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Strongly Summable Ultrafilters, Union
Ultrafilters, and the Trivial Sums Property

David J. Fernandez Breton

Abstract. 'We answer two questions of Hindman, Steprans, and Strauss; namely, we prove that every
strongly summable ultrafilter on an abelian group is sparse and has the trivial sums property. More-
over, we show that in most cases the sparseness of the given ultrafilter is a consequence of its being
isomorphic to a union ultrafilter. However, this does not happen in all cases; we also construct
(assuming Martin’s Axiom for countable partial orders, i.e., cov(M) = ¢), a strongly summable
ultrafilter on the Boolean group that is not additively isomorphic to any union ultrafilter.

1 Introduction

The concept of a strongly summable ultrafilter originated from N. Hindman’s efforts
for proving the theorem that now bears his name (which at the time was known as the
Graham-Rothschild conjecture), though later on it was realized that such ultrafilters
have a rich algebraic structure in terms of the algebra in the Cech-Stone compacti-
fication, which in turn sheds light on the aforementioned theorem by providing an
elegant proof of it. We conceive of the Cech-Stone compactification of an abelian
group G (equipped with the discrete topology) as the set G of all ultrafilters on G,
where the basic open sets are those of the form A = {p € BG | A € p}, for A € G. As
it turns out, these sets are actually clopen. If we identify each point x € G with the
principal ultrafilter {A € G | x € A}, then G is a dense subset of fG, and what we
denoted by A is really the closure in G of the set A. The group operation + from G
is also extended by means of the formula

pra={42G| (reGlA-xca) cp).

which turns G into a right topological semigroup. This means that for each p €
BG, the mapping (g — q + p): BG — BG is continuous, although G is not a group
(nonprincipal ultrafilters have no inverse). Moreover, the extended operation + is not
commutative in G, even though its restriction to G is, but elements x € G satisfy that
x+p = p+xforevery p € BG. The closed subsemigroup G* = BG \ G consisting of all
nonprincipal ultrafilters will be of special importance. The book [10] is the standard
reference on this topic.
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We reserve the lowercase roman letters p, g, r, u, v for ultrafilters, and the upper-
case roman letters A, B, C, D, W, X, Y, Z, with or without subscripts, will always de-
note subsets of the abelian group at hand. Lowercase letters w, x, y, z will typically
denote elements of the abelian group that is being dealt with, and the “vector” no-
tation will be used for sequences of elements of the group, e.g., ¥ = (x, | n < w).
When the sequences are finite, we use the symbol ~ to denote their concatenation, as
in X ~ y. If G is an abelian group and x € G, the symbol o(x) will denote the order
of x, i.e., the least natural number # such that nx = 0. We make liberal use of the von
Neumann ordinals, usually denoted by Greek letters «, 3, y, {, %, &; thus, for two ordi-
nals «, f, the expressions & <  and « € f3 are interchangeable. In particular, a natural
number 7 is conceived as the set {0, ..., n —1} of its predecessors, with 0 being equal
to the empty set @, and w denotes the set of finite ordinals, i.e., the set N u {0}. The
lowercase roman letters i, j, k, [, m, n, with or without subscript, will be reserved to
denote elements of w. The letters M and N, with or without subscripts, will, in gen-
eral, be reserved for denoting subsets of w (finite or infinite). Given a subset M C w,
[M]" will denote the set of subsets of M with n elements, [M]<* = U, [M]" will
denote the set of finite subsets of M, and [M]* denotes the set of infinite subsets of
M. The lowercase roman letters a, b, c, d, with or without subscripts, will stand for
elements of [w]<¥, i.e., for finite subsets of w.

Whenever we have a mapping f: G — H, there is a standard way to lift or extend it
to another mapping S f: BG — BH that is continuous and, if f is a semigroup homo-
morphism, then so is 5 f. This extension is given by

(B (p)={AcH|f[Alep} = ({f[A]|Acp}),

where the rightmost expression means that we take the filter on H generated by the
family {f[A] | A € p}, which has the finite intersection property. It is customary
to write just f(p) instead of (8f)(p), and we will do so throughout this paper. The
ultrafilter f(p) is called the Rudin-Keisler image of p under f.

The cardinal invariant cov(M) (read “covering of meagre”) is the least cardinal for
which Martin’s Axiom fails at a countable partial order. That is, cov(M) is the least «
such that one can find x-many dense subsets of some countable partial order with no
filter meeting them all (this notation is explained by the fact that this cardinal is also
the least possible number of meagre sets needed to cover all of the real line). Thus, the
equality cov(M) = ¢ means that Martin’s Axiom holds for countable partial orders,
whilst the failure of this principle is expressed by the inequality cov(M) < c.

One of the most important groups dealt with in this paper is the circle group T =
R/Z. When talking about this group, we will freely identify real numbers with their
corresponding cosets modulo Z, and conversely, we will identify elements of T (cosets
modulo Z) with any of the elements of R representing them. Therefore, when we refer
to an element of T as a real number t, we really mean the coset of that number modulo
Z, thus e.g., we may write t = 0 and really mean that ¢ € Z. This should not cause
confusion as the context will always clearly indicate whether we are viewing t as a real
number or as an element of T. If there is the need to specify a single representative
for an element of T, we will pick the unique representative ¢ satisfying —% <t< %

We will now proceed to introduce the main objects of study of this paper.
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Definition 1.1  Let G be an abelian group.

(i) Given a k-sequence X = (x; | i < k) of elements of G (where k < w), we define
the set of finite sums of the sequence X as:

FS(x) = { X xu [ a € [K]™ ~ {2} }.
nea
(ii) An FS-set is just a set of the form FS(x) for some sequence X of elements of G
with infinite range.
(iii) An ultrafilter p € BG is strongly summable if it has a base of FS-sets; i.e., if for
every A € p there exists an w-sequence with infinite range, X = (x, | n < w),
such that p 3 FS(X) ¢ A.

Note that the only principal strongly summable ultrafilter is 0. Strongly summable
ultrafilters on (N, +) were first constructed, under CH, by Hindman in [5, Th. 3.3]
(here he claims to construct an idempotent, but a closer look at the proof reveals
that the ultrafilter under construction is in fact strongly summable), although at that
time this terminology was not in use. The terminology was introduced later on, in
[6, Def. 2.1]. Blass and Hindman showed in [2, Th. 3] that the existence of strongly
summable ultrafilters is not provable from the axioms of ZFC alone, because it implies
the existence of P-points. The sharpest result so far in terms of existence is due to
Eisworth, who shows in [3, Th. 9] that cov(M) = ¢ suffices for ensuring the existence
of a strongly summable ultrafilter. In a forthcoming paper, this author shows that the
existence of strongly summable ultrafilters on any abelian group is consistent with
ZFC together with cov(M) < c.

The importance of this type of ultrafilter came at first from the fact that they are
examples of idempotents in SN, but among idempotents they are special in that the
largest subgroup of N* containing one of them as the identity is just a copy of Z. More
concretely, [10, Th. 12.42] establishes that if p € N* is a strongly summable ultrafilter,
and q,r € BN are such that g+ r = r + q = p, then q,r € Z + p. In [8], the authors
generalize some results previously only known to hold for ultrafilters on SN or fZ. In
particular, they proved there ([8, Th. 2.3]) that every strongly summable ultrafilter p
on any abelian group G is an idempotent ultrafilter. And [8, Th. 4.6] states that if G can
be embedded in T, then whenever q,r € G* = G\ G aresuch that q+r=r+q = p, it
must be the case that g, r € G + p. The following definition captures an even stronger
property than the one just mentioned.

Definition 1.2 If p € G is an idempotent element, we say that p has the trivial sums
property if whenever g,r € fG are such that g + = p, then it must be the case that
q,r€G+p.

Note that 0 always has the trivial sums property, because G* is an ideal of SG.
Idempotents satisfying the trivial sums property would be examples of so-called max-
imal idempotents, i.e., maximal elements with respect to the two partial orders <z, <p,
defined among idempotents by g <g r if and only if r + g = g and q < r if and only
if g + r = q. It is possible to improve the result just mentioned for strongly summable
ultrafilters if one strengthens the definition of strongly summable.
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Definition 1.3  An ultrafilter p € BG is sparse if for every A € p there exist two
sequences X = (x, | n < w), ¥ = (y, | n < w), where y is a subsequence of X such that
{xn | n<w}~{y,|n<w}isinfinite, FS(¥) € A, and FS(¥) € p.

