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Theory of lattice Boltzmann simulations of glacier flow
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ABSTRACT. A lattice Boltzmann technique for modeling Navier Stokes fluid
flow is extended to allow steady-state simulations of glaciers and other slow-flowing
solids. The technique is based on a statistical mechanical representation of flowing ice
as a set of particles (populations) which translate and collide on a face-centered cubic
lattice. The average trajectories of the populations give the velocities of the ice at any
point in the glacier. The method has considerable advantages over other techniques,
including its ability to handle complex realistic geometries without additional
complications to the code. Examples are presented for two-dimensional simulations.

INTRODUCTION

A common, if unstated, goal of many glaciological field
programs is to collect surface-velocity and geometry infor-
mation suitable for numerical inversions for conditions at
the unobserved bed. Twao classic examples from the recent
past (among many) are Columbia and Variegated
Glaciers with volumes of published information and
numerous papers devoted to numerical inversions (e.g.
Balise and Ravmond, 1985; Meier and others, 1985;
Raymond and others, 1987; Van der Veen and Whillans,
1993). In fact, during the last century, dozens of other
glaciers and ice streams have also been repeatedly
surveyed to gather information suitable for inversions
aimed at elucidating sliding laws and mechanical controls
at or near the bed. Typical numerical procedures have
focused on finite-element and finite-difference formul-

ations ol the inversion problem, and with the advent of

work stations, these methods have become increasingly
accurate, especially in their descriptions of the deform-
ational components of flow. However, the model’s
efliciency and accuracy in describing complex geometries
have lagged far behind the more impressive developments
in continuum flow. Finite-element techniques can take

advantage of new methods for automatic generation of

appropriate modeling meshes and finite-dillerence techni-
ques can utilize specialized curvilinear coordinate systems.
In both cases, however, the increased ability to deal with
realistic geometries has forced a corresponding increase in
computational and coding complexity.

Within the last few years a number of exciting
advances in statistical mechanics have opened up new
approaches to modeling low-viscosity fluid flows around
complex geometric structures. One of the most recent and
successful of these new techniques is the lattice gas
automaton (LGA) which excels in its ability to handle
complex boundary conditions with a surprisingly simple
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code (Frisch and others, 1986). LGA models represent a
fluid as a set of colliding gas particles which on average
reproduce incompressible Navier-Stokes fluid flow.
Boundary conditions are handled by simple particle-
collision rules which reproduce the desired {luid velocities
at any point. Using LGA, for example, flows through
complex, even fractal, porous media geometries have
been successfully modeled at a level of detail not
previously possible (e.g. Chen and others, 1991). Like-
wise, simulations of flow around dissolving miscible solids
and simulations of turbulent flow around arbitrary
obstacles has become routine (e.g. d’Humiéres and
Lallamand, 1987; Lawniczak and others, 1991).

These automaton techniques have been slow to excite
interest in disciplines which focus on the slow-creeping flow
of solids, like glaciers, primarily because the bulk of LGA
research has developed models suitable for low viscosities
and high Reynolds number simulations. These constraints,
however, can be removed, and using LGA to simulate
glaciers requires only a shift in modeling philosophy.
Rather than focusing on finite-difference or finite-element
models of the macroscopic equations of state, LGAs focus
on building much simpler models formulated at a
microscopic level. The microscopic models are constructed
to conserve mass, momentum and energy but do not
attempt completely faithful reproductions of the micro-
scopic world. This is a significant departure from
traditional modeling philosophy but, although inexact,
this type of simulation is successful because hydrodynamics
and thermodynamics describe large-scale systems which
behave independently of their precise microscopic formu-
lation (Salem and Wolfram, 1986). So, while the
macroscopic models are typically limited to a small
number of spatial “cells” where information on the flow
state is updated based on the complex continuum
equations, these microscopic models instead use tens of
thousands of cells which are updated by simple rules
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chosen for their computational efficiency. Proper con-
tinuum behaviour is reconstructed from large-scale
averages of the many microscopic cells. In other words,
very complex systems are studied by looking at simplified
microscopic models which reproduce the correct mathe-
matical behaviour at macroscopic scales.

