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Estimates for generalized Bohr radii in one
and higher dimensions
Nilanjan Das

Abstract. In this article, we study a generalized Bohr radius Rp,q(X), p, q ∈ [1,∞) defined for a
complex Banach space X. In particular, we determine the exact value of Rp,q(C) for the cases (i)
p, q ∈ [1, 2], (ii) p ∈ (2,∞), q ∈ [1, 2], and (iii) p, q ∈ [2,∞). Moreover, we consider an n-variable
version Rn

p,q(X) of the quantity Rp,q(X) and determine (i) Rn
p,q(H) for an infinite-dimensional

complex Hilbert space H and (ii) the precise asymptotic value of Rn
p,q(X) as n →∞ for finite-

dimensional X. We also study the multidimensional analog of a related concept called the p-Bohr
radius. To be specific, we obtain the asymptotic value of the n-dimensional p-Bohr radius for bounded
complex-valued functions, and in the vector-valued case, we provide a lower estimate for the same,
which is independent of n.

1 Introduction and the main results

The celebrated theorem of Harald Bohr [13] states (in sharp form) that for any
holomorphic self-mapping f (z) = ∑∞n=0 anzn of the open unit disk D,

∞
∑
n=0

∣an ∣rn ≤ 1

for ∣z∣ = r ≤ 1/3, and this quantity 1/3 is the best possible. Inequalities of the above
type are commonly known as Bohr inequalities nowadays, and appearance of any such
inequality in a result is generally termed as the occurrence of the Bohr phenomenon.
This theorem was an outcome of Bohr’s investigation on the “absolute convergence
problem” of ordinary Dirichlet series of the form ∑ an n−s , and did not receive much
attention until it was applied to answer a long-standing question in the realm of
operator algebras in 1995 (cf. [19]). Starting there, the Bohr phenomenon continues
to be studied from several different aspects for the last two decades, for example,
in certain abstract settings (cf. [1]), for ordinary and vector-valued Dirichlet series
(see, f.i., [3, 15]), for uniform algebras (see [28]), for free holomorphic functions (cf.
[30]), for a Faber–Green condenser (see [26]), for vector-valued functions (cf. [17,
23, 24]), for Hardy space functions (see [5]), and for functions in several variables
(see, for example, [2, 8, 12, 21, 29]). We also urge the reader to glance through the
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references of these abovementioned articles to get a more complete picture of the
recent developments in this area.

We will now concentrate on a variant of the Bohr inequality, introduced for the
first time in [9] in order to investigate the Bohr phenomenon on Banach spaces. Let
us start by defining an n-variable analog of this modified inequality. For this pur-
pose, we need to introduce some concepts. Let Dn = {(z1 , z2 , . . . , zn) ∈ Cn ∶ ∥z∥∞ ∶=
max1≤k≤n ∣zk ∣ < 1} be the open unit polydisk in the n-dimensional complex plane Cn ,
and let X be a complex Banach space. Any holomorphic function f ∶ Dn → X can be
expanded in the power series

f (z) = x0 + ∑
∣α∣∈N

xα zα , xα ∈ X ,(1.1)

for z ∈ Dn . Here and hereafter, we will use the standard multi-index notation: α
denotes an n-tuple (α1 , α2 , . . . , αn) of nonnegative integers, ∣α∣ ∶= α1 + α2 +⋯+ αn ,
α! ∶= α1!α2!⋯αn!, z denotes an n-tuple (z1 , z2 , . . . , zn) of complex numbers, and
zα is the product zα1

1 zα2
2 ⋯zαn

n . For 1 ≤ p, q < ∞ and for any f as in (1.1) with
∥ f ∥H∞(Dn ,X) ≤ 1, we denote

Rn
p,q( f , X) = sup

⎧⎪⎪⎨⎪⎪⎩
r ≥ 0 ∶ ∥x0∥p +

⎛
⎝
∞
∑
k=1

∑
∣α∣=k

∥xα zα∥
⎞
⎠

q

≤ 1 for all z ∈ rDn
⎫⎪⎪⎬⎪⎪⎭

,

where H∞(Dn , X) is the space of bounded holomorphic functions f from D
n to X

and ∥ f ∥H∞(Dn ,X) = supz∈Dn ∥ f (z)∥. We further define

Rn
p,q(X) = inf {Rn

p,q( f , X) ∶ ∥ f ∥H∞(Dn ,X) ≤ 1}.

Following the notations of [9], throughout this article, we will use Rp,q( f , X) for
R1

p,q( f , X) and Rp,q(X) for R1
p,q(X). Clearly, R1,1(C) = 1/3. The reason for reshaping

the original Bohr inequality in the above fashion becomes clear from [9, Theorem
1.2], which shows that the notion of the classical Bohr phenomenon is not very useful
for dim(X) ≥ 2. For a given pair of p and q in [1,∞), it is known from the results
of [9] that depending on X, Rp,q(X) may or may not be zero. A characterization
theorem in this regard has further been established in [6]. However, the question of
determination of the exact value of Rp,q(X) is challenging, and to the best of our
knowledge, there is lack of progress on this problem—even for X = C. In fact, only
known optimal result in this direction is the following:

Rp,1(C) =
p

2 + p
(1.2)

for 1 ≤ p ≤ 2 (cf. [9, Proposition 1.4]), along with rather recent generalizations of (1.2)
(see, for example, [27]). This motivates us to address this problem in the first theorem
of this article.

Theorem 1.1 Given p, q ∈ [1,∞), let us denote

Ap,q(a) = (1 − ap)
1
q

1 − a2 + a(1 − ap)
1
q

, a ∈ [0, 1)

https://doi.org/10.4153/S0008439522000674 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439522000674


684 N. Das

and

Sp,q(a) =
⎛
⎝

(1 − ap)
2
q

1 − a2 + (1 − ap)
2
q

⎞
⎠

1
2

, a ∈ [0, 1).

