
0111

+ 4X 12913 + 5033 00Q1333,

8Aop126023 — A1P12A2 — 6A2022 A0 + 2X2p11 913 + 202277

— 208307 — 6X0p11 + 2033071 + op12ds — §033M0Q1383

— Mp12913 — 2X1 11923 + 2073011 — AAop13paz + B8P3z 2o,
— 423033 X0X0 + 21075 + P23033AT — AAop12p22

412013011 + 3023 00Q1333 — 51301 Q1333 + 4Xo 3013033,

= 2012013911 — 2033A3\] + 2X1 0330 — 2A0A3013033

+ 2p11012A2 — 20110201 + 62033 3 0 + 82333 20

+ 20 0p12022 — 2023033A7 + A2 A1 Q1333 — 3A3 A0 Q1333

— 023 M0Q1333 + $013M1 Q1333 + 20230,

—3A3M1 00 — XA +4XA3N0 — 8A2 — A1 p233 — 8A1 \gpa3 — 203507
+ 4X2 0033 — 5922X0Q1333 + 2912A1 Q1333 — 32011 Q1333 + Afp13
+ 8X2X0p13 — 9INZAop13 — 2A3A P23 + 207 P22 — 2Xa A1 p12033

+ 2011975 + 8Aopis + A2 A3p13A1 + A3 Xop12033 + 2X2 M1 P13023
— 8A3A0p139023 + 4A2033022 M0 + 2A3 19011033 + 6A2 30230,
—8XoT3 + 811033 — A1 AoP2s — AAaAop3s — 8Aadoprs

+ 41197y — 8AG + X3 Xop13p2s + 4AsXop12033 + P33AT

+ 4XM 013 + 22 00Q1333 — 391201 Q1333,

ANopsspiare + 49T P13 — P33 AaA] + 4pssA3ho — A p13pss

— 3p33A3 A1 A0 + 2012011 A1 — 622 0p11 + 2X0pTs

— 202 00Q1333 — 3A0p13Q1333 + 3AT Q1333 + 833G,
—201200Q1333 + 2X3013A7 + 8A2 A1 X0 + A 13023 — 211 M Q1333
+ 6A3033 0011 + 4071 P12 + 4P23 A3 A0 — 18A3AF — 207 — 169233
— 2X3075A0 — 6A3013A2A0 — 3A1A3023A0 + 2A1 033022 A0

— X3 — 2X 1233 — 2M1 X33 + 8A1 dop1s + 4hopaspiae,
402327 — 805305 — 8p13A3A0 — Ao dopTs + 16923 N2 i Ao

+ 4p23 A1 AoP13 + 6A3 A1 Aop1s — 4Aop11Q1333 — 36A3023A3
185 A0 A Ao - AZAZ — AP — AABN — 42N — 27AZA2

+ 122003 + 20130002 + 1691373 + N2, — 4p1o\1 3300

— 4p11033] + 16011033 20 + 493, + 8P33022A3.

Appendix E. The three-term, three-variable addition formula

The addition formula in Theorem 5.3 is constructed using the following polynomials.

Pso(u, v, w)
= %@[22] (U)@[H] (’U)W[QQ] (w) — %@112(“)@[12] (v)03Q1333(w)
— £ 05Qu333(w)p* (v)03Q1333 (W) + $91Q1333(w) P! (W) P133(v)
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- %@112@)@112(@@11] (W) — 55022(v)01 Q1333(1)I1 Q1333(wW)
+ 2*1453621333(71)@[11] (v)p111(w) + 1%@112(“)@[22] (v)p222(w) + %W[Qg] (’U«)pzz(’v)pm] (w)
+ imss(u)MM(w)@[QQ] ('U) + §Q1333(U)@[33] (U)lesa(’w) + %@112(“)@13(”){0112(10)
+ 9*1632621333@)32@1333('U)@[lg] (w) — %mm(u)pnﬂv)@[u] (w)
+ £ 01Q1333(u) p12(v)02Q1333(w) + %@[13] (w) ! (v) ¥ (w)
+ 2p111 (w)pr2a(w) M (v) — 2P (W) 015 (v) P123(w) + 2P (1) 223 (v) P15 (w)
- %Q1333(U)@113(U)9113(w) - 1%@122(“)@[22] (w)p122(v) — 19[23] (U)plz(’v)@[lg] (w)
— $01Quz33(w) 911 (v) 133 (w) + PP (w) el (w) p15(v) + FI" (w) 11 (w) p!**) (v)
+ 29[33]( )@33(“’)@[33] (v) - ﬁa2Q1333(u)82Q1333(w)@11(U)
12]( )l (v)pl* (w) — £0111(v)03Q1333 (W) P13 (1) + FP11(w)P11(V)P11 (W)
+ p [23] (U)32Q1333( )@133(’117) + i@nl(u)@lm(’w)pm(’v) - 3923(’&)@111(’111)@112(’0)
- §@233(U)@[23 (v)01Q1333(w) + 2% (W) p11(v) P12 (w) — o111 (w)p111(v),
Pyr(u, v, w)
= [ 012(v)01Q1333(w) p133(w) + Fp11(W)P133(v)d2Q1333 ()
- Tlﬁp[13] (w)p133(v)02Q1333(w) + %@113("”)@123(”)@1333(“) - %@[22] (w)@[m] (v)p23(u)
+ & 03Q1333(w) I3 Q333 () 1" (1) — Z PP (v) 112 (w) 333 (1)
— S (0) " (w)pra(u) + Fpe(w)prz(v)piie(u) + ! (w)e!" (v)p! (u)
+ 25 9122(w) P122(V) 91 (1) — L9122 (V) P13(W)P112(w) + 7505Q1333(vV) P! (W) 125 (w)
— 2012(w) P (W) p12(v) — Fo111 (V) 333 (W) (w) + % 9112(v)93Qu333 (W) P13(w)] As,
Poy(u, v, w)

