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Linear and nonlinear contributions to the localization and dynamics of internal gravity
waves in a stably stratified turbulent channel flow are investigated using data from direct
numerical simulations (DNS). The classification into linear and nonlinear mechanisms
is based on the resolvent formulation of the Navier–Stokes equations, which interprets
velocity and temperature fluctuations (flow response) as the result of a linear operator
(resolvent) acting on the nonlinear advection terms (forcing). Spatial and spatio-temporal
power spectral densities computed from DNS data demonstrate that the stratified flow
response is localized in spectral space and in the channel core, while the nonlinear forcing
is broadband and spans up to the entire channel height. The localization of the velocity and
temperature fluctuations in wavenumber and frequency is captured by the leading singular
value of the resolvent operator. The wall-normal localization on the other hand results from
a combination of linear dynamics and nonlinear forcing, and the latter is further examined
using the cross-spectral density (CSD) tensor. Wall-normal subsets of the forcing CSD
lead to flow responses that reveal a three-layer structure. The middle one hosts the critical
layer of the gravity wave, and is termed the outer layer since it is flanked by an inner layer at
the wall and the core region at the channel centre. Forcing within this outer layer generates
the majority of the flow response in the channel core. Furthermore, a decomposition of
the forcing CSD into velocity and temperature demonstrates that each imprints distinct
phase relations on their associated responses, which lead to destructive interference and
localization of the gravity waves in the channel core.

Key words: stratified turbulence

1. Introduction

Stratified flows are common in geophysical systems such as the atmosphere or the oceans
(Gill 1982). The variation of fluid density along the direction of gravity results in forces
that can be either stabilizing or destabilizing. Unstable stratification occurs when denser
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Figure 1. Unstratified (a) and temperature stratified channel flow (b). The cross-flow planes show the
temperature fluctuations and the side panel shows the mean temperature (colour contours) and fluctuations
(line contours). The isosurfaces visualize vortical structures. The stratified flow can conceptually be divided
into an inner (grey isosurfaces), outer (isosurfaces coloured by distance from the wall) and core region (between
the horizontal lines).

fluid is atop lighter fluid, which enhances vertical mixing through the formation of large
convection cells (e.g. Brown 1980; Pirozzoli et al. 2017). This configuration is typically
encountered in the atmospheric boundary layer at daytime, when the warm ground heats
the surrounding air (e.g. Kaimal et al. 1976). On the other hand, lighter fluid atop of
heavier fluid results in stable stratification, which suppresses vertical motions and gives
rise to internal gravity waves (e.g. Mowbray & Rarity 1967). This configuration is typical
of the nocturnal atmospheric boundary layer (e.g. Nieuwstadt 1984), and in the oceans
which are heated from above (Wunsch & Ferrari 2004). These flows often also involve
shear and, as such, the interplay of buoyancy and shear is key to the dynamics of
geophysical flows through, e.g. mixing (Caulfield 2021), energetics (Winters et al. 1995)
and sediment transport (Hung, Niu & Chou 2020). The present work examines stably
stratified wall-bounded shear flows, in the canonical setting of turbulence in a rectilinear
channel. We study the linear and nonlinear effects that lead to localization of internal
gravity waves in the channel core, using data from direct numerical simulations (DNS).

The stratification level of a channel flow is set globally through the density, or
equivalently the temperature, difference between the two walls. For our analysis, we
consider two stably stratified flows with temperature as the stratifying agent. The relative
importance of shear and buoyancy changes with wall-normal height, which leads to local
flow regions with distinct characteristics (Armenio & Sarkar 2002; García-Villalba &
del Álamo 2011). For the present study, the stratified flow is conceptually divided into
three layers, which are contrasted with the unstratified configuration in figure 1. The inner
region, which is located next to the wall and illustrated by the grey vortical structures,
is shear dominated and remains largely unaffected by buoyancy, except for the damped
influence of the large-scale motions (García-Villalba & del Álamo 2011). The adjacent
outer region is represented by the vortical structures coloured by wall distance and will be
shown to be essential for the sustenance and localization of the gravity waves. The core
region, which is located in the channel centre and delineated by the two horizontal lines,
is characterized by low shear and strong gravity effects, which give rise to large-scale
internal waves (Armenio & Sarkar 2002; Iida, Kasagi & Nagano 2002; García-Villalba &
del Álamo 2011; Lloyd, Dorrell & Caulfield 2022). These waves are constrained in their
wall-normal extent, and carry large flow perturbations, as illustrated by the temperature
fluctuations plotted at multiple cross-sections in figure 1.
1000 A27-2
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Localization of internal gravity waves in stratified channel flow

These gravity-wave disturbances exhibit linear characteristics in two respects: firstly,
the dominant vertical velocity and density (temperature) fluctuations in the channel centre
are spatially shifted relative to one another by a quarter wavelength (π/2 phase shift
in Fourier domain), in agreement with linear theory. This phase locking decreases the
ensemble-averaged buoyancy flux and steepens the density gradient in the channel centre
(see colour contours on the side panel in figure 1 and the discussion by Armenio & Sarkar
2002; García-Villalba & del Álamo 2011). Secondly, these gravity-wave disturbances
approximately follow a generalized version of the linear dispersion relationship, which
properly accounts for the streamwise mean flow and wall-normal extent of the waves. At
each streamwise length scale, there is evidence for two wave-like solutions consisting of
a dominant upstream travelling and a weaker downstream travelling wave, relative to the
frame of the mean flow (Moestam & Davidson 2005; Lloyd et al. 2022).

The observations by Lloyd et al. (2022) suggest that the internal waves are generated
when hairpin-like disturbances originating from the outer flow region interact with the
strong density gradient in the channel core. Linear dynamics seem to play a key role
in this process as well. The same authors show that simplified linearized flow models,
namely solutions to the two-dimensional (2-D) viscous Taylor–Goldstein equations and
the stochastically forced 2-D linearized Navier–Stokes equations (NSE), qualitatively
reproduce the flow structure in the core region and the low-frequency branch of the
dispersion relation. The linearized system is most sensitive to stochastic forcing in the
outer region, which supports the view that the shear-driven turbulence in the near-wall
and outer regions sustains the gravity waves in the channel centre. The conclusions from
these simplified systems are informative, and we herein aim to complement them with
a quantitative assessment of the linear and nonlinear contributions to gravity waves in a
three-dimensional flow.