Furthermore, let â be the unique root in (0, 1) of the equation

x p + xq = 1.(1.3)

Then

Rp,q(C) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

inf
a∈[â ,1)

Ap,q(a) if p, q ∈ [1, 2],

min{(1/
√

2), inf
a∈[â ,1)

Ap,q(a)} if p ∈ (2,∞) and q ∈ [1, 2],

1/
√

2 if p, q ∈ [2,∞).

For p ∈ [1, 2] and q ∈ (2,∞), R2,q(C) = 1/
√

2, Rp,q(C) = inf a∈[â ,1) Ap,q(a) if p < 2
and in addition the inequality

qâ2 + pâp+2 ≤ pâp + qâp+2(1.4)

is satisfied. In all other scenarios, we have, in general,

0 < inf
a∈[0,1)

Sp,q(a) ≤ Rp,q(C) ≤
1√
2

.(1.5)

Remarks 1.2 (a) A closer look at the proof of Theorem 1.1 reveals that the
conclusions of this theorem remain unchanged if the interval [1, 2] is replaced
by (0, 2] everywhere in its statement. However, doing so includes cases where
positive Bohr radius is nonexistent; for example, Rp,q(C) = inf a∈[â ,1) Ap,q(a) ≤
lima→1− Ap,q(a) = 0 if 0 < q < 1. Therefore, throughout this paper, we stick to the
assumption p, q ≥ 1.

(b) Following methods similar to the proof of Theorem 1.1, it is easy to see that for
any given complex Hilbert spaceHwith dimension at least 2, the following statements
are true:
(i) For p, q ∈ [2,∞), Rp,q(H) = 1/

√
2.

(ii) For p ∈ [1, 2) and q ∈ [2,∞), inequalities (1.5) are satisfied with Rp,q(C)
replaced by Rp,q(H).

Note that the assumption q ≥ 2 is justified by [6, Corollary 4]. Later, in Theorem
1.4, we obtain a more complete result for dim(H) = ∞.

We now turn our attention to the Bohr radius Rn
p,q(X), where X is a complex

Banach space. The first question we encounter is the identification of the Banach
spaces X with Rn

p,q(X) > 0, which is in fact equivalent to the one-dimensional version
of the same problem.

Proposition 1.3 For any given n ∈ N and p, q ∈ [1,∞), Rn
p,q(X) > 0 for some complex

Banach space X if and only if Rp,q(X) > 0 for the same Banach space X.
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Note that from [6, Theorem 1], it is known that Rp,q(X) > 0 if and only if there
exists a constant C such that

ΩX(δ) ≤ C ((1 + δ)q − (1 + δ)q−p)1/q(1.6)

for all δ ≥ 0. We mention here that for any δ ≥ 0, ΩX(δ) is defined to be the supremum
of ∥y∥ taken over all x , y ∈ X such that ∥x∥ = 1 and ∥x + zy∥ ≤ 1 + δ for all z ∈ D (see
[22]). Now, in view of the above discussion, it looks appropriate to consider the Bohr
phenomenon, i.e., studying Rn

p,q(X) for particular Banach spaces X. We resolve this
problem completely for X =H—a complex Hilbert space of infinite dimension. While
this question remains open for dim(H) < ∞, we succeed in determining the correct
asymptotic behavior of Rn

p,q(X) as n →∞ for any finite-dimensional complex Banach
space X with Rp,q(X) > 0.

Theorem 1.4 For any given n ∈ N, p ∈ [1,∞), q ∈ [2,∞) and for any infinite-
dimensional complex Hilbert space H,

Rn
p,q(H) = inf

a∈[0,1)
(1 − (1 − (Sp,q(a))2) 1

n )
1
2 ,

Sp,q(a) as defined in the statement of Theorem 1.1. For any complex Banach space X
with dim(X) < ∞ and with Rp,q(X) > 0, we have

lim
n→∞

Rn
p,q(X)

√
n

log n
= 1.

At this point, we like to discuss another interesting related concept called the p-
Bohr radius. First, we pose an n-variable version of the definition of p-Bohr radius
given in [10]. For any p ∈ [1,∞) and for any complex Banach space X, we denote

rn
p( f , X) = sup

⎧⎪⎪⎨⎪⎪⎩
r ≥ 0 ∶ ∥x0∥p +

∞
∑
k=1

∑
∣α∣=k

∥xα zα∥p ≤ 1 for all z ∈ rDn
⎫⎪⎪⎬⎪⎪⎭

,

where f is as given in (1.1) with ∥ f ∥H∞(Dn ,X) ≤ 1, and then define the n-dimensional
p-Bohr radius of X by

rn
p(X) = inf {rn

p( f , X) ∶ ∥ f ∥H∞(Dn ,X) ≤ 1}.

Again, following the notations of [10], we will write rp( f , X) for r1
p( f , X) and rp(X)

for r1
p(X). Clearly, for X = C, one only needs to consider p ∈ [1, 2), as rn

p(C) = 1 for all
p ≥ 2 and for any n ∈ N. The quantities rp(C) and rn

p(C) were first considered in [20].
Unlike Rp,q(C), a precise value of rp(C) has already been obtained in [25]. We make
further progress by determining the asymptotic behavior of rn

p(C) for all p ∈ (1, 2)
(the case p = 1 is already resolved) in the first half of Theorem 1.5.

