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Strongly Summable Ultrafilters, Union
Ultrafilters, and the Trivial Sums Property

David J. Fernández Bretón

Abstract. We answer two questions of Hindman, Steprāns, and Strauss; namely, we prove that every
strongly summable ultraûlter on an abelian group is sparse and has the trivial sums property. More-
over, we show that in most cases the sparseness of the given ultraûlter is a consequence of its being
isomorphic to a union ultraûlter. However, this does not happen in all cases; we also construct
(assuming Martin’s Axiom for countable partial orders, i.e., cov(M) = c), a strongly summable
ultraûlter on the Boolean group that is not additively isomorphic to any union ultraûlter.

1 Introduction

_e concept of a strongly summable ultraûlter originated from N. Hindman’s eòorts
for proving the theorem that now bears his name (which at the time was known as the
Graham–Rothschild conjecture), though later on it was realized that such ultraûlters
have a rich algebraic structure in terms of the algebra in the Čech–Stone compacti-
ûcation, which in turn sheds light on the aforementioned theorem by providing an
elegant proof of it. We conceive of the Čech–Stone compactiûcation of an abelian
group G (equipped with the discrete topology) as the set βG of all ultraûlters on G,
where the basic open sets are those of the form A = {p ∈ βG ∣ A ∈ p}, for A ⊆ G. As
it turns out, these sets are actually clopen. If we identify each point x ∈ G with the
principal ultraûlter {A ⊆ G ∣ x ∈ A}, then G is a dense subset of βG, and what we
denoted by A is really the closure in βG of the set A. _e group operation + from G
is also extended by means of the formula

p + q = {A ⊆ G ∣ {x ∈ G ∣ A− x ∈ q} ∈ p} ,
which turns βG into a right topological semigroup. _is means that for each p ∈
βG, the mapping (q ↦ q + p)∶ βG → βG is continuous, although βG is not a group
(nonprincipal ultraûlters have no inverse). Moreover, the extended operation + is not
commutative in βG, even though its restriction toG is, but elements x ∈ G satisfy that
x+ p = p+x for every p ∈ βG. _e closed subsemigroupG∗ = βG∖G consisting of all
nonprincipal ultraûlters will be of special importance. _e book [10] is the standard
reference on this topic.
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We reserve the lowercase roman letters p, q, r, u, v for ultraûlters, and the upper-
case roman letters A, B,C ,D,W , X ,Y , Z, with or without subscripts, will always de-
note subsets of the abelian group at hand. Lowercase letters w , x , y, z will typically
denote elements of the abelian group that is being dealt with, and the “vector” no-
tation will be used for sequences of elements of the group, e.g., x⃗ = ⟨xn ∣ n < ω⟩.
When the sequences are ûnite, we use the symbol ⌢ to denote their concatenation, as
in x⃗ ⌢ y⃗. If G is an abelian group and x ∈ G, the symbol o(x) will denote the order
of x, i.e., the least natural number n such that nx = 0. We make liberal use of the von
Neumann ordinals, usually denoted by Greek letters α, β, γ, ζ , η, ξ; thus, for two ordi-
nals α, β, the expressions α < β and α ∈ β are interchangeable. In particular, a natural
number n is conceived as the set {0, . . . , n− 1} of its predecessors, with 0 being equal
to the empty set ∅, and ω denotes the set of ûnite ordinals, i.e., the set N ∪ {0}. _e
lowercase roman letters i , j, k, l ,m, n, with or without subscript, will be reserved to
denote elements of ω. _e letters M and N , with or without subscripts, will, in gen-
eral, be reserved for denoting subsets of ω (ûnite or inûnite). Given a subset M ⊆ ω,
[M]n will denote the set of subsets of M with n elements, [M]<ω = ⋃n<ω[M]n will
denote the set of ûnite subsets of M, and [M]ω denotes the set of inûnite subsets of
M. _e lowercase roman letters a, b, c, d, with or without subscripts, will stand for
elements of [ω]<ω , i.e., for ûnite subsets of ω.

Whenever we have a mapping f ∶G → H, there is a standard way to li� or extend it
to another mapping β f ∶ βG → βH that is continuous and, if f is a semigroup homo-
morphism, then so is β f . _is extension is given by

(β f )(p) = {A ⊆ H ∣ f −1[A] ∈ p} = ⟨{ f [A] ∣ A ∈ p}⟩ ,

where the rightmost expression means that we take the ûlter on H generated by the
family { f [A] ∣ A ∈ p}, which has the ûnite intersection property. It is customary
to write just f (p) instead of (β f )(p), and we will do so throughout this paper. _e
ultraûlter f (p) is called the Rudin–Keisler image of p under f .

_e cardinal invariant cov(M) (read “covering of meagre”) is the least cardinal for
which Martin’s Axiom fails at a countable partial order. _at is, cov(M) is the least κ
such that one can ûnd κ-many dense subsets of some countable partial order with no
ûlter meeting them all (this notation is explained by the fact that this cardinal is also
the least possible number of meagre sets needed to cover all of the real line). _us, the
equality cov(M) = c means that Martin’s Axiom holds for countable partial orders,
whilst the failure of this principle is expressed by the inequality cov(M) < c.

One of the most important groups dealt with in this paper is the circle group T =
R/Z. When talking about this group, we will freely identify real numbers with their
corresponding cosetsmodulo Z, and conversely, we will identify elements ofT (cosets
modulo Z) with any of the elements ofR representing them. _erefore, when we refer
to an element ofT as a real number t, we reallymean the coset of that numbermodulo
Z, thus e.g., we may write t = 0 and really mean that t ∈ Z. _is should not cause
confusion as the context will always clearly indicate whether we are viewing t as a real
number or as an element of T. If there is the need to specify a single representative
for an element of T, we will pick the unique representative t satisfying − 1

2 < t ≤ 1
2 .

We will now proceed to introduce the main objects of study of this paper.
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Deûnition 1.1 Let G be an abelian group.
(i) Given a k-sequence x⃗ = ⟨x i ∣ i < k⟩ of elements of G (where k ≤ ω), we deûne

the set of ûnite sums of the sequence x⃗ as:

FS(x⃗) = {∑
n∈a

xn ∣ a ∈ [k]<ω ∖ {∅}} .

(ii) An FS-set is just a set of the form FS(x⃗) for some sequence x⃗ of elements of G
with inûnite range.

(iii) An ultraûlter p ∈ βG is strongly summable if it has a base of FS-sets; i.e., if for
every A ∈ p there exists an ω-sequence with inûnite range, x⃗ = ⟨xn ∣ n < ω⟩,
such that p ∋ FS(x⃗) ⊆ A.

Note that the only principal strongly summable ultraûlter is 0. Strongly summable
ultraûlters on (N,+) were ûrst constructed, under CH, by Hindman in [5, _. 3.3]
(here he claims to construct an idempotent, but a closer look at the proof reveals
that the ultraûlter under construction is in fact strongly summable), although at that
time this terminology was not in use. _e terminology was introduced later on, in
[6, Def. 2.1]. Blass and Hindman showed in [2, _. 3] that the existence of strongly
summable ultraûlters is not provable from the axioms ofZFC alone, because it implies
the existence of P-points. _e sharpest result so far in terms of existence is due to
Eisworth, who shows in [3, _. 9] that cov(M) = c suõces for ensuring the existence
of a strongly summable ultraûlter. In a forthcoming paper, this author shows that the
existence of strongly summable ultraûlters on any abelian group is consistent with
ZFC together with cov(M) < c.

_e importance of this type of ultraûlter came at ûrst from the fact that they are
examples of idempotents in βN, but among idempotents they are special in that the
largest subgroup ofN∗ containing one of them as the identity is just a copy ofZ. More
concretely, [10, _. 12.42] establishes that if p ∈ N∗ is a strongly summable ultraûlter,
and q, r ∈ βN are such that q + r = r + q = p, then q, r ∈ Z + p. In [8], the authors
generalize some results previously only known to hold for ultraûlters on βN or βZ. In
particular, they proved there ([8, _. 2.3]) that every strongly summable ultraûlter p
on any abelian groupG is an idempotent ultraûlter. And [8,_. 4.6] states that ifG can
be embedded in T, then whenever q, r ∈ G∗ = βG∖G are such that q+ r = r+q = p, it
must be the case that q, r ∈ G + p. _e following deûnition captures an even stronger
property than the one just mentioned.

Deûnition 1.2 If p ∈ βG is an idempotent element, we say that p has the trivial sums
property if whenever q, r ∈ βG are such that q + r = p, then it must be the case that
q, r ∈ G + p.

Note that 0 always has the trivial sums property, because G∗ is an ideal of βG.
Idempotents satisfying the trivial sums property would be examples of so-calledmax-
imal idempotents, i.e.,maximal elements with respect to the two partial orders ≤R , ≤L
deûned among idempotents by q ≤R r if and only if r + q = q and q ≤L r if and only
if q + r = q. It is possible to improve the result just mentioned for strongly summable
ultraûlters if one strengthens the deûnition of strongly summable.
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Deûnition 1.3 An ultraûlter p ∈ βG is sparse if for every A ∈ p there exist two
sequences x⃗ = ⟨xn ∣ n < ω⟩, y⃗ = ⟨yn ∣ n < ω⟩, where y⃗ is a subsequence of x⃗ such that
{xn ∣ n < ω} ∖ {yn ∣ n < ω} is inûnite, FS(x⃗) ⊆ A, and FS( y⃗) ∈ p.