u

= L3 () (v) P (w) — 180200 (u) ! (v)03Q 1333 (w)
— £01Q1333(w)p12(v) Pass(w) — S 192 (w) P112(V) P23 (w )+%@ l(u) 333 (w)p112(v)
+ 2p12(w)p12(v) M (w) + 2 P20 () 112 (w )@13( )+%@ (v )@23( )2 (w)
— £03Q1333(w)p122(v) 13 (W) — 2p133(w)P133(V )pl3 (w )+ = 1 122(w) P122(v) P13 (W)
- 1653Q1333( )@112( )@23(w)+%@133(u)@133( )@11( ) 1 ( )@123( )pus(w)

—4*18@[11](0)83621333(1”)@122(“)+%@113(“)@33(w)@113( )+ 4@12( v)p [23]( )22(u)
— 10133(w) P12(v) 2 Q1333(W) — 122 (W) P! (V) Paz2 (W) + Tp13(v) P! (w) P! (w)
— Tpss(u)p 33) () Q1333 (v ) — $p223(w) p113(w) Q1333 (V) — 75 P122(w)Pr22(V)p B ()
— 2012(w) P12 (v) P11 (w) + FPs33(w)p111 (V) P13 (w) — oM (v) ! (u) ! (w)
— 1913 (1)93Q1333(v)93Q1333 (W) — ﬁ@[n] (1)03Q1333(v)03Q1333(w )
+ 2503Q1333(1) 333 (v) P12 (W) — S p13(1)p13(v) PP (W) + L pass(u)p* (V) P122(w)
— 202 ()l (v) + Zp112(w) P112(V)] A2 + [~ 55 0113(v) P33 () 113 (W)
—%@133@)@133(10)@11(@) + %@133(“)@133(”)@“3] (w)
+3013(1)p13(v) 1 ()] A3,

Py (u, v, w)

= [2p233(u)p!" (w) p133(v) — 2p113(w)p123(w)p33(v) + FP12(w)P12(V) P12 (W)

+ Lol (w) a3 (v) p13(w) — 1o (w)p13(w) ! (v) — 3022 (1) o (v) oI (w)
— 2012 (1) 22 (V) paz (W) + 2 p122(w) 122 (W) P23 (v) — 2
+ 2 03Q1333(w) " (W) P22 (V) + 2 05Q1333 (1) P23 (V) Pr22(w
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L 05Q1333 (1) P23 (W) D3Q1333 (V) — ZP112(V)P122(w) — S (W) 112 (W) P333(v)

+ p22(w)02Q1333(w) p133(v) + %@[H] (w) " (w)p!* (v)
- %pn( )233(w) P133(V) — %@333(“)@111(@@23(“’) - %6@112(16)33621333(17)

+ 322 (v)p11 (W) pr2(w) + 7 222 ()M (W) P122(v) — 2p12(w) 133 (V) P133

2923( )o [12( o 12]( )+ 16@233(“)31621333(10)@22(0)

3 0333(u)p122(V)p (12 (aw) +- 16@233(U)52Q1333(w)p12(v)+g@[22](”) 12} (4p)
2 0112(v) 13 (w) Ps33 () — & paza (W) p13(w)p122(v) + FpM (W) p13(v) 13 (w)
(

w)

— Lol (w) 333 (v) 222 (W) + & P22 (1) 913 (w)I3Q1333(v)