Evidence for the importance of linear mechanisms in shear flows is well established
(Phillips 1969), and recent techniques have facilitated their study (see e.g. Jovanović (2021)
for an overview). One commonly adopted approach is to view the NSE as an input–output
system, in which the linearized dynamics, which are represented by the resolvent operator,
map a forcing (system input) to an observable flow response (output). The appropriate
choice of linearization point, forcing and observable depends on the application. For
stationary turbulent flows, the reference state is usually the mean flow, the observable
is taken to be the flow state and the forcing is given by the nonlinear advection terms, so
that the input–output system is closed (McKeon & Sharma 2010). Analysis of unstratified
wall-bounded turbulent flows shows that the resolvent is low rank at energetic length
scales (Moarref et al. 2013), selectively generates structures that resemble coherent flow
motions observed in experiments and numerical simulations (Sharma & McKeon 2013),
and qualitatively captures the flow response to control and other external inputs (e.g. Luhar,
Sharma & McKeon 2014b; Toedtli, Luhar & McKeon 2019). Recently, the resolvent
framework has been extended to turbulent flows with stable and unstable stratification
(Ahmed et al. 2021; Madhusudanan et al. 2022; Cossu 2023). The linearly most amplified
structures change under weak stable stratification in accordance with DNS results. In
particular, the linearly most amplified velocity and temperature responses in the near-wall
region are inappreciably affected by stratification, but change significantly in the outer
flow (Ahmed et al. 2021). Nonetheless, the importance of the linear dynamics, represented
by the resolvent operator, for the internal gravity waves remains unexplored and it is not
clear, for example, if the resolvent captures their localization in spectral space and in the
wall-normal direction.
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The characterization of the nonlinear forcing remains a challenge for all input–output
formulations of the NSE. It is well known that the forcing has a scale-dependent structure
(‘colour’), which has far-reaching implications for the relative amplitude and phase of
the linearly amplified structures (see e.g. Zare, Jovanović & Georgiou 2017). Aspects of
the nonlinear-forcing structure can be incorporated into the linear operator to improve the
linear predictions (Morra et al. 2019; Pickering et al. 2021; Liu, Caulfield & Gayme 2022;
Symon et al. 2023) or can be reverse-engineered from flow statistics (Moarref et al. 2014;
Zare et al. 2017; Rosenberg & McKeon 2019; Towne, Lozano-Durán & Yang 2020). The
true spectral properties of the nonlinear forcing are described by its cross-spectral density
(CSD) tensor, which can be computed directly from highly resolved data (see e.g. Towne,
Schmidt & Colonius 2018). Morra et al. (2021) performed a direct calculation of the
forcing CSD from DNS data of an unstratified channel flow and confirmed that the forcing
is structured and low rank, but not necessarily aligned with the linearly most amplified
disturbances. The effect of stratification on the forcing CSD and the role of nonlinear
forcing for the sustenance and localization of internal gravity waves remains unexplored.
Another interesting aspect of the nonlinearity is that the flow response to individual forcing
components (e.g. in-plane and vertical momentum forcing) can interfere constructively or
destructively, depending on the relative phase imprinted by the nonlinearity. Destructive
interference is commonly observed in unstratified flows and becomes most apparent in the
velocity–vorticity formulation in channel flows (Rosenberg & McKeon 2019; Morra et al.
2021). It is conceivable that destructive interference is also important in stably stratified
flows, especially for the localization of internal gravity waves, but this aspect has not been
previously explored.

This paper aims to address some of the gaps identified in the literature. Specifically, our
study quantifies the contributions of the linear and nonlinear dynamics to the localization
of internal gravity waves by analysing DNS data of two stably stratified turbulent channel
flows. Section 2 introduces the problem formulation, describes the DNS and outlines
the data processing and analysis tools. Time-averaged flow statistics and spatio-temporal
CSDs are computed from DNS data for the flow response and for the nonlinear forcing.
Section 3 presents these DNS data to illustrate the effect of stratification on the flow
response and forcing, and to identify the length and time scales representative of internal
gravity waves. The linear dynamics associated with the stratified resolvent operator
are analysed in § 4. The analysis is focused on the gravity waves and shows that the
spectral localization is determined by the linear dynamics, but information about the
nonlinearity is required to understand the wall-normal localization. Section 5 studies the
nonlinear-forcing CSD and explores its role in sustaining and localizing the gravity waves.
In this context, it is shown that the flow has a three-layer structure (as indicated in figure 1)
and that the forcing in the outer region generates the majority of the flow response in the
channel core. Velocity and temperature forcing further induce distinct phase relations that
lead to destructive interference and localization of the gravity waves in the channel core.

2. Approach

This section introduces the mathematical problem formulation and outlines the data
acquisition. The governing equations and their input–output form are summarized in § 2.1.
Section 2.2 describes the DNS that generated the data and the post-processing steps to
transform the DNS data into a suitable representation for subsequent analysis.
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Localization of internal gravity waves in stratified channel flow

2.1. Governing equations and input–output form
We consider a temperature stratified turbulent channel flow with periodic streamwise (x�)
and spanwise (z�) directions, and walls located at y� = {0, 2h�} (see figure 1). The net mass
flux in the streamwise direction is constant, and the no-slip walls (u� = v� = w� = 0) are
maintained at constant but different temperatures. The top wall is �T� hotter than the
bottom one, which induces a stable stratification in the vertical direction, aligned with the
mean shear.

