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Abstract. An extremely simple form for the energy density of a nuclear many-body system is derived 
from the two-body nucleon-nucleon interaction. This theory, which yields excellent results for energies 
and density distributions of finite nuclei, is used to determine the ground state configuration of matter 
at sub-nuclear density. As the baryon density is increased, nuclei become progressively more neutron 
rich until neutrons eventually escape, yielding a Coulomb lattice of bound neutron and proton clusters 
surrounded by a dilute neutron gas. The clusters enlarge and the lattice constant decreases with 
increasing density, approaching a completely uniform state near nuclear density. 

1. Introduction 

There exists sufficient astrophysical evidence that pulsars are in fact neutron stars that 
it is worthwhile to seriously investigate the equation of state of dense baryonic matter 
utilizing one's current understanding of theoretical nuclear physics. In the present 
work, we shall restrict our attention to that limited regime in which the two tacit 
assumptions of nuclear physics are satisfied, namely that the temperature be low 
compared with characteristic nuclear excitation energies and that the meson degrees 
of freedom may be legitimately suppressed and replaced by a phenomenological 
two-body potential determined by scattering data and deuteron properties. 

The first condition appears to be satisfied for observed pulsars, since the surface 
temperature may be inferred to be less than 10 8 K, corresponding to 10 keV and the 
thermal conductivity is expected to be very high. Thus, if we ignore the early stages 
of formation, on the relevant temperature scale of nuclear energies, neutron stars are 
exceedingly cold and may be treated in first approximation as being at a temperature 
of absolute zero. Hence it is legitimate to use the same zero-temperature perturbation 
expansions which are used in nuclear many-body theory, and the equation of state is 
completely specified by calculating the binding energy per baryon as a function of 
baryon density. 

The suppression of meson degrees of freedom in nuclear physics has been extremely 
successful. At a density of 0.17 nucleons f m " 3 , corresponding to the interior density of 
a heavy nucleus, the average distance between nuclei is 2.2 fm, whereas the one pion 
exchange force has a range of 1.4 fm. Thus, it appears quite reasonable to first ap­
proximate the interaction between two nucleons in nuclear matter as the interaction 
which would occur in free space, and then treat as a small perturbation the explicit 
meson many-body effects. The lowest order example of such an effect would be the 
three-body force arising from the^ interaction of a pion in transit between two nucleons 
with yet a third nucleon. Such processes have been investigated in nuclear matter and 
yield a correction to the binding energy per particle on the order of 2 MeV out of a 
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total potential energy contribution of 40 MeV (Brown and Green, 1969). Thus, 
present evidence indicates that if we restrict our attention to nuclear configurations 
with densities less than or equal to that occurring in the interior of large nuclei, the 
structure should be dominated by the two-body nucleon-nucleon interaction and 
explicit meson many-body effects should produce only very small corrections amenable 
to perturbation theory. 

Having determined the upper limit on densities to be considered to be that occurring 
in the interior of large nuclei, hereafter referred to simply as nuclear density and having 
the value 0.17 nucleon f m ~ 3 = 2 .8x 1 0 1 4 g c m " 3 , we now consider the lower limit. 

At densities above 10 7 g e m " 3 for temperatures below 10 8 K, matter is expected 
to be a solid. This is because the Coulomb interaction between ions is only weakly 
screened and at sufficiently low temperatures, the Coulomb energy is minimized by a 
bec lattice. Applying the Lindemann melting criterion which requires the mean fluc­
tuations of ions to be small compared with the average ion spacing, the ions are ex­
pected to form a solid below the temperature Tm&Z2e2l(\0Q rz) where rz is the average 
spacing between ions (Pines, 1970). For 5 6 F e , this solidification occurs by the time 
one reaches a density of 10 7 g c m " 3 , and as the density increases, rz decreases, assuring 
that the condition will be maintained at all subsequent densities. At extremely high 
densities, one might worry the Coulomb lattice breaking up solely due to the zero 
point motion of the ions, but for the highest density configuration treated in this work, 
3 2 G e at 1.4 x 1 0 1 4 g c m " 3 , the zero point fluctuation is still very small compared with 
the ion spacing. 

For Coulomb lattices of ions at densities between 10 7 and 10 9 g c m " 3 , the equation 
of state is determined directly from the experimentally observed mass table using 
straightforward corrections for the electrons and lattice Coulomb energy (Baym et al., 
1971a). At £ = 6.2x 10 9 g e m " 3 , the Fermi energy of the relativistic electrons shifts 
the energy balance favoring neutron rich nuclei so strongly that 8 4 S e , which is unstable 
but experimentally observable, gives way to 8 2 G e which has not been observed but 
may be reliably extrapolated (Myers and Swiatecki, 1965). Extrapolations from the 
mass table continue to be reliable up to a density of roughly 4.3 x 10 1 1 g e m " 3 , at 
which point the neutrons in 1 1 8 K r are just barely bound and any further increase in 
density causes the last few neutrons to 'drip ' out of the nuclei and form a low density 
neutron gas in the intervening space between the nuclear clusters. Although the theory 
presented in the present work should also be valid in the entire pre-drip sequence of 
extrapolated nuclei, we believe the mass table extrapolations are satisfactory well 
below the drip point and have concentrated our attention on the last sequence of 
pre-drip nuclei with 82 neutrons: 1 2 4 M o , 1 2 2 Z r , 1 2 0 S r and 1 1 8 K r , and on the free 
neutron regime after drip occurs, between 4 x l O u g c m ~ 3 and 2 x l 0 1 4 g c m " 3 . 