On the other hand, to get a nonzero value of rn
p(X) where dim(X) ≥ 2, one

necessarily has to consider p ≥ 2 and work with p-uniformly PL-convex complex
Banach spaces X. A complex Banach space X is said to be p-uniformly PL-convex
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(2 ≤ p < ∞) if there exists a constant λ > 0 such that

∥x∥p + λ∥y∥p ≤ 1
2π ∫

2π

0
∥x + e iθ y∥pdθ(1.7)

for all x , y ∈ X. Denote by Ip(X) the supremum of all λ satisfying (1.7). Now, if
we assume rn

p(X) > 0 for some n ∈ N, then evidently rp(X) > 0 (as any member of
H∞(D, X) can be considered as a member of H∞(Dn , X) as well), and therefore
[10, Theorem 1.10] asserts that X is p-uniformly C-convex, which is equivalent to
saying that X is p-uniformly PL-convex. The second half of our upcoming theorem
shows that for any p-uniformly PL-convex complex Banach space X (p ≥ 2) with
dim(X) ≥ 2, the Bohr radius rn

p(X) > 0 for all n ∈ N and unlike rn
p(C) or Rn

p,q(X),
rn

p(X) does not converge to 0 as n →∞.

Theorem 1.5 For any p ∈ (1, 2) and n > 1, we have

rn
p(C) ∼ (

log n
n

)
2−p
2p

.

For any p-uniformly PL-convex (p ≥ 2) complex Banach space X with dim(X) ≥ 2, we
have

(
Ip(X)

2p + Ip(X))
2
p

≤ rn
p(X) ≤ 1

for all n ∈ N.

We clarify that for any two sequences {pn} and {qn} of positive real numbers, we
write pn ∼ qn if there exist constants C , D > 0 such that Cqn ≤ pn ≤ Dqn for all n > 1.
In Section 2, we will give the proofs of all the results stated so far.

2 Proofs of the main results

We start by recalling the following result of Bombieri (cf. [14]), which is at the heart
of the proof of our Theorem 1.1.

Theorem A For any holomorphic self-mapping f (z) = ∑∞n=0 anzn of the open unit
disk D,

∞
∑
n=1

∣an ∣rn ≤
⎧⎪⎪⎨⎪⎪⎩

r(1−a2)
1−ar for r ≤ a,

r
√

1−a2√
1−r2 for r ∈ [0, 1) in general,

where ∣z∣ = r and ∣a0∣ = a.

It should be mentioned that the above result is not recorded in the present form
in [14]. For a direct derivation of the first inequality in Theorem A, see the proof
of Theorem 9 of [7]. The second inequality is an easy consequence of the Cauchy–
Schwarz inequality combined with the fact that ∑∞n=1 ∣an ∣2 ≤ 1 − ∣a0∣2.
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Proof of Theorem 1.1 Given a holomorphic function f (z) = ∑∞n=0 anzn mapping
D inside D, a straightforward application of Theorem A yields

∣a0∣p + (
∞
∑
n=1

∣an ∣rn)
q

≤
⎧⎪⎪⎨⎪⎪⎩

ap + (1 − a2)q ( r
1−ar )

q for r ≤ a,
ap + (1 − a2)

q
2 ( r√

1−r2 )
q

for r ∈ [0, 1).
(2.1)

Now,

ap + (1 − a2)q ( r
1 − ar

)
q
≤ 1

whenever r ≤ Ap,q(a). A little calculation reveals that Ap,q(a) ≤ a whenever ap +
aq ≥ 1, i.e., whenever a ≥ â, â being the root of equation (1.3). Thus, from (2.1), it is
clear that

∣a0∣p + (
∞
∑
n=1

∣an ∣rn)
q

≤ 1(2.2)

for r ≤ inf a∈[â ,1) Ap,q(a), provided that a ≥ â. On the other hand,

ap + (1 − a2)
q
2 ( r√

1 − r2
)

q

≤ 1

for r ≤ Sp,q(a), i.e., inequality (2.2) remains valid for r ≤ inf a∈[0, â] Sp,q(a), provided
that a ≤ â. Therefore, we conclude that for any given p, q ∈ [1,∞),

Rp,q(C) ≥ min{ inf
a∈[0, â]

Sp,q(a), inf
a∈[â ,1)

Ap,q(a)}.(2.3)

We also record some other facts which we will need to use later. Observe that for all
p, q ∈ [1,∞),

Sp,q(a) =
,
--. T(a)

1 + T(a) where T(a) = (1 − ap)
2
q

1 − a2 ,

and therefore

S′p,q(a) = T ′(a)
2
√

T(a)(1 + T(a))3

for a ∈ (0, 1), where

T ′(a) = 2ap−1T(a)
1 − ap ( a2(1 − ap)

ap(1 − a2) − p
q
).(2.4)

Setting y = 1/a for convenience, we write

a2(1 − ap)
ap(1 − a2) = yp − 1

y2 − 1
= P(y)

https://doi.org/10.4153/S0008439522000674 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439522000674


688 N. Das

defined on (1,∞). Note that

d
da

P(y) = P′(y)d y
da

= −y3 pyp − pyp−2 − 2yp + 2
(y2 − 1)2 ,(2.5)

and that

Q′(y) = yp−3(y2 − 1)p(p − 2),(2.6)

where Q(y) = pyp − pyp−2 − 2yp + 2.
Furthermore, observe that for the disk automorphisms ϕa(z) = (a − z)/(1 − az),

z ∈ D, a ∈ [â, 1), Rp,q(ϕa ,C) = Ap,q(a), and hence Rp,q(C) ≤ inf a∈[â ,1) Ap,q(a).
Moreover, for ξ(z) = zϕ1/

√
2(z), z ∈ D, we have Rp,q(ξ,C) = 1/

√
2. Combining these

two facts, we write

Rp,q(C) ≤ min{(1/
√

2), inf
a∈[â ,1)

Ap,q(a)}.(2.7)

We now deal with the problem case by case.
Case p, q ∈ [1, 2]: Let us start with p < 2. From (2.6), it is evident that Q′(y) < 0 for

p < 2, and hence Q(y) < Q(1) = 0 for all y ∈ (1,∞). Thus, from (2.5), it is clear that
P(y) is strictly increasing in (0, 1) with respect to a. Consequently, for all y ∈ (1,∞),

P(y) < lim
a→1−

P(y) = p
2

,(2.8)

and using the above estimate in (2.4) gives, for all a ∈ (0, 1),

T ′(a) < 2ap−1T(a)
1 − ap ( p

2
− p

q
) ≤ 0,

as q ≤ 2. Therefore, Sp,q(a) is strictly decreasing in (0, 1), and after some calculations,
we have, as a consequence,

inf
a∈[0, â]

Sp,q(a) = Sp,q(â) = Ap,q(â) ≥ inf
a∈[â ,1)

Ap,q(a).