The shift from a macroscopic to a simplified
microscopic paradigm will allow significant advances in
our ability to model the flow of glaciers, ice sheets and
other solids around complex realistic obstacles. In the

following sections, therefore, we describe a variant of

LGA, called the lattice Boltzmann method, and demon-
strate a new technique for implementing constitutive
relationships appropriate for ice and other non-New-
tonian slow-flowing solids. The lattice Boltzmann method
described here is appropriate for isothermal steady-state
problems or for time-varying velocities with fixed glacier
geometries. The technique can be used to invert surface
velocities for information at the bed or to extract velocity
and stress profiles from complicated, realistic glacier
channels. This approach represents the first step towards
a more general lattice Boltzmann model of time-
dependent and thermally inhomogeneous glacier flow.

THE LATTICE BOLTZMANN METHOD

Historically, the lattice Boltzmann method evolved from
LGA and is most easily understood in the context of its
automaton predecessors. Automatons correspond closely
with von Neumann’s original concept of a computer and
arc any machine with a finite set of input and output
states and a fixed finite set of rules which map each input
to an output (Lewis and Papadimitriou, 1981, p.222). A
simple example uses finite-length binary strings as input
and output states; a look-up table converts a binary input
string to a binary output string. The set of rules, or the
look-up table, is the automaton’s program.

Lattice gas automatons have input and output states
which correspond to particle positions and velocities on a
triangular lattice. At each site on the lattice, up to six
particles of unit mass are assigned unit velocities e; in one
of the six lattice directions (i = 1, ..., 6) (Fig. 1). At each
point on the lattice there is at most one particle with a
given velocity (in other words, no two particles are
allowed to have the same momentum at the same lattice
site). It w5 =1
unoccupied momentum states, then the particle positions
and velocities at lattice site X and time ¢ are given by the

and n; =0 represent occupied and

binary string n(x,t) = (nynongninsng). Figure 1 illus-
trates n(x, t) = (100001 ).
At each time step in the model’s evolution, particles in

the LGA are translated one lattice unit in the direction of

their velocity. Particles which arrive at the same site are
said to collide and are redistributed according to a fixed
set of rules which conserve mass and momentum (these
arce the automaton rules which convert the binary input
to the binary output states). After colliding, the particles
arc translated again, and the process repeats. Figure 2
illustrates the translation and collision rules for two and
three particles.

This basic lattice gas automaton was [irst proposed by
Frisch and others (1986) in a paper in which they
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ng=0 ® X

Fig. 1. Momentum state n(x.t) = (100001) on a (ri-
angular lattice.

demonstrated that the Navier Stokes equation is reprod-
uced in the continuum limit by the movement ol the
particles on the triangular lattice. If the local density p and
local velocity v of the fluid at any point in time are given by

p(x.t) (1)

>

=1

6
and

= (x,1)
P OV(X. ) =Y mi(x. t)e;, (2)

i=1

then they showed that macroscopic quantities like the
fluid velocity are obtained by spatial averages of v.
Boundary conditions are implemented by adjusting the
directions of any particles which collide with a boundary;
and at each time step, body forces, like gravity, can he
specified by altering the direction (momentum) of
random particles to align with the force (Kadanofl and
others, 1967). A number of review papers have given
details of the derivations which lead from the collision
rules to the full Navier Stokes equations of fluid flow (e.g.
Wollram, 1986; I'risch and others, 1987).

LGA models of fluid flow are stable because the look-
up tables are exact Boolean operators (round-ofl’ errors
are eliminated). The translation and collision process is
also local in nature, so that the updates can be performed
simultaneously at all the nodes. making LGA well suited
for fast parallel processing. The discrete nature of the
particle momenta, however, adds noise to the system,
requiring large spatial averages of the particle trajectories
to get reasonable fluid approximations. This noise clearly
outweighed the advantages of an LGA implementation of
the glacier-flow problem constructed by the authors, and
along with a problem in adjusting the viscosity
(controlled by the selection of specific collision rules)

motivated others to develop the original lattice Boltz-
mann technique (Higuera and Jiménez, 1989).