_en, obviously, every sparse ultraûlter will be nonprincipal and strongly summa-
ble. And by [8, _. 4.5], if G can be embedded in T and p ∈ G∗ is sparse, then p has
the trivial sums property. In some non-commutative settings (adapting the relevant
deûnitions appropriately), the relationship between sparseness and an analogue of the
trivial sums property has been further explored (see [7]).

It follows from results of Krautzberger ([11, Props. 4 and 5, and _. 4]) that ev-
ery nonprincipal strongly summable ultraûlter p ∈ N∗ must actually be sparse. _us
the previous theorem holds for nonprincipal strongly summable ultraûlters on N; i.e.,
every such ultraûlter, being sparse, has the trivial sums property. In [9], the authors
followed this idea and started investigating the diòerent kinds of abelian semigroups
on which every nonprincipal strongly summable ultraûlter must be sparse. In par-
ticular, [9, _. 4.2] establishes that if S is a countable subsemigroup of T, then every
nonprincipal strongly summable ultraûlter on S is sparse, so this generalizes the pre-
vious observation about strongly summable ultraûlters onN. _e authors built on this
result to get a more general result ([9, _. 4.5 and Cor. 4.6]) outlining a large class of
abelian groups, whose nonprincipal strongly summable ultraûlters must all be sparse.
More or less concurrently, this author showed ([4, _. 2.1]) that every nonprincipal
strongly summable ultraûlter on the Boolean group is also sparse. _us Hindman,
Steprāns, and Strauss ([9, Question 4.12]) asked whether every strongly summable
ultraûlter on a countable abelian group is sparse.
Although it is not immediately clear that, for groups that are not embeddable in

T, sparseness implies the trivial sums property, Hindman, Steprāns, and Strauss were
able to get a result, analogous to the ones mentioned in the previous paragraph, con-
cerning the latter property; namely, they proved ([9, _. 4.8 and Cor. 4.9]) that for
the same class of abelian groups, all nonprincipal strongly summable ultraûlters must
have the trivial sums property. _e analogous result for the Boolean group had already
been proved by Protasov ([13, Cor. 4.4]). _us, Hindman, Steprāns, and Strauss ([9,
Question 4.11]) also asked whether every strongly summable ultraûlter on a countable
abelian group G has the property that it can only be expressed trivially as a product
(i.e., a sum) in G∗.

Section 2 develops some preliminary results that deal with union ultraûlters, add-
itive isomorphisms, and what we call here the 2-uniqueness of ûnite sums. Section 3
contains the answer to the two questions from [9] mentioned in the previous para-
graphs. From the proof of this result, it will turn out that, unless p is a strongly sum-
mable ultraûlter on the Boolean group, it will be additively isomorphic to a union
ultraûlter. _us Section 4 deals with the Boolean group, the main result being that,
under the assumption that cov(M) = c (this is, under Martin’s Axiom for countable
forcing notions), there exists a strongly summable ultraûlter on the Boolean group
that is not additively isomorphic to any union ultraûlter.
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2 Union Ultrafilters and 2-uniqueness of Finite Sums

Union ultraûlters were ûrst deûned by Blass in [1, p. 92], an article that appeared in the
same volume as that of Hindman [6], where strongly summable ultraûlters are ûrst
deûned. So ever since their inception, the notions of union ultraûlter and of strongly
summable ultraûlter have always been inextricably related. _e results of this paper
are no exception, and the notion of union ultraûlter is essential to them. We thus
introduce this notion. For a pairwise disjoint family X ⊆ [ω]<ω , we denote the set of
its ûnite unions by

FU(X) = {⋃
x∈a

x ∣ a ∈ [X]<ω ∖ {∅}} .

Deûnition 2.1 A union ultraûlter is an ultraûlter p on [ω]<ω such that for every
A ∈ p it is possible to ûnd a pairwise disjoint X ⊆ [ω]<ω such that p ∋ FU(X) ⊆ A.

_e reason union ultraûlters are so important when studying strongly summable
ultraûlters, is that sometimes strongly summable ultraûlters can be used to construct
union ultraûlters, which in turn are o�en easier to handle. We will state a deûnition
that captures the precise sense in which strongly summable ultraûlters give rise to
union ultraûlters. In order to do this, we need to introduce a further notion, which
stems from the fact that when dealing with sets of the form FS(x⃗), if each ûnite sum
from this set can be expressed uniquely as such, then the situation is muchmore com-
fortable. To simplify notation, we make the convention that for any sequence x⃗ of
elements of some abelian group G, the empty sum equals zero:

∑
n∈∅

xn = 0.

Deûnition 2.2 A sequence x⃗ on an abelian group G is said to satisfy uniqueness of
ûnite sums if whenever a, b ∈ [ω]<ω are such that

∑
n∈a

xn = ∑
n∈b

xn ,

it must be the case that a = b.

In particular, if x⃗ satisûes uniqueness of ûnite sums, then 0 ∉ FS(x⃗). Now we
are ready to introduce the notion that will provide the connection between strongly
summable ultraûlters and union ultraûlters.

Deûnition 2.3 Let p be an ultraûlter on an abelian group G and let q be a union
ultraûlter. We say that p and q are additively isomorphic if there is a sequence x⃗ of
elements of G satisfying uniqueness of ûnite sums, such that FS(x⃗) ∈ p, and there is
a pairwise disjoint family Y = {yn ∣ n < ω} of elements of [ω]<ω , in such a way that
the mapping ϕ∶FS(x⃗) ↦ FU(Y) given by ϕ(∑n∈a xn) = ⋃n∈a yn maps p to q.

If we are only interested in determining whether a given strongly summable ul-
traûlter p is additively isomorphic to some union ultraûlter, without worrying about
which ultraûlter, then we can assume without loss of generality that the isomorphism
is fairly simple. _is is established formally and precisely in the following proposition.
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Proposition 2.4 If p is additively isomorphic to a union ultraûlter, and this is wit-
nessed by the mapping ∑n∈a xn ↦ ⋃n∈a yn from FS(x⃗) to FU(Y), then the mapping
ψ∶FS(x⃗) → [ω]<ω given by ψ(∑n∈a xn) = a also maps p to a union ultraûlter.

Proof Weonly need to show that for any union ultraûlter q and any pairwise disjoint
Y = {yn ∣ n < ω} such that FU(Y) ∈ q, the mapping ϕ given by ⋃n∈a yn ↦ a maps
q to another union ultraûlter. Once we prove this, then given the hypothesis of the
theorem we can simply compose the mapping ϕ with the original isomorphism to get
the ψ that we need. So let r be the image of q under suchmapping, and let A ∈ r. _en
since B = ϕ−1[A] ∈ q, there is a pairwise disjoint X such that q ∋ FU(X) ⊆ B∩FU(Y).
Since X is pairwise disjoint and contained in FU(Y), it is readily checked that for
distinct x ,w ∈ X, if x = ⋃n∈a yn and w = ⋃n∈b yn , then a ∩ b = ∅. Hence the family
Z = {a ∈ [ω]<ω ∣ ⋃n∈a yn ∈ X} is pairwise disjoint. Note, moreover, that all ûnite
unions are preserved in the sense that, for x0 , . . . , xn ∈ X such that x i = ⋃k∈a i yk , we
have that ⋃n

i=0 x i = ⋃k∈a yk , where

a =
n
⋃
i=0
a i , i.e.,ϕ(

n
⋃
i=0

x i) =
n
⋃
i=0

ϕ(x i).

_is means that ϕ[FU(X)] = FU(Z), thus r ∋ FU(Z) ⊆ A, and we are done.

We will develop a useful criterion for knowing when a strongly summable ultra-
ûlter is additively isomorphic to some union ultraûlter. For that, it will be helpful to
think of the uniqueness of ûnite sums as a 1-uniqueness of ûnite sums, in the sense
that the expressions under consideration only have coeõcients equal to 1. With this
in mind, it is natural to try and deûne a corresponding 2-uniqueness where we allow
coeõcients 1 and 2. More formally, we have the following deûnition.

Deûnition 2.5 Asequence x⃗ on an abelian groupG is said to satisfy the 2-uniqueness
of ûnite sums if whenever a, b ∈ [ω]<ω and ε∶ a → {1, 2}, δ∶ b → {1, 2} are such that

∑
n∈a
ε(n)xn = ∑

n∈b
δ(n)xn ,

it must be the case that a = b and ε = δ.

In particular, if x⃗ satisûes 2-uniqueness of ûnite sums, then no element of FS(x⃗)
can have order 2. _us, Boolean groups do not contain sequences satisfying 2-unique-
ness of ûnite sums. It is of course possible to analogously deûne n-uniqueness of ûnite
sums, for every n, but for the results of this paper we only need to consider the case
n = 2.

Proposition 2.6 For a sequence x⃗ on an abelian groupG, the following are equivalent.
(i) x⃗ satisûes the 2-uniqueness of ûnite sums.
(ii) Whenever a, b, c, d ∈ [ω]<ω are such that a ∩ b = ∅ = c ∩ d, if

2∑
n∈a

xn + ∑
n∈b

xn = 2∑
n∈c

xn + ∑
n∈d

xn ,

then a = c and b = d.
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(iii) Whenever a, b, c, d ∈ [ω]<ω are such that

∑
n∈a

xn + ∑
n∈b

xn = ∑
n∈c

xn + ∑
n∈d

xn ,

it must be the case that a△ b = c△ d and a ∩ b = c ∩ d.

Proof _e proof is straightforward.