Then, obviously, every sparse ultrafilter will be nonprincipal and strongly summa-
ble. And by [8, Th. 4.5], if G can be embedded in T and p € G* is sparse, then p has
the trivial sums property. In some non-commutative settings (adapting the relevant
definitions appropriately), the relationship between sparseness and an analogue of the
trivial sums property has been further explored (see [7]).

It follows from results of Krautzberger ([11, Props. 4 and 5, and Th. 4]) that ev-
ery nonprincipal strongly summable ultrafilter p € N* must actually be sparse. Thus
the previous theorem holds for nonprincipal strongly summable ultrafilters on N; i.e.,
every such ultrafilter, being sparse, has the trivial sums property. In [9], the authors
followed this idea and started investigating the different kinds of abelian semigroups
on which every nonprincipal strongly summable ultrafilter must be sparse. In par-
ticular, [9, Th. 4.2] establishes that if S is a countable subsemigroup of T, then every
nonprincipal strongly summable ultrafilter on S is sparse, so this generalizes the pre-
vious observation about strongly summable ultrafilters on N. The authors built on this
result to get a more general result ([9, Th. 4.5 and Cor. 4.6]) outlining a large class of
abelian groups, whose nonprincipal strongly summable ultrafilters must all be sparse.
More or less concurrently, this author showed ([4, Th. 2.1]) that every nonprincipal
strongly summable ultrafilter on the Boolean group is also sparse. Thus Hindman,
Steprans, and Strauss ([9, Question 4.12]) asked whether every strongly summable
ultrafilter on a countable abelian group is sparse.

Although it is not immediately clear that, for groups that are not embeddable in
T, sparseness implies the trivial sums property, Hindman, Steprans, and Strauss were
able to get a result, analogous to the ones mentioned in the previous paragraph, con-
cerning the latter property; namely, they proved ([9, Th. 4.8 and Cor. 4.9]) that for
the same class of abelian groups, all nonprincipal strongly summable ultrafilters must
have the trivial sums property. The analogous result for the Boolean group had already
been proved by Protasov ([13, Cor. 4.4]). Thus, Hindman, Steprans, and Strauss ([9,
Question 4.11]) also asked whether every strongly summable ultrafilter on a countable
abelian group G has the property that it can only be expressed trivially as a product
(i.e., asum) in G*.

Section 2 develops some preliminary results that deal with union ultrafilters, add-
itive isomorphisms, and what we call here the 2-uniqueness of finite sums. Section 3
contains the answer to the two questions from [9] mentioned in the previous para-
graphs. From the proof of this result, it will turn out that, unless p is a strongly sum-
mable ultrafilter on the Boolean group, it will be additively isomorphic to a union
ultrafilter. Thus Section 4 deals with the Boolean group, the main result being that,
under the assumption that cov(M) = ¢ (this is, under Martin’s Axiom for countable
forcing notions), there exists a strongly summable ultrafilter on the Boolean group
that is not additively isomorphic to any union ultrafilter.
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2 Union Ultrafilters and 2-uniqueness of Finite Sums

Union ultrafilters were first defined by Blass in [1, p. 92], an article that appeared in the
same volume as that of Hindman [6], where strongly summable ultrafilters are first
defined. So ever since their inception, the notions of union ultrafilter and of strongly
summable ultrafilter have always been inextricably related. The results of this paper
are no exception, and the notion of union ultrafilter is essential to them. We thus
introduce this notion. For a pairwise disjoint family X ¢ [w]<“, we denote the set of
its finite unions by

FUX) = {Ux|ae[X]{2}}.

xea

Definition 2.1 A union ultrafilter is an ultrafilter p on [w]<“ such that for every
A € pitis possible to find a pairwise disjoint X ¢ [w]<“ such that p > FU(X) ¢ A.

The reason union ultrafilters are so important when studying strongly summable
ultrafilters, is that sometimes strongly summable ultrafilters can be used to construct
union ultrafilters, which in turn are often easier to handle. We will state a definition
that captures the precise sense in which strongly summable ultrafilters give rise to
union ultrafilters. In order to do this, we need to introduce a further notion, which
stems from the fact that when dealing with sets of the form FS(X), if each finite sum
from this set can be expressed uniquely as such, then the situation is much more com-
fortable. To simplify notation, we make the convention that for any sequence x of
elements of some abelian group G, the empty sum equals zero:

Zx,,:O.

neyg

Definition 2.2 A sequence X on an abelian group G is said to satisfy uniqueness of
finite sums if whenever a, b € [w]<“ are such that

Y xn =Y Xn,

nea neb

it must be the case that a = b.

In particular, if X satisfies uniqueness of finite sums, then 0 ¢ FS(¥). Now we
are ready to introduce the notion that will provide the connection between strongly
summable ultrafilters and union ultrafilters.

Definition 2.3 Let p be an ultrafilter on an abelian group G and let q be a union
ultrafilter. We say that p and g are additively isomorphic if there is a sequence X of
elements of G satisfying uniqueness of finite sums, such that FS(X) € p, and there is
a pairwise disjoint family Y = {y,, | n < w} of elements of [w]<?, in such a way that
the mapping ¢: FS(X) — FU(Y) given by ¢(3,,c; Xn) = Uneq ¥« maps p to q.

If we are only interested in determining whether a given strongly summable ul-
trafilter p is additively isomorphic to some union ultrafilter, without worrying about
which ultrafilter, then we can assume without loss of generality that the isomorphism
is fairly simple. This is established formally and precisely in the following proposition.
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Proposition 2.4  If p is additively isomorphic to a union ultrafilter, and this is wit-
nessed by the mapping ¥ ,cq Xn = Uneq ¥n from FS(X) to FU(Y), then the mapping
y:FS(X) — [w]<“ given by (X ,eq Xu) = a also maps p to a union ultrafilter.

Proof We only need to show that for any union ultrafilter g and any pairwise disjoint
Y = {yn | n < w} such that FU(Y) € g, the mapping ¢ given by U,c, ¥» ~ a maps
q to another union ultrafilter. Once we prove this, then given the hypothesis of the
theorem we can simply compose the mapping ¢ with the original isomorphism to get
the y that we need. So let r be the image of g under such mapping, and let A € r. Then
since B = ¢ ![A] € g, there is a pairwise disjoint X such that g > FU(X) ¢ BnFU(Y).
Since X is pairwise disjoint and contained in FU(Y), it is readily checked that for
distinct x, w € X, if x = Upeq ¥u and w = U,ep ¥a» then a n'b = @. Hence the family
Z ={a € [w]*® | Unea ¥u € X} is pairwise disjoint. Note, moreover, that all finite
unions are preserved in the sense that, for xo, ..., x, € X such that x; = Uke,, Yk, we
have that U?_, x; = Ukeq k> Where

a= Q)ai,i.e.,gb( Ln%xi) = Q)(b(xi).

i=

This means that ¢[FU(X)] = FU(Z), thus r > FU(Z) < A, and we are done. [ |

We will develop a useful criterion for knowing when a strongly summable ultra-
filter is additively isomorphic to some union ultrafilter. For that, it will be helpful to
think of the uniqueness of finite sums as a l-uniqueness of finite sums, in the sense
that the expressions under consideration only have coeflicients equal to 1. With this
in mind, it is natural to try and define a corresponding 2-uniqueness where we allow
coefficients 1 and 2. More formally, we have the following definition.

Definition 2.5 A sequence X on an abelian group G is said to satisfy the 2-uniqueness
of finite sums if whenever a,b € [w]<“ and e:a - {1,2}, 8:b — {1,2} are such that

> e(n)x, = Z;’(?(n)x,,,

it must be the case that a = b and ¢ = 6.

In particular, if ¥ satisfies 2-uniqueness of finite sums, then no element of FS(X)
can have order 2. Thus, Boolean groups do not contain sequences satisfying 2-unique-
ness of finite sums. It is of course possible to analogously define n-uniqueness of finite
sums, for every n, but for the results of this paper we only need to consider the case
n=2.

Proposition 2.6  For a sequence X on an abelian group G, the following are equivalent.

