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We develop a new method suitable for establishing lower bounds on the ball measure
of noncompactness of operators acting between considerably general quasinormed
function spaces. This new method removes some of the restrictions oft-presented in
the previous work. Most notably, the target function space need not be disjointly
superadditive nor equipped with a norm. Instead, a property that is far more often at
our disposal is exploited—namely the absolute continuity of the target quasinorm.

We use this new method to prove that limiting Sobolev embeddings into spaces of
Brezis–Wainger type are so-called maximally noncompact, i.e. their ball measure of
noncompactness is the worst possible.
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1. Introduction

Maximal noncompactness is a useful modern function-analytic tool whose primary
purpose is to provide refined information about noncompact mappings. Although
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2 Maximal noncompactness of limiting Sobolev embeddings

compactness is a topological property, the definition of the maximal noncom-
pactness is purely geometric. For example, it is not invariant with respect to
topologically equivalent (quasi)norms. The concept is intimately connected with
that of the ball measure of noncompactness, whose earliest occurrences reach as far
as the 1930s—notably thanks to the advances by Kuratovskii (see [25])—and which
has been applied to various problems in analysis and its applications (see [2, 17,
18, 39]). It is one of the successful tools for compensating for the lack of compact-
ness; another that has been of interest is for example the concentrated compactness
principle (see e.g. [7, 31, 32, 43]).

It is quite easy to realize that the ball measure of noncompactness, β(T ), of an
operator T acting between (quasi)normed linear spaces X and Y, defined as the
infimum of radii ϱ> 0 for which T (BX) can be covered by finitely many balls in
Y with radius ϱ, cannot exceed the operator norm, ‖T‖, of T. At the opposite
end, the lowest value it can attain is zero, and it is an easy exercise to see that
β(T ) = 0 is a necessary and sufficient condition for T to be compact. Hence,
β(T ) = ‖T‖ indicates, from the point of view of finite coverings, something like
‘the worst possible degree of noncompactness’ of the operator T.

The notion of the maximal noncompactness itself (i.e. β(T ) = ‖T‖) is, however,
far more recent. The notion was first used in [27], and it surfaced in connection with
sharp (nonlimiting/subcritical) Sobolev embeddings, which are typically noncom-
pact (e.g, [11, 12, 24, 40]), and for which the additional information about how bad
their noncompactness is, can be of use. Results on the maximal noncompactness of
various operators had been known before, but they had not been called that way
(cf. [18] or [21]).

Noncompact Sobolev embeddings are often maximally noncompact. The classical
nonlimiting embedding of a first-order homogeneous Sobolev space into the smallest
possible Lebesgue space, namely

V 1,p
0 (Ω) → L

np
n−p (Ω), (1.1)

where n ∈ N, n ≥ 2, 1 ≤ p < n, and Ω ⊆ Rn is a bounded domain (cf. e.g. [1, 35]),
was shown to be maximally noncompact in [21]. The precise definition of first-order
homogeneous Sobolev spaces is given in § 2. When one ventures out of the realm of
Lebesgue spaces, enhancements of the embedding (1.1) are available. Most notably,
with the help of two-parameter Lorentz spaces, one has

V 1,p
0 (Ω) → L

np
n−p ,p

(Ω), (1.2)

under the same restrictions on the parameters as in (1.1).
Now, while it is easy to verify that (1.2) is sharper than (1.1), owing to the

(proper) inclusion L
np
n−p ,p

(Ω) ( L
np
n−p (Ω), there is no obvious way of exploiting

the information that one embedding is maximally noncompact for proving that
so is the other. In fact, this seeming discrepancy is universal, not limited only to
these two particular embeddings. So, the maximal noncompactness of (1.2) needed
separate treatment, and indeed received it in [6]. In fact, it was shown there that
any of the Sobolev embeddings of the form
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J. Lang, Z. Mihula and L. Pick 3

V 1
0 L

p,q(Ω) → L
np
n−p ,r

(Ω), (1.3)

where 1 ≤ q ≤ r < ∞, is still maximally noncompact. Here V 1
0 L

p,q(Ω) is a first-
order homogeneous Sobolev space built upon the Lorentz space Lp,q(Ω) (see § 2
for the precise definition). This result left open the case when r = ∞, where the
method used in both [6] and [21] fails. The method applied there was based on
a combination of the disjoint superadditivity of the target space and a certain
shrinking property of the embedding. Recall that a functional ‖ · ‖Y is said to be
γ-disjointly superadditive for some γ ∈ (0,∞) if there is a constant C > 0 such that,
for every k ∈ N and functions {fj}kj=1 ⊆ Y having pairwise disjoint supports, one
has

k∑
j=1

‖fj‖γY ≤ C

∥∥∥∥∥∥
k∑

j=1

fj

∥∥∥∥∥∥
γ

Y

.