_e following two theorems do not contain any new ideas, but rather they are just
a useful reformulation of [9, _. 3.2] (although that theorem uses a condition that is
slightly weaker than the 2-uniqueness of ûnite sums, namely what the authors call the
“strong uniqueness of ûnite sums”; however, the version that we present here will be
enough for our purposes) that divides it into two parts, each of which will be of some
use in the future. We think that the distinction made here is illuminating.

_eorem 2.7 Let p be a strongly summable ultraûlter such that for some x⃗ satisfying
2-uniqueness of ûnite sums, FS(x⃗) ∈ p. _en p is additively isomorphic to a union
ultraûlter.

Proof We just need to check that the mapping ϕ given by ϕ(∑n∈a xn) = a sends p
to a union ultraûlter. So let A ∈ q = ϕ(p). Pick a sequence y⃗ such that p ∋ FS( y⃗) ⊆
ϕ−1[A]. _en ϕ[FS( y⃗)] ⊆ A. Now ϕ−1[A] ⊆ FS(x⃗); thus, for each n < ω we can
deûne cn ∈ [ω]<ω by cn = ϕ(yn) or, equivalently, by yn = ∑i∈cn x i . We claim that
the family C = {cn ∣ n < ω} is pairwise disjoint. _is is because if n ≠ m, since
yn + ym ∈ FS( y⃗) ⊆ FS(x⃗), then there must be a c ∈ [ω]<ω such that

∑
i∈c

x i = yn + ym = ∑
i∈cn

x i + ∑
i∈cm

x i .

Since x⃗ satisûes 2-uniqueness of ûnite sums, by Proposition 2.6 we can conclude that
c = cn ∪ cm and cn ∩ cm = ∅. _is argument shows at once that C is a pairwise
disjoint family, and that ϕ(yn + ym) = cn ∪ cm = ϕ(yn) ∪ ϕ(ym). From this, it is
easy to prove by induction that ϕ(∑n∈a yn) = ⋃n∈a ϕ(yn), for all a ∈ [ω]<ω , hence
ϕ[FS( y⃗)] = FU(C), therefore q ∋ FU(C) ⊆ A, and we are done.

_eorem 2.8 Let p be an ultraûlter that is additively isomorphic to a union ultraûlter.
_en p is sparse.

Proof If p is additively isomorphic to some union ultraûlter, by Proposition 2.4 we
can pick a sequence x⃗ satisfying uniqueness of ûnite sums such that FS(x⃗) ∈ p, and
such that the mapping ϕ given by ϕ(∑n∈a xn) = amaps p to a union ultraûlter q. Let
A ∈ p, and let X be pairwise disjoint such that q ∋ FU(X) ⊆ ϕ[A ∩ FS(x⃗)]. Now
let M = ⋃X. Since q is a union ultraûlter, [11, _. 4] (cf. also [9, _. 2.6]) ensures
that there is B ∈ q such that M ∖ ⋃B is inûnite. Without loss of generality we can
assume B ⊆ FU(X), so that ⋃B is a coinûnite subset of M. Grab a pairwise disjoint
family Y such that q ∋ FU(Y) ⊆ B; then ⋃Y is a coinûnite subset of M = ⋃X, and
thus there are inûnitely many x ∈ X that do not intersect ⋃Y (because Y ⊆ FU(X)
and X is a pairwise disjoint family, so if x ∈ X intersects ⋃Y then x ⊆ ⋃Y). _us,
if we let Z = {x ∈ X ∣ x ∩ ⋃Y = ∅} ∪ Y , then Z is a pairwise disjoint family and
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FU(Z) ⊆ FU(X) ⊆ ϕ[A ∩ FS(x⃗)]. Enumerate Z = {zn ∣ n < ω} in such a way that
Y = {z2n ∣ n < ω} and {x ∈ X ∣ x ∩ ⋃Y = ∅} = {z2n+1 ∣ n < ω}. _en let w⃗ be given
by wn = ∑i∈zn x i . We get that FS(w⃗) = ϕ−1[FU(Z)] ⊆ A, and if y⃗ is the subsequence
of even elements of w⃗, then we will have that ∣{wn ∣ n < ω} ∖ {yn ∣ n < ω}∣ is inûnite
and FS( y⃗) = ϕ−1[FU(Y)] ∈ p.

Corollary 2.9 ([9, _. 3.2]) Let p be a strongly summable ultraûlter on some abelian
group G such that there exists a sequence x⃗ satisfying the 2-uniqueness of ûnite sums
with FS(x⃗) ∈ p. _en p is sparse.

To ûnish this section, we quote another result from [9] that will be relevant in the
subsequent section, and that illustrates another application of the concept of 2-uni-
queness of ûnite sums.

_eorem 2.10 ([9, _. 4.8]) Let G be an abelian group, and p ∈ G∗ be a strongly
summable ultraûlter such that there exists a sequence x⃗ satisfying the 2-uniqueness of
ûnite sums, with FS(x⃗) ∈ p. _en p has the trivial sums property.

3 Strongly Summable Ultrafilters are Sparse and have the Trivial
Sums Property

_e main result of this section tells us that almost all strongly summable ultraûlters
on abelian groups have FS-sets generated from sequences that satisfy 2-uniqueness of
ûnite sums. As a consequence, almost all strongly summable ultraûlters on abelian
groups are essentially union ultraûlters (because of_eorem 2.7), and this helps solve
[9, Questions 4.11 and 4.12]. More precisely, we have the following theorem and corol-
lary.

_eorem 3.1 Let G be an abelian group, and let p ∈ G∗ be a strongly summable
ultraûlter such that

{x ∈ G ∣ o(x) = 2} ∉ p.
_en there exists a sequence x⃗ of elements of G satisfying the 2-uniqueness of ûnite sums
such that FS(x⃗) ∈ p.

Corollary 3.2 Let G be an abelian group and let p ∈ G∗ be a strongly summable
ultraûlter such that

{x ∈ G ∣ o(x) = 2} ∉ p.
_en p is additively isomorphic to some union ultraûlter.

In order to prove this result, we will need to break the proof down into several
subcases.

Lemma 3.3 Let G be an abelian group, and let X = {x ∈ G ∣ o(x) = 4}. If x⃗ is
a sequence of elements of G such that FS(x⃗) ⊆ X, then x⃗ must satisfy 2-uniqueness of
ûnite sums.
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Proof Assume that x⃗ is such that FS(x⃗) ⊆ X. By Proposition 2.6, in order to prove
that x⃗ satisûes 2-uniqueness of ûnite sums, it suõces to show that whenever a, b, c, d
are such that a ∩ b = ∅ = c ∩ d and

2∑
n∈a

xn + ∑
n∈b

xn = 2∑
n∈c

xn + ∑
n∈d

xn ,

then a = c and b = d. Now, for each n ∈ b ∩ d we can cancel the term xn from both
sides of the previous equation, and similarly for each n ∈ a∩ c, we can cancel the term
2xn from both sides of the equation, which thus becomes

(3.1) 2 ∑
n∈a′

xn + ∑
n∈b′

xn = 2 ∑
n∈c′

xn + ∑
n∈d′

xn ,

where a′ = a ∖ (a ∩ c), b′ = b ∖ (b ∩ d), c′ = c ∖ (a ∩ c), and d′ = d ∖ (b ∩ d). Since
b′ is disjoint from d′, equation (3.1) yields

∑
n∈b′∪d′

xn = ∑
n∈b′

xn + ∑
n∈d′

xn = −2 ∑
n∈a′

xn + 2 ∑
n∈c′

xn + 2 ∑
n∈d′

xn ,

where the right-hand side is either the identity or has order 2, while the le�-hand side
is either the identity or has order 4. Hence both sides of this equation must be the
identity, and so b′ ∪ d′ = ∅; that is, b′ = d′ = ∅ and hence b = b ∩ d = d. _erefore,
(3.1) becomes

2 ∑
n∈a′

xn = 2 ∑
n∈c′

xn ,

which in turn implies that

2 ∑
n∈a′∪c′

xn = 4 ∑
n∈c′

xn = 0,

and this can only happen if a′ ∪ c′ = ∅, which means that a′ = c′ = ∅, and hence
a = a ∩ c = d. So we have that x⃗ satisûes 2-uniqueness of ûnite sums.

If G is any abelian group, and p ∈ G∗ is strongly summable, then there must be a
countable subgroup H such that H ∈ p (e.g., take any FS set in p because of strong
summability, and then let H be the subgroup generated by such FS set), and certainly
the restricted ultraûlter p ↾ H = p∩P(H)will also be strongly summable. If we prove
that p ↾ H contains a set of the form FS(x⃗) for a sequence x⃗ satisfying 2-uniqueness of
ûnite sums, then certainly so does p itself, because p is just the ultraûlter generated in
G by p ↾ H and in particular p ↾ H ⊆ p. Hence, in order to prove_eorem 3.1, it suf-
ûces to consider only countable abelian groups G, and we will do so in the remainder
of this section.

Now, it is a well-known result (this is mentioned in [8, p. 123, Sect. 1], and thor-
oughly discussed at the beginning of [4, Section 3]) that every countable abelian group
G can be embedded in a countable direct sum of circle groups ⊕n<ω T. _us, from
now on we will use this fact liberally; in particular, all elements x of the abelian group
under consideration will be thought of as ω-sequences, each of whose terms is an el-
ement of T. We will denote by πn the projection map onto the n-th coordinate; i.e.,
πn(x) is the n-th term of the sequence that x represents.

Deûnition 3.4 When dealing with an arbitrary (countable) abelian group G, we
will denote by Q(G) = {x ∈ G ∣ o(x) > 4}. Since elements of G are elements of
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⊕n<ω T, if x ∈ Q(G), then there is an n < ω such that πn(x) ∉ {0, 1
4 ,−

1
4 ,

1
2} . We will

denote the least such n by ρ(x).