The lattice Boltzmann method considers populations of
particles (0 < n(x,t) < 1) rather than individual particles
on the lattice. In essence, this is the same as simultancously
running a large ensemble of LGA simulations and then
determining the probability of a particle having a
particular momentum state (i.e. probability of occupying
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Fig. 2. An example of the translation and collision process for LGA particles. The three-way collision at sile x re-arranges
velocities in the only manner which will conserve momentum and mass. The two particles colliding collinearly al site 'y have

zero total mometum and can be redistributed in any other collinear divections ( the choice can be made randomly ). All other
posstble collision configurations are ignoved and the velocities are left unchanged ( for example, grid site z).

a particular lattice site with a particular velocity). (In
statistical mechanics, this collection of LGA simulations
would be referred to as the canonical ensemble which has a
Boltizmann distribution of possible states, hence the name.)
Practically speaking, the lattice Boltzmann technique
averages out the noise in the system while maintaining
the fast parallel architecture. However, the arithmetic is
now real, rather than Boolean, and the ultimate stability of
the LGA is compromised, though stable behavior is still
possible for almost all flow scenarios of interest. (Benzi and
others (1992) discussed details of stability to numerical
dispersion, discretization and other types of error.)

The lattice Boltzmann collision rules can be imple-
mented in the same manner as the LGA rules, although a
more efficient method is discussed here. In the original
LGA, there were six unit velocities ¢; (i =1, ..., 6) ona
triangular lattice, but more recent analyses (Skordos,
1993) have shown that the Navier-Stokes equations can
be reproduced with two velocities on a more easily coded
square lattice (velocities along edges and diagonals). In
particular, fori=1,:...; 8

¢ = 20f T, Sin /) 2 = ]
¢ Cos Or 7 1MOC

i 1 —
—ﬁ(CORLTm sinE

: 'ﬂ‘) forimod2=0. (3)

3

In addition, ey = (0, 0) corresponds to a “‘rest” particle
with zero velocity. Also, rather than using look-up tables,
the collision step can be more compactly represented as a
relaxation from an equilibrium state. Let 0 < N;(x, 1) <1
be the probability of finding a particle at node x and time ¢
with unit velocity e;, and let N;*Y(x,t) be the equilibrium
distributions. Then, for a unit time step (At = 1),

Ni(x + e At t+1)—N;(x,t) =

_%(Ns(x,i) - N&(x, ). (4)
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The lefthand side of Equation (4) is just the rate of change
of the particle distributions due to collisions. 7 is a unitless
relaxation parameter which controls this change and
adjusts the rate at which the equilibrium is approached.

The equilibrium states N;** are derived from a
Chapman Enskog expansion of Equations (1), (2) and
(4) (Skordos, 1993) and for a square lattice are given by

RN (N

NG —%p(l + 3(e;-v)+=(e;-v) —-v- v)

b ©

for s mod 2 =1

‘V-"‘l—l 3| 14 3(e; v)+g(e- v)z—:—;v v
PN 7 AV 2

for i mod 2 = 0. (5)

The density p and macroscopic velocity v are given by
Equations (1) and (2) without averaging.

The relaxation time parameter is also derived from the
Chapman-Enskog expansion and is related to the
kinematic viscosity ¢ (measured in lattice units squared
per time step) by

yo2r=1) (6)

6

7 has a lower bound 01'% to prevent unphysical negative
viscosities. Intuitively, the relationship between 7 and v is a
consequence of the relaxation parameter’s influence on the
rate of change of particle distributions at each collision step.
Thinking of the Boltzmann method as an ensemble of
LGAs, a larger 7 decreases the change in N with time
(Equation (4)) or, in other words, decreases the probability
of a collision in the ensemble of LGAs. When collisions are
less probable, the mean free path of a particle is increased
and Maxwell (1859) demonstrated that the mean free path
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of particles in a gas is proportional to the viscosity (Huang,
1987). Therefore, increasing 7 increases the mean free path
and increases the viscosity.