In the theory of Banach spaces/lattices, this property is often called a lower γ-
estimate, see [30] for example. Remarkably, it was proved later in [27] by completely
different methods that the embedding

V 1
0 L

p,q(Ω) → L
np
n−p ,∞

(Ω), (1.4)

where q ∈ [1,∞], retains its maximal noncompactness despite the fact that the

weak Lebesgue space L
np
n−p ,∞

(Ω) is not disjointly superadditive.
The limiting Sobolev embedding (corresponding to taking p=n in the domain

space) is much more difficult (and therefore much more interesting) to handle.
Arguably the most notorious version of the limiting Sobolev embedding uses an
exponential-type Orlicz space for its target, and reads as

V 1,n
0 (Ω) → expL

n
n−1 (Ω), (1.5)

see [38, 42, 44, 45]. This embedding is known to be sharp as far as Orlicz target
spaces are concerned, and, rather unsurprisingly, also to be noncompact (see [20]).
Results on the maximal noncompactness of (1.5) are available, too. It was shown
in [21], using extremal properties of certain radially decreasing functions from [36],
that (1.5) is maximally noncompact as long as the measure of Ω is small enough.

A Lorentz-like refinement of (1.5) is possible, too, but the two-parameter scale
of Lorentz spaces is not sufficient for it. The result can be stated for example in
the form

V 1,n
0 (Ω) → L∞,q, 1n− 1

q−1(Ω), (1.6)

where q ∈ [n,∞). The target space L∞,q, 1n−1
q−1(Ω) is an instance of the so-called

Lorentz–Zygmund spaces. Lorentz–Zygmund spaces were introduced in [3] and
further treated e.g. in [37]. For various statements, proofs, and further details
concerning the embedding (1.6), see e.g. [8, 9, 16, 19, 34, 35]. The embed-

ding (1.6) indeed improves (1.5) because L
∞,q1,

1
n− 1

q1
−1

(Ω) ( L
∞,q2,

1
n− 1

q2
−1

(Ω) (
expL

n
n−1 (Ω) for every n ≤ q1 < q2 < ∞. The weak variant of (1.6), corresponding

to q = ∞, reads as
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4 Maximal noncompactness of limiting Sobolev embeddings

V 1,n
0 (Ω) → L∞,∞, 1n−1(Ω). (1.7)

A common feature of the target spaces in (1.4) and (1.7) is that both are exam-
ples, albeit of quite a different nature, of the so-called Marcinkiewicz spaces, which
play an important role for example in interpolation theory, or in the theory of
rearrangement-invariant function spaces. Although the defining functionals for the

spaces expL
n

n−1 (Ω) and L∞,∞, 1n−1(Ω) are equivalent, their mere equivalence is not
enough for deriving the maximal noncompactness of (1.7) from that of (1.5).

The question of whether the refined limiting embeddings (1.6) as well as their
weak variant (1.7) are maximally noncompact has been open. We fill this gap in
this paper. This question is interesting for several reasons. Notably, the target space
in (1.6) is neither a Marcinkiewicz space nor it is disjointly superadditive (the latter
observation, although it is most likely not available in an explicit form, is hidden
in [23], as we shall point out), and so the techniques that successfully worked in
earlier approaches cannot be used here. As for (1.7), although the target space is
a Marcinkiewicz space as in [26], the method used there is not suitable for proving
the maximal noncompactness of (1.7). The reason is that the logarithmic function

defining the Marcinkiewicz space L∞,∞, 1n−1(Ω) grows too slowly (or rather it is too
slowly varying). Nevertheless, the ball measure of noncompactness of embeddings
into Marcinkiewicz spaces and their maximal noncompactness was treated in [33].
Among other things, it was proved there that Marcinkiewicz spaces are more or
less never disjointly superadditive (with a single notable exception when the space
collapses to L1(Ω), which is a theoretical possibility).

We would like to point out that there are some other technical difficulties that one
has to overcome when dealing with (1.6) and (1.7), which are perhaps not entirely
obvious. Notably, the functionals governing the target spaces are, strictly speaking,
not norms, but merely quasinorms. Given the geometric nature of the maximal
noncompactness, this unsurprisingly causes trouble. Although the functionals are
equivalent to norms, this equivalence is not enough when dealing with properties
of such a geometric nature such as the maximal noncompactness of a mapping.

In this paper, we adopt a lateral point of view. Departing from the observation
that Lorentz–Zygmund spaces are special instances of the classical Lorentz spaces
of type Lambda, we first study the rather general question of maximal noncompact-
ness of operators whose target space is one of these spaces. Our universal results
then enable us to solve the open problem in the affirmative, more precisely, we
will show that the embedding (1.6) is maximally noncompact, despite the target
space not being disjointly superadditive nor equipped with a norm. Lacking disjoint
superadditivity and not having the Marcinkiewicz structure at hand, we make use
of other properties possessed by this structure, the key one being the absolute con-
tinuity of the target quasinorm. We will also show the maximal noncompactness of
the embedding (1.7). To this end, we exploit the new technique developed in [33].

Our approach is based on a carefully tailored minimal axiomatization of the
properties of functionals that are needed in order to obtain, as the ultimate goal,
a suitable lower bound for the measure of noncompactness. This allows us to treat
the problem in quite a general setting and to circumvent some of the obstacles. Let
us note that, in particular, we do not require the Fatou property, and we allow for
quasinorms. This broadens the field of applications significantly.
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The axiomatization process leads us to introducing quasi-Köthe function spaces.
We further introduce a new geometric property of functionals, which we call uniform
separation. It is worth noticing that while all α-norms have it, not all quasinorms
do, and, of course, the Aoki–Rolewicz theorem does not help for the same reasons
as those stated above.

2. Preliminaries

Throughout the paper, we assume that (R,µ) is a nonatomic measure space. We
denote by M (R,µ) the set of all µ-measurable functions on R, and by M0(R,µ)
those functions from M (R,µ) that are finite µ-a.e.