At this point, it is worth recalling the following theorem of Hindman, Steprāns,
and Strauss.

_eorem 3.5 ([9, _. 4.5]) Let S be a countable subsemigroup of⊕n<ω T, and let p
be a nonprincipal strongly summable ultraûlter on S. If

{x ∈ S ∣ πmin(x)(x) ≠ 1
2} ∈ p,

where min(x) denotes the least n such that πn(x) ≠ 0, then there exists a set X ∈ p
such that for every sequence x⃗ of elements of⊕n<ω T, if FS(x⃗) ⊆ X, then x⃗ must satisfy
2-uniqueness of ûnite sums.

_is theorem is the tool that will allow us to prove the following lemma.

Lemma 3.6 Let G be an abelian group, and let p ∈ G∗ be a strongly summable
ultraûlter. If

{x ∈ Q(G) ∣ πρ(x)(x) ∉ { 1
8 ,−

1
8 ,

3
8 ,−

3
8}} ∈ p,

then there exists a set X ∈ p such that for every sequence x⃗ of elements of ⊕n<ω T, if
FS(x⃗) ⊆ X then x⃗ must satisfy 2-uniqueness of ûnite sums.

Proof Consider the morphism ϕ∶G → G ⊆ ⊕n<ω T given by ϕ(x) = 4x, whose
kernel is exactly G ∖ Q(G). Since the latter is not an element of p, then ϕ(p) is a
nonprincipal ultraûlter. Moreover, since p is strongly summable, so is ϕ(p) by [9,
Lemma 4.4]. Nownotice that for x ∈ G∖ker(ϕ) = Q(G), we have ρ(x) = min(ϕ(x)).
_us ϕ(p) contains the set {x ∈ G∖{0} ∣ πmin(x)(x) ≠ 1/2}, since its preimage under
ϕ is exactly

{x ∈ Q(G) ∣ πρ(x)(x) ∉ { 1
8 ,−

1
8 ,

3
8 ,−

3
8}} .

_erefore, by _eorem 3.5, there is a set Y ∈ ϕ(p) such that whenever FS( y⃗) ⊆ Y , y⃗
must satisfy 2-uniqueness of ûnite sums. If we let X = ϕ−1[Y], we claim that X ∈ p
is the set that we need. So let x⃗ be a sequence such that FS(x⃗) ⊆ X. _en letting
y⃗ be the sequence given by yn = ϕ(xn), since ϕ is a group homomorphism, we get
that FS( y⃗) = ϕ[FS(x⃗)] ⊆ ϕ[X] ⊆ Y ; thus, y⃗ must satisfy 2-uniqueness of ûnite sums.
Again, since ϕ is a group homomorphism, it is not hard to see that this implies that x⃗
satisûes 2-uniqueness of ûnite sums as well, and we are done.

_e following theorem is the last piece needed for proving _eorem 3.1.

_eorem 3.7 Let G be an abelian group, and let p ∈ G∗ be a strongly summable
ultraûlter. If

{x ∈ Q(G) ∣ πρ(x)(x) ∈ { 1
8 ,−

1
8 ,

3
8 ,−

3
8}} ∈ p,

then there exists a set X ∈ p such that for every sequence x⃗ of elements of ⊕n<ω T, if
FS(x⃗) ⊆ X, then x⃗ must satisfy 2-uniqueness of ûnite sums.
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Proof If p ∈ G∗ is as described in the hypothesis, then there is an i ∈ {1,−1, 3,−3}
such that

Q i = {x ∈ Q(G) ∣ πρ(x)(x) = i
8} ∈ p.

Let x⃗ be such that p ∋ FS(x⃗) ⊆ Q i . For j < ω let M j = {n < ω ∣ ρ(xn) = j}.

Claim 3.8 For each j < ω, ∣M j ∣ ≤ 2.

Proof of Claim Assume, by way of contradiction, that there are three distinct
n,m, k ∈ M j , and let x = xn + xm + xk . For l < j, π l(x) must be an element
of {0, 1

4 ,−
1
4 ,

1
2}, because so are π l(xn), π l(xm) and π l(xk). On the other hand,

π j(xn) = π j(xm) = π j(xk) = i
8 , so ρ(x) = j, but π j(x) = 3i

8 ≠ i
8 .

_us, we can rearrange the sequence x⃗ in such a way that n < m implies ρ(xn) ≤
ρ(xm), where the inequality is strict if m > n + 1. Let M = {ρ(xn) ∣ n < ω}.

Claim 3.9 Let n < m < ω and assume that j = ρ(xn) < ρ(xm) (which may or may
not hold if m = n + 1, but must hold if m > n + 1). _en π j(xm) = 0.

Proof of Claim Let x = xn + xm . Arguing as in the proof of Claim 3.8, we get that
ρ(x) = j, and thus since x ∈ Q i , π j(xn)+ π j(xm) = π j(x) = i

8 . Now on the one hand
we know that π j(xm) ∈ {0, 1

4 ,−
1
4 ,

1
2}, while on the other hand π j(xn) = i

8 . Hence,
the only possibility that does not lead to contradiction is that π j(xm) = 0.

Claim 3.10 For every x ∈ FS(x⃗) there is a j ∈ M such that π j(x) ≠ 0. Moreover,
for the least such j we actually have that π j(x) ∈ { i

8 ,
2i
8 }.

Proof of Claim For if x = ∑n∈a xn and if m = min(a), then we can let j = ρ(xm) ∈
M so that for every n ∈ a, we have ρ(xn) ≥ j, with a strict inequality if n > m + 1.
Now, we have that

π j(x) = ∑
n∈a

π j(x),

where, by Claim 3.9, each of the terms on the right-hand side of this expression are
zero, except for π j(xm) = 1

8 and possibly π j(xm+1) (which will appear on the summa-
tion only ifm+1 ∈ a, and if so it will equal 1

8 if ρ(xm+1) = ρ(xm), and zero otherwise).
_us, π j(x) ∈ { i

8 ,
2i
8 } . In particular, π j(x) ≠ 0. Now in order to prove the “more-

over” part, we will argue that for all l < j such that l ∈ M, π l(x) = 0. _is is because
if l ∈ M, then there is k < ω such that ρ(xk) = l , and if l < j, then we must neces-
sarily have k < m because of the way we arranged our sequence x⃗. Hence, again by
Claim 3.9 and since m = min(a), it will be the case that π l(xn) = 0 for all n ∈ a, and
hence

π l(x) = ∑
n∈a

π l(xn) = 0.

_erefore, j is actually the least l ∈ M such that π l(x) ≠ 0, and we are done.

_e previous claim allows us to deûne τ∶FS(x⃗) ↦ M by

τ(x) = min{ j ∈ M ∣ π j(x) ≠ 0},
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and ensures that πτ(x)(x) ∈ { i
8 ,

2i
8 } . We can thus let

Ck = {x ∈ FS(x⃗) ∣ πτ(x)(x) =
ki
8
}

for k ∈ {1, 2}, and choose from among those k such that Ck ∈ p. We let X = Ck and
claim that X is as in the conclusion of the theorem. In order to see this, let y⃗ be such
that FS( y⃗) ⊆ Ck .

Notice ûrst that for distinct n,m < ω we must have τ(yn) ≠ τ(ym), for otherwise
we would get, arguing in a similar way as in the proofs of Claims 3.8 and 3.9, that

τ(yn + ym) = τ(yn) = τ(ym) and πτ(yn+ym)(yn + ym) = 2ki
8

≠ ki
8
,

a contradiction. _us, by rearranging y⃗ if necessary, we can assume that n < m implies
τ(yn) < τ(ym).

Now an observation is in order. Consider a ∈ [ω]<ω ∖ ∅ and ε∶ a → {1, 2}. Let
m = min(a) and j = τ(ym). Since τ is increasing on y⃗, π j(yn) = 0 for all n ∈ a∖{m},
while π j(ym) = ki

8 . _us

π j(∑
n∈a
ε(n)yn) = ε(m) ki

8
≠ 0.

From this we can conclude that y⃗ satisûes 2-uniqueness of ûnite sums. Assume that
a, b ∈ [ω]<ω and ε∶ a → {1, 2}, δ∶ b → {1, 2} are such that
(3.2) ∑

n∈a
ε(n)xn = ∑

n∈b
δ(n)xn .

We will proceed by induction on min{∣a∣, ∣b∣}. If a = b = ∅, we are done. Otherwise,
letm = min(a∪b). Assumewithout loss of generality thatm ∈ a, so thatm = min(a).
Let j = τ(ym). _en by the previous observation, the value of each side of (3.2) under
π j is nonzero, while π j(yn) = 0 for all n > m. _us, by looking at the right-hand
side of (3.2) we conclude that we must have m ∈ b as well. _en it is also the case
that min(b) = m. Now again, by the observation from last paragraph, we get that the
value of each side of (3.2) under the function π j must equal, at the same time, ε(m) ki

8
and δ(m) ki

8 . _is can only happen if ε(m) = δ(m); therefore, we can cancel the term
ε(m)ym from both sides of (3.2) and get

∑
n∈a∖{m}

ε(n)xn = ∑
n∈b∖{m}

δ(n)xn .

Now we can apply the inductive hypothesis and conclude that a ∖ {m} = b ∖ {m}
and ε ↾ (a ∖ {m}) = δ ↾ (b ∖ {m}). Since m is an element of both a and b, with
ε(m) = δ(m), we have proved that a = b and ε = δ, and we are done.