In order to assess the significance of this region of densities, calculations of stellar 
density distributions by Baym et al. (1971a) using an equation of state by Baym et al. 
(1971b) which is very similar to that obtained in this work, are shown in Figure 1. 
From this graph, it is observed that the very lightest neutron stars do not exceed nu­
clear density and that the region from 4 x 10 1 1 to 2 x 1 0 1 4 g c m - 3 is the most crucial 

https://doi.org/10.1017/S0074180900099885 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900099885


T H E E Q U A T I O N O F S T A T E O F M A T T E R A T S U B - N U C L E A R D E N S I T Y 3 

in determining the structure and stability of these stars. In particular, one may observe 
qualitatively the effect of neutron drip and the approach to nuclear density on the 
equation of state. At 4 x 10 1 1 g c m - 3 where neutron drip occurs, the sudden increase 
in slope of the density distribution indicates the appreciable softening of the equation 
of state when neutrons begin to drip out of nuclei. Similarly the flatness of the curve 
near nuclear density reflects the stiffness of the equation of state once nuclei begin to 
touch and the gravitational pressure attempts to compress the nucleons to a density 

RADIUS (km) 

Fig. 1. Density profiles of neutron stars, calculated by Baym et al. (1971a). 

higher than that occurring in a free nucleus. The need for quantitative precision in 
describing both the softness at the neutron drip point and stiffness near nuclear density 
motivates the present application of a microscopic theory of nuclear structure to the 
examination in somewhat greater detail of the equation of state in this regime. 

2. Review of Previous Investigations 

It is natural that the first attempts to treat the free neutron regime should be based on 
extrapolations from the semi-empirical mass formula (Bethe et al, 1970; Langer et al.9 

1969). The limitations of such an approach arise, obviously, from the fact that the 
mass formula parameters are determined only by a very restricted region of nuclear 
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configurations: the ratio of protons to neutrons is greater than ~ 0 . 6 , the chemical 
potential (minus the removal energy) for neutrons and protons is on the order of 
— 8 MeV and there is zero external pressure on the nucleus. In the free neutron regime, 
however, the configurations are very far from satisfying these conditions. The ratio of 
protons to neutrons in nuclei is 0.1 to 0.3; the neutron chemical potential in the nucleus 
must equal that of the free gas and thus cover a range from 0 to + 2 0 MeV; the pressure 
from the exterior neutron gas becomes significant, and the surface becomes much 
more diffuse and instead of approaching zero density outside the nucleus, approaches 
the neutron gas density. For all these reasons, extrapolations based on the semi-
empirical mass formula are extremely unreliable, and one is forced to undertake a 
more fundamental theory. 

Baym et al (1971b, hereafter denoted BBP) introduced the information which is 
unobtainable from the mass formula by means of the theory of uniform nuclear mat­
ter. Based on nuclear matter calculations with the Reid (1968) soft core potential by 
Siemens (1970) in the region of roughly equal neutron and proton densities and by 
Siemens and Pandharipande (1971) in the region of almost pure neutron matter, BBP 
obtained the nuclear binding energy per nucleon surface shown in Figure 2. One 
should note that both Coulomb and gravitational interactions are necessarily omitted 
from these infinite nuclear matter calculations. In addition, since only two-body 
reaction matrix diagrams are included, a phenomenological correction was applied 

Fig. 2. Energy per nucleon of uniform nuclear matter ignoring Coulomb and gravitational forces, 
taken from BBP. 
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to include the effects of all higher order diagrams, three-body forces, and relativistic 
corrections. Since such corrections enter most strongly in the 3Sl-3Dl coupled partial 
waves which are connected by the tensor force, the phenomenological correction was 
defined to occur only in isospin T=0 states and thus acts only between unlike particles. 
By means of this correction, the minimum of the saturation curve was shifted from 
11 MeV to 16.5 MeV at a density corresponding to & F = 1.43 f m " 1 . 

Having determined thp binding energy surface for all densities and ratios of protons 
and neutrons, BBP treat the Coulomb lattice of nuclei surrounded by a neutron gas 
in the Wigner-Seitz approximation. The unit cell is divided into a uniform density 
interior nucleus comprised of neutrons at high density and protons of low density and 
a uniform neutron gas exterior, comprised of neutrons at low density. A phenomeno­
logical surface energy expression motivated by Thomas-Fermi theory corrects for the 
presence of a finite surface and the Coulomb energy is calculated assuming a constant 
density of electrons filling the entire cell to yield charge neutrality. Then at a specified 
baryon density, the ground state configuration is determined by requiring that the 
system be stable against /?-decay, that the pressure inside the nucleus equal the pressure 
in the outside gas, that the neutron chemical potential inside the nucleus equal that 
of the outside gas and by minimizing the total binding energy with respect to the radius 
of the unit cell. 

Whereas this approach constitutes a clear improvement over previous work, it is 
still subject to two limitations. The first is an incomplete theory of the nuclear surface, 
with the general form being specified by Thomas-Fermi theory, but v/ith the actual 
surface thickness being determined from the neutron Fermi wavelength instead of 
variationally. The second is the complete absence of nuclear shell effects, which are 
already observed to play an important role in determining the composition of the 
ground state matter prior to neutron drip. 

Similar calculations by Arponen (1971), Barkat et al. (1972) and Buchler and Barkat 
(1971a, b) utilize slightly different parameterizations of the nuclear energy surface and 
determine ground state density distributions variationally in a Thomas-Fermi theory. 
The surface energy is included by introducing a gradient term in the expression for 
the energy as a functional of the density with a phenomenological coefficient adjusted 
to fit ordinary nuclei. 

