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1. INTRODUCTION 

Research in Celestial Mechanics, for the past three years, has mainly focused on the under­
standing of Chaos on all its aspects. The always larger number of potential applications 
(meteors, KBO, NEA, asteroids of the main belt but also exoplanets or galactic motions) 
and the development of new efficient tools, like the symplectic integrators, have allowed 
the passage from QUALITATIVE models (for example the transfer mechanisms) to real 
QUANTITATIVE results (like the calculation of lifetimes) . This important step has con­
tributed to (re)create collaborations between theoreticians and observers (for example, in 
the prediction of catastrophic impacts) and to situate the Celestial Mechanics in a wider 
scientific context. 

2. SCIENTIFIC HIGHLIGHTS 1997-1999 

2.1. Dynamics of the Asteroid Belt 

Author of the report : N. MURRAY 
The asteroid belt has supplied us, in the form of meteorites, with our only samples of 
primordial solar system material, and hence revealed to us the age of the Earth and Sun. 
It also serves as a reservoir for crystals formed in the envelopes of evolved stars, which 
again are delivered to Earth in meteorites. Objects from the belt may be implicated in 
past extinction events on Earth. The belt is the probable source of near-Earth asteroids, 
some of which might cause extinction events in the future. Transport of material from the 
asteroid belt to the Earth is clearly important, but only in the last few years have we begun 
to understand in detail how such transport arises. 

The first hints came from the work of Wetherall and Williams (1979, Origin and dis­
tribution of the elements, L.H. Ahrens ed. Pergamon press, Oxford) and Wisdom (1985, 
Nature 315, 731). Wetherall and Williams showed that a resonance between the precession 
rate of an asteroid's orbit and that of the secular frequency ge (appearing in the precession 
of Jupiter and Saturn) would lead to a rapid growth in the eccentricity of the asteroid's 
orbit. In a short time the asteroid orbit would cross that of Mars and even Earth, suggest­
ing one possible route from the belt to the inner solar system. Wisdom found that bodies 
with orbital periods equal to one third that of Jupiter (a 3/1 resonances) were also unstable 
to an increase in orbital eccentricity, suggesting a second route. For a time, it appeared 
that some combination of these paths would explain the origin of meteorites, although the 
number of large bodies in near-Earth orbits was harder to understand. 

However problems with both scenarios soon became apparent. Measurements of the 
cosmic ray exposure times of ordinary meteorites (chondrites), which rely on the generation 
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of radioactive elements in the meteor by high energy cosmic rays, showed that most chon­
drites took of order 20 million years to reach the Earth. Brute force numerical integrations, 
made possible by a combination of improved computers and better integration algorithms 
(symplectic integrators) then showed that the life time of objects in either the 3/1 resonance 
or the v§ resonance (involving g^) is one million years or less (Gladman 1996, Ph.D. thesis, 
Cornell University). Most objects in either resonance fall into the Sun. Another problem 
was that the flux of bodies injected into either type of resonance, presumably by collisions, 
was apparently too low to maintain either the meteorite or near-Earth asteroid population. 
Both difficulties suggested that there was more to the story, in particular, that there were 
other roads from the belt to the inner solar system. 

The 3/1 resonance clearly operated to remove bodies. Kirkwood (1867) pointed out 
a lack of asteroids with that orbital period more than 100 years ago. He also noted the 
presence of similar gaps at other low order resonances. Numerical work by numerous groups 
(Milani, CD. Murray, Nobili, Wisdom) indicated that the gaps were caused by increases 
in eccentricity due to chaotic motion forced by the perturbations of Jupiter. The motion 
was known to be chaotic because the integrations showed that asteroids in the resonances 
had positive Lyapunov exponents; nearby orbits diverged from each other exponentially 
with time. However, a quantitative theoretical understanding of the origin of the chaos 
was lacking. Neither the Lyapunov exponent, nor the lifetime of the asteroid, could be 
calculated analytically. 

Work by Morbidelli et al. (1995, Icarus 118, 132) provides observational evidence that 
high order resonances, in particular the 9/4 (5th order) resonance could affect the orbits of 
asteroids in the belt. Holman and Murray (1996, A J112, 1278) suggested that actual gaps, 
similar to the classical Kirkwood gaps, existed at the 9/5, 7/4, 5/3, and 8/5 resonances, with 
a possible gap at the location of the 11/6 mean motion resonance with Jupiter. Holman and 
Murray also gave an explicit analytic calculation of the Lyapunov exponent for a general 
mean motion resonance. The theory explained the origin of the chaos in mean motion 
resonances in terms of the overlap of the components of the resonances. 