Let Y be a quasi-Banach space contained in M0(R,µ) with a quasinorm ‖ · ‖Y .
We say that the quasinorm of Y is absolutely continuous if every f ∈ Y has

absolutely continuous quasinorm—that is,

lim
n→∞

‖fχEn‖Y = 0,

for every sequence {En}∞n=1 ⊆ R of µ-measurable sets such that En → ∅ as n → ∞.
We say that Y is a quasi-Banach lattice if for every f ∈ M0(R,µ) and g ∈ Y

such that |f | ≤ |g| µ-a.e. in R, we have f ∈ Y and ‖f‖Y ≤ ‖g‖Y .
We say that a quasi-Banach lattice Y is a quasi-Köthe function space (cf. [15]) if

for every f ∈ Y and E ⊆ R with µ(E) < ∞, we have χE ∈ Y and fχE ∈ L1(R,µ).
The distributional function of a function f ∈ M (R,µ) is the function

f∗ : (0,∞) → [0,∞] defined as

f∗(λ) = µ({x ∈ R : |f(x)| > λ}), λ ∈ (0,∞).

The nonincreasing rearrangement of f ∈ M (R,µ) is the function f∗ : (0,∞) →
[0,∞] defined as

f∗(t) = inf{λ > 0 : f∗(λ) ≤ t}, t ∈ (0,∞).

The nonincreasing rearrangement satisfies

(f + g)∗(s+ t) ≤ f∗(s) + g∗(t) for every s, t ∈ (0,∞), (2.1)

and every f, g ∈ M0(R,µ).
Let w ∈ M0(0, µ(R)) be a.e. positive and q ∈ (0,∞). The Lambda space Λq

w(R,µ)
is defined as

Λq
w(R,µ) = {f ∈ M (R,µ) : ‖f‖Λq

w(R,µ) < ∞},

where

‖f‖Λq
w(R,µ) =

(∫ µ(R)

0

f∗(t)qw(t) dt

)1
q

, f ∈ M (R,µ).

The functional ‖f‖Λq
w(R,µ) can be expressed as

‖f‖Λq
w(R,µ) =

(
q

∫ ∞

0

W (f∗(t))t
q−1 dt

) 1
q

. (2.2)
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6 Maximal noncompactness of limiting Sobolev embeddings

Note that we have ‖ · ‖Λq
w(R,µ) = ‖ · ‖Lq(R,µ) for w ≡ 1 (e.g. [29]).

From now on, we assume that

0 < W (t) =

∫ t

0

w(s) ds < ∞ for every t ∈ (0, µ(R)), (2.3)

for otherwise Λq
w(R,µ) contains only the zero function.

Despite the terminology, Λq
w(R,µ) need not be a linear set (see [14]). The Lambda

space Λq
w(R,µ) is a quasi-Banach space if and only if (see [10])

sup
t∈(0,µ(R)/2)

W (2t)

W (t)
< ∞. (2.4)

It is easy to see (owing to the dominated convergence theorem) that Λq
w(R,µ) is

a quasi-Banach lattice whose quasinorm is absolutely continuous if (and only if)
Λq
w(R,µ) is a quasi-Banach space. If, in addition,

supt∈(0,a)
tq

W (t) < ∞ if q ∈ (0, 1],∫ a

0

(
t

W (t)

) 1
q−1 dt < ∞ if q ∈ (1,∞),

(2.5)

for every a ∈ (0, µ(R)), then Λq
w(R,µ) is a quasi-Köthe function space (see [41]).

Let µ(R) < ∞ and wp,q,α be defined as

wp,q,α(t) = t
1
p−1

q log
(2µ(R)

t

)α
, t ∈ (0, µ(R)), (2.6)

for p, q ∈ (0,∞] and α ∈ R. The Lorentz–Zygmund spaces Lp,q,α(R,µ) are defined
as

Lp,q,α(R,µ) = {f ∈ M (R,µ) : ‖f‖Lp,q,α(R,µ) = ‖f∗wp,q,α‖Lq(0,µ(R)) < ∞}.

Note that Lp,q,α(R,µ) = Λq

w
q
p,q,α

(R,µ) for q ∈ (0,∞). Furthermore, note that

‖·‖Lp,p,0(R,µ) = ‖·‖Lp(R,µ) for every p ∈ (0,∞]. The spaces Lp,q(R,µ) = Lp,q,0(R,µ)

are often called (two-parameter) Lorentz spaces.
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Straightforward computations show that the Lorentz–Zygmund space
Lp,q,α(R,µ) is a quasi-Köthe function space provided that one of the following
conditions is satisfied:

p = 1, q ∈ (0, 1], and α ≥ 0;

p = 1, q ∈ (1,∞], and α+ 1
q > 1;

p ∈ (1,∞) and q ∈ (0,∞];

p = ∞, q ∈ (0,∞), and α+ 1
q < 0;

p = q = ∞ and α ≤ 0.

(2.7)

Furthermore, if p = q = 1 and α ≥ 0 or p, q ∈ (1,∞) or p = ∞, q ∈ [1,∞), and
α+ 1

q < 0, then ‖ · ‖Lp,q,α is equivalent to a norm and the Lorentz–Zygmund space

Lp,q,α(R,µ) is equivalent to a rearrangement-invariant Banach function space in
the sense of [4] (see [37]).