The semi-classical Thomas-Fermi approximation has been compared with the 
quantum mechanical Hartree-Fock method for a semi-infinite surface by Ravenhall 
et al. (1972). Using the Skyrme (1959) interaction, they demonstrate significant 
differences between the density distributions and equilibrium configurations with the 
two methods (see also Vautherin and Brink, 1972). The final result they obtain in 
Hartree-Fock theory for the charge of the nucleus as a function of matter density lies 
between the results of BBP and Barkat et al. (1972) and constitutes the most reliable 
calculation discussed thus far. We will subsequently compare the calculations of this 
present work with those of Ravenhall et al (1972) and show how the differences arise 
from curvature terms in the surface energy and nuclear shell effects, both of which are 
necessarily omitted in a semi-infinite matter calculation. 
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3. Theory of Finite Nuclei 

Present evidence indicates that a strongly repulsive core in the nucleon-nucleon 
interaction plays an essential role in producing finite nuclei which obtain the proper 
binding energy without collapsing to unphysically high densities. Once one adopts a 
potential with a strongly repulsive core, such as the Reid soft core potential used in 
this work, perturbation theory can no longer be ordered simply in terms of numbers 
of interactions of the bare potential, but rather must be re-expressed in terms of the 
reaction matrix. The reaction matrix, G, sums all orders of ladder diagrams containing 
the bare interaction and unoccupied intermediate states and may be written 

where the projector labels a, b are summed over all unoccupied states and Vindicates 
an energy specified by the single particle energies of the two interacting particles and 
the particular Goldstone diagram under consideration. 

Physically, by permitting two interacting particles to interact any number of times 
when they approach each other, one is allowing the two-body wave function to re­
spond to the presence of the potential by generating correlations which strongly 
decrease the probability of the particles penetrating into the repulsive core region. 
This may be visualized by defining the correlated wave function ^ by the relation 
G</> = v\j/, where <j> is the uncorrected wave function which is a plane wave in nuclear 
matter. The correlated wave function in the partial wave channel obtained in this 
way in nuclear matter is shown in Figure 3. 

The field of nuclear matter theory is treated in great detail, in two recent extensive 
review articles by Bethe (1971) and Sprung (1972). For our present purposes, however, 
it is sufficient to concentrate our attention on the general feature of the two-body 
correlations. The difference between <f> and i//9 which we shall refer to as the defect 
function and denote by x, contains all the information concerning two-body correla­
tions and will play a central role in our theory of finite nuclei. 

Whereas Figure 3 only shows the defect function in a single partial wave, one can 
more effectively visualize the total two-body correlation by plotting the sum of the 
squares of the defect functions in each partial wave as shown in Figure 4 for several 
densities of nuclear matter. The integral of the sum of the squares of the defect func­
tions, multiplied by the density and appropriate statistical factors, yields the total 
probability of exciting a particle out of the uncorrelated Fermi sea into some excited 
state, which turns out to be approximately 13% at nuclear density. The most striking 
feature displayed in Figure 4 is that in addition to the maximum at 0.5 fm expected 
from the fact that the correlated wave function does not penetrate the hard core 
significantly, there is a second maximum at 1.2 fm. This correlation arises from second 
and higher order processes in which the strong, long range tensor force coupling the 
3Sl-3Dl channels introduces deuteron-like spatial correlations in the two-body wave 

ab 
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function. A particularly significant feature of this correlation is its strong density 
dependence. Recalling the definition of the reaction matrix, it is clear that at high 
density there are fewer intermediate states available for second order contributions to 
i//, and Figure 4 shows how strongly these correlations are diminished at high density. 

Having investigated the two-body correlations occurring between nucleons in 
nuclear matter, we now apply this knowledge to finite nuclei via the local density 
approximation. Physicalfy, one argues that the short range correlations between two 
nucleons in the interior of 2 0 8 P b , which is roughly 13 fm in diameter, should be the 
same as for two nucleons in infinite uniform matter at the same neutron and proton 
density. For nucleons near the nucleon surface, which is 2 fm thick, the argument is 
still quite good for the 0.4 fm correlations due to the core, and begins to break down 
only for the longer range tensor force correlations. 

The most convenient technique for using the correlations calculated in nuclear matter 
in finite nuclei is the construction of an effective interaction. Considering, for simplici­
ty, relative matrix elements in a finite nucleus in a specific relative partial wave one 
may introduce a complete set of plane waves and define a non-local effective interaction 
as follows: 

<U g \<t>nly = £ <<w g i&>. <<t>k | = 
k 

= j j | r> < r | £ v\<Fk> | r'> <r' | d3r d V s 

= j j <t>m (r) Prfr (<?, W, r, r') tf>„, (r') d 3r d V . 

/ s 1 
1 2 
1 1 

x (fm) 
s*^ 

/v 

Fig. 3. Reid potential and uncorrelated and correlated nuclear matter wave functions for the 
xSo partial wave. 
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For a practical calculation, it is necessary to make a number of additional simplifying 
approximations to r e f f yielding an effective interaction which is local in relative coor­
dinate and is averaged over relative angular momentum states in each spin and isospin 
channel. These approximations are justified in detail elsewhere (Negele, 1970) and are 
immaterial to the conceptual basis of the theory. The final result is an effective inter­
action to be used with a Slater determinant wave function which depends not only on 
the relative coordinate of two interacting particles, but also on the density at the 
location where the two particles are interacting and on the energy of the two interact­
ing particles. The fact that both the density dependence and energy dependence 

r (F) 
Fig. 4. Sum of the squares of the defect functions in nuclear matter taken from Negele (1970). 

contribute to saturation, that is to making the interaction less attractive at high den­
sity, is evident from examining the second order term in the reaction matrix expansion, 
v(Q/e) v. As the density increases, the projector onto unoccupied states, Q, excludes 
more and more phase space from the second order sum, which is always attractive, 
thereby decreasing the attraction. In addition, the single particle energies become 
larger in magnitude with increasing density, thereby increasing the magnitude of the 
energy denominator e and decreasing the attraction. 