The temperature-induced density fluctuations are assumed to be small relative to the
background density, and therefore, the Boussinesq approximation can be invoked. The
governing equations are the incompressible NSE combined with a transport equation for
the temperature field, which in non-dimensional form are

∇ · u = 0, (2.1a)

∂tu + u · ∇u = −∇p̃ + 1
Reb

∇2u + Rib Tey, (2.1b)

∂tT + u · ∇T = 1
Pr Reb

∇2T. (2.1c)

These equations will collectively be referred to as ‘NSE’ hereafter. In the above expression,
u = (u, v, w)� is the velocity vector, T represents temperature, t denotes time, p̃ = p − ph
is the difference between the kinematic pressure (p) and the hydrostatic pressure of the
constant background density (ph), and ey is the unit vector in the wall-normal direction.
All flow quantities are made dimensionless with the channel half-height (h�), bulk velocity
(U�

b) and half the temperature difference between the walls (�T�/2). The resulting
non-dimensional problem parameters are the Prandtl number Pr = ν�/κ� (where ν� is
the kinematic viscosity and κ� the thermal diffusivity of the fluid), Reynolds number Re
and Richardson number Ri. The Reynolds and Richardson numbers can be defined with
respect to the bulk (U�

b) or friction (u�
τ ) velocities,

Reb = U�
bh�

ν�
, Rib = α��T�g�h�

2U�
b

2 , (2.2a)

Reτ = u�
τ h�

ν�
, Riτ = α��T�g�h�

u�
τ

2 , (2.2b)

where g� denotes the gravitational acceleration and α� is the thermal expansion coefficient.
The majority of the results will be presented using inner scaling, and where helpful bulk
quantities will be reported.

In order to classify dynamical contributions as linear or nonlinear, we rewrite (2.1)
in input–output form, which leads to the so-called resolvent formulation of the NSE.
Formally, any flow variable ζ is Reynolds decomposed into a spatio-temporal mean ζ ( y)
and fluctuations ζ ′(x, y, z, t). With knowledge of the mean-flow profiles, we turn to the
fluctuation equations where we group all linear terms on the left-hand side, while the
nonlinear terms are isolated on the right-hand side. The fluctuation equations are Fourier
transformed in the homogeneous spatial directions (x and z) and in time, using

ζ̂k( y) = F {ζ } = 1
2πLxLz

∫ ∞

−∞

∫ Lx

0

∫ Lz

0
ζ(x, y, z, t) e−i(kxx+kzz−ωt) dz dx dt. (2.3)

Due to the finite size of the domain in x (with period Lx) and z (period Lz), the
associated wavenumbers kx = k(2π/Lx) and kz = l(2π/Lz) are constrained to integer

1000 A27-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

83
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.836


S.S. Toedtli, P. Morra and T.A. Zaki

multiples ({k, l} ∈ Z) of the fundamentals. The wavenumbers are collected in the vector
k = (kx, kz, ω)� and a single Fourier mode will be referred to as ζ̂k, where the superscript
hat indicates a complex-valued quantity. Note that the sign convention in the Fourier
transform of the spatial and temporal directions is different, so that a Fourier mode with
positive kx and ω advects downstream at wave speed c = ω/kx.

With these manipulations, the fluctuation equations at each k /= 0 can be expressed as

− (iωM + L)Dq̂k = B ˆ̃f k, (2.4)

where the state vector q̂k and the nonlinear-forcing vector ˆ̃f k are given by

q̂k =

⎛⎜⎝
ûk
v̂k
ŵk

T̂k

⎞⎟⎠ ,
ˆ̃f k =

⎛⎜⎜⎜⎝
̂̃fuk̂̃fvk̂̃fwk̂̃fT k

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
−(û′ · ∇u′)k

−(û′ · ∇v′)k

−(û′ · ∇w′)k

−(û′ · ∇T ′)k

⎞⎟⎟⎟⎠ = f̂ ik + f̂ k, (2.5a,b)

and the operators M , L, D and B are defined in Appendix A. The operators themselves
depend on the wavenumber vector, but the subscript k is omitted for compactness. The
nonlinear forcing can further be split into irrotational ( f i) and solenoidal ( f ) parts. The
former lies in the null space of the operator B, so that the solenoidal part alone determines

the velocity response (see e.g. Chorin & Marsden 1993). We will therefore replace ˆ̃f k
in (2.4) by f̂k and only report the dynamically relevant solenoidal part of the forcing.
Note that the temperature forcing is not subject to the solenoidal constraint, and therefore,̂̃fT k = f̂T k.

The operator on the left-hand side of (2.4) can be inverted to obtain the NSE in
input–output form. The linear operator that maps the nonlinear forcing f̂k (considered
the input) to the flow response q̂k (output) is called the resolvent operator R,

q̂k = −C(iωI + L1)
−1B1 f̂ k = R f̂ k, (2.6)

where L1 = M−1L and B1 = M−1B; the definition of the operator C is given in
Appendix A. It is important to point out that the resolvent depends on the choice of
input and output variables. Other definitions would be possible, for example, if the NSE
were formulated in velocity–vorticity form. It should also be noted that (2.6) is an exact
representation of the NSE at each k when the mean-velocity and mean-temperature
profiles are known.

The resolvent formulation provides a natural partitioning of the flow dynamics and
stratification effects into linear and nonlinear interpretations, as illustrated by the block
diagram of figure 2. Past studies typically analyse one of the two blocks (see e.g. Morra
et al. 2021; Huang et al. 2023), and following this approach we focus on the lower half
of the diagram. Starting from the flow response qk, the present study investigates how the
resolvent R and nonlinear forcing f k localize internal gravity waves in spectral space and
in the channel core. We will term flow features associated with the resolvent operator R as
linear effects, which will be studied in § 4. Phenomena associated with the forcing f̂k will
be classified as nonlinear effects, and are the subject of § 5.

2.2. Data acquisition and processing
The input–output framework is applied to high-fidelity data obtained from DNS of a
turbulent channel flow at Reτ ≈ 180. Three conditions are considered: an unstratified
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û kH

]

E[û
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Figure 2. (a) Block diagram of the NSE in resolvent form. (b,c) Components of the CSD tensor for the flow
response (Ŝk) and forcing (P̂k). (d,e) Physical flow structure of the leading forcing SPOD mode (χ̂1) and
associated flow response (Rχ̂1).