Murray and Holman (1997, A J 114, 1246) presented an analytic theory of the life 
time of asteroids placed in two body mean motion resonances in the three body problem. 
Overlap of the components of a mean motion resonance insures that the resonant angle 
acts like a random variable. This random variable acts as a source of noise in the dynamics 
describing the orbital angular momentum, forcing the eccentricity of the asteriod to undergo 
a random walk. The step size is proportional to the square root of the strength of the 
resonance {-\/Mjei for a qth order resonance with Jupiter), and a time between steps of 
order the Lyapunov time. An asteroid placed in a mean motion resonance in the outer belt 
is removed when its eccentricity random walks up to the value at which the orbit crosses 
that of Jupiter; it is then quickly scattered out of the solar system by close encounters with 
that planet. Asteroids in the inner belt random walk until they encounter either the ue 

resonance, or the orbit of Mars or Earth; they are fated to strike the sun, or less commonly, 
one of the terrestrial planets. 

This theory worked well for mean motion resonances with q > 1, but more subtle 
efforts are probably required for first order resonances. The theory does not account for 
the bulk of the chaos seen in integrations accounting for the effects of all the giant planets, 
as opposed to those including only Jupiter. Holman and Murray showed numerically that 
unlike the three body model, models involving more than one giant planet cause chaos 
almost everywhere in the outer belt. 

The later shortcoming of the theory, the inability to explain chaos not associated with 
two body mean motion resonances, was quickly remedied. Murray et al. (1998, A J 116, 
2583) and Nesvorny and Morbidelli (1998, AJ 116, 3029 and 1998, CM 71 , 243) showed 
that three body mean motion resonances, involving two planets and an asteroid, cause the 
bulk of the chaos seen in integrations of the asteroid belt. Numerical work by Ferraz-Mello 
et al. (1998, AJ 116, 1491) shows that a three body resonance is likely to play a role in 
depleting the 2/1 two body resonance! 
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Murray et al. (1998, A J116, 2583) show that, as in two body resonances, the asteroid's 
eccentricity undergoes a random walk. In the outer belt the life times generally exceed the 
age of the solar system. In the inner belt this is not the case. This is emphatically not the 
case in the inner belt; as speculated by Miglorini et al./ (1998, Science 281, 2022), numerical 
work by Morbidelli and Nesvorny (1998, AJ 116, 3029) strongly suggests that near-Earth 
asteroids are bodies that previously resided in the inner asteroid belt. The original orbits 
were unstable due to three body resonances between the asteroid, Jupiter, and Mars. The 
asteroid's orbital eccentricity increased until the orbit crossed that of Mars. Subsequently 
the asteroid semimajor axis undergoes a random walk until the object becomes a near-Earth 
asteroid. Morbidelli and Nesvorny speculate that the Late Heavy Bombardment of the early 
Solar System (suggested by the large number of very old craters seen on the Moon) might 
be due to the early depletion of a population of moderately high eccentricity asteroids via 
this mechanism. 

The situation today is in some respects the reverse of that after the work of Wisdom 
and Wetherall and Williams fifteen to twenty years ago. We have a promising but relatively 
untested theory (three-body resonances) for the origin of near-Earth asteroids, while the 
delivery mechanism for meteorites is harder to understand. Two body resonances move 
material on too short a time, while three body resonances take too long. It would appear 
that non-gravitational forces might need to be invoked to explain the 20 million year delivery 
times indicated by cosmic ray exposure times. 