NON-NEWTONIAN FLOW

The ability to adjust the viscosity with the relaxation
parameter is our basis for constructing non-Newtonian
constitutive relationships suitable for modeling glacier
flow. When 7 has a constant value, the viscosity is fixed
and stress is linearly related to strain. In other words
U':J- = 2u¢;; where o
deviatoric stress and strain-rate tensors and g = pv is the
dynamic viscosity (e.g. Mase, 1970). Water is the classic
example of such a linear or Newtonian fluid. Tee, magma,

and ¢;; are components of the

metals and many other solids are characterized, however,
by an eflective viscosity, fterr, which is a function of the
strain rate (in addition to other dependencies such as
chemical impurities and temperature). In fact, for ice,
magma and most metals, the effective viscosity is a power
of the second strain-rate invariant,

(Turcotte and Schubert, 1982; Paterson, 1994, i.e.

i S T -
Oij = Heft€ij (7)
where

ki)
ety OC €71 (8)

for some positive n.
To handle these generalized viscosities, 7 is simply
expressed as a function of the effective viscosity,

- 6([!,(.}'1'/'{}) +1 - )

2
Now the strain rates at each lattice site can be estimated
by finite differences of the velocities at their neighbors,
This determines the effective dynamic viscosity g and
an appropriate 7 at each node on the lattice. Aharonov
and Rothman (1993) have developed a similar but more
complicated scheme for non-Newtonian flow based on an
arlier implementation of the lattice Boltzmann methaod.
Our results compare favorably with their work and
require less complicated coding.

ELIMINATING COMPRESSIBILITY AND
INERTIAL EFFECTS

Solids typically have kinematic viscosities on the order of
1 x 10°m?s ', about 21 orders of magnitude higher
than the typical viscosities for a fluid (1 x 10 Sm?s™).
For a lattice Boltzmann model, this has two important
consequences for flow simulations of a solid. First, the
mean [ree path of a particle is so long that infeasibly
large model grids are necessary for realistic simulations.
This can only be countered by taking advantage of
dynamic similarity and using dynamically equivalent
flow scenarios with much smaller viscosities. Secondly,
large viscosities imply negligibly small inertial terms (i.c.
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for Newtonian flow, the v - Vv term in the Navier-Stokes
equation should be set to zero). However, these two
consequences tend to work against cach other; decreas-
ing the viscosity causes increasingly dominant inertial
effects in the model, leading to high Reynolds numbers
and turbulent flow. T'o prevent this behavior, it is best to
eliminate the interdal terms from the glacier-model
formulation.

To do this, consider the macroscopic (low behavior of
the lattice Boltzmann model as derived using the
Chapman-Enskog procedure, which is essentially a
Taylor expansion of Equation (4). The expanded N;
are rewritten in terms of p and pv using the mass and
momentum relationships given in Equations (1) and (2).
The equilibrium distribution is treated as an expansion
about small velocities (Hou, 1995),

N = A; + Bi(e;-v) + Ci(e; - v)  — Dyv-v (10)

with higher-order terms neglected. The general para-
meters A;, B;, C; and D; are then selected to ensure that
to first order the expansion gives the Navier Stokes
equations (see Equation (3)). In our case. we choose a
different set of parameters which gives the same solution
but eliminates the inertial terms. A; and B; remain the
same as before, but C; = D; = 0. Intuitively, the terms in
Equation (10) which are non-linear in v have been set to
zero hecause the Navier-Stokes pdes are lincar in v exeept
for the inertial term, v - Vv,

In our model, one additional correction is made 1o
ensure incompressibility. Without some further manip-
ulation, the equilibrium distributions given in Equations
(5) and (10) predict that V- (pu) =0 for steady-state
flows with velocity u. Truly incompressible flows require
V- u = 0. Therefore, Hou (1995) has suggested redefin-
ing the velocity to be

v=pu=> Ni(xt)e. (11)
1=1

Using the same Chapman-Enskog expansion as outlined
above, this leads to a correction in the equilibrium
distributions given by

e g
i\r‘g] = 6{)
: L - oo i
M= a(p + 3(e; - v)) for i mod 2 =1
|
N"=—(p+3(e-v)) forimod2=0. (12)