(i) X satisfies the 2-uniqueness of finite sums.
(ii) Whenevera,b,c,d € [w]<“ aresuch thatanb =@ =cnd, if

22x,,+2xn:22xn+2xn,

nea neb nec ned

thena=candb=d.
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(iii) Whenever a,b,c,d € [w]<® are such that

Y Xnt D Xn= . Xn+ Y Xn,

nea neb nec ned

it must be the case thata Ab=cAdandanb=cnd.

Proof The proof is straightforward. [ |

The following two theorems do not contain any new ideas, but rather they are just
a useful reformulation of [9, Th. 3.2] (although that theorem uses a condition that is
slightly weaker than the 2-uniqueness of finite sums, namely what the authors call the
“strong uniqueness of finite sums”; however, the version that we present here will be
enough for our purposes) that divides it into two parts, each of which will be of some
use in the future. We think that the distinction made here is illuminating.

Theorem 2.7  Let p be a strongly summable ultrafilter such that for some x satisfying
2-uniqueness of finite sums, FS(X) € p. Then p is additively isomorphic to a union
ultrafilter.

Proof We just need to check that the mapping ¢ given by ¢(3 ., Xn) = a sends p
to a union ultrafilter. So let A € g = ¢(p). Pick a sequence y such that p > FS(y) ¢
¢ '[A]. Then ¢[FS(y)] € A. Now ¢ '[A] € FS(x); thus, for each n < w we can
define ¢, € [@]*“ by ¢, = ¢(yn) or, equivalently, by y, = ¥, xi. We claim that
the family C = {c, | n < w} is pairwise disjoint. This is because if n # m, since
Yn + ¥m € FS(¥) € FS(%), then there must be a ¢ € [w]<“ such that

in =Vnt+tYm= in+ Z Xi.

iec i€cy, i€Cpy
Since X satisfies 2-uniqueness of finite sums, by Proposition 2.6 we can conclude that
€ =c¢y,Ucyand ¢, Ncy, = @ This argument shows at once that C is a pairwise
disjoint family, and that ¢(y, + ym) = cx Ucm = ¢(¥n) U ¢(¥m). From this, it is
easy to prove by induction that ¢(X,.c; ¥n) = Upea ¢(¥n), for all a € [w]<, hence
®[FS(¥)] = FU(C), therefore g > FU(C) < A, and we are done. [ |

Theorem 2.8  Let p be an ultrafilter that is additively isomorphic to a union ultrafilter.
Then p is sparse.

Proof If p is additively isomorphic to some union ultrafilter, by Proposition 2.4 we
can pick a sequence ¥ satisfying uniqueness of finite sums such that FS(x) € p, and
such that the mapping ¢ given by ¢(¥. .., X») = @ maps p to a union ultrafilter q. Let
A € p, and let X be pairwise disjoint such that g > FU(X) ¢ ¢[A n FS(¥)]. Now
let M = UX. Since ¢ is a union ultrafilter, [11, Th. 4] (¢f. also [9, Th. 2.6]) ensures
that there is B € g such that M \ B is infinite. Without loss of generality we can
assume B ¢ FU(X), so that U B is a coinfinite subset of M. Grab a pairwise disjoint
family Y such that g > FU(Y) ¢ B; then UY is a coinfinite subset of M = U X, and
thus there are infinitely many x € X that do not intersect U Y (because Y ¢ FU(X)
and X is a pairwise disjoint family, so if x € X intersects UY then x ¢ U Y). Thus,
ifwelet Z={xeX|xnUY =@} U, then Z is a pairwise disjoint family and
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FU(Z) € FU(X) ¢ ¢[ANFS(%)]. Enumerate Z = {z, | n < w} in such a way that
Y={zm|n<wland{x e X | xnUY = &} = {22041 | n < w}. Then let w be given
by wu = e, Xi- We get that FS(w) = ¢7'[FU(Z)] € A, and if y is the subsequence
of even elements of w, then we will have that [{w, | n < w} \ {y, | n < w}| is infinite
and FS(y) = ¢ ' [FU(Y)] € p. [

Corollary 2.9 ([9,Th.3.2]) Let p be a strongly summable ultrafilter on some abelian
group G such that there exists a sequence X satisfying the 2-uniqueness of finite sums
with FS(X) € p. Then p is sparse. [ |

To finish this section, we quote another result from [9] that will be relevant in the
subsequent section, and that illustrates another application of the concept of 2-uni-
queness of finite sums.

Theorem 2.10 ([9, Th. 4.8]) Let G be an abelian group, and p € G* be a strongly
summable ultrafilter such that there exists a sequence X satisfying the 2-uniqueness of
finite sums, with FS(X) € p. Then p has the trivial sums property.

3 Strongly Summable Ultrafilters are Sparse and have the Trivial
Sums Property

The main result of this section tells us that almost all strongly summable ultrafilters
on abelian groups have FS-sets generated from sequences that satisfy 2-uniqueness of
finite sums. As a consequence, almost all strongly summable ultrafilters on abelian
groups are essentially union ultrafilters (because of Theorem 2.7), and this helps solve
[9, Questions 4.11 and 4.12]. More precisely, we have the following theorem and corol-
lary.

Theorem 3.1 Let G be an abelian group, and let p € G* be a strongly summable
ultrafilter such that

{xeG|o(x)=2}¢p.

Then there exists a sequence X of elements of G satisfying the 2-uniqueness of finite sums
such that FS(X) € p.

Corollary 3.2 Let G be an abelian group and let p € G* be a strongly summable
ultrafilter such that

{xeG|o(x)=2}¢p.
Then p is additively isomorphic to some union ultrafilter.

In order to prove this result, we will need to break the proof down into several
subcases.

Lemma 3.3 Let G be an abelian group, and let X = {x € G | o(x) = 4}. IfX is
a sequence of elements of G such that FS(X) ¢ X, then X must satisfy 2-uniqueness of
finite sums.

https://doi.org/10.4153/CJM-2015-023-9 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2015-023-9

52 D. Fernandez

Proof Assume that x is such that FS(X) ¢ X. By Proposition 2.6, in order to prove
that x satisfies 2-uniqueness of finite sums, it suffices to show that whenever a, b, ¢, d
aresuchthatanb =@ =cndand
23 XnF D Xn =2 Xnt Y X
nea neb nec ned

then a = c and b = d. Now, for each n € b n d we can cancel the term x,, from both
sides of the previous equation, and similarly for each # € an¢, we can cancel the term
2x, from both sides of the equation, which thus becomes

(3.1 22x,,+2xn=22x,,+2xn,

nea’ neb’ nec’ ned’
wherea’ =a~x(anc), b’ =b~(bnd),c’=c~(anc),andd" =d ~ (bnd). Since
b’ is disjoint from d’, equation (3.1) yields
Z Xy = an+ an:—Zan+2an+22x,,,
neb’ud’ neb’ ned’ nea’ nec’ ned’

where the right-hand side is either the identity or has order 2, while the left-hand side
is either the identity or has order 4. Hence both sides of this equation must be the
identity, and so b’ U d’ = @; thatis, b’ = d’ = @ and hence b = b nd = d. Therefore,

(3.1) becomes
2 Z Xy, =2 Z Xns
nea’ nec’
which in turn implies that
2 Z x,,=42x,,=0,

nea’uc’ nec’
and this can only happen if a’ U ¢’ = @, which means that a’ = ¢ = @, and hence
a = anc=d.Sowe have that X satisfies 2-uniqueness of finite sums. ]

If G is any abelian group, and p € G* is strongly summable, then there must be a
countable subgroup H such that H € p (e.g., take any FS set in p because of strong
summability, and then let H be the subgroup generated by such FS set), and certainly
the restricted ultrafilter p | H = pn*3(H) will also be strongly summable. If we prove
that p | H contains a set of the form FS(X) for a sequence X satisfying 2-uniqueness of
finite sums, then certainly so does p itself, because p is just the ultrafilter generated in
G by p I H and in particular p | H € p. Hence, in order to prove Theorem 3.1, it suf-
fices to consider only countable abelian groups G, and we will do so in the remainder
of this section.

Now, it is a well-known result (this is mentioned in [8, p. 123, Sect. 1], and thor-
oughly discussed at the beginning of [4, Section 3]) that every countable abelian group
G can be embedded in a countable direct sum of circle groups @,,, T. Thus, from
now on we will use this fact liberally; in particular, all elements x of the abelian group
under consideration will be thought of as w-sequences, each of whose terms is an el-
ement of T. We will denote by 7, the projection map onto the n-th coordinate; i.e.,
7y (x) is the n-th term of the sequence that x represents.