2.2. Dynamical Transfer in the Solar System 

Author of the report : B. GLADMAN 
This report covers advances in the study of natural dynamical transport of small bodies 
in the solar system (thus neglecting planet migration studies), for material published in 
refereed journals between 1996 and mid-99. The bulk of the advances in this area were, 
like in the 3-year period preceding it, driven by the powerful combination of cheap, fast 
computer hardware and the availability of the efficient algorithms based on the so-called 
'mixed variable symplectic' integration algorithms. The first of these was presented by 
Wisdom and Holman in (1991, A J102,1528), and gave about a 30-100 times computational 
speed improvement for qualitative explorations of dynamical orbital stability in heliocentric 
problems (those in which there is a central gravitationally dominant object). In 1994 
Levison and Duncan presented a modified form of this algorithm that was able to cope with 
close approaches between test particles and the planets (a case where the original algorithm 
did not function well); it would be fair to say that this algorithm has revolutionized the topic 
by allowing the direct simulation of the orbital evolution of statistically meaningful numbers 
of particles over timescales comparable to their dynamical lifetimes, and that the majority 
of the advances in this field (the study of transport from one region of the Solar System to 
another) in the last 3 years have come about because of these algorithms. Note that this 
review is primarily concerned with transport studies rather than stability or mapping of 
resonant phenomena. 

Levison and Duncan (1997, Icarus 27, 13) modelled the transport of trans-neptunian 
objects from the Kuiper belt down through the Centaur region to the short-period comet 
domain. Duncan and Levison (1997, Science 276, 1670) also used the results of these 
experiments to discover that a reasonable fraction (of order 1 percent) were 'scattered' out 
to large semimajor axes (hundreds of AU) on orbits surviving the age of the solar system. 
Morbidelli (1997, Icarus 127, 1) examined the transport of comets out of the 2:3 resonance 
in the Kuiper Belt to planet-crossing orbits as an additional supply mechanism. Dones 
(1996, PASP CS 07, 233) studied the transport and dynamical lifetimes of Centaurs in the 
outer solar system. 

The transport of asteroidal material out of the asteroid belt was the subject of many 
papers during this period. Moons (1997, CM 65, 175) reviewed the literature regarding 
resonant pumping of objects to planet-crossing orbits. The so-called GAPTEC project 
(Gladman et al. 1997, Science 277, 197) directly integrated particles emerging from all 
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of the main asteroid-belt resonances and established their dynamical lifetimes; this study 
examined the transport of such material into near-Earth orbits, concluding that because the 
phenomena of Sun-grazing (orbital eccentricity driven to unity) it is very important that a 
larger injection rate is required to maintain the near-Earth asteroid (NEA) population in a 
steady state. The importance and efficiency of the Mars-crossing population in supplying 
NEAs was the subject of Migliorini et al. (1998, Science 281, 2022), which showed that the 
transport of very large (> 5 km) NEAs to Earth-crossing is likely dominated by asteroids 
that spend long periods in Mars-crossing orbits before reaching Earth-crossing space, rather 
than coming 'directly' from the main resonances. Morbidelli and Nezvory (1999, Icarus 139, 
295) showed that this Mars-crossing population could in turn be kept in steady state by 
'three-body' resonances in the inner asteroid belt. The possibility that some of the NEA 
population consists of cometary bodies transported to orbit entirely interior to Jupiter's 
orbit was studied by Harris and Bailey (1996, Irish AJ 23, 151 and 1998, MNRAS 297, 
1227), who showed that purely gravitational mechanisms seem to be insufficient to explain 
the existence of near-Earth objects like comet Encke, but that non-gravitational mechanisms 
might plausibly work; further work is needed. 

An associated group of papers concerned the transport of asteroidal material directly 
to Earth (rather than near-Earth space) in the context of meteoritical studies. Migliorini 
et al. (1997, MPS 32, 903) studied the transport of HED meteorites from Vesta. Morbidelli 
and Gladman (1998, MPS 33, 999) matched the observed orbital distribution of incoming 
chondritic fireballs with a dynamical model of an asteroidal source; although matching the 
orbital distribution well, this study predicted a time scale problem for meteoritical delivery 
(with meteorites arriving at the Earth 3 to 10 times faster than their cosmic-ray exposure 
ages indicate). A solution to this paradox has been suggested by the Yarkovsky drift, 
which could transport meteoroid-sized bodies to the resonances on the correct time scales; 
see Vokrouhlicky and Farinella (1998, AJ 116, 2032), Farinella et al. (1998, Icarus 132, 
378), and references to previous papers therein. The concept of very large impactors being 
transported to the Earth in 'asteroid showers' was the subject of Zappala et al. (1998, Icarus 
134, 176). 

The transport of planetary ejecta between planets (with particular attention to the 
lunar and martian meteorites) was the subject of two papers (Gladman et al. 1996, Science 
271, 1387 and Gladman 1998, Icarus 130, 228); transport efficiencies were quantified and 
timescales were shown to agree with cosmic-ray exposure studies of these meteorites. 