Case Pr Reb Reτ Rib Riτ Nu

R0 0.7 2800.0 177.2 0.0 0.0 6.01
R60 0.7 3436.0 175.4 0.082 63.0 2.76
R120 0.7 3900.0 182.2 0.128 117.2 2.44

Table 1. Flow parameters for unstratified (R0) and stratified flows (R60, R120).

case (Riτ = 0, labelled ‘R0’), which serves as a reference, and two stratified ones.
The weakly stratified simulation at Riτ ≈ 60 (labelled ‘R60’) will be the main focus
of this study, and the last computation at Riτ ≈ 120 (labelled ‘R120’) is analysed to
verify that the results generalize to more strongly stratified flows. For a given Reτ , the
feasible range of Richardson numbers is limited by the requirement that the majority
of the flow stay fully turbulent, so that the Reynolds decomposition remains physically
meaningful. The simulations discussed herein cover the feasible Ri range at Reτ ≈ 180,
in accordance with earlier results by García-Villalba & del Álamo (2011). The relevant
flow parameters of all cases are summarized in table 1. The Nusselt number is defined as
Nu = dyT�|y�=0(2h�/�T�) and the expressions for the other non-dimensional groups can
be found in (2.2).

2.2.1. Direct numerical simulation
The DNS uses a fractional step method with local volume fluxes in a staggered grid
arrangement, as described in Rosenfeld, Kwak & Vinokur (1991). The time-stepping
algorithm is Adams–Bashforth for the nonlinear advection terms and Crank–Nicolson for
the diffusive terms. The pressure Poisson equation is solved with Fourier transforms in
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Case Domain size Grid points Grid resolution

Lx Ly Lz Nx Ny Nz �x+ �y+
min �y+

max �z+

R0, R60 4π 2 2π 384 257 320 5.89 0.20 2.95 3.53
R120 8π 2 4π 384 257 320 11.78 0.20 2.95 7.07

Table 2. Domain size and grid parameters. The variables Nx, Ny and Nz denote the number of grid points in
each direction. Note that the horizontal domain size and grid resolution are different for case R120.

the periodic streamwise and spanwise directions, leading to a tridiagonal system that can
be solved efficiently. The code has been extensively validated in unstratified transitional
(Marxen & Zaki 2019; Wang, Wang & Zaki 2019a) and fully turbulent channel flows
(Wang, Hasegawa & Zaki 2019b; Wang & Zaki 2021), and further validation for the
stratified case is presented in §§ 3 and 5.

The channel flow is driven by a constant mass flux and the bulk Reynolds number is
increased with stratification, so that Reτ ≈ 180 in all cases. The domain size and grid
resolution are summarized in table 2. The superscript plus indicates normalization with
respect to the viscous scales (u�

τ and ν�/u�
τ ), which are approximately constant across flow

configurations. The grid is uniform in the streamwise and spanwise directions, and the
non-uniform grid spacing in y follows a stretched hyperbolic tangent function. A larger
domain size is required to sustain turbulence in configuration R120, and the {x, z} grid
resolutions are reduced to keep the storage requirements feasible. The grid is only slightly
coarser compared to previous DNS studies (e.g. García-Villalba & del Álamo 2011; Ahmed
et al. 2021); even so our analysis will put less emphasis on this coarser simulation. The
time step is fixed ({R0, R60}: �t+ = 0.045, R120: �t+ = 0.034) and the total integration
times are t�(u�

τ /h�) = {210, 204, 187} for {R0, R60, R120}, respectively. A total of 10 001
flow snaspshots q(x, y, z, t) are collected for each configuration at a constant sampling
interval of �t+s ≈ {3.7, 3.6, 3.4}, resulting in 16 TB of data per flow condition.

2.2.2. Data processing
The input–output relation in (2.6) is defined in Fourier space, while the DNS data are
available in physical space on a staggered grid and at constant time intervals. To unify the
two perspectives, a spectral representation of the DNS data is obtained in post-processing.

In a first step, the instantaneous DNS fields q(x, y, z, t) are Fourier transformed in x
and z, and spectrally upsampled to (3/2)Nx and (3/2)Nz wavenumbers. A complex phase
shift is then applied to collocate all flow variables on the x and z vertices of the original
spatial grid. The DNS data are subsequently interpolated from the stretched hyperbolic
tangent grid in y onto Chebyshev collocation points using cubic splines, with an additional
zero slope constraint for v at y = {0, 2} to enforce continuity at the wall. The appropriate
number of Chebyshev collocation points Nc = 161 is determined as the minimum N
at which the reconstruction error no longer decreases with an increasing number of
collocation points. The collocated velocity fields are divergence free with respect to the
finite volume numerics of the DNS, but not necessarily with respect to the spectral
operators. We therefore apply a spectral Leray projector P to enforce incompressibility
with respect to the Fourier and Chebyshev operators

P(ûξ ( y, t)) = ûξ ( y, t) − ∇�−1(∇ · ûξ ( y, t)), (2.7)
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Localization of internal gravity waves in stratified channel flow

where ξ = (kx, kz)
� is the spatial wavenumber vector and ûξ denotes the {x, z} Fourier

coefficients of the velocity field. We have further validated that the original and projected
velocity fields have the same flow statistics.

The nonlinear terms f̃ (x, y, z, t), which represent the input in (2.6), are evaluated
pseudo-spectrally from the divergence-free part of the collocated flow snapshots. The
quadratic advection terms are evaluated in physical space and the (3/2) rule is used

to dealias the time-dependent spatial Fourier coefficients ˆ̃f ξ ( y, t). Recall that only
the divergence-free part of the velocity forcing, f̃u, is required for the input–output
formulation in (2.6), which can be extracted with a similar Leray projector as (2.7),

f̂ uξ ( y, t) = P(
̂̃f uξ ( y, t)). (2.8)

The final processing step is to estimate the temporal frequency content at each k of the
DNS data. To obtain converged estimates, we average over multiple realizations (Welch’s
method; see e.g. Towne et al. 2018), which is achieved by splitting the time series into
shorter segments of 300 samples (or time window Tη), with 50 % overlap between adjacent
blocks; we then apply a Hann window η(t) to each segment to enforce periodicity:

η(t) = η̃(t)(
1

Tη

∫ Tη

0
η̃2(t) dt

)1/2 , η̃(t) = sin2
(

πt
Tη

)
for 0 ≤ t ≤ Tη. (2.9)