36

A more complete motivation ol the incompressibility
corrections has been explained in Hou (1995

GENERALIZATION TO THREE DIMENSIONS

A three-dimensional generalization ol the lattice Boltz-

mann model is straightforward. Instead of a square
lattice, the particle populations move on a lace-centered
cubic lattice with six nearest neighbors at a distance of
le; At] = 1 lattice unit and eight next-nearest at a distance

of |e; At| = v/3. All other equations are unchanged except
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for the equilibrium distributions which become

I
No™ = 9"

) 1
N = a(p + 3(e; - v)) for [e;At| =1

N*=_—(p+3(e;-v)) for|eAt| =v3 (13)

72

fori =0 to 14.

SCALING ANALYSIS AND NON-DIMENSIONAL-
IZATION

In order to run the lattice Boltzmann model at low viscosities
and have dynamically similar behavior to a highly viscous
glacier, a set of non-dimensional numbers needs to be derived
from the macroscopic equations of glacier flow. To guarantee
similar dynamics, these non-dimensional numbers must be
the same for both the high- and low-viscosity scenarios, For
Newtonian flows, the appropriate non-dimensional numbers
are derived by dividing each term of the Navier-Stokes
equation by one of the other terms (Welty and others, 1984).
Reynolds number, for instance, is the ratio of the inertial
term to the viscous term. However, the equations of glacier
flow are complicated hy a non-linear rheology (Ecquation
(7)) and cannot be written as a single partal differential
equation. In that case, ratios of terms are impossible and a
more sophisticated scaling analysis is necessary to derive the
non-dimensional parameters (Logan, 1987).

Scaling analyses start with a set of relevant variables
{V1, V5, ... V;} and replace each by a rescaled quantity
{XmVy, A2V, ... A™V;}. The rescaled variables are
substituted into the relevant equations (deseribing glacier
flow in our case) and the scaling parameter A is factored
out. This factoring ensures that the equations are un-

changed by the rescaling and is used to derive a set of

constraints on {my,ma, ... m;}. These constraints deter-
mine how each variable must bhe related to its rescaled
quantity and therefore determine how different scale
simulations must be related to each other in order for the
relevant equations to describe the same physical process. In
other words, the constraints provide the relationships
necessary to construct non-dimensional quantities.

Consider the equations describing isothermal steady-
state glacier flow in two dimensions. I'rom the definition
of strain rates.

ou . v l(@u Bv)

€xz and €,. = B he

= E 5

ox 0z 2
where & and z are along coordinate directions perpen-
dicular and parallel o gravity, and u and v are
deformational velocity components in the z and =z
directions. From these definitions,

5, 4 ey 9 s 0
822 Ox? dwdz

(14)

which is a compatibility requirement ensuring that the
velocities are unique (e.g. Mase, 1970, p.92). The strain
rates are related to deviatoric stresses by Glen’s flow law
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for ice (Equation (7)), which can be written explicitly as

n-1

é-”‘ = A (U:'.rz =+ GL'JZ)TG."’J:J' (]‘5)
and
oo A(n{,‘f + a_’rf)'_"a_’,_: (16)

r ke . _ _ e o g
with ¢!, = 0. and o}, = (5)(0re — 92.). (0i; is a stress-
tensor component.) Conservation of momentum requires

8 " il () rz -
L+(:“T"——,r)g'mmf) (17)
D 0z
and
();;; +d—g;—:= — g COS v (18)

where g is gravity and « is the angle of the ice surface
relative to the horizontal.