Work has continued on the transport of dust in the solar system, both from the asteroid 
belt (Kortenkamp and Dermott 1998, Icarus 135, 469) and now from the Kuiper Belt (Liou 
and Zook 1999, AJ 118, 580 and Gorkavyi et al. 1997, ApJ 488, 268) and references in 
those papers. Many papers covering the production rate (but not transport) of dust will 
not be discussed here. 

2.3. Symplectic Integrators 

Author of the report : J. E. CHAMBERS 
Symplectic integrators precisely follow the evolution of a Hamiltonian system designed to be 
very similar to the problem of interest. As a result, these integrators show no long-term build 
up in energy or angular momentum errors except due to computer roundoff. Symplectic 
algorithms are most efficient for Hamiltonians H = Ho + Hi where e = Hi/H0 •< 1, in 
which the system can be advanced efficiently under each part of H separately. In celestial 
mechanics, H0(p, r) can be the Keplerian motion of each object about the central body, 
and -Hi(r) the perturbations between bodies (Wisdom and Holman 1991, AJ 102, 1528), 
where r and p are the coordinates and momenta. 

The most widely used algorithm is the second-order 'leapfrog' method. One leapfrog 
timestep is 

52 = Hrir/2] HQ[T] H^T/2] = H[T] + 0(er3) 

where HA[TB] implies advancing the system under Hamiltonian HA for a time TB-
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Higher-order methods are given in Yoshida (1990, Phys. Lett. A. 150, 262). Recently, 
Chambers and Murison (1999, .A J in press) described a more efficient class of 'pseudo-order' 
methods, designed for cases when e < l . A pseudo-4th-order method is 

S4, = HI[T/G] H0[r/2] Htfr/3] H0[T/2] HI[T/6] = H[T] + 0(er5) + 0(e2T3) 

The second-order method can be improved substantially using 'symplectic correctors' 
(Wisdom et al.; 1996, Fields IC 10, 217). These initially convert from physical to 'inte­
gration' variables. Prior to output or the end of the integration the reverse correction is 
applied. Each step using correctors is equivalent to 

S2,cor = C " 1 5 2 C = H[T] + O ( e V ) 

where C = H0[n] HI[T2)... #o[r„-i] Hi[Tn]. 
The symplectic algorithms can be modified to include dissipative forces (Malhotra 

1994, CM 60, 373, Cordeiro et al./, 1997, CM 65, 407), or relativistic corrections (Saha 
and Tremaine 1994, A J 108, 1962; these authors also describe how to give individual 
timesteps to different bodies). Mikkola (1998, CM 68, 249) has described a general method 
for including any velocity-dependent forces into analogues of the symplectic integrators. 

The fixed stepsize of symplectic integrators makes them inefficient for eccentric orbits. 
Rauch and Holman (1999, AJ117, 1087) show that the leapfrog method becomes unstable 
in highly eccentric cases unless r is very small. If the timestep is varied adaptively, the 
integrator no longer behaves symplectically (Gladman et al., 1991, CM 52, 221 and Michel 
and Valsecchi 1997, CM 65, 355). Mikkola (1997, CM 67, 145) has shown how to overcome 
this problem using time regularization dt = g(r)ds and extended phase space (r,p,ro = 
t,po = H), The new Hamiltonian is T = r0(p,r ,po) + ^i(T)i where e = r i / r 0 -C 1, and 
one timestep a is given by 

STeg = I\[a/2] T0[a] Ti[a/2] = T[a] + 0(ea3) 

Like the Kepler problem, T0 can be advanced analytically for special choices of g(r). 
Close encounters between bodies present another problem since e is no longer small. 