Definition 3.4 When dealing with an arbitrary (countable) abelian group G, we
will denote by Q(G) = {x € G | o(x) > 4}. Since elements of G are elements of
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@D ,co T, if x € Q(G), then there is an n < w such that 7, (x) ¢ {O, i, —i, %} We will
denote the least such n by p(x).

At this point, it is worth recalling the following theorem of Hindman, Steprans,
and Strauss.

Theorem 3.5 ([9, Th. 4.5]) Let S be a countable subsemigroup of @, T, and let p
be a nonprincipal strongly summable ultrafilter on S. If

{xeS | Tmin(x) (%) # %} €ps

where min(x) denotes the least n such that m,(x) # 0, then there exists a set X € p
such that for every sequence X of elements of @,<, T, if FS(X) € X, then X must satisfy
2-uniqueness of finite sums.

This theorem is the tool that will allow us to prove the following lemma.

Lemma 3.6 Let G be an abelian group, and let p € G* be a strongly summable
ultrafilter. If

{x € Q(G) | ﬂp(x)(x) ¢ {%:_é’ %>_%}} €p

then there exists a set X € p such that for every sequence X of elements of @<, T, if
FS(X) ¢ X then X must satisfy 2-uniqueness of finite sums.

Proof Consider the morphism ¢:G - G € @,., T given by ¢(x) = 4x, whose
kernel is exactly G N~ Q(G). Since the latter is not an element of p, then ¢(p) is a
nonprincipal ultrafilter. Moreover, since p is strongly summable, so is ¢(p) by [9,
Lemma 4.4]. Now notice that for x € G\ker(¢) = Q(G), we have p(x) = min(¢p(x)).
Thus ¢(p) contains the set {x € G\ {0} | Tmin(x)(x) # 1/2}, since its preimage under
¢ is exactly
{x€Q(G) | mpy(x) ¢ { 1-3.2.-3}}

Therefore, by Theorem 3.5, there is a set Y € ¢(p) such that whenever FS(y) € Y, ¥
must satisfy 2-uniqueness of finite sums. If we let X = ¢"![Y], we claim that X € p
is the set that we need. So let X be a sequence such that FS(¥) € X. Then letting
7 be the sequence given by y, = ¢(x,), since ¢ is a group homomorphism, we get
that FS(y) = ¢[FS(X)] € ¢[X] < Y; thus, y must satisfy 2-uniqueness of finite sums.

Again, since ¢ is a group homomorphism, it is not hard to see that this implies that x
satisfies 2-uniqueness of finite sums as well, and we are done. ]

The following theorem is the last piece needed for proving Theorem 3.1.

Theorem 3.7 Let G be an abelian group, and let p € G be a strongly summable
ultrafilter. If

{x€QG) |mpmy(x) e {h-2.3.-2}} e
then there exists a set X € p such that for every sequence X of elements of ®,<, T, if
FS(X) ¢ X, then X must satisfy 2-uniqueness of finite sums.
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Proof If p € G is as described in the hypothesis, then there is an i € {1,-1,3,-3}
such that

Qi = {X € Q(G) ‘ np(x)(x) = é} €p
Let X be such that p 3 FS(X) € Q;. For j<wlet M = {n < w | p(x,) = j}.

Claim 3.8 Foreach j< w,|M;| <2.

Proof of Claim Assume, by way of contradiction, that there are three distinct
n,m,k € M;j, and let x = x, + X, + x¢. For I < j, m;(x) must be an element
of {0, -3 %}, because so are 71 (xy), 11 (%, ) and m(a'ck).' On the other hand,
7(xn) = 7 (Xm) = mj(xk) = £,50 p(x) = j,but m;(x) = & # L. [ ]

Thus, we can rearrange the sequence X in such a way that n < m implies p(x,) <
p(xm ), where the inequality is strictif m > n + 1. Let M = {p(x,) | n < w}.

Claim 3.9 Letn < m < w and assume that j = p(x,) < p(x,,) (which may or may
not hold if m = n + 1, but must hold if m > n + 1). Then 7;(x,,) = 0.

Proof of Claim Let x = x,, + x,,,. Arguing as in the proof of Claim 3.8, we get that
p(x) = j,and thus since x € Q;, 77j(x,) + 7j(x) = mj(x) = 5. Now on the one hand
we know that 7;(x,) € {0, 4, -1, 1}, while on the other hand j(x,) = i. Hence,

the only possibility that does not lead to contradiction is that 7;(x,,) = 0. ]

Claim 3.10 For every x € FS(X) there is a j € M such that 7;(x) # 0. Moreover,
for the least such j we actually have that 77;(x) € {é, % .
Proof of Claim Forif x = ¥, x, and if m = min(a), then we can let j = p(x,,) €
M so that for every n € a, we have p(x,) > j, with a strict inequality if n > m + 1.
Now, we have that
mj(x) = 3, mi(x),
nea
where, by Claim 3.9, each of the terms on the right-hand side of this expression are
zero, except for 77 (x,) = é and possibly 77;(x,+1) (which will appear on the summa-
tion only if m+1 € a, and if so it will equal  if p(Xn41) = p(xm ), and zero otherwise).
Thus, 77;(x) € é, %} In particular, 7;(x) # 0. Now in order to prove the “more-
over” part, we will argue that for all / < j such that I € M, m;(x) = 0. This is because
if I € M, then there is k < w such that p(x;) = I, and if | < j, then we must neces-
sarily have k < m because of the way we arranged our sequence X. Hence, again by
Claim 3.9 and since m = min(a), it will be the case that 7;(x,) = 0 for all # € a, and
hence
m(x) = Z 71 (x,) = 0.
nea

Therefore, j is actually the least I € M such that 77;(x) # 0, and we are done. ]

The previous claim allows us to define 7: FS(¥) — M by

7(x) =min{je M | 7;(x) # 0},
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and ensures that 77,(,)(x) € é, %} We can thus let
- ki
Ck = {x € FS(X) | mo(xy(x) = g}
for k € {1,2}, and choose from among those k such that Cy € p. Welet X = Cy and
claim that X is as in the conclusion of the theorem. In order to see this, let y be such
that FS(¥) ¢ Ck.
Notice first that for distinct #, m < w we must have 7(y, ) # 7(yn ), for otherwise
we would get, arguing in a similar way as in the proofs of Claims 3.8 and 3.9, that
2ki ki
T(Yn + Ym) =7(yn) = 7(ym) and ”T(yn+ym)(yﬂ +Ym) = ry # ry
a contradiction. Thus, by rearranging y if necessary, we can assume that n < m implies
T(yn) <T(Ym)-
Now an observation is in order. Consider a € [w]*“ \ @ and e:a — {1,2}. Let
m =min(a) and j = 7(y,, ). Since 7 is increasing on y, 7;(y,) = Oforalln € a~ {m},
while 7;(ym) = %. Thus

ki
7'[j( > s(n)y,,) =¢e¢(m)— #0.
nea 8
From this we can conclude that y satisfies 2-uniqueness of finite sums. Assume that
a,belw]®and ea — {1,2},8:b - {1,2} are such that
(3.2) Y oe(n)xy = Y. 8(n)x,.
nea neb
We will proceed by induction on min{|a|, |b|}. If a = b = &, we are done. Otherwise,
let m = min(aub). Assume without loss of generality that m € a, so that m = min(a).
Let j = 7(ym ). Then by the previous observation, the value of each side of (3.2) under
m;j is nonzero, while 7;(y,) = 0 for all n > m. Thus, by looking at the right-hand
side of (3.2) we conclude that we must have m € b as well. Then it is also the case
that min(b) = m. Now again, by the observation from last paragraph, we get that the
value of each side of (3.2) under the function 7; must equal, at the same time, &(m) %
and §(m) %. This can only happen if e(m) = §(m); therefore, we can cancel the term
e(m)ym, from both sides of (3.2) and get
ooe(n)xa= Y, 8(n)x,.
neax{m} nebx\{m}
Now we can apply the inductive hypothesis and conclude that a \ {m} = b\ {m}
ande | (a~{m}) =0 1 (b~ {m}). Since m is an element of both a and b, with
e(m) = 8(m), we have proved that a = b and ¢ = §, and we are done. [ |