The variables in these equations can be rescaled by the
following substitutions: = Az, z = Az G = A s
Opz = XIUJ';: T = A0, A= )\."A’ = )‘jps g= /\J.'g’
it = Nu and v = Alv, where the overbar represents a
scaled quantity and A is an arbitrary scaling factor. After
substitution, the rescaled equations are consistent with
the original equations only if the As can be factored out.
This places a set of constraints on the scaling exponents.
For example, using the chain rule, (dozz)/(0%) =
A Ba, )/ (82) and (95:)/(02) = A1(da,.)/(02), so
% - )\d b d& =

A o d

—X*tpgsina. (19)

This gives back the original Equation (17) if and only if
Ao = Y xitkore—a=d—-b=j3+k

Similar constraints derived [rom each of the other flow
equations leads to a set of relationships which can he
solved to give a=b, c=d=e=a+j+kandp=g=
a+i+nla+ j+ k). Using \* = &/z, etc., these solutions

e
()-G)-C)-000 e
9-0-0" 00

Equations (20) through (22) give constraints that will be
satisfied when two simulations are dynamically similar.

L I )

Qi

3

By solving for the original unscaled wvariables,
Equations (20) through (22) can be rewritten as non-
dimensional numbers,

,.n+JA 7 A1

. o £ (23)

u

my =229 (24)

()-,1'2
and

g, = E . (25)

2

Each of the variables now represents characteristic
values (e.g. the glacier thickness for x). Note that the
characteristic shear stress is given by the basal shear, or
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pgrsina, so the non-dimensional parameter m just
requires the slopes to be the same in dynamically similar
simulations. m3 requires geometric similarity and m; is a
generalization of Reynolds number divided by Froude’s
from Newtonian flow (nn = 1). Note that the inclusion of a
third dimension in the glacier-flow equations does not alter
m or mp and leads to the obvious generalizations of
geometric similarity. The axes orientations are also
irrelevant to the derivation.

As a typical example, fix n =3 and let the glacier
thickness be & =100m, let the characteristic velocity be
u=1/100000ms "', g=9.8ms?, 2 =900kgm ? and
A=1x 10"m’s’kg . Then 7, =6.86. A dynamically
similar model could have the values 2 =30, u =0.1, g =
473 x 10", p=2 and A = 1000 where each variable is
measured in model units. These values are typical for the
lattice Boltzmann model and note that the viscosity is
kept relatively small, as required.

TWO-DIMENSIONAL GLACIER-FLOW
SIMULATIONS

A glacier-flow simulation starts by occupying each lattice
site and lattice direction with some initial population of
particles. These populations are then translated in the
direction of their velocities. Populations arriving at the
same lattice site are redistributed by the rules which
conserve mass and momentum (Equations (4) and (12)).
As in the lattice gas models, gravity is implemented by
changing the momentum of particle populations by some
small increment at each lattice site at each time step. The
translations, redistributions and hody-force momentum
adjustments iterate until the system reaches a steady state.
In our simulations, a change in velocity (in a least-squares
sense) of less than 1 x 10 7 between iterations is required for
steady state. Velocities are calculated from Equation (11).

Equation (12) gives the basis for specifying velocity-
boundary conditions (Skordos, 1993). Rather than
calculating the velocity from Equation (11), the velocity
at any boundary site is fixed to the desired value (lor
example, to that of a surveyed velocity). At cach
iteration, the specified velocity is used to calculate an
equilibrium distribution via Equation (12). The specified
equilibrium  distribution is then used to adjust the
populations in the collision step (Equation (4)). Specily-
ing zero velocity, for example, leads to a no-slip condition.
A free-slip (or frictionless) condition is also possible by
adjusting Equation (4) so that the angle of incidence
equals the angle of reflectance for any populations
approaching the free-slip boundary. Note that both
specified velocities and free-slip conditions can be used
at different sites in the same simulation.

Two examples of this simulation process are presented
below. An implementation of the three-dimensional model
is in progress and examples will be presented in future
publications.