Given a domain Ω ⊆ Rn of finite measure and p ∈ [1,∞), the first-order homo-
geneous Sobolev space V 1,p

0 (Ω) is the Banach space of all weakly differentiable
functions u on Ω, endowed with the norm ‖u‖

V
1,p
0 (Ω)

= ‖ |∇u| ‖Lp(Ω), whose con-

tinuation by 0 outside Ω is weakly differentiable and whose gradient belongs to
Lp(Ω). The first-order homogeneous Sobolev space V 1

0 L
p,q(Ω) built upon a Lorentz

space Lp,q(Ω) is defined in the same way but with Lp(Ω) replaced by Lp,q(Ω).

3. General theorem on maximal noncompactness

We say that a quasinorm ‖ · ‖Y on a quasi-Banach space Y is uniformly separating
if for every 0 < r < R there is εr,R > 0 such that

‖f + g‖Y ≥ εr,R (3.1)

for every f, g ∈ Y satisfying ‖f‖Y ≥ R > r ≥ ‖g‖Y .
Note that ‖ · ‖Y is uniformly separating if it is an α-norm for some α ∈ (0, 1].

We say that ‖ · ‖Y is an α-norm if

‖f + g‖αY ≤ ‖f‖αY + ‖g‖αY for every f, g ∈ Y.

Obviously, a 1-norm is a norm. When ‖ · ‖Y is an α-norm, then

‖f + g‖Y ≥
(
‖f‖αY − ‖g‖αY

) 1
α ≥ εr,R =

(
Rα − rα

) 1
α > 0

for every f, g ∈ Y such that ‖f‖Y ≥ R > r ≥ ‖g‖Y . A pivotal example of an
α-norm that is not a norm is the Lp-quasinorm for p ∈ (0, 1). A less obvious one is
the Lorentz L1,q-quasinorm for q ∈ (0, 1), which is a q-norm. Although not every
quasinorm is an α-norm for some α, every quasinorm is equivalent to some α-
norm by virtue of the Aoki–Rolewicz theorem (e.g. [5, proposition H.2]). However,
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8 Maximal noncompactness of limiting Sobolev embeddings

even though every quasinorm is equivalent to an α-norm, not every quasinorm is
uniformly separating. To this end, let Y = R2 and endow it with the quasinorm
defined as

‖(x, y)‖Y =

2|x| if y = 0,

|x|+ |y| if y 6= 0.

Now, set r = 3/2 and R=2. Let δ ∈ (0, 1/2), and consider f = (1, 0) and g =
(−1, δ). Then ‖f‖Y = R > r ≥ ‖g‖Y , but ‖f + g‖Y = ‖(0, δ)‖Y = δ.

Having defined what uniformly separating quasinorms are, we are in a position
to state and prove our main general theorem suitable for establishing lower bounds
on the ball measure of noncompactness. Recall that the ball measure of noncom-
pactness of a bounded positively homogeneous operator T : X → Y , where X and
Y are quasi-Banach spaces, is defined as

β(T : X → Y ) = inf
{
% > 0 : there are m ∈ N and {yj}mj=1 ⊆ Y such that

T (BX) ⊆
m⋃
j=1

(yj + %BX)
}
.

Here (and below), BX is the closed unit ball of X. An operator T : X → Y is said
to be positively homogeneous if ‖T (αx)‖Y = α‖Tx‖Y for every x ∈ X and every
scalar α> 0.

Theorem 3.1 Let T be a bounded positively homogeneous operator from a quasi-
Banach space X to a quasi-Köthe function space Y ⊆ M0(R,µ), where (R,µ) is
a σ-finite measure space. Assume that Y has absolutely continuous and uniformly
separating quasinorm.

Let λ> 0. If there is a sequence {xj}∞j=1 ⊆ BX such that

suppTxj → ∅ as j → ∞ (3.2)

and

‖Txj‖Y ≥ λ for every j ∈ N, (3.3)

then β(T : X → Y ) ≥ λ.
In particular, if such a sequence {xj}∞j=1 exists for every λ ∈ (0, ‖T‖X→Y ), then

the operator T is maximally noncompact.

Proof. Set β = β(T : X → Y ). Suppose that β < λ. Let {xj}∞j=1 ⊆ BX be a
sequence satisfying (3.2) and (3.3). Fix any r ∈ (β, λ). Since r > β, it follows from
the definition of the measure of noncompactness that there arem ∈ N and functions
{gk}mk=1 ⊆ Y such that

T (BX) ⊆
m⋃

k=1

(
gk + rBY

)
. (3.4)

Thanks to (3.4), for every j ∈ N there is kj ∈ {1, . . . ,m} such that

‖Txj − gkj‖Y ≤ r. (3.5)
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Set

hj = gkjχsuppTxj
for every j ∈ N.

Clearly

|hj − Txj | ≤ |gkj − Txj | µ-a.e. in R for every j ∈ N.