Hence, from (2.3), we have Rp,q(C) ≥ inf a∈[â ,1) Ap,q(a). For p = 2, if q < 2, then
T ′(a) < 0 for all a ∈ (0, 1), which (as in the case p < 2) again gives R2,q(C) ≥
inf a∈[â ,1) A2,q(a). Otherwise, if p = q = 2, then â = 1/

√
2, and for all a ∈ [0, 1), we

get

S2,2(a) = 1/
√

2 = inf
a∈[â ,1)

A2,2(a).

Therefore, for all p, q ∈ [1, 2], we have Rp,q(C) ≥ inf a∈[â ,1) Ap,q(a), and from (2.7), it
is known that Rp,q(C) ≤ inf a∈[â ,1) Ap,q(a). This completes the proof for this case.

Case p ∈ (2,∞), q ∈ [1, 2]: From (2.6), it is clear that Q′(y) > 0 for p > 2, and
therefore Q(y) > Q(1) = 0 for all y ∈ (1,∞). It follows from (2.5) that P(y) is strictly
decreasing in (0, 1) with respect to a. Thus, for q < 2, the value of the quantity

P(y) − p
q
= a2(1 − ap)

ap(1 − a2) − p
q
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decreases from

lim
a→0+

(P(y) − (p/q)) = +∞ to lim
a→1−

(P(y) − (p/q)) = p((1/2) − (1/q)) < 0,

i.e., P(y) − (p/q) > 0 in (0, b1) and P(y) − (p/q) < 0 in (b1 , 1) for some b1 ∈ (0, 1),
where P(b1) = (p/q). As a consequence, T ′(a) = 0 only for a = 0, b1, and T ′(a) > 0
in (0, b1), T ′(a) < 0 in (b1 , 1). Hence, Sp,q(a) strictly increases in (0, b1), and then
strictly decreases in (b1 , 1), which implies that

inf
a∈[0, â]

Sp,q(a) = min{Sp,q(0), Sp,q(â)} = min{(1/
√

2), Ap,q(â)}.

Moreover, from the proof of the case p, q ∈ [2,∞), we have Rp,2(C) = 1/
√

2. These
two facts combined with (2.3) readily yield

Rp,q(C) ≥ min{(1/
√

2), inf
a∈[â ,1)

Ap,q(a)} ,

and making use of (2.7), we arrive at our desired conclusion.
Case p, q ∈ [2,∞): Applying (2.7) of this paper, (1.9) of [9], and [10, Remark 1.2]

together, the proof follows immediately from the observation:

(1/
√

2) ≥ Rp,q(C) ≥ R2,2(C) ≥ (1/
√

2)r2(C) = 1/
√

2.

Case p ∈ [1, 2], q ∈ (2,∞): The fact that R2,q(C) = 1/
√

2 is evident from the
proof of the case p, q ∈ [2,∞). Furthermore, as we have already seen, from (2.1)
it is clear that inequality (2.2) holds for r ≤ Sp,q(a), a ∈ [0, 1), and therefore for
r ≤ inf a∈[0,1) Sp,q(a). From this and (2.7), we have (1.5) as an immediate consequence.
The assertion inf a∈[0,1) Sp,q(a) > 0 is validated from the fact that Sp,q(a) ≠ 0 for all
a ∈ [0, 1) and that lima→1− Sp,q(a) = 1. Now, we will show that the imposition of the
additional condition (1.4) gives an optimal value for Rp,q(C). We know that for p < 2,
P(y) is strictly increasing in (0, 1) with respect to a, and as a result, P(y) − (p/q)
increases from

lim
a→0+

(P(y) − (p/q)) = −p/q to lim
a→1−

(P(y) − (p/q)) = p((1/2) − (1/q)) > 0,

i.e., P(y) − (p/q) < 0 in (0, b2) and P(y) − (p/q) > 0 in (b2 , 1) for some b2 ∈ (0, 1),
where P(b2) = (p/q). As a consequence, T ′(a) = 0 only for a = 0, b2, and T ′(a) < 0
in (0, b2), T ′(a) > 0 in (b2 , 1). Hence, Sp,q(a) strictly decreases in (0, b2), and then
strictly increases in (b2 , 1). Now, if we assume the condition (1.4) in addition, it is
equivalent to saying that T ′(â) ≤ 0, i.e., â ≤ b2. Thus, inf a∈[0, â] Sp,q(a) = Sp,q(â) =
Ap,q(â). Consequently, from (2.3), we get Rp,q(C) ≥ inf a∈[â ,1) Ap,q(a), which com-
pletes our proof for this case. ∎

Proof of Proposition 1.3 As any holomorphic function f ∶ D→ X can also be
considered as a holomorphic function from D

n to X, it immediately follows that
Rn

p,q(X) > 0 for any n ∈ N implies that Rp,q(X) > 0. Thus, we only need to establish
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the converse. Any holomorphic f ∶ Dn → X with an expansion (1.1) can be written as

f (z) = x0 +
∞
∑
k=1

Pk(z), z ∈ Dn ,(2.9)

where Pk(z) ∶= ∑∣α∣=k xα zα . Thus, for any fixed z0 ∈ Tn (the n-dimensional torus), we
have

g(u) ∶= f (uz0) = x0 +
∞
∑
k=1

Pk(z0)uk ∶ D→ X(2.10)

is holomorphic, and if ∥ f ∥H∞(Dn ,X) ≤ 1, then ∥g∥H∞(D,X) ≤ 1. Hence, starting with the
assumption Rp,q(X) = R > 0, we have ∥Pk(z0)∥ ≤ (1/Rk)(1 − ∥x0∥p)1/q , and since z0

is arbitrary, we conclude that supz∈Tn ∥Pk(z)∥ ≤ (1/Rk)(1 − ∥x0∥p)1/q for any k ∈ N.
Therefore, for a given k ∈ N and for any α with ∣α∣ = k, we have