Proof of_eorem 3.1 Let G be an abelian group and let p ∈ G∗ be a strongly sum-
mable ultraûlter such that {x ∈ G ∣ o(x) = 2} ∉ p. Since p is nonprincipal and
the only x ∈ G with o(x) = 1 is 0, we have that B = {x ∈ G ∣ o(x) > 2} ∈ p. If
C = {x ∈ G ∣ o(x) = 3} ∈ p, then notice that, since C ⊆ {x ∈ G ∣ πmin(x)(x) ≠ 1

2}
(because C = {x ∈ G ∣ (∀n < ω)(πn(x) ∈ {0, 1

3 ,−
1
3})}), we can apply _eorem 3.5

and get an X ∈ p such that, if x⃗ is such that FS(x⃗) ⊆ X (and there is such an x⃗ with
FS(x⃗) ∈ p because of strong summability), then x⃗ must satisfy 2-uniqueness of ûnite
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sums. If D = {x ∈ G ∣ o(x) = 4} ∈ p, then we can pick a sequence x⃗ such that
p ∋ FS(x⃗) ⊆ D, so by Lemma 3.3 this sequence must satisfy 2-uniqueness of ûnite
sums, and we are done. Otherwise, if C ∉ p and D ∉ p, then

Q(G) = {x ∈ G ∣ o(x) > 4} = (G ∖ D) ∩ (G ∖ C) ∩ B ∈ p.
Now Q(G) = Q0 ∪ Q1, where

Q0 = {x ∈ Q(G) ∣ πρ(x)(x) ∉ { 1
8
,− 1
8
, 3
8
,−3
8
}} ,

and

Q1 = {x ∈ Q(G) ∣ πρ(x)(x) ∈ { 1
8
,− 1
8
, 3
8
,−3
8
}} ,

so pick i ∈ 2 such that Q i ∈ p. If i = 0 apply Lemma 3.6 and if i = 1 apply_eorem 3.7,
in either case, there is an X ∈ p such that whenever x⃗ is such that FS(x⃗) ⊆ X, then x⃗
must satisfy 2-uniqueness of ûnite sums. By strong summability of p there is such a
sequence x⃗ that additionally satisûes FS(x⃗) ∈ p, and we are done.

Corollary 3.11 ([9, Question 4.12]) Let p be a nonprincipal strongly summable ultra-
ûlter on an abelian group G. _en p is sparse.

Proof Let G be any abelian group and let p ∈ G∗ be a strongly summable ultraûlter.
Let

B = {x ∈ G ∣ o(x) ≤ 2}.
_en B is a subgroup of G. If B ∈ p, then since p is nonprincipal, B must be inûnite;
and since G is countable, B must be isomorphic to the (unique up to isomorphism)
countably inûnite Boolean group. Consider the restricted ultraûlter q = p ↾ B =
p∩P(B). _en q is also strongly summable, so q is a nonprincipal strongly summable
ultraûlter on the Boolean group, and therefore by [4, _. 2.1], it is sparse. It is easy to
see that this implies that p is sparse as well. _us, the only case that remains to be
proved is when B ∉ p, but this is handled by_eorem 3.1 together with Corollary 2.9,
and we are done.

Corollary 3.12 ([9], Question 4.11) Let p be a nonprincipal strongly summable ultra-
ûlter on an abelian group G. _en p has the trivial sums property.

Proof Let G be any abelian group ,and let p ∈ G∗ be a strongly summable ultraûlter.
If p does not contain the subgroup B = {x ∈ G ∣ o(x) ≤ 2}, then we just need to apply
_eorems 3.1 and 2.10. So assume that B ∈ p and let q, r ∈ βG be such that q + r = p.
_en we have that

{x ∈ G ∣ B − x ∈ r} ∈ q.
In particular, this set is nonempty, and so we can pick an x ∈ G such that B − x ∈ r,
or equivalently B ∈ r + x. Since x ∈ G (hence it commutes with all ultraûlters), the
equation (q − x) + (r + x) = p holds; thus,

A = {y ∈ G ∣ B − y ∈ r + x} ∈ q − x .
Notice that A ⊆ B, because if y ∈ G is such that B − y ∈ r + x, then B ∩ (B − y) ∈ r + x.
In particular the latter set is nonempty, and so there are z,w ∈ B such that z = w − y
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which means that y = w− z ∈ B. _erefore, B ∈ q−x, so we can deûne u = (q−x) ↾ B
and v = (r+ x) ↾ B. We then get that u, v ∈ βB and p ↾ B ∈ B∗ is a strongly summable
ultraûlter such that u + v = p ↾ B. Notice that in B, FS-sets are just subgroups from
which the element 0 might have been removed; thus, the ûlter {A∪ {0} ∣ A ∈ p ↾ B}
has a base of subgroups, and hence it is the neighbourhood ûlter of 0 for some group
topology. _is means that p ↾ B satisûes the hypothesis of [13, Cor. 4.4], so it must be
the case that u, v ∈ B + p ↾ B. _is is easily seen to imply that q − x , r + x ∈ B + p, and
therefore, since x ∈ G, we conclude that q, r ∈ G + p, and we are done.

4 The Boolean Group

_eorem 3.1 depends heavily on the hypothesis that the ultraûlter p at hand does not
contain the subgroup B(G) = {x ∈ G ∣ o(x) = 2}, since there are no sequences x⃗
satisfying the 2-uniqueness of ûnite sums in B(G). Corollary 3.2 also has that B(G) ∉
p as a hypothesis, but it is not entirely clear a priori that this hypothesis is necessary for
the result. _e main objective of this section is to prove that we do in fact need such
a hypothesis. _at is, if p ∈ G∗ is strongly summable and B(G) ∈ p, then there is no
guarantee that p is additively isomorphic to a union ultraûlter. For this, of course, we
only need to consider the case where B(G) is inûnite (otherwise, the only ultraûlters
that can contain it are the principal ones). And, as noted in the previous section, when
dealing with strongly summable ultraûlters, we can assume without loss of generality
that G (and hence B(G)) is countable. Since there is (up to isomorphism) only one
countably inûnite group all of whose nonidentity elements have order 2, it will be
enough for our purposes to look at strongly summable ultraûlters in this group (which
we will from now on simply call “the Boolean group”), by focusing our attention on
the restricted ultraûlter p ↾ B(G).

We will choose a particularly nice “realization” of the Boolean group to work with.
We think of the Boolean group as the set B = [ω]<ω equipped with the symmetric
diòerence △ as group operation. Since every element of B has order 2, we have that
for any sequence x⃗ of elements of B, we can ignore the repeated elements from the
sequence and still get the same set FS(x⃗). _us, we will talk about FS(X) for X ⊆ B,
and it is easy to see that for p ∈ B∗, p is strongly summable if and only if for every
A ∈ p there is an inûnite set X ⊆ B such that p ∋ FS(X) ⊆ A.

We will use the fact that B is a vector space over the ûeld with two elements F2 =
Z/2Z (scalar multiplication being the obvious one). Note that for X ⊆ B, the subspace
spanned (which in B coincides with the subgroup generated) by X is exactly FS(X)∪
{∅}, because nontrivial linear combinations (i.e., linear combinations inwhich not all
scalars equal zero) of elements of X are exactly ûnite sums (or symmetric diòerences)
of elements of X. _e following proposition, whose proof is obvious, tells us how do
subsets X ⊆ G satisfying uniqueness of ûnite sums look like.

Proposition 4.1 For X ⊆ G, the following are equivalent:
(i) X satisûes uniqueness of ûnite sums.
(ii) ∅ ∉ FS(X).
(iii) X is linearly independent.
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_us, when we have a set FS(Y) such that Y is not linearly independent, we can
always choose a basis X for the subspace FS(Y) spanned by Y , and we will have that
FS(X) = FS(Y)∖{∅}. _is means that, when considering sets of the form FS(X), we
can assume without loss of generality that X is linearly independent. Another way to
see this as follows: let p ∈ B∗ be a strongly summable ultraûlter, and let A ∈ p. Since p
is nonprincipal, {∅} ∉ p and hence A∖{∅} ∈ p. _erefore, we can choose an X such
that p ∋ FS(X) ⊆ A∖ {0}, so FS(X) ⊆ A and X must be linearly independent.

Deûnition 4.2 For a linearly independent set X ⊆ B, we deûne for an element
y ∈ FS(X) the X-support of y, denoted by X − supp(y), as the (unique, by linear
independence of X) ûnite set of elements of X whose sum equals y. _at is,

y = ∑
x∈X−supp(y)

x .

If Y ⊆ FS(X), then we also deûne the X-support of Y as
X − supp(Y) = ⋃

y∈Y
X − supp(y).

Similarly, we deûne the X-support of a sequence of elements of FS(X) as the
X-support of its range.

It will be convenient to stipulate the convention that X − supp(∅) = ∅. _en it is
readily checked that the function X − supp∶FS(X) ∪ {∅} → ([X]<ω ,△) is a group
isomorphism (in fact, a linear transformation between the two vector spaces), in other
words, X − supp(x△ y) = X − supp(x)△X − supp(y) for all x , y ∈ FS(X), and more
generally, X − supp (∑x∈A x) = ∑x∈A X − supp(x) for all A ∈ [FS(X)]<ω . _is is
the really crucial feature of the X-support, and it will be used ubiquitously in what
follows.
As an application of the previous deûnitions and properties, we will provide an-

other proof of the fact that every strongly summable ultraûlter on B is sparse, much
simpler than the original one from [4, _. 2.1]. So let p ∈ B∗ be a strongly summable
ultraûlter, and let A ∈ p. Because of strong summability, there is an inûnite linearly
independent Z such that p ∋ FS(Z) ⊆ A.