It is important to point out that the window function introduces additional temporal
dynamics, since η(t) does not commute with the time derivative. The window dynamics
have to be accounted for in (2.6) by replacing q̂k and f̂k by

q̂ηk =

⎛⎜⎜⎝
(̂uη)k
(̂vη)k
(̂wη)k
(̂Tη)k

⎞⎟⎟⎠ , f̂ ηk =

⎛⎜⎜⎜⎝
(̂ fuη)k + (̂udtη)k

(̂ fvη)k + (̂vdtη)k

(̂ fwη)k + (̂wdtη)k

(̂ fTη)k + (̂Tdtη)k + dy(vT)η̂(ω)δkx0 δkz0

⎞⎟⎟⎟⎠ , (2.10a,b)

where δkx0 is the Kroenecker Delta in the Fourier domain. This is an inherent limitation of
analysing the temporal frequency content of non-periodic signals. All reported temporal
statistics of the nonlinear-forcing terms contain the additional window dynamics, since
this is required to satisfy the input–output relation equation (2.6) to satisfactory accuracy
(see also Morra et al. (2021) for additional details).

2.2.3. Spectral densities
Spectral densities are used to statistically characterize the turbulence and the forcing,
at individual length and time scales. The CSD tensor is an appropriate statistical
characterization of the Fourier coefficients, which we compute following the algorithm
by Towne et al. (2018). The CSD of the turbulence is denoted as Ŝk and that of the forcing
is denoted as P̂k. Both quantities are formally defined as

Ŝk( y, y′) = E[q̂ηk( y)q̂H
ηk( y′)], (2.11a)

P̂k( y, y′) = E[ f̂ ηk( y)f̂ H
ηk( y′)], (2.11b)

and are shown schematically on the top right of figure 2. Note that each sub-block of
Ŝk and P̂k corresponds to the covariance between different components of the state
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and forcing vector, respectively. All CSDs are ensemble averaged over the windowed
realizations of duration Tη and normalized by the wavenumber (�ki) and frequency (�ω)
spacing to obtain true spectral densities. Equation (2.6) implies that the resolvent relates
the CSD of the forcing and the flow response,

Ŝk = E[q̂ηkq̂H
ηk] = RE[ f̂ ηkf̂ H

ηk]RH = RP̂kRH. (2.12)

This input–output relation can be used to verify the convergence and accuracy of the
right-hand side in comparison to direct computation of the left-hand side; (2.12) further
provides a framework to analyse the flow response generated due to subsets of the forcing
P̂k. Both aspects will be explored in § 5.

The real-valued diagonal terms of the CSD tensors are of particular interest and will
be used to illustrate the flow structure at specific k. The diagonal terms are referred to as
power spectral densities (PSDs) and are denoted by a corresponding lower-case symbol,
with the component indicated in the subscript (for example, skvv and pkvv). The integral
of the PSD over ω recovers the time-averaged PSD (denoted by sξvv , pξvv , etc.) and the
integral over k is equal to the variance.

3. Flow statistics and spectra

We begin the discussion with the analysis of statistics computed from the DNS of the
unstratified and stratified flows. Mean and root-mean-square (r.m.s.) profiles are first
discussed in § 3.1 to provide a general view of how the flow changes under stratification and
to compare to the literature for validation. Spatial and spatio-temporal PSDs are presented
next in §§ 3.2 and 3.3, respectively. They illustrate how stratification changes the energy
content in spectral space and guide the selection of a relevant wavenumber triplet k for
subsequent analysis.

3.1. Mean profiles
Select ensemble-averaged statistics are presented in figure 3. The solid lines correspond
to the present DNS, with stronger stratification represented by darker lines, while the
open symbols are data from the simulations by Ahmed et al. (2021). The profiles are
either anti-symmetric (mean temperature T) or symmetric (remaining quantities) about
the channel centreline, and only the data in the lower channel half y ∈ [0, 1] are reported.
All quantities show good agreement with the data by Ahmed et al. (2021), which confirms
the accuracy of our simulations.

The modifications of the mean and r.m.s. velocity and temperature profiles
(figure 3a–c,e) due to gravity effects have been extensively discussed by García-Villalba &
del Álamo (2011) and we only summarize a few key observations. The near-wall turbulence
is little affected by stable stratification and the profiles collapse in this region when
normalized by viscous scales. The largest modifications are observed close to the channel
centre, where the mean-velocity profile approaches a parabola and the mean-temperature
gradient steepens with increasing Ri. The wall-normal velocity fluctuations decrease with
stratification in the region 0.5 < y < 0.9 and recover the unstratified level only close to the
channel centre. In contrast, stratification increases the temperature fluctuations beyond the
near-wall region. The largest fluctuations are recorded in the channel centre for R60, and
reduce slightly for stronger stratification. It is important to remark that the temperature
fluctuations are normalized by the friction temperature T�

τ = (κ�/u�
τ ) dyT�|y�=0, which

decreases with stratification (compare the Nusselt numbers in table 1) and, thus, magnifies
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Figure 3. Spatio-temporal mean profiles for different flow configurations. Case R0 (unstratified), light blue;
case R60, medium blue; and case R120, dark blue. Lines represent the current simulations, while symbols
outline data of Ahmed et al. (2021). (a) Mean streamwise velocity, (b) mean temperature, (c) r.m.s. of
wall-normal velocity, (d) r.m.s. of solenoidal wall-normal velocity forcing, (e) r.m.s. of temperature, ( f ) r.m.s.
of temperature forcing.

the r.m.s. profile at higher Ri. Independent of normalization, large v and T fluctuations are
observed in the stratified flow close to the channel centreline, and are typically attributed
to the internal gravity waves that occur in this region (García-Villalba & del Álamo 2011).