Once one has accepted an effective interaction which is density and energy depen­
dent, it is straightforward to write out the expression for the energy of a Slater deter­
minant and to functionally differentiate with respect to each single particle wave 
function. In addition to the usual Hartree-Fock terms obtained from varying l A m C ^ i ) 
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and iA*(r2) appearing explicitly in 

Z jj K (ri) V: (r 2) * [|r, - r2|, ~ ) > em + «„] x 

one also obtains terms of the form (dG/dg) (dg/di//*) and (dG/dem) (dejdij/*). These 
terms express the fact that by increasing the probability of finding particle s at some 
region in the nucleus, the total energy contribution from that region is not only 
increased because of the pair interactions of particle s with all other nucleons, but it 
is also slightly decreased by the fact that two other particles, say m and n interacting in 
that region, now find their interactions less attractive due to the fact that particle s 
has now made some phase space unavailable for intermediate scattering states and has 
slightly increased their energy denominators. These extra terms in the resulting density-
dependent Hartree-Fock ( D D H F ) equations, loosely referred to as 'rearrangement 
terms' are crucial to obtaining saturation in finite nuclei and in obtaining agreement 
with experimental single particle energies and binding energies. 

The effective interaction described above is actually defined in detail to reproduce 
exactly the same nuclear matter saturation curve as Siemens' (1970) original G matrix 
when evaluated in a Fermi gas of plane wave states. Thus, in order to obtain the proper 
binding energy per particle, it is necessary to introduce a phenomenological correction 
to include all the higher order terms in nuclear matter theory. In the same spirit as 
BBP, this was chosen to be a short range force acting only between unlike particles 
and for the results presented in this work, the two parameters were adjusted to give 
16.53 MeV binding energy per particle at a saturation density of /rF = 1.33 f m " 1 . 

For spherical nuclei, it is straightforward, although numerically cumbersome, to 
directly solve the non-local integro-differential D D H F equations and by iteration 
obtain self-consistent wave functions. The binding energies per particle obtained in 
this way (Bethe, 1971) agree with experimental energies for O, Ca, Zr and Pb to within 
0.5 MeV, and subsequent calculations are in even closer agreement (Negele, 1970) 
and (Campi and Sprung, 1972). The single particle energies agree with experimental 
energies to within several MeV and in particular the spin-orbit splittings in light nuclei 
are correct. 

Having shown the necessity of having an accurate quantum mechanical theory of 
the nuclear surface, we wish to emphasize the agreement of the D D H F results with 
experimental evidence concerning the surface. The agreement of binding energies 
throughout the periodic table mentioned previously indicates the semi-empirical 
surface energy parameter is accurately reproduced. In addition, it is possible to check 
the detailed spatial distribution of protons by comparison with elastic electron scat­
terings results, as shown in Figures 5 and 6 for 4 0 C a and 2 0 8 P b , respectively. Although 
an accurate fit for a single nucleus might be deemed fortuitous, systematic agreement 
throughout the periodic table yields strong evidence that the delicate balance between 
Coulomb energy, symmetry energy, surface energy and bulk volume energy is being 
very accurately reproduced. 
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The D D H F theory of finite nuclei as described above is unfortunately too computa­
tionally time-consuming to apply to the equation of state in the free neutron regime. 
Self-consistent calculations for 208 particles in 2 0 8 P b are already lengthy and ex­
pensive and in the free neutron regime, one desires to search over a variety of configura­
tions with up to 5000 particles in a unit cell. 

The primary computational complication in the D D H F theory is the presence of 
the non-local exchange term, which necessitates both the Legendre expansion of the 
exchange potential and the explicit solution of a non-local Schrodinger equation. 
For this reason, it is useful to examine the structure of the exchange term and develop 
a systematic expansion which treats it in a much more convenient manner. Although 

20° 30° 40° 50° 

Fig. 5. Elastic electron scattering cross sections calculated with DDHF wave functions, compared 
with experimental results for 4 0 Ca. 
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this is a crucial practical development, it should be emphasized that it introduces no 
new conceptual assumptions since one can construct the exact exchange term and 
compare it with the subsequent expansion and insist on any specified degree of ac­
curacy. 

The density matrix expansion (DME) is a systematic expansion of the two-body 
density matrix Q (r x , r2) = X!*̂ * (r x) \j/n ( r 2 ) in coordinate space (Negele and Vautherin, 
1972). One begins by writing the angle-averaged density matrix as a formal expansion 
about the center of mass of the two interacting particles, 

• * ' ) - J " X * ( - * i ) * . ( - 0 -

cos 6 exp {cos 6r 

sinh (kr) 

F(k2). 
kr 

sin (kr) 

kr 

k2>0 

k2<0. 

Expanding this around some value —k2, one obtains 

Physically, the operator (V x - V 2 ) /2 is just the relative momentum operator. Hence it is 
reasonable to average both sides of this expression over the values of relative momen­
tum k which would appear in nuclear matter at the same density. Averaging with the 
appropriate phase space factors and suitably rearranging the series, one obtains 

Q ( R , r ) = Qsl (rkF) Q ( R ) + r2g (rkF) [iV2Q ( R ) - t ( R ) + ( R ) ] 

3/i ( » * F ) i./. / D M 2 
QSL (rkF) = 

g(rkF) = 

rkF 

357*3 (rkF) 

c?(*) = £ l M » ) l 2 

a 

T ( R ) = X | V ^ ( R ) | 2 . 
2(rkF) 

The first term is just the Slater mixed density for a Fermi gas and the subsequent terms 
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systematically expand the deviation of the finite nucleus density matrix from the 
nuclear matter result. 