Claim 4.3 _ere is a B ∈ p such that for some inûniteW ⊆ Z, FS(W) ∩ B = ∅.

_e result follows easily from the claim. Just pick a linearly independent Y such
that p ∋ FS(Y) ⊆ B ∩ FS(Z), and let X = Y ∪W . _en it is straightforward to prove
that X is linearly independent, since Y andW are linearly independent, and FS(W)
is disjoint from FS(Y). Since X ∖ Y = W we also have that ∣X ∖ Y ∣ = ω, and since
Y ,W ⊆ FS(Z), we will have that FS(X) ⊆ FS(Z) ⊆ A, and we are done.

Proof of Claim 4.3 Let Z′ be an inûnite, coinûnite subset of Z. Let
B0 = {w ∈ FS(Z) ∣ Z − supp(w) ∩ Z′ ≠ ∅} ,

B1 = FS(Z) ∖ B0 = {w ∈ FS(Z) ∣ Z − supp(w) ∩ Z′ = ∅} .
_ere is i ∈ 2 such that B i ∈ p. If B0 ∈ p, then we let W = Z ∖ Z′; otherwise, if

B1 ∈ p we let W = Z′. In any case it is easy to see that FS(W) ∩ B i = ∅.
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_e remainder of this section is devoted to showing that the hypothesis that
{x ∈ G ∣ o(x) = 2} ∉ p in Corollary 3.2 is necessary, by constructing a nonprincipal
strongly summable ultraûlter on B that is not additively isomorphic to a union ultra-
ûlter. _is construction borrows a lot of ideas from the constructions of unordered
union ultraûlters that can be found in [2, _. 4] and [12, Cor. 5.2]. We ûrst show an
eòective way to look at additive isomorphisms to union ultraûlters.

Lemma 4.4 Let p ∈ B∗ be a strongly summable ultraûlter that is additively isomorphic
to some union ultraûlter. _en there exists a linearly independent X such that FS(X) ∈ p
and satisfying that whenever A ⊆ FS(X) is such that A ∈ p, there exists a set Z, whose
elements have pairwise disjoint X-supports, with p ∋ FS(Z) ⊆ A.

Proof If the strongly summable ultraûlter p ∈ B∗ is additively isomorphic to a union
ultraûlter, by Propositions 2.4 and 4.1, we have that for some linearly independent X
such that FS(X) ∈ p and for some enumeration of X as X = {xn ∣ n < ω}, the
mapping ϕ∶FS(X) → [ω]<ω given by ∑n∈a xn ↦ a sends p to a union ultraûlter.
Note that the mapping ϕ is a vector space isomorphism from the subspace spanned
by X, to all of B (in fact it is the unique linear extension of the mapping xn ↦ {n}).
_e fact that ϕ(p) is a union ultraûlter means that, for every A ⊆ FS(X) such that
A ∈ p, there is a pairwise disjoint family Y such that ϕ(p) ∋ FU(Y) ⊆ ϕ[A]. Since
Y is pairwise disjoint, we get that FU(Y) = FS(Y), and since ϕ is an isomorphism,
ϕ−1[FS(Y)] = FS(Z) where Z = ϕ−1[Y]. Now the fact that Y is pairwise disjoint
means that the X-supports of the elements of Z are pairwise disjoint, and we have
that p ∋ FS(Z) ⊆ A.

_us, our goal is to construct, by a transûnite recursion, a strongly summable ul-
traûlter and somehow, at the same time, for each linearly independent X such that
FS(X) will end up in the ultraûlter, at some stage we need to start making sure that,
for every new set of the form FS(Z) that we are adding to the ultraûlter, the genera-
tors Z do not have pairwise disjoint X-support. _e notions of suitable and adequate
families for X will precisely code the way in which we are going to ensure that.

Deûnition 4.5 For a linearly independent subset X ⊆ G, we will say that a subset
Y ⊆ FS(X) is suitable for X if the following hold.

(i) For each m < ω there exists an m-sequence ⟨y i ∣ i < m⟩ of elements of Y such
that whenever i < j < m, the set X − supp(y i) ∩ X − supp(y j) is nonempty. _is
sequence will be called an m-witness for suitability.

(ii) Whenever y, y′ ∈ Y are such that X−supp(y)∩X−supp(y′) is nonempty, the
set [X−supp(y)∩X−supp(y′)]∖X−supp(Y∖{y, y′}) is also nonempty. (We do not
require here that y ≠ y′; in particular, for each y ∈ Y , X−supp(y)∖X−supp(Y∖{y})
is nonempty, and this is easily seen to imply that Y must be linearly independent).

_us, a suitable set Y for X contains, in a carefully controlled way, arbitrarily large
bunches of elements whose X-supports always pairwise intersect. Given a linearly
independent set X, it is easy to inductively build a setY that is suitable for X. And once
we have such a suitable set, we can look at subsets of FS(Y) that, in a sense, borrow
from Y the non-disjointness of their X-supports. _is is captured in a precise sense
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by the following deûnition, which also captures the fact that we will want to handle
the non-disjointness of the X-supports for several distinct linearly independent sets
X simultaneously.

Deûnition 4.6 Let A ⊆ B and let Y = {(X i ,Yi) ∣ i < n} be a ûnite family such that
for each i < n, X i is a linearly independent subset of G and Yi is suitable for X i . Also,
let m < ω. _en we will say that A is (Y ,m)-adequate if there exists an m-sequence
⟨a j ∣ j < m⟩, called a (Y ,m)-witness for adequacy, such that for each i < n,
(i) FS(a⃗) ⊆ A∩ FS(Yi) (which is in turn a subset of FS(X i));
(ii) _ere exists an m-witness for the suitability of Yi , ⟨y j ∣ j < m⟩ such that for each

two distinct j, k < m, y j ∈ Yi − supp(a j) and y j ∉ Yi − supp(ak).
If we are given a family of ordered pairs X all of whose ûrst entries are linearly in-
dependent subsets of B, while every second entry is suitable for the corresponding
ûrst entry, then we will say that A is X -adequate if it is (Y ,m)-adequate for all ûnite
Y ⊆ X and for all m < ω. When Y is a singleton {(X ,Y)}, we will just say that A is
(X ,Y)-adequate.

Deûnition 4.6(ii) in particular implies that, for j < k < m, the set X i − supp(a j) ∩
X i − supp(ak) is nonempty. _us, the X i-supports of the terms of a witness for ade-
quacy are not pairwise disjoint, and, moreover, their non-disjointness does not hap-
pen randomly, but is rather induced by some non-disjointness going on at the level
of Yi . Also, note that if Y is suitable for X, then FS(Y) is (X ,Y)-adequate, with the
witnesses for suitability witnessing adequacy at the same time. _e following lemma,
along with the observation that an X -adequate set is also (X ,Y)-adequate for each
(X ,Y) ∈ X , tells us that this notion of adequacy is adequate (pun intended) for our
purpose of banishing sets of the formFS(Z) for which the elements of Z have pairwise
disjoint X-supports.

Lemma 4.7 Let X and Z be both linearly independent and let Y be suitable for X.
Assume that Z ⊆ FS(Y). If the elements of Z have pairwise disjoint X-supports, then
FS(Z) is not (X ,Y)-adequate.

Proof Deûnition 4.5(ii) implies that, for two distinct z, z′ ∈ Z, if y ∈ Y−supp(z) and
y′ ∈ Y − supp(z′), then X − supp(y) ∩ X − supp(y′) = ∅, for otherwise X − supp(z)
would not be disjoint from X − supp(z′). _us, ⟨z, z′⟩ cannot be an ((X ,Y), 2)-
witness. More generally, for any two w ,w′ ∈ FS(Z), the only way that there could
exist two distinct y ∈ Y − supp(w) and y′ ∈ Y − supp(w′) such that X − supp(y) ∩
X − supp(y′) ≠ ∅ would be if y, y′ ∈ Y − supp(z) for some z ∈ Z such that z ∈
Z − supp(w) ∩ Z − supp(w′). But then y ∈ Y − supp(w′) and y′ ∈ Y − supp(w).
Hence, ⟨w ,w′⟩ cannot be an ((X ,Y), 2)-witness and we are done.

Given this, the idea for the recursive construction of an ultraûlter would be as
follows. At each stage we choose some set FS(X) that has already been added to the
ultraûlter, and then we choose a suitable (for X) set Y . At every stage we make sure
that the subsets of B that we are adding to the ultraûlter areX -adequate, whereX is
the collection of all pairs (X ,Y) that have been thus chosen so far. If we want to have
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a hope of succeeding in such a construction, we need to make sure that the notion of
being X -adequate behaves well with respect to partitions. For this we will need the
following lemma.

Lemma 4.8 Let Y = {(X i ,Yi) ∣ i < n}, where each X i is linearly independent and
each Yi is suitable for X i . Let a⃗ = ⟨a j ∣ j < M⟩ be a (Y ,M)-witness for adequacy,
and let ⟨b i ∣ i < m⟩ be an m-sequence of pairwise disjoint subsets of M. If we deûne
c⃗ = ⟨c j ∣ j < m⟩ by c j = ∑k∈b j

ak , then c⃗ will be a (Y ,m)-witness for adequacy.