Proof of Theorem 3.1 Let G be an abelian group and let p € G* be a strongly sum-
mable ultrafilter such that {x € G | o(x) = 2} ¢ p. Since p is nonprincipal and
the only x € G with o(x) = 1is 0, we have that B = {x € G | o(x) > 2} € p. If
C={xeG|o(x) =3} € p, then notice that, since C € {x € G | Min(x)(x) # 3}
(because C = {x € G | (Vn < w)(ma(x) € {0,%,-1})}), we can apply Theorem 3.5
and get an X € p such that, if ¥ is such that FS(X) ¢ X (and there is such an X with
FS(X) € p because of strong summability), then ¥ must satisfy 2-uniqueness of finite
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sums. If D = {x € G | o(x) = 4} € p, then we can pick a sequence X such that
p 3 FS(¥) ¢ D, so by Lemma 3.3 this sequence must satisfy 2-uniqueness of finite
sums, and we are done. Otherwise, if C ¢ p and D ¢ p, then

Q(G)={xeG|o(x)>4}=(GD)n(G~C)nBep.
Now Q(G) = Qo U Qy, where
1 13 3
Qo = {x €Q(G) | T[p(x)(x) ¢ {§>—§, gy—g}},
and
1 13 3
Q={xcQ@) Mm@ {55 5]
so pick i € 2 such that Q; € p. If i = 0 apply Lemma 3.6 and if i = 1apply Theorem 3.7,
in either case, there is an X € p such that whenever ¥ is such that FS(x) ¢ X, then ¥
must satisfy 2-uniqueness of finite sums. By strong summability of p there is such a
sequence X that additionally satisfies FS(X) € p, and we are done. ]

Corollary 3.11 ([9, Question 4.12])  Let p be a nonprincipal strongly summable ultra-
filter on an abelian group G. Then p is sparse.

Proof Let G be any abelian group and let p € G* be a strongly summable ultrafilter.
Let
B={xeG|o(x)<2}.

Then B is a subgroup of G. If B € p, then since p is nonprincipal, B must be infinite;
and since G is countable, B must be isomorphic to the (unique up to isomorphism)
countably infinite Boolean group. Consider the restricted ultrafilter ¢ = p | B =
pnB(B). Then q is also strongly summable, so g is a nonprincipal strongly summable
ultrafilter on the Boolean group, and therefore by [4, Th. 2.1], it is sparse. It is easy to
see that this implies that p is sparse as well. Thus, the only case that remains to be
proved is when B ¢ p, but this is handled by Theorem 3.1 together with Corollary 2.9,
and we are done. ]

Corollary 3.12 ([9], Question 4.11)  Let p be a nonprincipal strongly summable ultra-
filter on an abelian group G. Then p has the trivial sums property.

Proof Let G be any abelian group ,and let p € G* be a strongly summable ultrafilter.
If p does not contain the subgroup B = {x € G | o(x) < 2}, then we just need to apply
Theorems 3.1 and 2.10. So assume that B € p and let g, r € fG be such that g + r = p.
Then we have that
{xeG|B-xer}eq.

In particular, this set is nonempty, and so we can pick an x € G such that B-x € r,
or equivalently B € r + x. Since x € G (hence it commutes with all ultrafilters), the
equation (g — x) + (r + x) = p holds; thus,

A={yeG|B-yer+x}eq—x.

Notice that A € B, because if y € Gissuch that B— y € r+ x,then Bn (B-y) € r + x.
In particular the latter set is nonempty, and so there are z, w € Bsuch thatz =w — y
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which means that y = w —z € B. Therefore, B € g — x, so we can defineu = (q—x) | B
andv = (r+x) | B. We then get thatu,v € fBand p | B € B* is a strongly summable
ultrafilter such that u + v = p | B. Notice that in B, FS-sets are just subgroups from
which the element 0 might have been removed; thus, the filter {AuU {0} | A€ p | B}
has a base of subgroups, and hence it is the neighbourhood filter of 0 for some group
topology. This means that p | B satisfies the hypothesis of [13, Cor. 4.4], so it must be
the case that u,v € B+ p | B. This is easily seen to imply that g — x,r + x € B+ p, and
therefore, since x € G, we conclude that g, 7 € G + p, and we are done. ]

4 The Boolean Group

Theorem 3.1 depends heavily on the hypothesis that the ultrafilter p at hand does not
contain the subgroup B(G) = {x € G | o(x) = 2}, since there are no sequences ¥
satisfying the 2-uniqueness of finite sums in B(G). Corollary 3.2 also has that B(G) ¢
p asahypothesis, but it is not entirely clear a priori that this hypothesis is necessary for
the result. The main objective of this section is to prove that we do in fact need such
a hypothesis. That is, if p € G* is strongly summable and B(G) € p, then there is no
guarantee that p is additively isomorphic to a union ultrafilter. For this, of course, we
only need to consider the case where B(G) is infinite (otherwise, the only ultrafilters
that can contain it are the principal ones). And, as noted in the previous section, when
dealing with strongly summable ultrafilters, we can assume without loss of generality
that G (and hence B(G)) is countable. Since there is (up to isomorphism) only one
countably infinite group all of whose nonidentity elements have order 2, it will be
enough for our purposes to look at strongly summable ultrafilters in this group (which
we will from now on simply call “the Boolean group”), by focusing our attention on
the restricted ultrafilter p | B(G).

We will choose a particularly nice “realization” of the Boolean group to work with.
We think of the Boolean group as the set B = [w]<“ equipped with the symmetric
difference A as group operation. Since every element of B has order 2, we have that
for any sequence x of elements of B, we can ignore the repeated elements from the
sequence and still get the same set FS(x). Thus, we will talk about FS(X) for X ¢ B,
and it is easy to see that for p € B*, p is strongly summable if and only if for every
A € p there is an infinite set X ¢ B such that p > FS(X) c A.

We will use the fact that B is a vector space over the field with two elements F, =
Z/2Z (scalar multiplication being the obvious one). Note that for X ¢ B, the subspace
spanned (which in B coincides with the subgroup generated) by X is exactly FS(X) u
{@}, because nontrivial linear combinations (i.e., linear combinations in which not all
scalars equal zero) of elements of X are exactly finite sums (or symmetric differences)
of elements of X. The following proposition, whose proof is obvious, tells us how do
subsets X C G satisfying uniqueness of finite sums look like.

Proposition 4.1 For X € G, the following are equivalent:

(i) X satisfies uniqueness of finite sums.
(i) @ ¢ FS(X).
(iii) X is linearly independent.
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Thus, when we have a set FS(Y') such that Y is not linearly independent, we can
always choose a basis X for the subspace FS(Y) spanned by Y, and we will have that
FS(X) = FS(Y)~ {@}. This means that, when considering sets of the form FS(X), we
can assume without loss of generality that X is linearly independent. Another way to
see this as follows: let p € B* be a strongly summable ultrafilter, and let A € p. Since p
is nonprincipal, {@} ¢ p and hence A \ {@} € p. Therefore, we can choose an X such
that p 3 FS(X) € A~ {0}, so FS(X) € A and X must be linearly independent.

Definition 4.2  For a linearly independent set X C B, we define for an element
y € FS(X) the X-support of y, denoted by X — supp(y), as the (unique, by linear
independence of X) finite set of elements of X whose sum equals y. That is,

y= > ooox

xeX—supp(y)
If Y € FS(X), then we also define the X-support of Y as

X —supp(Y) = U X - supp(y).
yey
Similarly, we define the X-support of a sequence of elements of FS(X) as the
X-support of its range.

It will be convenient to stipulate the convention that X — supp(@) = @. Then it is
readily checked that the function X — supp: FS(X) u {@} — ([X]*“, 2) is a group
isomorphism (in fact, alinear transformation between the two vector spaces), in other
words, X —supp(x A& y) = X —supp(x) & X —supp(y) for all x, y € FS(X), and more
generally, X — supp (Xyea %) = Yyea X — supp(x) for all A € [FS(X)]<“. This is
the really crucial feature of the X-support, and it will be used ubiquitously in what
follows.