∥xα∥ = ∥ 1
(2πi)n ∫∣z1 ∣=1

∫∣z2 ∣=1
⋯∫∣zn ∣=1

Pk(z)
zα+1 dzndzn−1⋯dz1∥

≤ sup
z∈Tn

∥Pk(z)∥ ≤ 1
Rk (1 − ∥x0∥p)

1
q .

As a result, we have, for all r < R,

∥x0∥p +
⎛
⎝
∞
∑
k=1

rk ∑
∣α∣=k

∥xα∥
⎞
⎠

q

≤ ∥x0∥p + (1 − ∥x0∥p)(( R
R − r

)
n
− 1)

q

,

which is less than or equal to 1 whenever r ≤ R (1 − (1/2)1/n), thereby asserting that
Rn

p,q(X) > 0. ∎

Proof of Theorem 1.4 (i) Before we start proving the first part of this theorem, note
that the choice of q ∈ [2,∞) is again justified due to Proposition 1.3 and [6, Corollary
4]. Now, given a holomorphic f ∶ Dn →Hwith an expansion (1.1) and with ∥ f (z)∥ ≤ 1
for all z ∈ Dn , we have, for any fixed R ∈ (0, 1),

(2π)−n
∫

2π

θ 1=0
∫

2π

θ2=0
⋯∫

2π

θ n=0
∥ f (Re iθ 1 , Re iθ2 , . . . , Re iθ n)∥2

dθndθn−1⋯dθ1 ≤ 1,

which is the same as saying that

∥x0∥2 + ∑
∣α∣∈N

∥xα∥2R2∣α∣ + (2π)−n MR∣α∣+∣β∣ ≤ 1

with M ∶= ∑α≠β⟨xα , xβ⟩ ∫
2π

θ 1=0 ∫
2π

θ2=0 ⋯∫
2π

θ n=0 e i(θ 1(α1−β1)+⋯+θ n(αn−βn))dθndθn−1⋯dθ1 .
Here, ⟨., .⟩ is the inner product ofH, α and β denote as usual n-tuples (α1 , α2 , . . . , αn)
and (β1 , β2 , . . . , βn) of nonnegative integers, respectively. As we know ∫

2π
0 e i kθ dθ = 0

for any k ∈ Z/{0}, M = 0. Letting R → 1− in the above inequality, we therefore get
∥x0∥2 +∑∞k=1 ∑∣α∣=k ∥xα∥2 ≤ 1. Taking z ∈ rDn and using this inequality, we obtain
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∥x0∥p +
⎛
⎝
∞
∑
k=1

∑
∣α∣=k

∥xα zα∥
⎞
⎠

q

≤ ∥x0∥p +
⎛
⎝
∞
∑
k=1

∑
∣α∣=k

∥xα∥2⎞
⎠

q
2 ⎛
⎝
∞
∑
k=1

∑
∣α∣=k

∣zα ∣2
⎞
⎠

q
2

≤ ∥x0∥p + (1 − ∥x0∥2)
q
2 (
∞
∑
k=1

(n + k − 1
k

)r2k)
q
2

= ∥x0∥p + (1 − ∥x0∥2)
q
2 ( 1

(1 − r2)n − 1)
q
2

,

which is less than or equal to 1 if

r ≤ (1 − (1 − (Sp,q(∥x0∥))2) 1
n )

1
2 ,(2.11)

and therefore

Rn
p,q(H) ≥ inf

a∈[0,1)
(1 − (1 − (Sp,q(a))2) 1

n )
1
2 .(2.12)

As the quantity on the right-hand side of inequality (2.11) becomes
√

1 − (1/2)1/n at
x0 = 0 and converges to 1 as ∥x0∥ → 1−, we conclude that the infimum in inequality
(2.12) is attained at some b3 ∈ [0, 1). Since every Hilbert space H has an orthonor-
mal basis and, in our case, dim(H) = ∞, we can choose a countably infinite set
{eα}∣α∣∈N∪{0} of orthonormal vectors inH. Setting r3 = (1 − (1 − (Sp,q(b3))2) 1

n ) 1
2 , we

construct

χ(z) ∶= b3e0 +
1 − b2

3

(1 − bp
3 )

1
q

∞
∑
k=1

rk
3
⎛
⎝ ∑
∣α∣=k

zα eα
⎞
⎠
∶ Dn →H,

which satisfies ∥χ(z)∥ ≤ 1 for all z ∈ Dn , and r3 = Rn
p,q(χ,H) ≥ Rn

p,q(H). This com-
pletes the proof for the first part of this theorem.

(ii) The proof for this part is rather lengthy, so we break it into a couple of steps.
Prior to each step, we will provide some auxiliary information whenever needed.