Proof Let us check that c⃗ satisûes both requirements of Deûnition 4.6 for a
(Y ,m)-witness. Fix i < n. Since the b j are pairwise disjoint, we have that FS(c⃗) ⊆
FS(a⃗) ⊆ A ∩ FS(Yi), thus requirement (i) is satisûed. In order to see that require-
ment (ii) holds, grab the corresponding m-witness for suitability, ⟨y j ∣ j < M⟩, as of
Deûnition 4.6(ii) for a⃗. Now for j < m, pick a k j ∈ b j and let w j = yk j . Since the
w j were chosen from among the yk , the sequence w⃗ = ⟨w j ∣ j < m⟩ is an m-witness
for suitability. Now for j < m, since w j ∈ Yi − supp(ak j) and w j ∉ Yi − supp(a l) for
l ≠ k j , it follows thatw j ∈ Yi − supp(c j) andw j ∉ Yi − supp(c j′) for j ≠ j′, and we are
done.

An easy consequence of the previous lemma is the observation that any (Y ,M)-
adequate set is also (Y ,m)-adequate for any m ≤ M. Lemma 4.8 will allow us to
prove the following lemma, which is crucial.

Lemma 4.9 For each m < ω there is an M < ω such that whenever Y is a ûnite
family of ordered pairs of the form (X ,Y), with X a linearly independent set and Y
suitable for X, and whenever a (Y ,M)-adequate set is partitioned into two cells, one
of the cells must be (Y ,m)-adequate.

Proof For this, we will use a theorem of Graham and Rothschild that is a ûnitary
version of Hindman’s theorem; namely, for every m < ω there is an M < ω such
that whenever we partitionP(M)∖ {∅} into two cells, then one of the cells contains
FU(b⃗) for some pairwise disjointm-sequence b⃗ = ⟨b i ∣ i < m⟩ of nonempty subsets of
M (this result is sometimes referred to as the Folkman–Rado–Saunders theorem). An
elegant proof of this theorem from the inûnitary version, using a so-called compact-
ness argument, can be obtained by following the proof of [10, _. 5.29] as a template,
applied to the semigroup whose underlying set is [ω]<ω and whose semigroup oper-
ation is the union ∪.

_us, for m < ω, let M be given by this ûnitary theorem, and let A be a (Y ,M)-
adequate set. Let a⃗ = ⟨a j ∣ j < M⟩ be a (Y ,M)-witness for the adequacy of A. If
A is partitioned into the two cells A0 ,A1, then since FS(a) ⊆ A, we can induce a
partition of P(M) ∖ {∅} into the two cells B0 , B1 by declaring a subset s ⊆ M to be
an element of B l if and only if ∑ j∈s a j ∈ A l for l ∈ 2. _en the theorem of Graham
and Rothschild gives us a pairwise disjoint family b⃗ = ⟨b j ∣ j < m⟩ and an l ∈ 2
such that FU(b⃗) ⊆ B l . Letting c⃗ = ⟨c j ∣ j < m⟩ be given by c j = ∑k∈b j

ak , we get
that FS(c⃗) ⊆ A l and Lemma 4.8 ensures that c⃗ is a (Y ,m)-witness for adequacy.
_erefore, A l is (Y ,m)-adequate, and we are done.
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Corollary 4.10 For any familyX consisting of ordered pairs of the form (X ,Y), with
X a linearly independent set and Y suitable for X, if we partition an X -adequate set
into two cells, then one of them must beX -adequate.

Proof If A = A0 ∪ A1 is a partition of theX -adequate set A, and neither A0 nor A1
are X -adequate, then the reason for this is the existence of ûnite Y0 ,Y1 ⊆ X and
m0 ,m1 < ω such that A0 is not (Y0 ,m0)-adequate and A1 is not (Y1 ,m1)-adequate.
Pick the M that works for max{m0 ,m1} in Lemma 4.9. _en for some i ∈ 2, A i is
(Y0 ∪Y1 , max{m0 ,m1})-adequate (because A is (Y0 ∪Y1 ,M)-adequate); in partic-
ular, A i is (Yi ,m i)-adequate, a contradiction.

Recall that, in an abstract setting, if we have a set X and a family A ⊆ P(X)
then we say that A is partition regular, or a coideal, if A is closed under supersets
and, whenever an element ofA is partitioned into two cells, the familyA necessarily
contains at least one of the cells. _us, the previous corollary establishes that, for
any family X , the collection ofX -adequate subsets of B is partition regular. _is is
important because of the well-known fact that ifA is partition regular and F ⊆ A is
a ûlter on X, then it is possible to extend F to an ultraûlter p ⊆ A .

With these preliminary results under our belt, we are ûnally ready to prove the
main theorem of this section.

_eorem 4.11 If cov(M) = c, then there exists a strongly summable ultraûlter on B
that is not additively isomorphic to any union ultraûlter.

Proof Let {Aα ∣ α < c} be an enumeration of all subsets of B and let ⟨Xα ∣ α < c⟩ be
an enumeration of all inûnite linearly independent subsets ofB in such away that each
such set appears coûnally o�en in the enumeration. Now recursively deûne linearly
independent sets ⟨Yα ∣ α < c⟩ and a strictly increasing sequence of ordinals ⟨γα ∣ α <
c⟩ satisfying the following conditions for each α < c:
(i) γα is the least η ≥ supξ<α(γξ + 1) such that FS(Yξ) ⊆ FS(Xη) for some ξ < α;
(ii) Yα is suitable for Xγα ;
(iii) FS(Yα) is either contained in or disjoint from Aα ;
(iv) the family Fα = {FS(Yξ) ∣ ξ ≤ α} is centred;
(v) letting Xα = {(Xγξ ,Yξ) ∣ ξ ≤ α}, the ûlter generated by Fα consists of

Xα-adequate sets.
_us, at each stage α, we ûrst use clause (i) to determine what γα will be, and then

we work to ûnd a Yα satisfying (ii)–(v).
Let us ûrst look at what we have at the end of this construction. Clause (iv) tells

us that the family {FS(Yα) ∣ α < c} generates a ûlter p, which will be an ultraûlter
because of (iii), and it will obviously be nonprincipal and strongly summable. Now
notice that (v) implies that if Xc = {(Xγα ,Yα) ∣ α < c}, then each A ∈ p will be
Xc-adequate, because if Y = {(Xγαi

,Yi) ∣ i < n} is a ûnite subfamily ofXc, m < ω,
and A ∈ p, then we can grab an α < c larger than all γα i and also larger than the β
witnessing FS(Yβ) ⊆ A. By (v), FS(Yα) ∩ FS(Yβ) is Xα-adequate; in particular, it is
(Y ,m)-adequate, and thus so is A.
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_e last observation is crucial for the argument that p cannot be additively isomor-
phic to any union ultraûlter. If it was, by Lemma 4.4, there would be a linearly inde-
pendent X such that FS(X) ∈ p and such that for each A ∈ p satisfying A ⊆ FS(X), we
would be able to ûnd a family Z whose elements have pairwise disjoint X-supports
and such that p ∋ FS(Z) ⊆ A. Now since FS(X) ∈ p, there is an α < c such that
FS(Yα) ⊆ FS(X), let η be the least ordinal ≥ supξ≤α(γξ + 1) such that X = Xη . By (i)
we will have that γα+1 ≤ η and, in fact, whenever ξ > α is such that no γβ equals
η for any α < β < ξ; then γξ ≤ η. _us, there will eventually be some ζ > α such
that γζ = η, and by (ii) this means that Yζ is suitable for X. Since every element of
p is Xc-adequate, in particular (X ,Yζ)-adequate, then by Lemma 4.7 we get that for
no set Z with pairwise disjoint X-supports can we have that p ∋ FS(Z) ⊆ FS(Yζ).
_is shows that p cannot be additively isomorphic to any union ultraûlter, and we are
done.

We now proceed to show how is it possible to carry out such a construction. So
let α < c and assume that for all ξ < α, conditions (i)–(v) are satisûed. As mentioned
before, condition (i) uniquely determines γα , sowe only need to focus on constructing
Yα satisfying conditions (ii)–(v). Let

F = {FS(Yξ) ∣ ξ < α} and X = {(Xγξ ,Yξ) ∣ ξ < α} .
Condition (v) implies that the ûlter generated by F consists ofX -adequate sets, if α
is limit, by the same argument as in the proof that p consists ofXc-adequate sets, and
if α = ξ + 1 just because F = Fξ andX = Xξ . _us if we deûne

H = {q ∈ βB ∣ (q ⊇ F) ∧ (∀A ∈ q)(A is X −adequate)} ,
then H will be a nonempty subset of βB by Corollary 4.10 (cf. the discussion following
that corollary). Since ûnite sets cannot beX -adequate, we have that, in fact, H ⊆ B∗.
In what follows, in order to avoid confusion, we will use the symbol▲ to denote the
extension of the group operation△ on B to all of βB. We will also use that symbol to
denote translates of sets, x ▲ A = {x △ y ∣ y ∈ A}. _us, with this notation,

p▲ q = {A ⊆ B ∣ {x ∈ B ∣ x ▲ A ∈ q} ∈ p} .

Claim 4.12 H is a closed subsemigroup of B.

Proof of Claim _e fact that H is closed is fairly straightforward and is le� to the
reader. To prove that H is a subsemigroup, let p, q ∈ H. We ûrst show that F ⊆
p▲ q. Fix a ξ < α, and note that we have, for each w ∈ FS(Yξ), that w ▲ FS(Yξ) =
FS(Yξ) ∪ {∅} ∈ q. Hence p ∋ FS(Yξ) ⊆ {x ∈ B ∣ x ▲ FS(Yξ) ∈ q}, which means that
FS(Yξ) ∈ p▲ q.