As an application of the previous definitions and properties, we will provide an-
other proof of the fact that every strongly summable ultrafilter on B is sparse, much
simpler than the original one from [4, Th. 2.1]. So let p € B* be a strongly summable
ultrafilter, and let A € p. Because of strong summability, there is an infinite linearly
independent Z such that p 5 FS(Z) c A.

Claim 4.3 There is a B € p such that for some infinite W ¢ Z, FS(W) n B = @.

The result follows easily from the claim. Just pick a linearly independent Y such
that p 3 FS(Y) € BN FS(Z), and let X = Y U W. Then it is straightforward to prove
that X is linearly independent, since Y and W are linearly independent, and FS(W)
is disjoint from FS(Y). Since X ~ Y = W we also have that |X \ Y| = w, and since
Y, W € FS(Z), we will have that FS(X) ¢ FS(Z) < A, and we are done.

Proof of Claim 4.3 Let Z’ be an infinite, coinfinite subset of Z. Let
By={weFS(Z)| Z-supp(w)nZ + @},

By =FS(Z)\By={weFS(Z)| Z-supp(w)nZ =a}.
There is i € 2 such that B; € p. If By € p, then we let W = Z \ Z'; otherwise, if
B € pwelet W = Z'. In any case it is easy to see that FS(W) n B; = @. [ |
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The remainder of this section is devoted to showing that the hypothesis that
{x € G| o(x) =2} ¢ pin Corollary 3.2 is necessary, by constructing a nonprincipal
strongly summable ultrafilter on B that is not additively isomorphic to a union ultra-
filter. This construction borrows a lot of ideas from the constructions of unordered
union ultrafilters that can be found in [2, Th. 4] and [12, Cor. 5.2]. We first show an
effective way to look at additive isomorphisms to union ultrafilters.

Lemma 4.4  Let p € B* be a strongly summable ultrafilter that is additively isomorphic
to some union ultrafilter. Then there exists a linearly independent X such that FS(X) € p
and satisfying that whenever A € FS(X) is such that A € p, there exists a set Z, whose
elements have pairwise disjoint X-supports, with p > FS(Z) ¢ A.

Proof Ifthe strongly summable ultrafilter p € B is additively isomorphic to a union
ultrafilter, by Propositions 2.4 and 4.1, we have that for some linearly independent X
such that FS(X) € p and for some enumeration of X as X = {x, | n < w}, the
mapping ¢:FS(X) — [w]*® given by ¥, X, — a sends p to a union ultrafilter.
Note that the mapping ¢ is a vector space isomorphism from the subspace spanned
by X, to all of B (in fact it is the unique linear extension of the mapping x, — {n}).
The fact that ¢(p) is a union ultrafilter means that, for every A € FS(X) such that
A € p, there is a pairwise disjoint family Y such that ¢(p) > FU(Y) ¢ ¢[A]. Since
Y is pairwise disjoint, we get that FU(Y') = FS(Y), and since ¢ is an isomorphism,
¢ '[FS(Y)] = FS(Z) where Z = ¢'[Y]. Now the fact that Y is pairwise disjoint
means that the X-supports of the elements of Z are pairwise disjoint, and we have
that p 5 FS(Z) c A. [ |

Thus, our goal is to construct, by a transfinite recursion, a strongly summable ul-
trafilter and somehow, at the same time, for each linearly independent X such that
FS(X) will end up in the ultrafilter, at some stage we need to start making sure that,
for every new set of the form FS(Z) that we are adding to the ultrafilter, the genera-
tors Z do not have pairwise disjoint X-support. The notions of suitable and adequate
families for X will precisely code the way in which we are going to ensure that.

Definition 4.5 For a linearly independent subset X € G, we will say that a subset
Y ¢ FS(X) is suitable for X if the following hold.

(i) For each m < w there exists an m-sequence (y; | i < m) of elements of Y such
that whenever i < j < m, the set X — supp(y;) n X — supp(y;) is nonempty. This
sequence will be called an m-witness for suitability.

(ii) Whenever y, y" € Y are such that X —supp(y) n X —supp(y’) is nonempty, the
set [ X —supp(y)nX—supp(y’) ]\ X-supp(Y~{y, y'}) is also nonempty. (We do not
require here that y # y'; in particular, for each y € Y, X—supp(y)~ X -supp(Y ~{y})
is nonempty, and this is easily seen to imply that Y must be linearly independent).

Thus, a suitable set Y for X contains, in a carefully controlled way, arbitrarily large
bunches of elements whose X-supports always pairwise intersect. Given a linearly
independent set X, it is easy to inductively build a set Y that is suitable for X. And once
we have such a suitable set, we can look at subsets of FS(Y) that, in a sense, borrow
from Y the non-disjointness of their X-supports. This is captured in a precise sense
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by the following definition, which also captures the fact that we will want to handle
the non-disjointness of the X-supports for several distinct linearly independent sets
X simultaneously.

Definition 4.6 Let AcBandlet? = {(X;,Y;) |i < n} be afinite family such that

for each i < n, X; is alinearly independent subset of G and Y; is suitable for X;. Also,

let m < w. Then we will say that A is (%, m)-adequate if there exists an m-sequence

(aj| j < m),calleda (%, m)-witness for adequacy, such that for each i < n,

(i) FS(a@) € AnFS(Y;) (which is in turn a subset of FS(X;));

(ii) There exists an m-witness for the suitability of Y;, (y; | j < m) such that for each
two distinct j, k < m, yj € Y; —supp(a;) and y; ¢ Y; — supp(ax).

If we are given a family of ordered pairs 2" all of whose first entries are linearly in-

dependent subsets of B, while every second entry is suitable for the corresponding

first entry, then we will say that A is 2 -adequate if it is (%, m)-adequate for all finite

% c 2 and for all m < w. When % is a singleton {(X, Y) }, we will just say that A is

(X, Y)-adequate.

Definition 4.6(ii) in particular implies that, for j < k < m, the set X; — supp(a;) N
X; — supp(ay ) is nonempty. Thus, the X;-supports of the terms of a witness for ade-
quacy are not pairwise disjoint, and, moreover, their non-disjointness does not hap-
pen randomly, but is rather induced by some non-disjointness going on at the level
of Y;. Also, note that if Y is suitable for X, then FS(Y) is (X, Y)-adequate, with the
witnesses for suitability witnessing adequacy at the same time. The following lemma,
along with the observation that an 2 -adequate set is also (X, Y)-adequate for each
(X,Y) € 2, tells us that this notion of adequacy is adequate (pun intended) for our
purpose of banishing sets of the form FS(Z) for which the elements of Z have pairwise
disjoint X-supports.

Lemma 4.7 Let X and Z be both linearly independent and let Y be suitable for X.
Assume that Z € FS(Y). If the elements of Z have pairwise disjoint X-supports, then
FS(Z) is not (X, Y)-adequate.

Proof Definition 4.5(ii) implies that, for two distinctz,z" € Z, if y € Y —supp(z) and
y" € Y —supp(z’), then X — supp(y) n X — supp(y’) = @, for otherwise X — supp(z)
would not be disjoint from X — supp(z’). Thus, (z,z’) cannot be an ((X,Y),2)-
witness. More generally, for any two w,w’ € FS(Z), the only way that there could
exist two distinct y € Y — supp(w) and y' € Y — supp(w’) such that X — supp(y) n
X — supp(y’) # @ would be if y,y" € Y — supp(z) for some z € Z such that z €
Z —supp(w) n Z — supp(w'). But then y € Y — supp(w’) and y' € Y — supp(w).
Hence, (w, w') cannot be an ((X, Y), 2)-witness and we are done. [ |

Given this, the idea for the recursive construction of an ultrafilter would be as
follows. At each stage we choose some set FS(X) that has already been added to the
ultrafilter, and then we choose a suitable (for X) set Y. At every stage we make sure
that the subsets of B that we are adding to the ultrafilter are 2 -adequate, where 2" is
the collection of all pairs (X, Y) that have been thus chosen so far. If we want to have
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a hope of succeeding in such a construction, we need to make sure that the notion of
being 2 -adequate behaves well with respect to partitions. For this we will need the
following lemma.

Lemma 4.8 Let% ={(X;,Y;)|i < n}, where each X; is linearly independent and
each Y; is suitable for X;. Let d = (aj | j < M) be a (%, M)-witness for adequacy,
and let (b; | i < m) be an m-sequence of pairwise disjoint subsets of M. If we define
¢=(cj|j<m)bycj=Lye, ar. then ¢ will be a (¥, m)-witness for adequacy.