Laminar flow
The simplest possible glacier is a uniform thickness of ice

sitting on an inclined plane. Assuming a no-slip condition
at the bed and a free-slip condition at the surface, the
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velocity profile is given by the laminar-flow solution, v = 0
and u(z) = uy — 2A(pgsina)" 2" /(n + 1) where wu, is the
surface velocity and is z measured perpendicular to the
surface, positive downwards (Paterson, 1994, p. 251), For
n=1A4=3,p=10,g=28 x10"% a = 0.46 rad and a
bed at z = 30 this gives u(z) = 0.034 — 3.7 x 10 522, For
this case, m =222, so one choice of corresponding
physical values is A =1x 107" mskg ', p =900kgm *,
g=98ms ? a depth of 1000 m and a slow surface velocity
of 0.0125ma Figure 3 compares the results of the
Boltzmann model to the analytical expression. A similar
simulation with n=3, g=12x10"* and A =1000
illustrates the characteristic flattening of the velocity pro-
file caused by a strain-thinning solid (Fig. 3). In this case,
m = 22.86, so one choice of corresponding physical values
s A=1x 10 m*’kg® p=900kem *, g=9.8ms 2
a depth of 100 m and a surface velocity of 94.66 ma '

velocity

0.025

0.02

0.01

depth

m.
=
=
™
w2
&

3

velocity

0. 008

V) depth

Fig. 3. Laminar flow with n=1 (lop) and n =23
(bottom ). Point data are from the lattice Bollzmann

simulations and solid lines are the analytical solutions.

Valley-glacier flow

Figure 4 shows non-Newtonian (n=3) flow through a
more typical two-dimensional cross-section of a valley
glacier. A no-slip condition is specified at the bed and
surface velocities are fixed at the surface (roughly down-
wards in an accumulation zone and roughly upwards in an
ablation zone). Other parameters (and potential choices
for characteristic physical values) are the same as above.
Notice that the bed is undulating and overdeepened near
the terminus and that the cross-section has an icefall and a
steep bedrock cliff’ near the equilibrium line. These
geometries can cause significant meshing difficulties for
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non-Newtonian finite-difference and finite-element techni-
ques but pose no difficulty for the lattice Boltzmann model.

head surface

-

[P Peivieieicl:
PR LT S Sy

Fig. 4. Velocity vectors calculated by the laltice Bollzmann
niodel for a two-dimensional verlical eross-section through
an trregularly shaped valley glacier. Gravily is acting

vertically downwards. The small dots are laltice sites which
are nol a parl of the glacier and have zera velocily. The
vectors are magnified 100 times and are measured in lattice
unils per time step. The grid is 50 by 30 latlice units.

CONCLUSIONS

The code for a lattice Boltzmann model is simple and
short, with an intuitive motivation — the translation and
collision of particles. Glacier-flow geometries can be as
complicated as necessary with no additional complexity
imposed on the model code. The same technique can be
used to model the slow creeping flow of any solid, such as
alass, cold tar, salt diapers or lava. The only restrictions
are a quantiliable constitutive relationship (substituted in
place of Equation (8)), flows which have negligible
inertia, steady-state behavior and isothermal conditions.

The preliminary success of the lattice Boltzmann
method for steady-state isothermal glacier flows suggests
that it would be profitable to focus additional research on
fully time-dependent three-dimensional thermomechanical
Boltzmann techniques. The current model can already
handle time-varying boundary conditions, so the primary
difficulty is allowing free-surface geometries which can
evolve with time. The authors are currently developing this
free-surface condition as well as techniques for incorporat-
ing the thermodynamic equations of state.

ACKNOWLEDGEMENTS

D. Bahr was supported by a Visiting Fellowship and J.
Rundle was supported under U.S. Department of Energy
grant number DE-FG03-95ER 14499, both to the

looperative Institute for Research in Environmental

Sciences at the University of Colorado. We appreciate S.
Peckham’s assistance in the scaling analysis and would
like to thank G. Doolen for bringing S. Hou'’s dissertation
to our attention. S. Marshall's review of the mathematics
improved the clarity of this paper.

REFERENCES

Aharonov, E. and D. H. Rothman. 1993, Non-Newtonian flow (through
porous media): a lattice-Boltzmann method. Geophys. Res. Lett., 20(8),
679-682.

Balise, M.J. and C.F. Raymond. 1985, Transfer of basal sliding
variations to the surface of a linearly viscous glacier. J. Glaciol.,
31(109), 308-318.