Duncan et al. (1998, A J116, 2067) overcome this by partitioning Hi = V\ + V2 + • • •, where 
Vi = 0 for r > Ti. Each V, has its own timestep r,, such that larger V, have smaller Tj. One 
integration step consists of an infinitely nested set of substeps, each of which is evaluated 
only if Vi / 0. For example, when Vj = 0 for i > 2, one step is 

SCE = VI[T/2] { V 2 [ T / 2 M ] H0[T/M] V2[T/2M]}M VI[T/2] = H[T] + 0(er3) 

where M is an integer. 
Alternatively, Chambers (1999, MNRAS 304, 793) partitions the perturbation terms 

between the two parts of the Hamiltonian, such that HA = Ho+Hi(l — P) and HB = Hi P, 
with the partition function satisfying P -t 1 when Hi < Ho, and Hi P < H0. One step 
including close encounters is 

SCE = HB[T/2] HA[T] HB[T/2] = H[T] + 0(er3) 

where some terms in HA must be advanced numerically during an encounter. 
To date, the general problem of how to combine close-encounter strategies with time 

regularization for eccentric orbits remains unsolved. 
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2.4. Orbit determination and impact risk 

Author of the report : A. MILANI 
There is no such thing as the orbit of an asteroid determined by the observations: there 
is a confidence region in the phase space containing all the orbits compatible with the 
available astrometry. A rigorous definition of such a confidence region requires to adopt 
a statistical model of the observational errors. For the orbit of spacecraft it is custom­
ary to use the linearized Gaussian theory, assuming normal distribution of errors. Le­
gitimate doubts on the applicability of the normal distribution hypothesis to the small 
number of astrometric observations of a single opposition asteroid have for a long time 
discouraged the use of a rigorously defined confidence region. That this situation is not 
satisfactory is now perceived, and recently some efforts have been done to introduce es­
timations of the orbital uncertainties based upon rigorous algorithms, with no subjective 
judgment. The limitations of the Gaussian algorithm due to the nonlinearity of the or­
bit determination problem have essentially been solved with Monte Carlo and semilin-
ear methods (Muinonen and Bowell 1993, Icarus 104, 255; Muinonen et al. 1994, PSS 
42, 307; Milani 1999, Icarus 137, 269; Chodas 1999, AAS/AIAA ASC, Girdwood, AK). 
Work to determine a reliable statistical model of the observation errors, based upon the 
a posteriori statistics of the past performance of each observatory, is now under way 
(Carpino 1997, http://schubert.brera.mi.astro.it/~carpino/orbfit/weights/; Williams, 1999, 
http://cfa-www.harvard.edu/iau/special/residuals.txt, Milani et al./ 1999, http://newton.dm. 
unipi.it) although not much has appeared in print so far. 

The knowledge of the confidence region for the orbit of an asteroid/comet has two 
main applications: identification and close approach monitoring. The most efficient way to 
improve the orbit of a lost asteroid is by identification with another asteroid (observational 
resources required: zero). Literature on the identification problem is almost nonexistent 
(apart from Marsden 1985, in Asteroids, Meteors Comets II, Lagerkvist, C.-I. et al. eds., 
3; Kristensen 1992, AA 262, 606; Sansaturio et al.1996, Dynamics, Ephemerides and As­
trometry of the Solar System, Ferraz-Mello, Morando and Arlot Eds., Kluwer, 193). If the 
confidence region of two orbits intersect, then the two orbits could be identified; this orbit 
identification is a difficult problem because of the nonlinear effects which cannot be han­
dled by computational brute force when working on catalogs of tens of thousands orbits, 
although some results have been obtained (Milani et al. 1999, Icarus, submitted). If the 
confidence region of an asteroid projected on the sky (at some time) contains an observa­
tion, then the observation can be attributed to the orbit. This attribution procedure has 
so far provided most of the identifications (mostly due to Marsden and Williams, Nakano, 
Doppler and Gnadig, Milani and Sansaturio); but there is no published paper explaining 
the algorithms being successfully used. 

Close approaches of an asteroid/comet to the Earth can be predicted in a deterministic 
way as long the uncertainty in the position at close approach is much less than the closest 
approach distance. Even if the position uncertainty is much more than the distance, the 
asteroid cannot pass closer to the Earth than the Minimum Orbital Intersection Distance 
(MOID), the distance between the osculating ellipses (apart from gravitational focusing, 
which is small for typically fast encounters). Failure to appreciate this geometric constraint 
led to an unfortunate impact scare for the asteroid 1997 XFn (Chodas k. Yeomans 1999, 
21st Annual AAS, Breckenridge, CO, Milani and Valsecchi 1999, Icarus 140; Muinonen 
1999, The dynamics of the small bodies of the solar system: A major key to solar system 
studies, A. E. Roy and B. Steves, Eds., Kluwer). However, if the MOID is small, the close 
approach could be at a small distance and could result in a large perturbation in the asteroid 
semimajor axis. If the mean motion after the encounter is close to a small integer resonance 
h/k with the Earth, then the relative positions approximately repeat after k years and h 
periods of the asteroid, and a new close approach could take place (Marsden 1999, JBAA 
109, 39). Such a resonant return could result in many close approaches, each of which could 
spawn its own cascade of resonant returns (Milani et al. 1999b) which can be completely 
monitored only by brute force, following numerically many alternate orbits (Chodas 1999, 
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AAS/AIAA ASC, Girdwood, AK, Milani et al. 1999, Icarus, submitted). The region to 
be sampled with test orbits is the confidence region, and the nonlinearity problems arising 
from poorly observed asteroids compounds the difficulty of the close approach monitoring 
problem. Also the problem of the possible relevance of non gravitational perturbations in 
the prediction of possible impacts (for comets, but also possibly for some asteroids) remains 
to be fully addressed. 