Background for Step 1 ∶ If Rp,q(X) > 0, we have

ΩX(δ) ≤ C ((1 + δ)q − (1 + δ)q−p)1/q , δ ≥ 0

for some constant C (see (1.6) in the introduction). Given any such X, and given any
holomorphic function G(u) = ∑∞n=0 ynun ∶ D→ X with ∥G(u)∥ ≤ 1 in D, it is known
from the proof of [6, Theorem 1] that

∥yk∥ ≤ 2ΩX(1 − ∥y0∥) ≤ 2C ((2 − ∥y0∥)q − (2 − ∥y0∥)q−p)1/q(2.13)

for all k ≥ 1.
Step 1 ∶ In our context, for any given holomorphic f ∶ Dn → X with an expansion

(1.1) and with ∥ f ∥H∞(Dn ,X) ≤ 1, we define the holomorphic function g(u) = x0 +
∑∞k=1 Pk(z0)uk ∶ D→ X as in (2.10), which satisfies ∥g(u)∥ ≤ 1 for all u ∈ D, z0 being
any chosen point on T

n . Since Rp,q(X) > 0, making use of inequality (2.13), we
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conclude that for any k ≥ 1,

∥Pk(z0)∥ ≤ 2C ((2 − ∥x0∥)q − (2 − ∥x0∥)q−p)1/q

for any z0 ∈ Tn . Therefore,

sup
z∈Tn

∥Pk(z)∥ ≤ 2C ((2 − ∥x0∥)q − (2 − ∥x0∥)q−p)1/q(2.14)

for any k ∈ N, C being the constant for which (1.6) is satisfied.
Background for Step 2 ∶ For 1 ≤ p < ∞ and for a linear operator U ∶ X0 → Y0

between the complex Banach spaces X0 and Y0, we say that U is p-summing if there
exists a constant c ≥ 0 such that regardless of the natural number m and regardless of
the choice of f1 , f2 , . . . , fm in X0, we have

(
m
∑
i=1

∥U( f i)∥p)
1/p

≤ c sup
ϕ∈BX∗0

(
m
∑
i=1

∣ϕ( f i)∣p)
1/p

,

where BX∗0 is the open unit ball in the dual space X∗0 . The least c for which the above
inequality always holds is denoted by πp(U), and the set of all p-summing operators
from X0 into Y0 is denoted by Πp(X0 , Y0). Now, from [18, Proposition 2.3], we know
that:

Fact I. If U ∶ X0 → Y0 is a bounded linear operator and dim(U(X0)) < ∞, then U
is p-summing for every p ∈ [1,∞).

Moreover, [18, Theorem 2.8] states that:
Fact II. If 1 ≤ p < q < ∞, then Πp(X0 , Y0) ⊂ Πq(X0 , Y0). Moreover, for U ∈

Πp(X0 , Y0), we have πq(U) ≤ πp(U).
Step 2 ∶Coming back to our proof now, we set X0 = Y0 = X and U = I—the identity

operator on X. As X is finite-dimensional, dim(I(X)) < ∞ in this case and thus using
Fact I, we have I ∈ Πp(X , X) for all p ≥ 1. Therefore,

⎛
⎝ ∑
∣α∣=k

∥xα∥
2k

k+1
⎞
⎠

k+1
2k

≤ π 2k
k+1

(I) sup
ϕ∈BX∗

⎛
⎝ ∑
∣α∣=k

∣ϕ(xα)∣
2k

k+1
⎞
⎠

k+1
2k

for all k ∈ N. Since 2k/(k + 1) > 1 for all k ≥ 2, Fact II asserts that π 2k
k+1

(I) ≤ π1(I).
Hence, there exists a constant D = π1(I) (depending only on X) such that

⎛
⎝ ∑
∣α∣=k

∥xα∥
2k

k+1
⎞
⎠

k+1
2k

≤ D sup
ϕ∈BX∗

⎛
⎝ ∑
∣α∣=k

∣ϕ(xα)∣
2k

k+1
⎞
⎠

k+1
2k

(2.15)

for all k ∈ N.
Background for Step 3 ∶ From [4, Theorem 1.1], we know that for any ε > 0, there

exists μ > 0 such that, for any complex k-homogeneous polynomial (k ≥ 1) P(z) =
∑∣α∣=k cα zα (cα ∈ C), we have

⎛
⎝ ∑
∣α∣=k

∣cα ∣
2k

k+1
⎞
⎠

k+1
2k

≤ μ(1 + ε)k sup
z∈Dn

∣P(z)∣.
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Step 3 ∶ Recall from (2.9) now that Pk(z) = ∑∣α∣=k xα zα , xα ∈ X, and hence
ϕ(Pk(z)) = ∑∣α∣=k ϕ(xα)zα for any ϕ ∈ BX∗ . Consequently, using the above
inequality, we get that for any ε > 0, there exists μ > 0 such that

sup
ϕ∈BX∗

⎛
⎝ ∑
∣α∣=k

∣ϕ(xα)∣
2k

k+1
⎞
⎠

k+1
2k

≤ μ(1 + ε)k sup
ϕ∈BX∗

sup
z∈Dn

∣ϕ (Pk(z))∣ = μ(1 + ε)k sup
z∈Tn

∥Pk(z)∥

for all k ≥ 1. Combining this inequality with inequalities (2.14) and (2.15) appropri-
ately, we get

⎛
⎝ ∑
∣α∣=k

∥xα∥
2k

k+1
⎞
⎠

k+1
2k

≤ 2μCD(1 + ε)k ((2 − ∥x0∥)q − (2 − ∥x0∥)q−p)1/q .

It follows that

⎛
⎝
∞
∑
k=1

rk ∑
∣α∣=k

∥xα∥
⎞
⎠

q

≤
⎛
⎜
⎝

∞
∑
k=1

rk ⎛
⎝ ∑
∣α∣=k

∥xα∥
2k

k+1
⎞
⎠

k+1
2k

(n + k − 1
k

)
k−1
2k ⎞
⎟
⎠

q

≤ X
⎛
⎝
∞
∑
k=1

rk(1 + ε)k(n + k − 1
k

)
k−1
2k ⎞
⎠

q

,

where X = μqCq
1 ((2 − ∥x0∥)q − (2 − ∥x0∥)q−p), C1 = 2CD. Hence, for z ∈ rDn , the

inequality

∥x0∥p +
⎛
⎝
∞
∑
k=1

∑
∣α∣=k

∥xα zα∥
⎞
⎠

q

≤ 1

is satisfied if

( X
1 − ∥x0∥p )

1
q ⎛
⎝
∞
∑
k=1

rk(1 + ε)k(n + k − 1
k

)
k−1
2k ⎞
⎠
≤ 1.(2.16)

Now, analyzing the function f1(t) = ((2 − t)p − 1)/(1 − t p), t ∈ [0, 1), we see that
f1(t) ≤ f1(0) = 2p − 1 for all t ∈ [0, 1), and hence

X
1 − ∥x0∥p = μqCq

1 (2 − ∥x0∥)q−p f1(∥x0∥) ≤
⎧⎪⎪⎨⎪⎪⎩

μqCq
1 2q−p(2p − 1) if q ≥ p,

μqCq
1 (2p − 1) if q ≤ p.