Owing to this and the monotonicity of ‖ · ‖Y , it follows from (3.5) that

‖hj − Txj‖Y ≤ r for every j ∈ N. (3.6)

Now, on the one hand, we can write

‖hj‖Y = ‖Txj + hj − Txj‖Y ,

and so, applying (3.1) to f = Txj and g = hj − Txj , we get, thanks to (3.3) and
(3.6), that

‖hj‖Y > εr,λ for every j ∈ N, (3.7)

in which εr,λ > 0 is independent of j. On the other hand, since

supphj ⊆ suppTxj → ∅ as j → ∞

and

|hj | ≤
m∑

k=1

|gk| ∈ Y µ-a.e. in R for every j ∈ N,

it follows from the absolute continuity of the ‖·‖Y -quasinorm that (see [4, chapter 1,
proposition 3.6])

lim
j→∞

‖hj‖Y = 0. (3.8)

However, (3.7) and (3.8) contradict each other. It thus follows that β ≥ λ, as
desired. �

Remarks 3.2.

1. In particular, the assumptions on Y in the preceding theorem are satis-
fied when Y is a Banach function space (in the sense of [4]) whose norm
is absolutely continuous.

2. Loosely speaking, a function from a quasi-Köthe function space Y has abso-
lutely continuous quasinorm ‖·‖Y if and only if it can be used as a dominating
function for which a suitable dominated convergence theorem for ‖·‖Y is valid.
Such a characterization is well known, but it is usually stated with unneces-
sary assumptions. For example, it is proved in [4, chapter 1, proposition 3.6],
which is referenced in the preceding proof, but Y is assumed there to be a
Banach function space. However, one can readily verify that the proof carries
over verbatim for quasi-Köthe function spaces.
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10 Maximal noncompactness of limiting Sobolev embeddings

3. The assumption (3.2) requires the supports of {Txj}∞j=1 to vanish pointwise
µ-a.e. Note that this is a more general assumption than requiring the measure
of the supports to vanish. If the measure of the supports vanishes, then (3.2)
is satisfied, but the opposite implication is valid only for finite measures in
general.

4. Even though we assume that (R,µ) is nonatomic throughout the paper,
theorem 3.1 and its proof are valid for any σ-finite measure space.

5. The assumption that ‖ · ‖Y is absolutely continuous is necessary, as the
following simple example reveals. Consider X = `1, Y = `∞, and let T
be the embedding operator I : `1 → `∞. Then all the other assumptions
of theorem 3.1 are satisfied—in particular, the sequence {ej}∞j=1 satisfies

supp ej → ∅ and ‖ej‖Y = ‖T‖ = 1, but T is not maximally noncompact;
in fact, we have β(T ) = 1

2 (cf. [27, example, page 9408]).
6. The maximal noncompactness of the nonlimiting Sobolev embeddings (1.1)

and (1.3) can be easily obtained as a simple corollary of theorem 3.1.

The following proposition can be used for verifying that the assumptions on Y
in theorem 3.1 for Y = Λq

w(R,µ) are satisfied.

Proposition 3.3. Let q ∈ (0,∞). Let w : (0, µ(R)) → (0,∞) be continuous, and
assume that (2.3), (2.4), and (2.5) are satisfied. Furthermore, set

Θ(λ) = sup
t∈(0,λµ(R))

w
(
t
λ

)
λw(t)

, λ ∈ (0, 1), (3.9)

and assume that Θ(λ) is finite for every λ ∈ (0, 1) and that

inf
λ∈(0,1)

Θ(λ) ≤ 1. (3.10)

Then the Lambda space Y = Λq
w(R,µ) satisfies the assumptions on Y in the-

orem 3.1—in other words, it is a quasi-Köthe function space with absolutely
continuous and uniformly separating quasinorm.

Proof. Recall that, since the assumptions (2.3), (2.4), and (2.5) on w are satisfied,
Λq
w(R,µ) is a quasi-Köthe function space with absolutely continuous quasinorm.
Let f, g ∈ Λq

w(R,µ) be such that

‖g‖Λq
w(R,µ) ≥ R > r ≥ ‖f‖Λq

w(R,µ). (3.11)

We need to show that

‖f + g‖Λq
w(R,µ) ≥ εr,R (3.12)

for some εr,R > 0 independent of the functions f, g. Clearly, we may assume that
‖f‖Λq

w(R,µ) > 0. Let λ ∈ (0, 1). Using (2.1), we have

‖g‖Λq
w(R,µ) ≤ ‖(f + g)∗(λt)w(t)

1
q ‖Lq(0,µ(R))

+ ‖f∗((1− λ)t)w(t)
1
q ‖Lq(0,µ(R)). (3.13)
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Next, using (3.9), we have

‖(f + g)∗(λt)w(t)
1
q ‖qLq(0,µ(R)) =

∫ µ(R)

0

(f + g)∗(λt)qw(t) dt

=

∫ λµ(R)

0

(f + g)∗(t)qw
( t

λ

)
λ−1 dt

≤ Θ(λ)‖f + g‖q
Λ
q
w(R,µ)

.

Replacing f + g with f and λ with 1− λ, we also obtain

‖f∗((1− λ)t)w(t)
1
q ‖Lq(0,µ(R)) ≤ Θ(1− λ)

1
q ‖f‖Λq

w(R,µ).

Combining these two estimates with (3.13), we arrive at

‖g‖Λq
w(R,µ) ≤ Θ(λ)

1
q ‖f + g‖Λq

w(R,µ) +Θ(1− λ)
1
q ‖f‖Λq

w(R,µ).