Figure 3(d, f ) shows statistics of the nonlinear terms (forcing in the terminology of the
input–output framework) of the momentum and temperature equations. As noted in § 2.1,
only the dynamically relevant solenoidal part of the momentum forcing is shown. The
r.m.s. fluctuations of the v forcing (figure 3d) increase with Ri except very near the channel
centre, in contrast with the observed decrease in vrms. As for the r.m.s. temperature forcing
(figure 3f ), it appreciably exceeds the unstratified curve beyond the near-wall region, even
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Figure 4. Gradient Richardson number of the stratified flows. The shaded areas indicate the different
conceptual layers in the lower half of the channel. Grey, inner region; white, outer region; green, core region.

at values of y where Trms is inappreciably modified. It is important, however, to keep in
mind that the comment regarding the normalization by T�

τ is relevant here as well.
The ensemble-averaged statistics illustrate that stratification acts non-uniformly across

the channel. A primary reason is that the strength of gravity effects relative to shear
depends on the distance from the wall, leading to flow regions with distinct dynamics
and flow characteristics. The relative strength of gravity and shear can be quantified by the
gradient Richardson number,

Rig = N�2

(dyu�)2 = g�α�dyT
�

(dyu�)2 =
(

T�
S

T�
B

)2

, (3.1)

which is a ratio between the time scales of local shear (T�
S ) and buoyancy (T�

B). The latter
is defined in terms of the buoyancy frequency N�2 = g�α�dyT

�
. The gradient Richardson

numbers in our stratified simulations are shown in figure 4. In both cases, Rig is small in
proximity of the wall, which means that shear dominates over buoyancy. This implies that
the near-wall flow is inappreciably affected by stratification, consistent with the agreement
of the mean profiles from the stratified and unstratified flows over that region in figure 3. At
higher y, the gradient Richardson number monotonically increases and ultimately diverges
since the mean shear vanishes at the channel centreline, and gravity effects become
dominant in this region. For our subsequent analysis, we divide the channel into three
qualitative regions, which are indicated by different shadings in figure 4: inner region
(represented in grey), outer region (no shading) and core region (green shading). The
extent of the inner region will be discussed subsequently, while the boundary between
the outer and core region is taken at y = 0.8, in accordance with Lloyd et al. (2022).

3.2. Time-averaged PSDs
The mean profiles of the previous section provide a global sense of flow modification
by stratification. In contrast, the input–output view of the NSE (figure 2) is formulated
for individual wavenumber triplets and a suitable k has to be chosen to proceed with the
analysis. The choice of k is guided by the spectra of the flow response, which delineate the
stratification effect at each scale, and with a focus on the channel core where stratification
effects are strongest. We will emphasize the wall-normal velocity and temperature in our
discussion: these variables are directly coupled by stratification (see (2.1)), admit wave-like
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Figure 5. Time-averaged PSDs as a function of the wall-normal coordinate y and spanwise wavenumber kz.
The spectra are integrated over the streamwise wavenumber kx and normalized by their respective maximum
value, which is reported above each figure in order {R0 (light blue), R60 (medium blue)}. The contour lines
label sξ/(max sξ ) = {0.25, 0.5, 0.75} and the green vertical line denotes kz = 2.

solutions to the linearized temperature equation and most clearly show the imprint of
internal gravity waves in fully turbulent flows. We first consider time-averaged PSDs,
which will inform the selection of the streamwise (kx) and spanwise wavenumber (kz).
Section 3.3 will present temporal PSDs to guide the choice of ω. For conciseness, the
discussion focuses on cases R0 and R60; a summary of the relevant spectra for R120 will
be given in § 5.4.

Figure 5 shows the time-averaged PSD of v and T (figure 5a,c), as well as their
forcing terms (figure 5b,d). The spectra are integrated over kx and recover the square of
the fluctuations in figure 3 when integrated over the spanwise wavenumbers. Note that
only a subset of the resolved kz is shown for clarity. Each spectrum is normalized by its
maximum value (indicated above the figure) and the same contour levels sξ/ max sξ =
{0.25, 0.5, 0.75} are shown for case R0 (light blue) and R60 (colour contours). We first
discuss how the response and forcing PSDs change with stratification, and then contrast
the spectral content of the input and output variables.

For both flows, structures with large spanwise extent (low kz) contribute most to the
variance of v and T . In the unstratified case, the wide structures are energetic over a large
part of the channel height, while stratification localizes them in the core region. This effect
is most evident in the temperature (figure 5c), where stratification effectively suppresses
the tall lobes that reach into the inner region of the unstratified channel.
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The spanwise spectra of the forcing are more broadband in both flows (figure 5b,d),
especially for fv where the peak in the outer flow extends across all shown wavenumbers.
Interestingly, the spectral structure of fv is qualitatively unchanged with stratification,
except perhaps in the channel core where stratification suppresses the forcing. The spectral
structure of the temperature forcing, on the other hand, is significantly affected by gravity
effects. The unstratified flow shows a peak that extends across the inner and outer regions,
and across a broad range of kz. Stratification significantly weakens the peak close to the
wall, and instead energizes the small spanwise wavenumbers in the channel core, similar
to the response spectra. This localization is much more apparent compared to the r.m.s.
profile in figure 3( f ), which showed a plateau in the core region.

We next compare the forcing and response spectra. It is apparent that the two are
energetic in different regions. The forcing has broader support in kz, which is perhaps
not surprising since the nonlinear terms contain spatial gradients that amplify the small
scales and triadic interactions can transfer energy across spatial scales (see e.g. Bolotnov
et al. 2010; Atoufi, Scott & Waite 2021). From the input–output perspective of (2.4) and
figure 2, it is interesting to note that the strong forcing at large kz does not translate into
a significant flow response, in particular for v. This suggests that the linear dynamics act
as a spectral filter that admits only a narrow band of wavenumbers in the response, an
aspect that will be explored in more detail in § 4.3. Moreover, the wall-normal peak of
the v forcing occurs in the outer region, while all other displayed components peak in the
channel core. This raises the question of whether forcing in both wall-normal regions is
required to localize the flow response, which will be addressed in § 5.1.

To proceed with the input–output analysis, we identify a suitable kx and kz from the
time-averaged spectra. Recall from § 3.1 that the gravity effects are strongest in the core
region, so that the energetic scales at this y are the natural choice. Moreover, we base
the choice on the flow response rather than the forcing, since the former is the physically
observable quantity. The most energetic spanwise wavenumber for both v and T is kz = 1,
which corresponds to λz = 2π. Since the spanwise size of the computational domain for
cases {R0, R60} is Lz = 2π (see table 2), this is the fundamental wavenumber of the DNS.
To preclude a possible influence of the finite domain size, it is preferable to choose a
different scale and we therefore select the second most energetic scale kz = 2, which is
indicated by the green vertical line in figure 5.