Thus, inequality (2.16) is satisfied if

C2
⎛
⎝
∞
∑
k=1

rk(1 + ε)k(n + k − 1
k

)
k−1
2k ⎞
⎠
≤ 1,

where C2 is a new constant depending on μ, p, q and the Banach space X. Using the
estimate

(n + k − 1
k

) ≤ (n + k − 1)k

k!
< ( e

k
)

k
(n + k − 1)k < ek (1 + n

k
)

k
,
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we get, by setting r = (1 − 2ε)
√
(log n)/n,

∞
∑
k=1

rk(1 + ε)k(n + k − 1
k

)
k−1
2k

≤
∞
∑
k=1

⎛
⎝

√
log n

n
√

e(1 − 2ε)(1 + ε)
⎞
⎠

k

(1 + n
k
)

k−1
2

.

Hence, inequality (2.16) is satisfied if

C2

∞
∑
k=1

⎛
⎝

√
log n

n
√

e(1 − 2ε)(1 + ε)
⎞
⎠

k

(1 + n
k
)

k−1
2
≤ 1.(2.17)

Starting here, we will follow the similar lines of argument as in [4, pp. 743–744]. For
n large enough,

tn ∶=
√

log n
n1/4

√
2e(1 − 2ε)(1 + ε) < 1,

and for k >
√

n, observe that

(1 + n
k
)

k−1
2
< (2

√
n) k

2 .

Using both the above facts,

∑
k>
√

n

⎛
⎝

√
log n

n
√

e(1 − 2ε)(1 + ε)
⎞
⎠

k

(1 + n
k
)

k−1
2

≤ ∑
k>
√

n

⎛
⎝

√
log n

n1/4

√
2e(1 − 2ε)(1 + ε)

⎞
⎠

k

≤ tn

1 − tn
,

which goes to 0 as n →∞. For k ≤
√

n, we start by making n sufficiently large such
that 2 < k0 ≤ log n can be chosen for which the inequalities

k
1

k0−1
0 ≤ 1 + ε

2
, ∑

k0≤k≤
√

n
((1 − 2ε)(1 + ε)3/2)k ≤ 1

2C2
and ( 1

n
)

k0−2
2(k0−1)

≤ ε
2

are satisfied. Observing that x 1/(x−1) is decreasing and (x − 2)/2(x − 1) is increasing
in (1,∞), we obtain, for k ≥ k0,

(k
k

k−1 ( 1
n
+ 1

k
))

k−1
k
≤
⎛
⎝
( 1

n
)

k−2
2(k−1)

+ k
1

k−1
⎞
⎠

k−1
k

≤
⎛
⎝
( 1

n
)

k0−2
2(k0−1)

+ k
1

k0−1
0

⎞
⎠

k−1
k

≤ (1 + ε) k−1
k ≤ 1 + ε,

which, after a little simplification, gives

(1 + n
k
)

k−1
2
≤ (1 + ε) k

2
n k

2

n 1
2 k k

2
.
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Since x ↦ n1/x x is decreasing up to x = log n and increasing thereafter, we have
n1/k k ≥ e log n. Therefore,

∑
k0≤k≤

√
n

⎛
⎝

√
log n

n
√

e(1 − 2ε)(1 + ε)
⎞
⎠

k

(1 + n
k
)

k−1
2

≤ ∑
k0≤k≤

√
n

⎛
⎝
√

e log n(1 − 2ε)(1 + ε)3/2
√

1
n1/k k

⎞
⎠

k

≤ ∑
k0≤k≤

√
n
((1 − 2ε)(1 + ε)3/2)k ≤ 1

2C2
.

It remains to analyze the case 1 ≤ k ≤ k0. In this case, we observe that for n large
enough,

k
n
+ 1 ≤ k0

n
+ 1 ≤ ε + 1,

and hence

(1 + n
k
)

k−1
2
≤ (1 + ε) k

2 (n
k
)

k−1
2

.

Making use of the above inequality and the fact that x ↦ n1/x x is decreasing in [1, k0]
(i.e., n1/k k ≥ n1/k0 k0), it is easily seen that

k0

∑
k=1

⎛
⎝

√
log n

n
√

e(1 − 2ε)(1 + ε)
⎞
⎠

k

(1 + n
k
)

k−1
2

≤
k0

∑
k=1

⎛
⎝
√

e log n(1 − 2ε)(1 + ε)3/2 k1/(2k)

k1/2
0 n1/(2k0)

⎞
⎠

k

,

which tends to 0 as n →∞. Combining all the above three estimates, we have

∞
∑
k=1

⎛
⎝

√
log n

n
√

e(1 − 2ε)(1 + ε)
⎞
⎠

k

(1 + n
k
)

k−1
2
≤ 1

2C2
+ o(1)

for n large enough. Therefore, inequality (2.17) is satisfied for large enough n. Hence,
for any given ε > 0, Rn

p,q(X) ≥ (1 − 2ε)
√

log n/
√

n for sufficiently large n. This yields
the following:

lim inf
n→∞

Rn
p,q(X)

√
n/
√

log n ≥ 1.