Hence

‖ f + g ‖Λq
w(R,µ)≥ Θ(λ)−

1
q (‖ g ‖Λq

w(R,µ) −Θ(1− λ)
1
q ‖ f ‖Λq

w(R,µ)) (3.14)

for every λ ∈ (0, 1).
Now, since r <R, we can find λ0 ∈ (0, 1) such that

R−Θ(1− λ0)
1
q r > 0,

thanks to (3.10). Finally, combining this with (3.14) and (3.11), we obtain

‖f + g‖Λq
w(R,µ) ≥ Θ(λ0)

− 1
q
(
R−Θ(1− λ0)

1
q r
)
> 0.

Therefore, (3.12) is valid with εr,R = Θ(λ0)
− 1

q
(
R−Θ(1− λ0)

1
q r
)
. �

Remark 3.4. Simple—yet important—examples of Lambda spaces Λq
w(R,µ) to

which proposition 3.3 applies are Lorentz spaces Lp,q(R,µ) with either p=1 and
q ∈ (0, 1] or p ∈ (1,∞) and q ∈ (0,∞).

Another example, which will be important in the next section, is provided by
Lorentz–Zygmund spaces Lp,q,α(R,µ), where µ(R) < ∞, q ∈ (0,∞), and one of the
conditions (2.7) is satisfied. Recall that the weight w is defined by (2.6). To this
end, when α ≥ 0, note that

Θ(λ) = λ− q
p lim

t→0+

(
1 + log

(λµ(R)
t

))αq
1 + log

(µ(R)
t

)αq = λ− q
p ,
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12 Maximal noncompactness of limiting Sobolev embeddings

for every λ ∈ (0, 1). On the other hand, when α< 0, we have

Θ(λ) = λ− q
p lim

t→λµ(R)−

(
1 + log

(λµ(R)
t

))αq(
1 + log

(µ(R)
t

))αq = λ− q
p
log(2)αq

log
(
2
λ

)αq ,
for every λ ∈ (0, 1), and limλ→1− Θ(λ) = 1.

An important feature of theorem 3.1 is that it does not require ‖ · ‖Y to be
disjointly superadditive nor a norm. Consequently, we will be able to use it to prove
the maximal noncompactness of the limiting Sobolev embeddings of type (1.6).

We conclude this section with a characterization of when the Lambda spaces
Λq
w(R,µ) are disjointly superadditive. As a corollary, we will obtain that the

Lorentz–Zygmund spaces with p = ∞ (in particular, those of Brezis–Wainger type,
appearing in (1.6)) are never disjointly superadditive. Note that the following char-
acterization was already obtained in [23, theorem 7] (see also references therein),
but its proof is omitted there. We prove it here for the reader’s convenience.

Proposition 3.5. Let q ∈ (0,∞). The Lambda space Λq
w(R,µ) with a weight w

satisfying (2.3) and (2.4) is γ-disjointly superadditive if and only if γ ≥ q and the

function t 7→ W (t)t−
q
γ is equivalent to a nondecreasing function on (0, µ(R)).

Proof. Assume that Λq
w(R,µ) is γ-disjointly superadditive.

By [23, theorem 1], there are constants C1, C2 > 0 and functions
{fj}∞j=1 such that their supports are mutually disjoint, ‖fj‖Λq

w(R,µ) = 1 and

Cq
1

∑∞
j=1 |αj |q ≤ ‖

∑∞
j=1 αjfj‖qΛq

w(R,µ)
≤ Cq

2

∑∞
j=1 |αj |q for every {αj}∞j=1 ⊆ `q.

This combined with the γ-disjoint superadditivity of Λq
w(R,µ) implies that

∞∑
j=1

|αj |γ ≤ CCγ
2

 ∞∑
j=1

|αj |q


γ
q

for every {αj}∞j=1 ⊆ `q. In other words, `q ⊆ `γ ; hence γ ≥ q.

Next, we show that the function t 7→ W (t)t−
q
γ is equivalent to a nondecreasing

function—namely

F (t) = sup
s∈(0,t]

W (s)s−
q
γ , t ∈ (0, µ(R)).

On the one hand, we clearly have W (t)t−
q
γ ≤ F (t) for every t ∈ (0, µ(R)). On the

other hand, we claim that

F (t) ≤ (2C)
q
γW (t)t−

q
γ for every t ∈ (0, µ(R)). (3.15)

To this end, fix 0 < s ≤ t < µ(R) and set k = b t
sc. Note that k ≤ t

s ≤ 2k. Since
(R,µ) is nonatomic, there are disjoint sets {Ej}kj=1 ⊆ R such that µ(Ej) =

t
k for
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every j = 1, . . . , k. Combining this with the γ-disjoint superadditivity of Λq
w(R,µ),

we obtain

W (t)
γ
q = ‖χ(0,t)w‖

γ
q

L1(0,µ(R))
=
∥∥∥ k∑

j=1

χEj

∥∥∥γ
Λ
q
w(R,µ)

≥ 1

C

k∑
j=1

‖χEj
‖γ
Λ
q
w(R,µ)

=
k

C
W
( t
k

)γ
q ≥ t

2C

W (s)
γ
q

s
,

whence (3.15) follows.
Now, assume γ ≥ q and that there is a nondecreasing function F (t) such that

K1F (t) ≤ W (t)t−
q
γ ≤ K2F (t) for some K1,K2 > 0 and every t ∈ (0, µ(R)). Set

V (t) =

∫ t

0

F (s)
γ
q ds, t ∈ [0, µ(R)).

Since the function F
γ
q is nondecreasing, V is convex. We clearly also have V (0) = 0.