2.5. Non-Integrable Galactic Dynamics 

Author of the report : D. MERRITT 
Isolated galaxies have historically been viewed as integrable systems in which every orbit 
respects three isolating integrals of the motion, at least on time scales short compared to 
two-body relaxation times. This picture is a natural one in the case of spherical or ax-
isymmetric galaxies, whose densities can always be reproduced using distribution functions 
that depend on just the classical integrals of motion. This was the point of view adopted 
by Jeans (1915, MNRAS 76, 70), who expressed his "most general law of distribution" as 
/ = f(E,Lz), a function of the energy and angular momentum in an axisymmetric poten­
tial./ Motion in non-axisymmetric potentials conserves only the energy in general, and it 
was largely for this reason that triaxial geometries for elliptical galaxies were for so long 
ignored by astronomers - in spite of G. Kuzmin's demonstration, already in 1973 (in "The 
Dynamics of Galaxies and Star Clusters," T. B. Omarov ed., 71), that inhomogeneous triax­
ial mass models with integrable potentials exist. M. Schwarzschild's numerical construction 
of a self-consistent triaxial model in (1979, ApJ 232, 236) - and more importantly, his 
demonstration that most of the orbits were effectively regular - opened the door to a much 
wider class of galactic models, while at the same time leaving intact Jeans's view of galaxies 
as integrable systems. 

The triaxial models of Kuzmin and Schwarzschild had large, constant-density cores in 
which the motion is essentially that of a simple harmonic oscillator. But observations in the 
last two decades have demonstrated that the density profiles of real elliptical galaxies are 
very different: the stellar density continues to rise, roughly as a power law, into the smallest 
observable radii (Crane et al. 1993, A J 106, 1371 and Gebhardt et al. 1996, AJ 112, 105). 
There is also growing evidence that supermassive black holes are generic components of 
galactic nuclei (Kormendy and Richstone 1995, ARAA 33, 581). The orbital motion in a 
non-axisymmetric galaxy with a central density cusp or black hole can be very different from 
the motion in models like Kuzmin's and Schwarzschild's. Many orbits - particularly the 
box orbits that visit the center and which are crucial for maintaining triaxial shapes - are 
rendered chaotic (Gerhard and Binney 1985, MNRAS 216, 467), and even the orbits that 
remain regular are strongly influenced by resonances which play no role in the integrable 
models. 

Non-integrability has thus come to be seen as a generic property of galactic potentials, 
and much of the research in galactic dynamics over the last few years has focussed on the 
consequences of non-integrability for the structure and evolution of stellar systems. 

Phase-space structure of triaxial potentials In an integrable potential with N degrees of 
freedom (DOF), all trajectories are regular and confined to iV-dimensional tori. Motion 
around a torus occurs at a rate determined by a constant frequency vector (011,012, ...,01^). 
Realistic potentials with more than one DOF are rarely integrable and the motion is more 
complex. While the KAM theorem guarantees that most of the original tori will persist 
when an integrable potential is slightly perturbed, even under small perturbation a large 
part of the phase space will be influenced by resonances. A resonant torus is one that 
satisfies (one or more) conditions of form n.o> = 0 between the N fundamental frequencies. 
In the vicinity of a stable resonant torus, motion is still regular and the orbits have shapes 
determined by the order of the resonance - often very different from the shapes of orbits in 
the integrable potential./ In the vicinity of unstable resonant tori, trajectories are usually 
chaotic. 
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The phase space of triaxial potentials is structured by the 3D resonant tori, which 
obey a condition on the three fundamental frequencies of the form ni w\ + 712̂ 2 + 713̂ 3 = 0. 
Such a relation does not imply that the orbit is closed, as in 2DOF, but rather that it is 
thin, densely filling a sheet in configuration space (Merritt and Valluri 1999, A J 119). The 
KAM theorem predicts that in 3DOF systems as in 2DOF systems, the resonant tori are 
the regions around which the global structure of phase space may be strongly modified. In 
this sense, thin orbits play a similar role in three dimensions to the role played by periodic 
orbits in two dimensions. 