Now we only need to show that if A ∈ p▲ q, then A is X -adequate. So ûx a ûnite
Y = {(X i ,Yi) ∣ i < n} ⊆ X and anm < ω. Wewill see that there is a (Y ,m)-witness
for the adequacy of A. Let B = {x ∈ B ∣ x ▲ A ∈ q}. We have that B ∈ p, because
A ∈ p▲ q, so B is X -adequate, and thus we can grab a (Y ,m)-witness ⟨a j ∣ j < m⟩
for the adequacy of B. For each i < n, FS(a⃗) ⊆ FS(Yi), so we can deûne Z i ∈ [Yi]<ω
by Z i = Yi − supp(a⃗). Consider the set

C = ⋂
a∈FS(a⃗)

a▲ A,
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which is an element of q, because FS(a⃗) ⊆ B, and hence it is X -adequate. _ere-
fore, we can grab a (Y , 2∑i<n ∣Z i ∣ + 2m − 1)-witness for the adequacy of C, ⟨b j ∣
j < 2∑i<n ∣Z i ∣ + 2m − 1⟩. Associate with any element x ∈ ⋂i<n FS(Yi) the vector
⟨Z i ∩ Yi − supp(x) ∣ i < n⟩, and notice that there are exactly 2∑i<n ∣Z i ∣ many possible
distinct such vectors. _us, there exist 2m distinct numbers k0 , . . . , k2m−1 < 2∑i<n ∣Z i ∣+
2m − 1 such that for each j < m, the vector associated with bk2 j is exactly the same as
the one associated with bk2 j+1 , and so if we let c j = bk2 j △ bk2 j+1 , then for each i < n,
c j ∈ FS(Yi ∖Z i). By Lemma 4.8, them-sequence c⃗ = ⟨c j ∣ j < m⟩will be an m-witness
for the adequacy of C. Now let d⃗ = ⟨d j ∣ j < m⟩ be given by d j = a j △ c j . We claim
that d⃗ is a (Y ,m)-witness for the adequacy of A, so let us ûx i < n and verify that
d⃗ satisûes Deûnition 4.6(i) and (ii). It is certainly the case that FS(c⃗) ⊆ A ∩ FS(Yi),
because if d ∈ FS(d⃗), then there are a ∈ FS(a⃗) and c ∈ FS(c⃗) such that d = a △ c,
and since c ∈ C ⊆ a ▲ A, we get that d ∈ A. _us, requirement (i) is satisûed. Now
for requirement (ii), just grab the m-witness for the suitability of Yi that works for a⃗,
⟨y j ∣ j < m⟩. We constructed the c j in such a way that Yi − supp(c j) ∩ Z i = ∅, while
Yi − supp(a j) ⊆ Z i . Hence, for each j < m, Yi − supp(d j) ∩ Z i = Yi − supp(a j), and
so whenever j < m, y j ∈ Yi − supp(d j), and y j ∉ Yi − supp(dk) for k ≠ j.

SinceH is a closed subset of the compact space βB, then H is compact as well, and
since it is a semigroup in its own right, we can apply the so-called Ellis–Numakura
lemma [10, _. 2.5], which asserts that every (nonempty) compact right-topological
semigroup contains idempotent elements. Hence we can pick an idempotent q▲ q =
q ∈ H. Let A ∈ {Aα ,B ∖ Aα} be such that A ∈ q. We will use q to carefully construct
Yα . Let X = Xγα .

Claim 4.13 _ere is a Y , suitable for X, such that the following hold:
(i) FS(Y) ⊆ A.
(ii) For any ûnite subfamily Y = {(X i ,Yi) ∣ i < n} ⊆ X , for any m < ω and for

any ûnitely many ξ0 , . . . , ξk < α, there is a sequence ⟨a j ∣ j < m⟩ of elements of Y that
is simultaneously an m-witness for the suitability (for X) of Y and a (Y ,m)-witness
for the adequacy of ⋂l≤k FS(Yξ l ). In particular, a⃗ witnesses the (Y ∪ {(X ,Y)},m)-
adequacy of (⋂l≤k FS(Yξ l )) ∩ FS(Y).

Proof _is is the only place where we will actually use the hypothesis that
cov(M) = c. Since q is an idempotent and A ∈ q, the set A⋆ = {x ∈ A ∣ x▲ A ∈ q} ∈ q
and by [10, Lemma 4.14], for every x ∈ A⋆, x ▲ A⋆ ∈ q. Let P be the partial order
consisting of those ûnite subsets W ⊆ FS(X) such that FS(W) ⊆ A⋆ and satisfying
Deûnition 4.5(ii) of suitability for X, ordered by reverse inclusion (thus Z ≤W means
that Z ⊇ W). _is is a countable forcing notion, hence forcing equivalent to Cohen’s
forcing. For any ûniteY ⊆ X , everym < ω, and all ξ0 , . . . , ξk < α as in part (ii) of the
conclusions of this claim, we let D(Y ,m, ξ0 , . . . , ξk) be the set consisting of all con-
ditions Z ∈ P such that there is an m-sequence a⃗ of elements of Z that simultaneously
witnesses the suitability of Z for X and the (Y ,m)-adequacy of ⋂l≤k FS(Yξ l ). _e
heart of this proof will be the argument that all of these sets D(Y ,m, ξ0 , . . . , ξk) are
dense in P. Once we have that, we just need to notice that there are ∣α∣ < c = cov(M)
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many such dense sets, sowe can pick a ûlterG intersecting themall, andwewill clearly
be done by deûning Y = ⋃G.

So let us prove that D(Y ,m, ξ0 , . . . , ξk) is dense in P. _e idea is that we are given
a condition Z ∈ P, and we would like to pick a (Y ,m)-witness a⃗ for the adequacy
of ⋂l≤k FS(Yξ l ), and extend Z to a stronger condition W by adding the range of a⃗
to it. _e main diõculty is that we want a⃗ to be at the same time an m-witness for
suitability (for X) such that the resulting conditionW = Z ∪{a j ∣ j < m} still satisûes
Deûnition 4.5(ii).

Let us start with a condition Z ∈ P, and let X′ = X ∖X − supp(Z). Notice ûrst that
we must have FS(X′) ∈ q, for otherwise we would have

{w ∈ FS(X) ∣ X − supp(w) ∩ X − supp(Z) ≠ ∅} ∈ q,
but it is easy to see (arguing as in [4, Lemma 2.2 and Cor. 2.3]) that this set cannot
contain any FS-set, which it should if it was to belong to any idempotent (because of
[10, _. 5.8]). Let

B = ( ⋂
l≤k

FS(Yξ l )) ∩ FS(X
′) ∩ ( ⋂

z∈FS(Z)
z▲ A⋆) .

_en B⋆ = {x ∈ B ∣ x ▲ B ∈ q} ∈ q; thus, B⋆ is X -adequate, so there is a
(Y ,m)-witness a⃗ = ⟨a j ∣ j < m⟩ for the adequacy of B⋆. We will now recursively
construct an m + (m

2 )-sequence of elements x⃗ = ⟨xk ∣ k < m + (m
2 )⟩ such that

FS(x⃗) ⊆ ⋂a∈FS(a⃗) a▲ B⋆ and such that the X-supports of its elements are pairwise
disjoint and also disjoint from X − supp(a⃗), and whose Yi-supports are disjoint from
Yi − supp(a⃗) for each i < n. If we succeed in this construction, picking a bijection
f ∶ [m]2 → (m + (m

2 )) ∖m will enable us to deûne the sequence b⃗ = ⟨b j ∣ j < m⟩ by

b j = a j △ x j △( ∑
k<m
k≠ j

x f ({ j,k})) .

Since the Yi-supports of all the xk are disjoint from Yi − supp(a⃗), arguing as in the
proof of Claim 4.12 we conclude that b⃗ is a (Y ,m)-witness for the adequacy of B⋆,
hence also for the adequacy of⋂l≤k FS(Yξ l ). And the careful choice of the X-supports
of the xk ensures that b⃗ is at the same time anm-witness for suitability for X, hence let-
tingW = Z ∪{b j ∣ j < m} yields a condition in P (i.e. ,W satisûes Deûnition 4.5(ii)).

_us, the only remaining issue is that of picking the xk . Assume that we have
picked x l for l < k, and we will show how to pick xk . Since q is an idempotent and

C = ⋂
a∈FS(a⃗⌢⟨x l ∣l<k⟩)

a▲ B⋆ ∈ q,

then there is a set of the form FS(V) ⊆ C (as before, this follows from [10, _. 5.8]).
As in the argument for the proof of Claim 4.12, with each element x ∈ C we associate
the vector

⟨Yi − supp(a⃗) ∩ Yi − supp(x) ∣ i < n⟩ ⌢
⟨X − supp({a j ∣ j < m} ∪ {x l ∣ l < k}) ∩ X − supp(x)⟩ ,

and notice that, since there are only ûnitely many possible distinct such vectors, the
inûnite set V must contain at least one pair of distinct elements v ,w that have the
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same associated vector. Hence, by letting xk = v △ w ∈ FS(V) ⊆ C, we get that
Yi − supp(xk) ∩ Yi − supp(a⃗) = ∅ for all i < n, and

X − supp(xk) ∩ X − supp({a j ∣ j < m} ∪ {x l ∣ l < k}) = ∅,
so the construction can go on, and we are done.

Let Yα = Y . Obviously requirement (ii) is satisûed, and since FS(Yα) ⊆ A ∈
{Aα ,B ∖ Aα}, requirement (iii) is satisûed as well. It is easy to see that condition (ii)
from the conclusion of the claim ensures at once that requirements (iv) and (v) are
fulûlled, and we are done.
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