Proof Let us check that ¢ satisfies both requirements of Definition 4.6 for a
(%', m)-witness. Fix i < n. Since the b; are pairwise disjoint, we have that FS(¢) ¢
FS(a) ¢ AnFS(Y;), thus requirement (i) is satisfied. In order to see that require-
ment (ii) holds, grab the corresponding m-witness for suitability, (y; | j < M), as of
Definition 4.6(ii) for a. Now for j < m, pick a k; € bj and let w; = yj,. Since the
w; were chosen from among the yj, the sequence w = (w; | j < m) is an m-witness
for suitability. Now for j < m, since w; € Y; — supp(ag,) and w; ¢ Y; — supp(a;) for
I # kj, it follows that w; € Y; —supp(c;) and w; ¢ Y; —supp(cjr) for j # j', and we are
done. ]

An easy consequence of the previous lemma is the observation that any (%', M)-
adequate set is also (%, m)-adequate for any m < M. Lemma 4.8 will allow us to
prove the following lemma, which is crucial.

Lemma 4.9 For each m < w there is an M < w such that whenever % is a finite
family of ordered pairs of the form (X, Y), with X a linearly independent set and Y
suitable for X, and whenever a (%', M)-adequate set is partitioned into two cells, one
of the cells must be (%', m)-adequate.

Proof For this, we will use a theorem of Graham and Rothschild that is a finitary
version of Hindman’s theorem; namely, for every m < w there is an M < w such
that whenever we partition (M) \ {@} into two cells, then one of the cells contains
FU(b) for some pairwise disjoint m-sequence b = (b; | i < m) of nonempty subsets of
M (this result is sometimes referred to as the Folkman-Rado-Saunders theorem). An
elegant proof of this theorem from the infinitary version, using a so-called compact-
ness argument, can be obtained by following the proof of [10, Th. 5.29] as a template,
applied to the semigroup whose underlying set is [w]<“ and whose semigroup oper-
ation is the union u.

Thus, for m < w, let M be given by this finitary theorem, and let A be a (%', M)-
adequate set. Let d = (a; | j < M) be a (%, M)-witness for the adequacy of A. If
A is partitioned into the two cells Ay, A, then since FS(a) € A, we can induce a
partition of P(M) \ {@} into the two cells By, B; by declaring a subset s € M to be
an element of B; if and only if jes @j € A for [ € 2. Then the theorem of Graham
and Rothschild gives us a pairwise disjoint family b = (bj | j<m)andan!l € 2
such that FU(b) € B,. Letting ¢ = (cj | j < m)begivenby cj = Yyep, ar. we get
that FS(¢) € A; and Lemma 4.8 ensures that ¢ is a (%, m)-witness for adequacy.
Therefore, A; is (%, m)-adequate, and we are done. [ |
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Corollary 4.10  For any family 2 consisting of ordered pairs of the form (X, Y), with
X a linearly independent set and Y suitable for X, if we partition an Z -adequate set
into two cells, then one of them must be Z -adequate.

Proof If A= AyuU A, isa partition of the 2 -adequate set A, and neither Ag nor A,
are Z -adequate, then the reason for this is the existence of finite %, % ¢ 2 and
mg, m; < w such that Ag is not (%, mg)-adequate and A; is not (%4, m; )-adequate.
Pick the M that works for max{myg, m;} in Lemma 4.9. Then for some i € 2, A; is
(% U 21, max{my, m; } )-adequate (because A is (%, U #;, M )-adequate); in partic-
ular, A; is (%}, m;)-adequate, a contradiction. [ |

Recall that, in an abstract setting, if we have a set X and a family &/ ¢ P(X)
then we say that o7 is partition regular, or a coideal, if o7 is closed under supersets
and, whenever an element of .o/’ is partitioned into two cells, the family .27 necessarily
contains at least one of the cells. Thus, the previous corollary establishes that, for
any family 2, the collection of .Z"-adequate subsets of B is partition regular. This is
important because of the well-known fact that if o7 is partition regular and F € &/ is
a filter on X, then it is possible to extend J to an ultrafilter p C o7

With these preliminary results under our belt, we are finally ready to prove the
main theorem of this section.

Theorem 4.11 If cov(M) = ¢, then there exists a strongly summable ultrafilter on B
that is not additively isomorphic to any union ultrafilter.

Proof Let{A, |a < c} bean enumeration of all subsets of B and let (X, | & < ¢) be
an enumeration of all infinite linearly independent subsets of B in such a way that each
such set appears cofinally often in the enumeration. Now recursively define linearly
independent sets (Y, | & < ¢) and a strictly increasing sequence of ordinals (y, | & <
¢) satisfying the following conditions for each « < ¢:

(1)  yaistheleast > sup;_, (ye +1) such that FS(Yg) € FS(X,) for some & < a;

(i) Y, is suitable for X, ;

(iii) FS(Y,) is either contained in or disjoint from A ;

(iv) the family F, = {FS(Y¢) | £ < a} is centred;

(v) letting 2, = {(X,,,Ys) | & < a}, the filter generated by F, consists of
Z «-adequate sets.

Thus, at each stage «, we first use clause (i) to determine what y, will be, and then
we work to find a Y, satisfying (ii)-(v).

Let us first look at what we have at the end of this construction. Clause (iv) tells
us that the family {FS(Y,) | « < ¢} generates a filter p, which will be an ultrafilter
because of (iii), and it will obviously be nonprincipal and strongly summable. Now
notice that (v) implies that if 2. = {(X,,,Ya) | @ < ¢}, then each A € p will be
Zc-adequate, because if # = {(X,, ,Y;) | i < n} is a finite subfamily of 2, m < w,
and A € p, then we can grab an « < ¢ larger than all y,, and also larger than the f3
witnessing FS(Y3) € A. By (v), FS(Y,) nFS(Yp) is Z4-adequate; in particular, it is
(%, m)-adequate, and thus so is A.
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The last observation is crucial for the argument that p cannot be additively isomor-
phic to any union ultrafilter. If it was, by Lemma 4.4, there would be a linearly inde-
pendent X such that FS(X) € p and such that for each A € p satisfying A € FS(X), we
would be able to find a family Z whose elements have pairwise disjoint X-supports
and such that p 5 FS(Z) < A. Now since FS(X) € p, there is an a < ¢ such that
FS(Yy) € FS(X), let  be the least ordinal > sup,_, (y¢ +1) such that X = X;,. By (i)
we will have that y,,; < # and, in fact, whenever £ > « is such that no yg equals
n for any & < 8 < &; then y; < 5. Thus, there will eventually be some { > & such
that y, = #, and by (ii) this means that Y; is suitable for X. Since every element of
pis Z;-adequate, in particular (X, Y;)-adequate, then by Lemma 4.7 we get that for
no set Z with pairwise disjoint X-supports can we have that p > FS(Z) ¢ FS(Y;).
This shows that p cannot be additively isomorphic to any union ultrafilter, and we are
done.

We now proceed to show how is it possible to carry out such a construction. So
let « < ¢ and assume that for all £ < &, conditions (i)-(v) are satisfied. As mentioned
before, condition (i) uniquely determines y,, so we only need to focus on constructing
Y, satisfying conditions (ii)-(v). Let

F={FS(Yy)|E<a} and 2 ={(X,,Y)|E<a}.

Condition (v) implies that the filter generated by F consists of 2 -adequate sets, if «
is limit, by the same argument as in the proof that p consists of 2Z-adequate sets, and
if a = £+ 1just because ' = Ty and 2" = 2. Thus if we define

H-= {q €PB|(q2F)A(VAeq)(Ais %—adequate)},

then H will be a nonempty subset of 3B by Corollary 4.10 (¢f. the discussion following
that corollary). Since finite sets cannot be 2 -adequate, we have that, in fact, H ¢ B*.
In what follows, in order to avoid confusion, we will use the symbol A to denote the
extension of the group operation A on B to all of SB. We will also use that symbol to
denote translates of sets, x A A = {x A y| y € A}. Thus, with this notation,

paqg={AcB|{xeB|xAAecq}ep}.
Claim 4.12 His a closed subsemigroup of B.