It follows that V is superadditive.
Next, we claim that

K
γ
q
1 V (t) ≤ W (t)

γ
q ≤ 2K3K

γ
q
2 V (t) for every t ∈ (0, µ(R)), (3.16)

where K 3 is the supremum in (2.4). To this end, on the one hand, we have

V (t) ≤ tF (t)
γ
q ≤ K

−γ
q

1 W (t)
γ
q

thanks to the monotonicity of F
γ
q . On the other hand, using (2.4), we obtain

V (t) ≥ 1

K
γ
q
2

∫ t

t
2

W (s)
γ
q

s
ds ≥

W ( t2 )
γ
q

2K
γ
q
2

≥ W (t)
γ
q

2K3K
γ
q
2

.

Now, let k ∈ N and {fj}kj=1 ⊆ Λq
w(R,µ) be functions having pairwise dis-

joint supports. Since their supports are disjoint, we have (
∑k

j=1 fj)∗ =
∑k

j=1(fj)∗.
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14 Maximal noncompactness of limiting Sobolev embeddings

Combining this, (2.2), (3.16), and the superadditivity of V, we obtain

∥∥∥ k∑
j=1

fj

∥∥∥q
Λ
q
w(R,µ)

= q

∫ µ(R)

0

W
( k∑

j=1

(fj)∗(t)
)
tq−1 dt

= q

∫ µ(R)

0

(
W
( k∑

j=1

(fj)∗(t)
)γ

q

) q
γ

tq−1 dt

≥ qK1

∫ µ(R)

0

V
( k∑

j=1

(fj)∗(t)
) q

γ
tq−1 dt

≥ qK1

∫ µ(R)

0

( k∑
j=1

V ((fj)∗(t))
) q

γ
tq−1 dt

= qK1

∥∥∥ k∑
j=1

V ((fj)∗(t))t
γ(q−1)

q

∥∥∥ q
γ

L
q
γ (0,µ(R))

,

whence

∥∥∥ k∑
j=1

fj

∥∥∥γ
Λ
q
w(R,µ)

≥ (qK1)
γ
q

∥∥∥ k∑
j=1

V ((fj)∗(t))t
γ(q−1)

q

∥∥∥
L

q
γ (0,µ(R))

. (3.17)

Since q
γ ∈ (0, 1] and the functions t 7→ V ((fj)∗(t))t

γ(q−1)
q , j = 1, . . . , k, are nonneg-

ative, we can use the reverse triangle inequality for the ‖ · ‖
L

q
γ (0,µ(R))

quasinorm

to obtain

∥∥∥ k∑
j=1

V ((fj)∗(t))t
γ(q−1)

q

∥∥∥
L

q
γ (0,µ(R))

≥
k∑

j=1

‖V ((fj)∗(t))t
γ(q−1)

q ‖
L

q
γ (0,µ(R))

. (3.18)

Finally, combining (3.17) and (3.18) together with using (2.2) and (3.16) again,
we arrive at

∥∥∥ k∑
j=1

fj

∥∥∥γ
Λ
q
w(R,µ)

≥ (qK1)
γ
q

k∑
j=1

‖V ((fj)∗(t))t
γ(q−1)

q ‖
L

q
γ (0,µ(R))

≥ (K1)
γ
q

2K3K
γ
q
2

q
γ
q

k∑
j=1

‖W ((fj)∗(t))
γ
q t

γ(q−1)
q ‖

L
q
γ (0,µ(R))

=
(K1)

γ
q

2K3K
γ
q
2

k∑
j=1

‖fj‖γΛq
w(R,µ)

.

�
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Corollary 3.6. Let γ > 0 and q ∈ (0,∞). Let either p ∈ (0,∞) and α ∈ R or
p = ∞ and α + 1

q < 0. The Lorentz–Zygmund space Lp,q,α(R,µ) is γ-disjointly
superadditive if and only if

• 0 < p < q ≤ γ or
• 0 < q ≤ p < γ or
• 0 < q ≤ p = γ and α ≤ 0.

4. Maximal noncompactness of limiting Sobolev embeddings

In this section, we will finally prove that the limiting Sobolev embeddings (1.6)
and (1.7) are maximally noncompact.

Theorem 4.1 Let Ω ⊆ Rn be a domain with |Ω| < ∞. Assume that n ∈ N, n ≥ 2,
and q ∈ [n,∞]. Set α = −1 + 1

n − 1
q . Then the Sobolev embedding

V 1,n
0 (Ω) ↪→ L∞,q,α(Ω), (4.1)

is maximally noncompact.

Proof. We may assume without loss of generality that 0 ∈ Ω.
Fix any λ ∈ (0, ‖I‖), where ‖I‖ is the norm of the embedding (4.1). Since

λ < ‖I‖, we can find a function u ∈ B
V
1,n
0 (Ω)

such that ‖u‖L∞,q,α(Ω) > λ. Let BR ⊆
Rn be the ball centered at the origin with radius R such that |BR| = |Ω|. It follows
from the Pólya-Szegő inequality (e.g. [28, chapter 15], see also [13, lemma 4.1]) that
uF ∈ B

V
1,n
0 (BR)

, where uF is the spherically symmetric rearrangement of u. Recall

that uF is defined as

uF(x) = u∗(ωn|x|n), x ∈ Rn.