The accuracy of the first two terms is demonstrated in Figure 7. The exact density 
matrix is calculated for neutron wave functions in 2 0 8 P b as a function of relative 
coordinate, s, at several values of the center of mass coordinate, R. Since the exact 
density matrix is not rigorously isotropic in s, the extremal values are indicated on the 
graph by the error bars. The Slater approximation, denoted by the short dashed line, 
is observed to be in excellent agreement with the exact calculation in the interior and 
to systematically overestimate the mixed density in the surface. The sum of the first 
two terms is indicated by the solid line and yields an excellent approximation through-

Fig. 6. Elastic electron scattering cross sections calculated with DDHF wave functions, compared 
with experimental results for 2 0 8 Pb. 
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out the region of relative coordinate in which the two-body potential is significant. 
Truncation of the expansion of the density matrix at second order yields an extremely 

simple factorized expression of specified functions of relative coordinate multiplying 
g(R), derivatives of Q(R) and the kinetic energy density, T ( J R ) . The total Hamiltonian 
density may then be obtained by performing the integral over relative coordinates of 
the density matrix squared times the effective interaction. Distinguishing between 
proton and neutron densities and kinetic energies, the final form of the Hamiltonian 
density is 

H (R) = — ( T „ + T P ) + A (e n, gp) + B (gp9 gn) TP + B (gn9 gp) T „ + 

+ C (QP, QN) |V e p | 2 4- C(gn, gp) | V J 2 + D (QN9 QP) 

where the functions A , B, C, and D are specified integrals involving the effective inter­
action at the local neutron and proton density, ^ S L C ^ F )

 a n d 0 ( * * F ) -

One useful conceptual feature of this expansion is the fact that H(R) may be 
separated into a term which is precisely the nucleon matter potential energy per par­
ticle, the kinetic energy, and terms which depend only on integrals of the long range 
part of veiY times T and gradients of g. The long range part of i?e f f is very close to the 
bare potential, which in turn is the most unambiguously determined part of the 
nuclear potential. Thus, the finite nucleus corrections are virtually independent of the 

S ( F ) 

Fig. 7. Comparison of the square of the exact neutron density matrix in 2 0 8 Pb with the truncated 
expansion, taken from Negele and Vautherin (1972). 
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model of the nuclear force, and all ambiguities concerning the short range repulsion, 
off energy shell behavior, and higher order corrections enter only through the nuclear 
matter energy surface as a function of QN and QP as graphed in Figure 2. 

Technically, the D M E is much simpler than the D D H F theory, involving only a 
local Schrodinger equation with a position dependent effective mass. The results of 
this simplified theory have been compared in detail with the D D H F results (Negele 
and Vautherin, 1972) and are in excellent agreement. Because of the computational 
simplicity of the DME, it was possible to search more extensively over the parameters 
of the higher order correction adjustment and thereby obtain binding energies per 
particle which agree with experimental values within 0.1 MeV. The only additional 
change required to apply this theory of finite nuclei to the free neutron regime was to 
introduce a more careful parameterization of A(gn9 QP) in the region of very low 
neutron density so as to accurately reproduce the uniform nuclear matter calculations 
of Siemens and Pandharipande (1971). 

TABLE I 
BE/A for pre-drip nuclei 

Nucleus Extrapolated value (MeV) DME (MeV) 

4o 1 2 2 Zr 7.67 
38 1 2 0 Sr 7.45 
36 1 1 8 Kr 7.20 

Although our primary emphasis is on the free neutron regime, the D M E theory of 
finite nuclei has been used to check the extrapolation by Myers and Swiatecki (1965) 
of the last pre-drip sequence of nuclei. 

As shown in Table I, the D M E results are in good agreement with the extrapolated 
values, and in particular, the differences between neighboring nuclei are in excellent 
agreement. Thus, we corroborate the results of Baym et al. (1971a) for the composition 
of matter prior to neutron drip. The spatial distribution of protons in 1 1 8 K r is shown 
in Figure 11 for subsequent reference. 

4. The Neutron Drip Regime 

The equation of state in the neutron drip regime is obtained by minimizing the energy 
per nucleon of spherically symmetric configurations of nucleons in a Wigner-Seitz 
unit cell. 

For charge neutrality, a cell with Z protons contains an equal number of electrons. 
Because of the large Fermi-Thomas screening length, 

where ke is the electron Fermi wave number, the electrons are approximated by a 

7.54 
7.32 
7.05 
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Fig. 8. Contour plot of energy per particle as a function of number of protons and neutrons 
in a unit cell. 

uniform gas, and the small screening correction is neglected (BBP). The kinetic energy 
per electron is then 

z = "hc2{i? c*(1 + 2*2) 0 + *2)1/2 ~ln(*+ (1 + *2)1/2)] _ l}' 
where x = hkjm&c. The Coulomb exchange energy for the electrons is of the order of 
e2jhc times the mean electron kinetic energy and is also neglected. With these ap­
proximations, the electron chemical potential is 

li9 = (k2Jt2c2 + mYf12 - mtc2 + he x 

J \r12\ 

The nuclear energy for the unit cell is expressed in terms of the nucleon wave func­
tions using the D M E Hamiltonian density functional. The direct Coulomb energy is 
calculated straightforwardly from the electron and proton densities, and the Slater 
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Baryons per cc. 

Fig. 9. Energy per particle versus baryon density. 

Fig. 10. Proton and neutron density distributions occurring along an axis joining the centers of two 
adjacent unit cells. 
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approximation is used for the nuclear exchange Coulomb energy. Since the total 
energy expression is variational in the nuclear wave functions, the proton and neutron 
chemical potentials, /zP and /zN, are given by the eigenvalues of the last occupied or-
bitals. 