Step 4 ∶ In view of the above, it is only left to show that

lim sup
n→∞

Rn
p,q(X)

√
n/
√

log n ≤ 1.(2.18)

As Rn
p,q(X) ≤ Rn

p,q(C), it is sufficient to establish this part for X = C. The proof
is exactly the same as the proof for the case p = q = 1 given in [12, p. 2977], but
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for the sake of completeness, we reproduce the argument here. From the Kahane–
Salem–Zygmund inequality, it is known that there is a constant B such that for every
collection of complex numbers cα and every integer k > 1, there is a choice of plus and
minus signs for which the supremum of the modulus of ∑∣α∣=k ±cα zα in D

n does not
exceed B (n∑∣α∣=k ∣cα ∣2 log k)1/2. We choose cα = k!/α!. Then ∑∣α∣=k ∣cα ∣2 ≤ k!nk . By
the definition of the generalized Bohr inequality in our context, we get

((Rn
p,q(C))

k nk)
q
=
⎛
⎝ ∑
∣α∣=k

∣cα ∣ (Rn
p,q(C))

k⎞
⎠

q

≤ Bq ⎛
⎝

n ∑
∣α∣=k

∣cα ∣2 log k
⎞
⎠

q/2

≤ Bq (n
k+1

2 (k! log k)1/2)
q

,

or, equivalently,

Rn
p,q(C) ≤ B1/k n

1−k
2k (k! log k) 1

2k .

We use Stirling’s formula limk→∞ k!(
√

2πk(k/e)k)−1 = 1 to conclude that

Rn
p,q(C) ≤

√
k
n
⎛
⎝

B1/k
1 n 1

2k k 1
4k (log k) 1

2k
√

e
⎞
⎠

for a new constant B1. Setting k = ⌊log n⌋ (⌊.⌋ is the floor function), we observe

lim sup
n→∞

Rn
p,q(C)

√
n

log n
≤ lim

n→∞

B1/⌊log n⌋
1 n

1
2⌊log n⌋ ⌊log n⌋

1
4⌊log n⌋ (log⌊log n⌋)

1
2⌊log n⌋

√
e

= 1,

which implies our desired inequality (2.18). This completes the proof. ∎

Proof of Theorem 1.5 (i) Given a complex-valued holomorphic function f with
an expansion (1.1) in D

n (“xα ’s” are complex numbers in this case) and satisfying
∥ f ∥H∞(Dn ,C) ≤ 1, an application of Hölder’s inequality yields

∣x0∣p +
∞
∑
k=1

rk p ∑
∣α∣=k

∣xα ∣p =
∞
∑
k=0

∑
∣α∣=k

∣xα ∣2−prk p ∣xα ∣2p−2

≤
⎛
⎝
∞
∑
k=0

r
k p

2−p ∑
∣α∣=k

∣xα ∣
⎞
⎠

2−p
⎛
⎝
∞
∑
k=0

∑
∣α∣=k

∣xα ∣2
⎞
⎠

p−1

≤
⎛
⎝
∞
∑
k=0

r
k p

2−p ∑
∣α∣=k

∣xα ∣
⎞
⎠

2−p

.

Therefore, rn
p(C) ≥ (rn

1 (C))(2−p)/p . Since limn→∞ rn
1 (C) (

√
n/
√

log n) = 1 (cf. [4]),
we have

lim inf
n→∞

rn
p(C)(

n
log n

)
2−p
2p

≥ lim inf
n→∞

(rn
1 (C)

√
n

log n
)

2−p
p

= 1,
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and thus rn
p(C) ≥ C((log n)/n)(2−p)/2p for some constant C > 0 and for all n > 1.

The upper bound rn
p(C) ≤ D ((log n)/n)(2−p)/2p for some D > 0 has already been

established in [20, p. 76]. This completes the proof.
(ii) To handle the second part of this theorem, we first construct g(u) as in

(2.10) from a given holomorphic f ∶ Dn → X with an expansion (1.1) and satisfying
∥ f ∥H∞(Dn ,X) ≤ 1. Now, since X is p-uniformly PL-convex, from the proof of [11,
Proposition 2.1(ii)], we obtain

∥P1(z0)∥ ≤
2

(Ip(X))
1
p
(1 − ∥x0∥p)

1
p

for any arbitrary z0 ∈ Tn . Using a standard averaging trick (see, f.i., [10, p. 94]), it can
be shown that the P1(z0) in the above inequality could be replaced by Pk(z0) for any
k ≥ 2. Thus, we conclude that

sup
z∈Tn

∥Pk(z)∥ ≤ 2
(Ip(X))

1
p
(1 − ∥x0∥p)

1
p .(2.19)

Now, from [16, Lemma 25.18], it is known that there exists R > 0 such that

⎛
⎝ ∑
∣α∣=k

∥xα∥p⎞
⎠

Rk p ≤ ∫
Tn

∥Pk(z)∥pdz.

Using inequality (2.19) gives

∑
∣α∣=k

∥xα∥p ≤ 2p

Ip(X)Rk p (1 − ∥x0∥p).

Assuming r < R, it is easy to see that

∥x0∥p +
∞
∑
k=1

rk p ∑
∣α∣=k

∥xα∥p ≤ ∥x0∥p + 2p

Ip(X)(1 − ∥x0∥p)
∞
∑
k=1

( r
R
)

k p

≤ ∥x0∥p + 2p

Ip(X)(1 − ∥x0∥p) r p

Rp − r p ,

which is less than or equal to 1 if

r ≤ R (
Ip(X)

2p + Ip(X))
1
p

= (
Ip(X)

2p + Ip(X))
2
p

,

as from the arguments in [16, p. 627], it is clear that we can take Rp = Ip(X)/(Ip(X) +
2p). This proves the lower estimate for rn

p(X), and the upper estimate is trivial due to
the fact that rn

p(X) ≤ rn
p(C) = 1 for p ≥ 2. ∎
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