Benzi, R., S. Succi and M. Vergassola. 1992. The lattice Bolzmann
equation: theory and applications, Phys. Rep., 222(3), 145-197.

Chen, S. and 6 others. 1991, Lattice gas automata for flow through porous
media. Physica D, 28, 72-84.

Frisch, U., B. Hasslacher and Y. Pomeau. 1986. Lattice-gas automata
for the Navier-Stokes equation. Phys. Rev. Lett., 56(14), 1505 1508.

Frisch, U., D). d’Humiéres, B. Hasslacher, P. Lallemand, Y. Pomcau and
J. Rivet. 1987. Lattice gas hydrodynamics in two and three
dimensions. Complex Systems, 1, 649-707.

Higuera, F.J. and J. Jiménez. 1989. Boltzmann approach to lattice gas
simulations. Furophys. Lett., 9(7), 663668,

Hou, S. 1995. Lattice Bolizmann method for incompressible, viscous
flow. (Ph.D. dissertation, Kansas State University.)

Huang, K. 1987. Statistical mechanics. Second ediltion. New York, John
Wiley and Sons,

Humiéres, D. d’ and P. Lallemand. 1987. Numerical simulations of
hydrodynamics with lattice gas automata in two dimensions. Complex
Systems, 1, 599-632.

Kadanoff, L., G. McNamara and G. Zanetd. 1987. A Poiseuille
viscometer for lattice gas automata. Complex Systems, 1, 791-803.
Lawniczak, A, D. Dab, R. Kapral and J. P. Boon. 1991. Reactive lattice

gas automata. Physica D, 28, 132 158,

Lewis, H.R. and C.H. Papadimitriou. 1981, Elements of the theory of
computation. Englewood Clifls, NJ, Prentice-Hall.

Logan, J. 1D. 1987. Applied mathematics, a conlemporary approach. New York,
John Wiley and Sons.

Mase, G.E. 1970, Theory and problems of continuum mechanics, New York,
McGraw-Hill.

Maxwell, J. C. 1839. Hlustrations of the dynamical theory of gases. In
Brush, S. G, 1966. Kinetic theory. Volume 1. The nature of gases and heat.
Oxford. Pergamon Press, 148-171. [Reprinted. ]

Meier, M. F., L.A. Rasmussen, R, M. Krimmel, R. W. Olsen and D.
Frank. 1985. Photogrammetric determination of surface altitude,
terminus position, and ice velocity of Columbia Glacier, Alaska. U.S.
Geol. Surv. Prof. Pap. 1258-F.

Paterson, W.S. B. 1994. The physics of glaciers. Third edition. Oxford, ete.,
Elsevier.

Raymond, C., T. Johannesson, I. Pfeffer and M. Sharp. 1987.
Propagation of a glacier surge into stagnant ice. J. Geoplys. Res.,
92(B9), 9037-9049.

Salem, J. and S. Wollram. 1986. Thermodynamics and hydrodynamics
of cellular automata. In Wollram, S.. ed. Theory and application of
cellular automata. Singapore, World Scientific, 362 365.

Skordos, P.A. 1993. Initial and boundary conditions for the lattice
Boltzmann method. Phys. Rev. I, 48(6), 4823-4842.

Turcotte, D.L. and G. Schubert. 1982. Geodvnamics, applications of
continuum physics to geological problems. New York, John Wiley and Sons,

Van der Veen, C.J. and 1. M. Whillans. 1993. Location of mechanical
controls on Columbia Glacier, Alaska, U.S.A., prior to its rapid
retreat. Arct. Alp. Res., 25(2), 99-105.

Welty, J-R., G.E. Wicks and R.E. Wilson. 1984. Fundamentals of
momentum, heat, and mass transfer. Third edition. New York, John Wiley
and Sons.

Wolfram, S. 1986. Cellular automata fluids 1: basic theory. 7. Stat. Phys.,
45(3/4), 471-526.

MS recetved 10 March and accepted in revised form 19 June 1995

640

https://doi.org/10.3189/50022143000034948 Published online by Cambridge University Press


https://doi.org/10.3189/S0022143000034948