In addition to the approximations discussed previously in connection with the DME, 

1 I I I I 1 1 1 h- 1 I I I 
0 2 4 6 -8 10 12 

r (fm) 

Fig. 11. Proton and neutron densities versus distance from the center of a unit cell. 
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% ( c m - 3 ) 

Fig. 12. Single particle spectrum of protons and neutrons. 

it is extremely useful to omit the spin orbit splittings for neutron states, thereby re­
ducing the total number of wave functions to be considered by almost one half. Since 
the one-body spin orbit potential is proportional to (1/r) (dg/dr) and the spectrum 
of the continuum neutron states is essentially determined by the uniform neutron gas 
region, the effect of the spin orbit force on the neutron level ordering is negligible. 
Thus the density and energy density obtained by filling the barycentric states re­
presenting the average of the levels j=l—i and j=l+\ with 2 / + 1 particles should be 
an excellent approximation. For protons, however, the spin orbit splitting is crucial 
in determining the level ordering and thus which orbitals are actually occupied. In 
order to retain a theory which is completely variational, the appropriate proton spin 
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orbit term to be added to the energy density is (Negele and Vautherin, 1972) 
# s o = W/2[V(g N + 2£p)-J P ] where J P is the proton spin density J P = ( r / r 4 ) £ i j i [ ( y i + 
+ 1) — ^(/j + l ) — $]uf (r) and W is a constant determined from the two-body spin 
orbit force. 

With the approximations specified above, it is straightforward to perform a self-
consistent Hartree-Fock calculation for the nuclear wave functions in a unit cell, for a 
given cell radius and number of neutrons and protons. An initial guess is made for the 
single particle potentials and effective masses and the radial wave functions and 
eigenvalues are calculated subject to the boundary condition that the wave function or 
its derivative must vanish at the cell radius, depending on parity. The lowest N neutron 
states and Z proton states are occupied, q and T are calculated for neutrons and pro­
tons and new potentials and effective masses are obtained. The lowest N and Z states 
for the new potentials are then filled and the process is iterated until self-consistency 
is achieved. Because of the multiplicity of local minima, it is necessary to try several 
dissimilar initial guesses for the potentials to assure that the absolute minimum energy 
configuration has been obtained. 

To determine the minimum binding energy per nucleon at a specified baryon density, 

2 0 1 ' m m 1 i i 11 mm i i i i i m i . i 1 

io 1 2 io 1 3 io 1 4 

Matter Density ( g / c m 3 ) 
Fig. 13. Number of protons per nucleus, denoted by crosses, compared with previous predictions 

taken from Ravenhall et al. (1972). 
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TABLE II 
Numerical results in the free neutron regime. - The quantities qg and x are the approximate density 
of the exterior neutron gas and the approximate ratio of protons to neutrons in nuclei respectively, 

and cannot be defined uniquely due to density fluctuations. All other quantities 
are defined in the text. 

N Z X E -£gas 
(cm - 3) (MeV) (MeV) (fm-3) — itin 

A 
— Wn 

A 

(MeV) (MeV) 
2.79 x 1035 140 40 0.2 -26.8 4 x l 0 - 5 0.53 -1.425 0.436 
4.00 x 10 3 5 160 40 0.3 -29.4 9.7 xlO" 5 0.53 -0.962 0.543 
6.00 x 10 3 5 210 40 0.6 -29.5 2.6 xlO" 4 0.53 -0.462 0.692 
8.79 x 10 3 5 280 40 1.0 -28.5 4.8 xlO" 4 0.53 -0.050 0.865 
1.59 x 10 3 6 460 40 1.4 -29.4 1.2 xlO" 3 0.52 0.541 1.214 
3.73 x 10 3 6 900 50 2.6 -33.6 3.0 xlO" 3 0.46 1.465 1.926 
5.77 x 10 3 6 1050 50 3.3 -34.5 4.7 x l0~ 3 0.45 1.966 2.408 
8.91 x 10 3 6 1300 50 4.2 -35.8 7.8 xlO" 3 0.44 2.610 2.981 
2.04 x 10 3 7 1750 50 6.5 -43.6 1.84 x lO-2 0.35 4.097 4.422 
4.75 x 10 3 7 1460 40 10.9 -54.0 4.36 x lO"2 0.28 6.428 6.660 
7.89 x 10 3 7 950 32 15.0 -68.3 7.37 x lO"2 0.16 8.611 8.657 

one must search over the number of nucleons in the unit cell, thus specifying the cell 
radius, and the ratio of neutrons to protons, as well as the spatial distribution of 
nucleons described above. The results of such a search for a preliminary version of this 
theory are shown as a contour plot in Figure 8. One notes several local minima gen­
erated by the energy fluctuations arising from the shell closures for 28, 40, and 50 
protons, and in this case the absolute minimum occurs at Z = 5 0 . In practice, the search 
is greatly expedited by considering only j8-stable configurations. At each iteration one 
computes E(Z+1, TV- 1) ~fie+/ip — ixn + mc 4- mp - mn and converts neutrons into pro­
tons plus electrons or vice-versa. The resulting j8-stable self consistent solution cor­
responds to the minimum along a line of constant N+Z in Figure 8, and one has 
only to perform a single parameter search over the number of particles in a cell. 

The resulting ground state solutions for 11 densities are presented in Table II and 
Figure 9. Since it is impossible to distinguish neutrons in nuclei from those in the gas, 
we adopt the unusual convention of labeling nuclei by the total number of nucleons 
in the unit cell. In Figure 9, the energies per particle for the ground state configurations, 
denoted by the crosses, are compared with the energies of a jS-stable uniform gas of 
electrons, protons, and neutrons, thus demonstrating the significant gain in binding 
energy obtained by forming a Coulomb lattice of nuclei surrounded by a low density 
neutron gas. 