P18(ua
=[-

SQ1333(U)K)123(0)@223( )+ 2@222(’“» P222(w)p 12]( A

)
(

— 36 (w) pas (v) p13(w) + 2p15(w)p13(v) ! (w) + L (w) 192 (W) 333 (v)
16@112@)@13(”)@333( )+ 4833621333(“)@333( ) (2] (w)P\Q)\s,

v, W)

36012 (0) 1 (w) — FpP (u)p!™ (v) + 2112 (V) 202 ()

— 6p13(u )@23(’0)@[12( ) + p333(w)p13(v) 122 (w) + 2013 (w) P13 (V) P13 (W)

+

%7@22( )@12( )@12( ) 3@13( )33621333( )@333( ) 16@122(’&)@122( )

=03Q1333(w)D3Q 1333 (w) + 29233( o133 (w)p12(v) — 22]( )23 (V) P23 (w)

3 0933(w) p2ss (w) " (v) + 20 (1) 333 (V) 333 (W )+1@112( u) 23 (w)p333(v)

%@33( )@[33( 933(11’)‘*‘%@233( )233(v) P11 (W )—§p223( ) 9223(v)Q1333(w)

2 oM (1) 222 (v) 222 (W) + 13 (w) P22 (V) P22 (W) + 3p123(w) 123 (V) P33 (W)
)

v

—3@[1( )p13(v)p13(w) + 2@122( )@333(”)@[11](“’)—5 [11]( ) [11](71)@[11](1”)

+
+

+

)
(v
2013 () 22 (v) P22 (W) — 20220 (1) 23 (v)I3Q1333 (W) — T 011 () P22 (V) P22 (w)
)
(v

2@[ U(w)p333(v)03Q1333(w) + + 3 p203(u) p113(v) P33 (W)

3 0233 (w) P22 (W) 02Q1333(v) + 3 Q1333(w) Quazs(w) P33 (v) — To111(w)Psss(w)

+ 20133 (w)P133 (V) P2z (w) + LI (w) 0333 (V) P02 (w) + 3 I () a3 (w) ! (v)] Ao

+ [2p22(u)p12(v) pr2(w) + p13(w) P13(V)P13(W) — 570122(w)I3Q1333(W)

+ 37 Q1333 () Q1333(v) 33 (w) + 2 013(w) pas(v) e (w) + Fo (u) ! (w)

89333( w)p13(v)p122(w) + Eo13(w) ! (w)p13(v) + 2 013(w)93Q1333(v) P333(w)
22]( )o13(v) — 157 03Q1333(w) O3Q1333(w) — 1169122( )p122(w)]A3

[z@m]( )913(0) + 122 (W) P122(v) — 333 () 2 (V) P333 (W)

3 013(w) P23 (v) ! (w) + Lp13(w) P33 (W) P122(v) + 193Q1333 (1) P122(w)

12 05Q1333(v)03Q1333(w) — 595Q1333(w) P33 (w)p13(v) — gpm]( ) (w)

%@123(”)@123(w)@33(u) + %@333(“)@[12] (w)p222(v)

To1s(u)p13(v)p13(w) + 1%@113(“)@33(”)@223(“’) + %@23(’“)@[22] (w)gp23(v)

2023 (w)p112(v) 333 (W) — £033(1)Q1333(v) Q1333 (W)

+ %@233(“)@133(10)@12(7)) - %@12(“)@12(”)@22(’“’) + %@33(“)9[33] (w)gp33(v)

+

P15(U,

L 0333(w) 122 (0) ! (w) + 1895Q1333 (1) p333 (w) o (v)] A3 A1,
v, W)

= [-2013(u)p!" (w) — Lo (w)p122(v) — Fp133(w) P2z (W) 233 (v)