The PSDs discussed in this section are integrated over kx, and the contributions from
individual streamwise wavenumbers to kz = 2 must be considered to select a suitable kx.
For conciseness, a detailed discussion of the PSD at kz = 2 is omitted, but can be found
in Appendix B. We only note that the most energetic scale of the temperature response,
which guides the selection, occurs at kx = 2. Our subsequent analysis will therefore focus
on the Fourier mode with spatial wavenumbers ξG = (kx = 2, kz = 2)�. This wavenumber
combination falls within the range typically associated with internal gravity waves (see
e.g. García-Villalba & del Álamo 2011) and is therefore given the subscript ‘G.’ Our
subsequent analysis will provide further evidence that ξG indeed represents the gravity
waves found in the core of the stratified channel.

3.3. Temporal PSDs
This section presents the temporal PSDs of the flow response and forcing, and informs the
choice of an appropriate temporal frequency ω for subsequent analysis. The discussion
focuses on the temporal PSDs (diagonal entries of the CSDs), with emphasis on the
wall-normal velocity and the temperature.
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Figure 6. Temporal PSD of the Fourier mode ξG. The PSDs in (a–d) are normalized by their maximum value,
which is reported above each figure in order {R0 (light blue), R60 (medium blue)}. The contour lines label
sk/(max sk) = {0.25, 0.5, 0.75}, the dashed lines indicate the mean-velocity profiles and the medium blue
triangles denote the wave speed of the gravity waves according to the empirical relation of Lloyd et al. (2022).
The green vertical line corresponds to c+ = 21, which will be analysed subsequently, and the dotted horizontal
line marks the associated critical-layer height (y ≈ 0.53).

The PSD of v, T and their forcing components are shown in figure 6 as a function
of the wall-normal velocity and wave speed c = ω/kx. As before, the contour levels
indicate sk/ max sk = {0.25, 0.5, 0.75} for the unstratified (light blue contour lines) and
stratified (colour contours) flows, and the maximum value is indicated above each figure. In
addition, the figures also show the mean-velocity profiles u of the unstratified (dashed light
blue line) and stratified (dashed medium blue line) flows, for reference. The computations
of the forcing PSD are the most challenging to converge and contain high-frequency noise,
which is removed by a Gaussian filter to aid the interpretation.

The PSD of the v and T response are shown in figure 6(a,c), respectively. The change in
wall-normal localization with stratification is congruent with the spatial spectra at ξG. Our
focus here is on the localization in wave speed, which changes significantly between the
two flows. In the unstratified case, the most energetic structures in the channel core advect
at approximately the local mean velocity, consistent with the kx-ω spectra of Lloyd et al.
(2022). Stratification increases the mean velocity in the channel centre (compare the two
dashed lines) and it is apparent that the energetic structures at Riτ = 60 advect at a higher
speed as well. However, their advection speed is significantly different from the mean
velocity, which is indicative of internal gravity waves with a distinct dispersion relation.
Lloyd et al. (2022) proposed an empirical dispersion relation, denoted c̃, for internal
gravity waves in channel flow at higher Reynolds and Richardson numbers (Reτ ≈ 550
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and Riτ = 480), and found that

c̃ = umean ± Nmean

kx
(3.2)

provided a satisfactory fit. The subscript ‘mean’ in the above expression indicates that the
mean velocity and buoyancy frequency are averaged over the channel core y ∈ (0.8, 1.2).
The two wave speeds that result from this dispersion relation are marked by the two
medium blue triangles on top of each PSD. The most energetic wave speeds of v and
T agree well with the slower of the two wave speeds from (3.2), which reinforces the
evidence that ξG = (kx = 2, kz = 2)� is a buoyancy-driven internal gravity wave. Lloyd
et al. (2022) also observed a weak gravity wave at the faster wave speed, which is not
apparent in our data. This difference may be attributed to the different flow conditions of
the two studies. We further note that the PSDs of the unstratified and stratified response
can be approximately collapsed when plotted in frames that move at the slower of their
respective wave speeds c̃.

Figure 6(b,d) shows the PSDs of the v and T forcing, respectively. The spectral energy
content of the v forcing changes again very little with stratification, except for a slight tilt
towards higher wave speeds in the core region. The modifications of the T forcing PSD are
more pronounced and, similar to the spatial spectra, we observe an attenuation of the inner
peak due to stratification. The stratified temperature forcing is localized in the channel
core, around the same wave speed as the flow response.

For further analysis, we select the wave speed corresponding to the energetic response
in the stratified channel core. This value is c+ ≈ 21, which corresponds to the peak in the
temperature response, and is marked by a green vertical line in figure 6. The associated
critical-layer height, where ū+( y) = c+, is located at y ≈ 0.53 and is marked by the
horizontal dotted line in figure 6. This completes the analysis of the DNS spectra and the
scale selection. In the following sections we study mode kG = (kx = 2, kz = 2, c+ = 21)�
for case R60 from an input–output perspective.

4. Linear dynamics and localization in wavenumber space

This section analyses how the linear dynamics, represented by the resolvent operator,
contribute to the localization of the internal gravity waves. The analysis will focus on the
Fourier mode kG = (kx = 2, kz = 2, c+ = 21)�, which was identified as a representative
example of the internal waves in the previous section. We first introduce the singular value
decomposition (SVD) of the resolvent, which extracts the dominant linear amplification
mechanisms, along with an appropriate definition of the energy norm (§ 4.1). We then
explore whether energetic wavenumber regions in the DNS spectra coincide with large
linear amplification (§ 4.2) and whether the observed flow structures resemble the linearly
most amplified modes (§ 4.3).

4.1. Linear amplification and choice of energy norm
Dominant linear amplification mechanisms at each k and their dependence on stratification
can be obtained from an SVD of the resolvent operator. The SVD identifies forcing
structures (inputs) that are maximally amplified by the linear dynamics (resolvent) and
provides the associated flow response (output).