The spatial distribution of neutrons and protons at various densities is presented in 
Figures 10 and 11. Figure 10 shows the densities obtained along a line joining the 
centers of two adjacent unit cells. As the baryon density increases, one observes a 
smooth, systematic progression of configurations. The cell radius decreases, the neu­
tron gas density increases and the density of protons in nuclei decreases. By the time 
one reaches 9 8 2 G e , the difference in energies of various local minima are sufficiently 
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small that it is not meaningful to proceed to higher density. The energy per baryon is 
already very close to the uniform gas result, and it seems quite reasonable to assume 
that the density distributions at higher density continue the systematic behavior and 
smoothly approach a uniform density. 

In Figure 11, the density distributions of the nuclei at the center of the unit cells are 
shown in greater detail. For comparison, 9 0 Z r , a naturally occurring isotope, and 
I 1 8 K r , the last pre-drip nucleus, are also presented. In addition to the systematic 

J I I I I I I L 
5 6 7 8 9 10 II 12 

A l / 3 

Fig. 14. Least squares fit to the masses of large, mirror nuclei to determine 
the curvature coefficient. 

effects mentioned previously, one also observes a strong systematic increase of the 
nuclear surface thickness and the diminishing of neutron density fluctuations as the 
number of neutrons becomes sufficiently large and one approaches a statistical regime. 

One of the most striking features of Figures 10 and 11 is the degree to which the 
nuclei in the free neutron regime resemble ordinary nuclei. This similarity is also 
manifested in the behavior of the single particle energies, as shown in Figure 12. In 
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order to eliminate irrelevant constant shifts in the absolute single particle energies, 
relative energy spacings are plotted with the proton energies shown relative to the 
2pl/2 state and the neutron energies shown relative to the continuum. The fact that 
the usual shell model level sequence is maintained throughout the free neutron regime 
and that the interior nuclear density does not deviate significantly from the density 
of ordinary nuclei strongly suggest that the D D H F theory should be just as reliable 
in this regime as in observable nuclei where it has been experimentally tested. 

M n MII i I I i M ii| i I i i 11 i i | 1—17-ra 

|Q29I I I Mil l I I I I I Mil I i i i M i l l I i i 

3x10" 1012 IO 1 3 IO 1 4 5x10'' 
Mass Density ( g / c c ) 

Fig. 15. Equation of state compared with previous predictions taken from BBP. 

The composition of the resulting nuclei in this theory are compared with the pre­
dictions of BBP, Buchler and Barkat (1971a, b) (BB), arid Ravenhall et al. (1972) 
(RBP) in Figure 13. We have already argued that RBP is the most reliable of the three 
previous theories. The equilibrium conditions derived by BBP show that if the nuclear 
surface energy is expressed in the form BE~ lVSVRFA2/3

9 then the equilibrium size of 
the nucleus is given by W S U R P < 4 2 / 3 = 2 ECOVL> where £ C O U L LS t r i e t o t a ^ Coulomb energy 
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Mass Density(g/cc) 
Fig. 16. Adiabatic index compared with the BBP result. 

5x10 14 

per nucleus, including the lattice energy. However, in the spherical geometry of a 
Wigner-Seitz unit cell, in contrast to a plane surface, there are additional contributions 
to the surface energy proportional to A1/3 arising from the curvature of the surface as 
well as a small pressure term which we will ignore for the present argument. The 
curvature term may be evaluated by calculating a sequence of unphysically large, 
mirror nuclei with the Coulomb force turned off. The resulting binding energies are 
least squares fit with a mass formula of the form BE= WyoLA + rVslJKFA2/3 + WcmwA1/3 

as shown in Figure 14. If one repeats the argument of BBP with this expression, the 
new equilibrium condition is ( WSVRF + 2 WCVKyA ~1/3)A2/3 = 2ECOVL. Thus, substituting 
the values from Figure 14, although the curvature term in the binding energy is only 
about 11% of the surface term for A ~200 , it shifts the equilibrium size by 22%. Taking 
an average value of Z from RBP to be 37, this effect would be expected to shift the 

TABLE III 
Coefficients for the equation of state 

/ Ground state Ci Uniform gas Ci 

0 - 4 . 0 -4 .0 
1 2.8822899 x 10"1 1.4821424 
2 5.9150523 X 10"1 -4.0373482 x lO"2 

3 9.0185940 x lO"2 6.0455728 x 10~2 

4 - 1.1025614 x 10-1 -1.5307639 x 10"2 

5 2.9377479 x 10"2 3.4774416 x 10"3 

6 -3.2618465 x 10~3 -4.3627154 x 10"4 

7 1.3543555 x 10~4 2.3383473 x 10~5 
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charge to 45. Because of shell effects, as demonstrated in Figure 8, the equilibrium 
point in our present theory is shifted away from 45, either to the shell closure at 40 or 
to the closure at 50, but it is significant that the average shift is accurately explained by 
this curvature effect. 

Given the total ground state energy per particle, including masses, ET9 as a function 
of baryon density, nh9 the pressure, adiabatic index and mass density are determined as 
follows: P—n\{dETjdnb)9 T = (nh/P) (dP / dnh) and Q=nhETlc~. Since searches were car­
ried out only at 11 discrete densities, it was necessary to curve fit the resulting energies 
shown in Figure 9 with a smooth function. The total energies per baryon, ET9 for both 
the ground state and uniform gas configurations were fit by the following function: 

where ET is in MeV, mn is the neutron mass, x=ln(nhx\0~35)9nhis the baryon density 
in baryons per cm 3 , and c0 through c7 are tabulated in Table III. 