Moreover, since the functions u and uF are equimeasurable (i.e. their distributional
functions are the same) and |BR| = |Ω|, we have

‖uF‖L∞,q,α(BR) = ‖u‖L∞,q,α(Ω) > λ.

Furthermore, by using a suitable sequence of cutoff functions, there is a
sequence of radially symmetric functions {vj}∞j=1 ⊆ B

V
1,n
0 (BR)

such that

‖vj‖L∞,q,α(BR) ↗ ‖uF‖L∞,q,α(BR) and supp vj ↗ suppuF as j → ∞. Hence, there
is a function

v ∈ B
V
1,n
0 (BR)

(4.2)

such that supp v ⊆ BR̃ for some R̃ ∈ (0, R), v = vF, and

‖v‖L∞,q,α(BR) > λ. (4.3)
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16 Maximal noncompactness of limiting Sobolev embeddings

Now, for every κ ∈ (0, 1), we define the function vκ ∈ V 1,n
0 (BR) (cf. [22]) as

vκ(x) = κ−1+ 1
n v

(
|x|κ−1

(2
1
nR)κ−1

x

)

= κ−1+ 1
n v∗

(
ωn

(
|x|κ

(2
1
nR)κ−1

)n)
, x ∈ Rn.

Note that vκ is supported inside BRκ , where

Rκ = 2
κ−1
nκ

(
R̃

R

) 1
κ

R.

Since Rκ → 0 as κ → 0+, we have

supp vκ → ∅ as κ → 0+. (4.4)

Let κ0 ∈ (0, 1) be such that supp vκ ( Ω∩BR for every κ ∈ (0, κ0). Fix arbitrary
κ ∈ (0, κ0). Since supp vκ ( Ω, we have vκ ∈ V 1,n

0 (Ω). Before we can conclude the
proof, we need to observe three things.

First, we have

‖∇vκ‖Ln(BR) = ‖∇v‖Ln(BR). (4.5)

To this end, it can be easily verified that

|∇v(x)| = φ(|x|) for a.e. x ∈ Rn,

where

φ(t) = −(v∗)′(ωnt
n)nωnt

n−1,

and that

|∇vκ(x)| = κ
1
nφ

(
|x|κ

(2
1
nR)κ−1

)
|x|κ−1

(2
1
nR)κ−1

for a.e. x ∈ Rn.

Hence

‖∇vκ‖nLn(BR) = nωnκ

∫ R

0

φ

(
rκ

(2
1
nR)κ−1

)n
rn(κ−1)

(2
1
nR)n(κ−1)

rn−1 dr

= nωnκ

∫ R

0

(
φ

(
rκ

(2
1
nR)κ−1

)
rκ

(2
1
nR)κ−1

)n
dr

r

= nωnκ

∫ 2
1−κ
n R

0

φ(s)nsnκ−1s−
1
κ s

1
κ−1 ds

= ωnn

∫ R

0

φ(s)nsn−1 ds

= ‖∇v‖nLn(BR).
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Here we used the fact that 2
1−κ
n > 1 in the next to last equality. Therefore, since

supp vκ ⊆ Ω, we arrive at

vκ ∈ B
V
1,n
0 (Ω)

(4.6)

by combining (4.2) and (4.5).
Second, note that vκ(x) = g(ωn|x|n), where g : (0,∞) → [0,∞) is defined as

g(t) = κ−1+ 1
n v∗

(
(2|BR|)1−κtκ

)
, t ∈ (0,∞), (4.7)

is nonincreasing.
Third, we have

‖vκ‖L∞,q,α(BR) = ‖v‖L∞,q,α(BR). (4.8)

Indeed, if q ∈ [n,∞), using (4.7), we obtain

‖vκ‖qL∞,q,α(BR) = κq(−1+ 1
n )

∫ |BR|

0

v∗
(
(2|BR|)1−κtκ

)q
log

(
2|BR|

t

)αq
dt

t

= κq(−1+ 1
n )−1

∫ 21−κ|BR|

0

v∗(s)q log

((
2|BR|

s

) 1
κ
)αq

ds

s

= κq(−1+ 1
n )−1−αq

∫ 21−κ|BR|

0

v∗ (s)
q
log

(
2|BR|

s

)αq
ds

s

=

∫ |BR|

0

v∗ (s)
q
log

(
2|BR|

s

)αq
ds

s

= ‖v‖qL∞,q,α(BR).

Here we also used the fact that 21−κ > 1 in the next to last equality. If q = ∞, we
proceed similarly. We have

‖vκ‖L∞,∞,α(BR) = κ−1+ 1
n sup

t∈(0,|BR|)
v∗
(
(2|BR|)1−κtκ

)
log

(
2|BR|

t

)−1+ 1
n

= κ−1+ 1
n sup

t∈(0,21−κ|BR|)
v∗(t) log

(2|BR|
t

) 1
κ

−1+ 1
n

= ‖v‖L∞,∞,α(BR).

Therefore, since supp vκ ⊆ Ω ∩BR and |BR| = |Ω|, we obtain

‖vκ‖L∞,q,α(Ω) > λ (4.9)

by combining (4.3) and (4.8).
Finally, in view of (4.4), (4.6), and (4.9), the maximal noncompactness of the

embedding (4.1) follows from either theorem 3.1 together with remark 3.4 if
q ∈ [n,∞) or [33, corollary 3.3] if q = ∞. �
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