+

%@[12] (u)p23(v)p23(w) — §W333(“)@333(”)@[12] (w) + %@333(“)@112(0)
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+ 2o (w) e (w) — 20333 (w) P23 (W) 122 (V) + L 22 (1) 22 (V) P12 (w)
— 0202 (1) 3Q1333 (W) + §p13(w)p13(v) P23 (w) — 2 p333(w)p13(W)P222(V)
— Z233(u) 233 (V) pra(w) — §p33(w) P223(w)p123(v)
— 20205 () oI (0) ps33(w) + §as(w)p!" (W) P13 (v)] AaAo
+ Bp1s(w)p!? (w) — LM (w)p13(w)p2s(v) — 1 p122(1) 23 (w) P333(v)
+ 0P (W) 23 (V) — 2 025(v) 333 (W) O3 Q1333 (1) + 15 P22 (W) P122(V)
- %@23(“)@23(”)@12] (w) - %@13(“)@13(”)@23(“’) - %@13( )@222( )@333( )
— 2 ()" () + k9222 (v)3Q1333 (W) — 2 P2 (1) P22 (V) P12 (w)| A2\
+ [2p13(u) p13(v) P23 (w) + %2@333(71)@333(10)@[12] (0)]A3A1,
Pio(u, v, w)
= [%913(’0)913("1’) - %@[11] (U)@[H] (v) - %@333(“)@13( )333(V)
+ 5 p220(u )@222( )+ F023(w)p13(w)P23(v) — FP20(1) 22 (V) P22 (w)
+ 20333 (w) ! (W) 333 (v) + 2! (W) p13(w) + 205Q1333(v) 333 (W)
+ 2p122(v) 333 (W) — L3 ()Pl (V) 23 (w) + L33 () P22 (W) P233(v)
— 3003 (w)p!" (w) + 2p333(w) P22 (V) P2z (w) + 223 (u )@33(10)@223(11)
— 4933(u)p33(v)Q1333(W)] A2 Ao + [2 033 (1) P33(w)Q1333(V) — 5 P122 (1) P333 (W)
— 2 05Q1333(v)p3ss(w) — F oz (u)p13(w)pas(v)
- %@333(“)@[11] (w)gp33z(v) + %9333(u)@ls(w)m:sra(v)])\%)\o
+ [~ 25 033(v) P223 (u) P2z (w ) — 150222 (1) P222(w) — 2 p13(v) p13(w)
+ 2923(“)@13( )p23(w) — 55 2 0533 (u ) 11]( )333(Ww) + %@333(“)@13(7’)@333(11’)
— 2 p122(v) 333 (w) + 2PN (w) — 35 022 (4)p233(v) 233 (w)
+ %@33( )33(w)Q1333(v) — 1633Q1333( v)p333(Ww ) 8@22( u)22(v) P22 (W)
+ 3023(0) ! (1) s (w) + ! (v) M (w) — S (v)p15(w)
- i@23(u)@222(’0)@333( ) — @23( ) (12 (’U)] [4@13( v)p13(w)
+ 15 0333(w)93Q1333(V) — g@sg( u) p33(w)Q1333(V) + 15 P122(0) P333(W)
+ 203 (u)p13(w)pa3(v) — 15 0333(w) P13 (W) P333 (V)] As A2 AL — F13(v)P13(W) AT,
Py(u, v, w)
= L 023(w) P333(V) 333 (W) A3AT — 2 023(w) 23 (V) P23 (W) A3 AT
— 2013(v) a3 (W) AsA2 Ao — 3 023(w)p23(vV) P23 (W)A1 Ao — £ 0222(V) P333(W)A3AT
— 2023(u) 333 () 333 (W) A1 Ao + 333 (1) P222(V) Az A2 do — S (W) A1 Ao
+ 3 M (v) pag (w) A1 Ao + 2@23( )23(v) P23 (W) A3 A2 X0 + 2013 (w) a3 (u) AsA
+ 2013(w) 23 (V) A3A1 4+ 2 o15(w) a3 (V) A1 Ao + 5 202 () 333 (V) A1 Ao,
Ps(u, v, w)
= 9013(w) A + £033(w) P33(v) P33 (W) AZAT + 5 0333(V) P333 (W) A A2 A0
+ M (W) AG + 3033(w) 33 (v) P33 (W) A3 A0 + 150333 (V) 333 (W) Az A1 Ao
— 2003(w)p23(V) A3 A1 Ao — 2 pa3(v) P23 (WA — S p13(w)A3A0
— 30533 (1) P333(V) A3 N0 + 2013(W) A AT — 2 0333(v) 333 (W) NG
+ 6033(w) P33 (v) 33 (W)AG — £ 033(w)P33(V) P33(W) A AT + 023 (v)P23(wW) A3 Ao
— 2033 () p33(v) P33 (W) AZA2 Ao — 3033 (1) P33 (V) P33 (W) AsA1 Ao
- %@333(“)@333(”))@)\% - 5923( u)P3(v) A2 AT + %P333(U)@333(U))\2>\37
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Ps(u, v, w)

= — L oas(w) A} — Lo (v) X3N] + Zo23(w) A2 A1 Ao,

PO(“v v, ’LU)

10.

11.
12.

13.

14.

15.

16.

17.
18.

19.

20.

21.
22.

23.
24.

25.

= %)\3)\2/\1/\0 + %/\%/\% — %/\3/\:13 — %/\%/\0 — i/\%)\o — %)\%/\g + %/\2/\3
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