The equation of state obtained by fitting the 11 ground state nuclear configurations 
in the free neutron regime is shown in Figure 15 by the solid line. At high density, it 
joins smoothly onto the BBP curve, denoted by the short dashed line. The equation of 
state for a uniform gas is indicated by the long dashed curve, and becomes indistin­
guishable from the ground state curve at intermediate densities. For comparison, the 
Harrison-Wheeler equation of state (Hartle and Thorne, 1968) and the Vy equation 
of state of Langer et al (1969) are also plotted as taken from BBP. 

The adiabatic index calculated with the present theory is shown in Figure 16 by the 
solid line. One should note that taking the second derivative of the curve fit to the 11 
calculated energies strongly amplifies noise in the fit, and therefore undue significance 
should not be attached to the fine details of this curve. For comparison, the adiabatic 
index obtained for a uniform gas is shown by the long dashes and the BBP result is 
shown by the short dashes. 

We have attempted to show in this work that it is possible to construct a reliable 
theory of a nucleon many-body system derived from the two-body nucleon-nucleon 
interaction. The relevant two-body correlations are incorporated in a two-body 
effective interaction, and the energy density is expressed as an extremely simple func­
tional of the density and kinetic energy density via the density matrix expansion. This 
theory yields excellent agreement with experimentally observable properties of finite 
nuclei and should provide a reliable extrapolation to the nucleus-like clusters oc­
curring in the free neutron regime of dense matter. 

The primary uncertainty affecting the equation of state we have calculated in the 
free neutron regime is the small uncertainty in the function specifying the uniform 
matter potential energy for a small ratio of protons to neutrons. The adjustment for 
the higher order corrections, the ambiguity in off-energy-shell behavior of the nuclear 
force, and the omission of pairing correlations (Yang and Clark, 1971), all contribute 

5. Conclusion 
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to the uncertainty in the energy of a neutron gas. Fortunately, throughout most of the 
free neutron regime, the nuclear clusters occurring in the center of the unit cell are 
insensitive to small changes in the energy functional for a neutron gas, so that the 
composition and energy of the cluster is essentially unaffected. Since most of the 
baryons in the cell are neutrons in the gas, their energy change may be computed 
directly from the change in the neutron gas energy and thus the change in the total 
energy and therefore the'equation of state may be obtained from the data in Table II 
without repeating the lengthy self-consistent calculations reported in this work. 

Finally, the substantial agreement between the final equation of state obtained in 
this work and that of BBP suggests that calculations of Baym et al. (1971a) based on 
the BBP results should be essentially unchanged by the present work. 

Acknowledgments 

It is a pleasure to acknowledge the contribution of D. Vautherin who collaborated in 
the development of the density matrix expansion and in the writing of the program 
to calculate wave functions in a Wigner Seitz cell. In addition, this work has benefitted 
greatly at various stages from discussions with H. A. Bethe, G. Baym and C. J. Pethick. 
The hospitality of the Niels Bohr Institute during the spring of 1970, where the author's 
interest in this problem was first stimulated, and of Brookhaven National Laboratory 
during the summer of 1972, where this manuscript was prepared, is gratefully acknowl­
edged. This work was supported in part through funds provided by the U.S. Atomic 
Energy Commission under Contract No. AT(l l - l ) -3069. 

References 

Arponen, J.: 1971, University of Helsinki (preprint). 
Barkat, Z., Buchler, J. R., and Ingber, L.: 1972 (to be published). 
Baym, G. A., Pethick, C , and Sutherland, P.: 1971a, Astrophys. J. 170, 299. 
Baym, G. A., Bethe, H. A., and Pethick, C. J.: 1971b, Nucl. Phys. A175, 225. 
Bethe, H. A.: 1971, Ann. Rev. Nucl. Sci. 21, 93. 
Bethe, H. A., Borner, G., and Sato, K.: 1970, Astron. Astrophys. 7, 279. 
Brown, G. E. and Green, A. M.: 1969, Nucl. Phys. A173, 1. 
Buchler, J. R. and Barkat, Z.: 1971a, Phys. Rev. Letters 27, 48. 
Buchler, J. R. and Barkat, Z.: 1971b, Astrophys. Letters 7, 167. 
Campi, X. and Sprung, D. W.: 1972, Nucl. Phys. A194, 401. 
Hartle, J. B. and Thorne, K. S.: 1968, Astrophys. J. 153, 807. 
Langer,W.D., Rosen, L.C., Cohen, J. M., and Cameron, A. G. W.: 1969, Astrophys. Space Sci. 5, 259. 
Myers, W. D. and Swiatecki, W. J.: 1965, UCRL Report 11980. 
Negele, J. W.: 1970, Phys. Rev. CI, 1260. 
Negele, J. W. and Vautherin, D.: 1972, Phys. Rev. C5, 1472. 
Pines, D.: 1970, Proc. of XVII International Conf. on Low Temperature Physics. 
Ravenhall, D. G., Bennett, C. D., and Pethick, C. J.: 1972, Phys. Rev. Letters 28, 978. 
Reid, R. V.: 1968, Ann. Phys. N.Y. 50, 411. 
Siemens, P. J.: 1970, Nucl. Phys. A141, 225. 
Siemens, P. J. and Pandharipande, V. R.: 1971, Nucl. Phys. A173, 561. 
Skyrme, T. H. R.: 1959, Nucl. Phys. 9, 615. 
Sprung, D. W. L.: 1972, Advances in Nuclear Physics (to be published). 
Vautherin, D. and Brink, D. M.: 1972, Phys. Rev. C5, 626. 
Yang, C. H. and Clark, J. W.: 1971, Nucl. Phys. A174, 49. 

https://doi.org/10.1017/S0074180900099885 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900099885