Proof of Claim The fact that H is closed is fairly straightforward and is left to the
reader. To prove that H is a subsemigroup, let p,q € H. We first show that I C
p A q. Fixa & < a, and note that we have, for each w € FS(Y;), that w A FS(Y;) =
FS(Y:) u{@} € q. Hence p 3 FS(Y;) € {x € B | x A FS(Y¢) € g}, which means that
FS(YE) €EpAg.

Now we only need to show that if A € p A g, then A is 2 -adequate. So fix a finite
W ={(X;,Y;) | i<n}c 2 andanm < w. We will see that thereisa (%', m)-witness
for the adequacy of A. Let B = {x € B | x A A € q}. We have that B € p, because
A€ p A q,s0 Bis 2 -adequate, and thus we can grab a (%, m)-witness (a; | j < m)
for the adequacy of B. For each i < n, FS(d) < FS(Y;), so we can define Z; € [Y;]<¢
by Z; = Y; — supp(a). Consider the set

C= () aaAA
acFS(ad)
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which is an element of g, because FS(@) ¢ B, and hence it is 2 -adequate. There-
fore, we can grab a (#%,2% 1%l 4 2m — 1)-witness for the adequacy of C, (b |
j < 2%inlZil 4 2m —1). Associate with any element x € (., FS(Y;) the vector
(Z; n'Y; = supp(x) | i < n), and notice that there are exactly 2%i< 1%l many possible
distinct such vectors. Thus, there exist 2m distinct numbers kg, . . . , kypm_y < 2%i<n Zil 4
2m — 1 such that for each j < m, the vector associated with by, is exactly the same as
the one associated with by, ,,, and so if we let ¢; = by,; A by,,,,, then for each i < n,
cj € FS(Y;\ Z;). By Lemma 4.8, the m-sequence ¢ = (c; | j < m) will be an m-witness
for the adequacy of C. Now let d = (dj | j < m)begivenbyd; = a; & ¢c;. We claim
that d is a (%, m)-witness for the adequacy of A, so let us fix i < n and verify that
d satisfies Definition 4.6(i) and (ii). It is certainly the case that FS(¢) ¢ An FS(Y;),
because if d € FS(d), then there are a € FS(d) and ¢ € FS(¢) such thatd = a A ¢,
and since ¢ € C C a A A, we get that d € A. Thus, requirement (i) is satisfied. Now
for requirement (ii), just grab the m-witness for the suitability of Y; that works for 4,
(yj | j < m). We constructed the c; in such a way that Y; — supp(c;) N Z; = @, while
Y; —supp(a;) € Z;. Hence, for each j < m, Y; —supp(d;) n Z; = Y; — supp(a;), and
so whenever j < m, y; € Y; —supp(d;), and y; ¢ Y; — supp(di) for k # j. [ |

Since H is a closed subset of the compact space 5B, then H is compact as well, and
since it is a semigroup in its own right, we can apply the so-called Ellis—-Numakura
lemma [10, Th. 2.5], which asserts that every (nonempty) compact right-topological
semigroup contains idempotent elements. Hence we can pick an idempotent g A g =
qeH. Let Ae {A,,B~ A,} besuch that A € g. We will use g to carefully construct
Y. Let X = X,,..

Claim 4.13 Thereis a Y, suitable for X, such that the following hold:

(i) FS(Y) c A.

(ii) For any finite subfamily % = {(X;,Y;) | i < n} ¢ 2, for any m < w and for
any finitely many &, ..., & < &, there is a sequence (a; | j < m) of elements of Y that
is simultaneously an m-witness for the suitability (for X) of Y and a (%, m)-witness
for the adequacy of N;<x FS(Ys, ). In particular, 4 witnesses the (%" u {(X,Y)}, m)-
adequacy of (N;<x FS(Yg,)) NES(Y).

Proof This is the only place where we will actually use the hypothesis that
cov(M) = c. Since g is an idempotentand A € g, theset A* ={x e A|x A Aeg}egq
and by [10, Lemma 4.14], for every x € A*, x A A* € q. Let P be the partial order
consisting of those finite subsets W ¢ FS(X) such that FS(W) ¢ A* and satisfying
Definition 4.5(ii) of suitability for X, ordered by reverse inclusion (thus Z < W means
that Z 2 W). This is a countable forcing notion, hence forcing equivalent to Cohen’s
forcing. For any finite % ¢ 2", every m < w,and all &, ..., & < aasin part (ii) of the
conclusions of this claim, we let D(%/, m, &, ..., &) be the set consisting of all con-
ditions Z € P such that there is an m-sequence d of elements of Z that simultaneously
witnesses the suitability of Z for X and the (%, m)-adequacy of N;<x FS(Y¢,). The
heart of this proof will be the argument that all of these sets D(%/, m, &, ..., &) are
dense in P. Once we have that, we just need to notice that there are || < ¢ = cov(M)
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many such dense sets, so we can pick a filter G intersecting them all, and we will clearly
be done by defining Y = UG.

So let us prove that D(#%/', m, &, ..., &) is dense in P. The idea is that we are given
a condition Z € P, and we would like to pick a (%, m)-witness a for the adequacy
of Mi<k FS(Yg, ), and extend Z to a stronger condition W by adding the range of d
to it. The main difficulty is that we want 4 to be at the same time an m-witness for
suitability (for X) such that the resulting condition W = Zu{a; | j < m} still satisfies
Definition 4.5(ii).

Let us start with a condition Z € P, and let X" = X \ X —supp(Z). Notice first that
we must have FS(X") € g, for otherwise we would have

{weFS(X) | X —supp(w) n X —supp(Z) + @} € q,

but it is easy to see (arguing as in [4, Lemma 2.2 and Cor. 2.3]) that this set cannot
contain any FS-set, which it should if it was to belong to any idempotent (because of
[10, Th. 5.8]). Let

B=(NFS(Yy)) nBS(X)n( N z4aA").
I<k 2¢FS(2)
Then B* = {x € B | x A B € q} € g; thus, B* is 2 -adequate, so there is a
(%, m)-witness d@ = (a; | j < m) for the adequacy of B*. We will now recursively
construct an m + (';)—sequence of elements X = (xx | k < m + (’;‘)) such that
FS(X) S Nacrs(a) @ A B* and such that the X-supports of its elements are pairwise
disjoint and also disjoint from X — supp(4), and whose Y;-supports are disjoint from
Y; — supp(ad) for each i < n. If we succeed in this construction, picking a bijection
f:[m]* > (m+ (%)) \ m will enable us to define the sequence b= (bj| j <m)by
bi=aj 8 x5 (Y Xpinn)-
i

Since the Y;-supports of all the xj are disjoint from Y; — supp(d), arguing as in the
proof of Claim 4.12 we conclude that bisa (%, m)-witness for the adequacy of B*,
hence also for the adequacy of ;< FS(Y, ). And the careful choice of the X-supports
of the x; ensures that b is at the same time an m-witness for suitability for X, hence let-
ting W = Zu{b; | j < m} yields a condition in P (i.e. , W satisfies Definition 4.5(ii)).

Thus, the only remaining issue is that of picking the x;. Assume that we have
picked x; for I < k, and we will show how to pick x. Since g is an idempotent and

C= m a AB eq,
aeFS(d~(x|I<k))

then there is a set of the form FS(V') ¢ C (as before, this follows from [10, Th. 5.8]).
As in the argument for the proof of Claim 4.12, with each element x € C we associate
the vector
(Yi —supp(a)nY; —supp(x) | i< n) ~
(X—supp({aj [j<miu{x|l< k}) mX—supp(x)),

and notice that, since there are only finitely many possible distinct such vectors, the
infinite set V must contain at least one pair of distinct elements v, w that have the
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same associated vector. Hence, by letting xx = v A w € FS(V) ¢ C, we get that
Y; — supp(xx) NnY; —supp(d) = @ forall i < n, and

X —supp(xx) N X —supp({a; | j<m}u{x; |1 <k})
so the construction can go on, and we are done. | ]

@)

Let Y, = Y. Obviously requirement (ii) is satisfied, and since FS(Y,) ¢ A «
{A4, B~ A,}, requirement (iii) is satisfied as well. It is easy to see that condition (ii)
from the conclusion of the claim ensures at once that requirements (iv) and (v) are
fulfilled, and we are done. |
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