A set of tools for recovering the uii was developed by J. Laskar ("NAFF," or Numer­
ical Analysis of Fundamental Frequencies; 1988 AA 198, 341). A number of investigators 
applied Laskar's or similar algorithms to motion in triaxial models with realistic mass dis­
tributions (Papaphilippou and Laskar 1998, AA 329, 421; Carpintero and Aguilar 1998, 
MNRAS 298, 1; Valluri and Merritt, ApJ 506, 686; Wachlin and Ferraz-Mello 1998, MN­
RAS 298, 22). The phase space of triaxial potentials is astonishingly complex, especially in 
regions occupied by box-like orbits, orbits with stationary points that pass near the center. 
Such orbits are found to be generically thin and associated with a 3D resonance; orbits 
that pass sufficiently close to the center are generally chaotic. Thus in realistic triaxial 
potentials, there are essentially no regular, volume-filling box orbits of the sort shown by 
Schwarzschild to be so important for maintaing triaxial shapes. 

Stochasticity An early indication of the importance of stochasticity in triaxial poten­
tials was the discovery that some of the orbits in Schwarzschild's triaxial model from 1979 
yielded different occupation numbers when integrated using a different computer (Merritt 
1980, ApJS 43, 435), a consequence of the exponential divergence of nearby chaotic orbits. 
Schwarzschild's model had a large constant-density core, making it qualitatively similar 
to Kuzmin's exactly integrable model. In triaxial potentials with central singularities, the 
chaos can be much more pervasive. A number of techniques, developed mostly in other 
fields, have been used to evaluate the stochasticity of orbits in such potentials. Udry and 
Pfenniger (1988, AA 198, 135) computed all six Liapunov exponents for orbits in triaxial 
potentials based on Hubble's density law, and the same algorithm was applied to studies of 
motion in triaxial potentials with more realistic density profiles (Merritt and Fridman 1996, 
ApJ 460, 136) and central black holes (Merritt and Valluri 1996, ApJ 471, 82). Laskar's 
NAFF algorithm yields a natural measure of the stochasticity in the form of the change 
in a "fundamental frequency" between two successive integration intervals. This technique 
was applied in a number of studies to non-axisymmetric potentials (Papaphilippou and J 
Laskar 1996, AA 307, 427; 1998, AA 329, 421; Valluri and Merritt, ApJ 506, 686). 

A basic result is that the influence of a central singularity can extend far beyond the 
nucleus of a non-axisymmetric galaxy. A central point mass divides the phase space of a 
triaxial potential into three regions depending on distance from the center. In the innermost 
region, the potential is essentially Keplerian and the motion is regular (Sridhar and Touma 
1999, MNRAS 303, 483). This region extends to roughly the radius rg at which the enclosed 
stellar mass is a few times the black hole mass. Beyond this radius, the black hole acts as 
a scattering center, rendering almost all of the center-filling orbits stochastic. This "zone 
of chaos" extends outward from a few times rg to a radius where the enclosed stellar mass 
is ~ 102 times the black hole mass. At still larger radii, the phase space is a complex 
mixture of chaotic and regular trajectories, dominated by resonances, as discussed above. 
The transition between the intermediate and outer regions may be understood in terms of 
the destruction of the last remaining resonant tori by the black hole (Merritt and Valluri 
1999, A J 118). 

Preliminary indications (Valluri, in "Galaxy Dynamics," 1999, ASP CS 182, 195) are 
that moderate figure rotation tends to modify this picture only by reducing the number of 
stable resonances. 

Collisionless relaxation Stochasticity introduces a new type of relaxation into stellar dy­
namics that is qualitatively different from both "phase mixing" and "violent relaxation" (as 
the latter is usually defined). An initially localized ensemble of points in stochastic phase 
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space will diverge exponentially; because the motion is essentially random, the probability 
of finding a point anywhere in the accessible phase-space region tends toward a constant, 
and so the ensemble density tends toward a uniform value (H. Kandrup and M. Mahon 
1994, Phys. Rev. E., 49, 3735). This "chaotic mixing" differs from phase mixing in having 
a characteristic time scale, roughly the Liapunov time, and in being effectively irreversible 
- it represents a bona fide entropy increase. Chaotic mixing differs also from "violent re­
laxation" in the sense that it can occur even in fixed potentials; indeed one can usefully 
redefine "violent relaxation" as chaotic mixing in time-dependent potentials (H. Kandrup 
1998, ApJ 500, 120). 

The rate of chaotic mixing depends strongly on the structure of phase space. In glob­
ally chaotic regions - e.g. the "zone of chaos" in a triaxial potential - mixing is rapid, 
taking place in just a few crossing times. In phase-space regions containing mixtures of 
stochastic and regular trajectories, mixing time scales can be arbitrarily long (Kandrup 
1998, MNRAS 301, 960), though the mixing time is generally of order ~ 102 crossing times 
or less throughout most of a triaxial galaxy with a central point mass (Merritt and Valluri 
1996, ApJ 471, 82). 

Chaotic mixing converts all of the stochastic trajectories at a given energy into a single 
invariant ensemble. In weakly chaotic regions, such ensembles may have well-defined shapes, 
similar to that of regular orbits. Such components represent bona-fide density components 
for stationary or quasi-stationary galaxies, a realization that has led to a re-formulation 
of Jeans's theorem for non-integrable potentials (Kandrup 1998, MNRAS 299, 1139). In 
strongly chaotic regions, the invariant ensembles tend to be nearly spherical, mimicking the 
equipotential surface, and hence of little use in self-consistently reconstructing the density. 

Self-consistency The case for triaxiality received a considerable boost from the demon­
strations of Schwarzschild (1979, ApJ 232, 236) and Statler (1987, ApJ 321, 113) that 
self-consistent triaxial equilibria could be constructed, at least in mass models with large 
cores. However subsequent observational studies found little evidence for significant triax­
iality among real elliptical galaxies (e.g. Franx et al. 1991, ApJ 383, 112), prompting a 
re-analysis of the theoretical arguments. Schwarzschild (ApJ, 409, 563, 1993) repeated his 
pioneering self-consistency study using a scale-free, p ~ r~2 density law and found that 
many of the box orbits were rendered stochastic by the central singularity, implying limits 
on the allowed axis ratios of a triaxial figure. Non-scale-free models with power-law cen­
tral density cusps were likewise found to be consistent with only moderate departures from 
axisymmetry if the stochastic orbits were excluded (Merritt 1997, ApJ 486, 102). 

These self-consistency studies were based on mass models lacking central black holes; 
furthermore the treatment of stochastic orbits in these studies is open to criticism. Omitting 
such orbits entirely is unjustified, since weakly chaotic trajectories can mimic regular orbits 
for long times; but it is not easy to determine which parts of stochastic phase space are 
likely to be uniformly populated after a given elapsed time without carrying out a full time-
dependent calculation. iV-body studies are therefore an indispensable guide, and recently 
some special-purpose A^-body algorithms have been applied to the problem. In the triaxial 
geometry, one finds (Merritt and Quinlan 1998, ApJ 498, 625) that the growth of a central 
point mass causes the surrounding galaxy to evolve to almost complete axisymmetry; the 
evolution time scale is of order a crossing time when the "black hole" mass exceeds ~ 2.5% 
of the stellar mass, and shorter than a Hubble time for mass fractions of ~ 0.3%. The N-
body evolution rates observed in this study were similar to those inferred from the studies 
of mixing in fixed potentials cited above. 

It is intriguing that black holes in real galaxies never exceed ~ 2 — 3% the masses of 
their host spheroids (Kormendy et al. 1996, ApJ 459, L57; Cretton and van den Bosch 
1999, ApJ 514, 704), just the mass fraction that induces a rapid transition to axisymmetry 
in the N-body models. This coincidence suggests a link between the growth of black holes 
and the shapes of their host spheroids (Merritt and Quinlan 1998, ApJ 498, 625; Sellwood 
and Moore 1999, ApJ 510, 125). 
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