The notion of maximal amplification depends on the measure of the response size,
which implies an appropriate choice of norm. For a physically meaningful measure, we
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adopt the total energy norm, which in a stratified flow is a combination of kinetic and
available potential energy. The latter is defined relative to a minimum potential energy
state, at which temperature (density) perturbations can no longer be converted into kinetic
energy (Winters et al. 1995). In the transition literature, the laminar solution with a linear
temperature profile is commonly used as a reference state (see e.g. Kaminski, Caulfield &
Taylor 2014). In contrast, the present input–output framework defines fluctuations relative
to the turbulent mean flow rather than the laminar base state. For consistency, the available
potential energy has to be defined relative to the turbulent mean, so that the total fluctuation
energy approaches zero as the fluctuations vanish.

With the turbulent mean as reference state, the non-dimensional expression for the
energy inner product (·, ·)E and associated energy norm ‖·‖E is

‖q̂k‖2
E = (q̂k, q̂k)E =

∫ 2

0
|ûk|2 + |v̂k|2 + |ŵk|2 + Rib

dyT
|T̂k|2 dy ≈ q̂H

k W q̂k, (4.1)

where W is the discrete weight matrix that contains the appropriate relative weights of the
state variables as well as the numerical quadrature weights. The relative weight between
kinetic and available potential energy is inversely proportional to the mean-temperature
gradient. This dependence originates from a Lagrangian argument, which relates local
perturbations in the available potential energy to vertical displacements of fluid parcels
(Gill 1982). The energy norm (4.1) is well defined so long as the mean-temperature
profile is monotonically increasing or, equivalently, Rig ≥ 0 throughout the flow. Under
this condition, (4.1) provides a generalization of the energy norm used in the stratified
transition literature and in previous resolvent analyses (Ahmed et al. 2021) and recovers
the latter if the laminar base flow with linear temperature profile is used. Figure 4 confirms
that the temperature profiles of cases R60 and R120 are indeed monotonically increasing
and that the energy norm is well defined in the present case.

For consistency with the processed DNS data, the resolvent operator is discretized
on Nc = 161 Chebyshev collocation points and the y derivatives are approximated with
Chebyshev differentiation matrices (see Weideman & Reddy 2000 for details on the
implementation). The energy norm is enforced by weighting the resolvent operator, as
described, for instance, in Luhar, Sharma & McKeon (2014a). The SVD of the discretized
and weighted resolvent returns left singular vectors ψ̂ j (also termed response modes), right
singular vectors φ̂j (forcing modes) and singular values σj. Both sets of singular vectors are
orthonormal with respect to the energy norm and form a basis for their respective spaces.
The nonlinear forcing can be expanded in terms of the right singular vectors,

f̂ k =
∑

j

(φ̂j, f̂ k)E︸ ︷︷ ︸
=b̂j

φ̂j, (4.2)

with complex-valued projection coefficients b̂j. Similarly, the flow response and action of
the resolvent operator can be written in terms of the response modes

q̂k = R f̂ k =
∑

j

σjb̂jψ̂ j. (4.3)

Equation (4.3) illustrates that the singular values represent the energy amplification of each
forcing direction by the resolvent. A unit forcing aligned with the direction φ̂j generates a
flow response in the direction of ψ̂ j with total energy σ 2

j . It is common practice to arrange
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Figure 7. Largest linear energy amplification for configurations R0 (light blue) and R60 (medium blue). The
diamonds at the top of the figure indicate the wave speed at which the maxima occur in the temperature PSD
of figure 6.

the indices in order of descending σj, so that the first basis pair describes the linearly most
amplified forcing and response direction.

Our subsequent analysis will investigate whether spectral regions of large σ1 coincide
with energetic regions in the full nonlinear flow, and whether the dominant left singular
vectors ψ̂1 give a good representation of the observed flow structures.

4.2. Localization in wavenumber space
The PSDs in § 3 revealed that the forcing and flow response are energetic at different
wavenumbers and wave speeds. The forcing is more energetic at smaller streamwise and
spanwise scales compared to the response (figure 5, and figure 21 in Appendix B). In
addition, the forcing peaks at lower c than the flow response, especially for the wall-normal
velocity (see figure 6). Since the forcing and response CSDs are related through the
resolvent operator (see (2.12)), this mismatch in energetic spectral regions may suggest
that the linear dynamics act as a selective spectral filter when generating q̂k from f̂k (see
the lower half of the block diagram in figure 2).

We explore this aspect for one of the spectral coordinates, the wave speed c, in figure 7.
The figure shows the dominant energy amplification due to the resolvent (square of the
largest singular value σ1) at the spatial wavenumber combination ξG = (kx = 2, kz = 2)�
as a function of the wave speed c for cases R0 (light blue) and R60 (medium blue). The
ordinate is shown in logarithmic scale and the diamonds at the top of the figure indicate
the wave speed at which the maximum in the temperature PSDs occurs in figure 6. For
the unstratified flow, the largest singular value reaches a maximum value around c+ ≈ 17
and drops several orders of magnitude for smaller and larger c. This narrow amplification
peak may be interpreted as a spectral bandpass filter, which can localize the flow response
in a compact spectral region from a possibly broadband flow forcing. This interpretation
is indeed supported by the unstratified PSDs in figure 6. For example, consider the wave
speed c+ = 10, where the unstratified velocity and temperature forcings contain significant
energy in the near-wall region. This forcing is only amplified by a factor of 100 by the linear
dynamics, which is more than two orders of magnitude less than the peak amplification.
Consistent with the low amplification, the flow response at c+ = 10 is weak, well below
25 % of the maximum. On the other hand, the forcing at c+ = 17 is maximally amplified
by the linear dynamics, and the response PSDs peak around this same wave speed (see
light blue diamond in figure 7), suggesting that the linear dynamics play a key role in the
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Figure 8. Singular values σj, absolute value of projection coefficients |b̂j|, and their product for the stratified
resolvent operator at kG.

localization. It is important to keep in mind that these arguments are qualitative, because
the PSDs shown in figure 6 are only a fraction of the input–output relation equation (2.12).
But even so, the close correspondence between the peaks in the response PSD and energy
amplification support that the linear dynamics localize the flow response in spectral space.

The same wavenumber localization mechanism is active for the stratified flow response,
as can be seen by comparing the medium blue curve to the colour contours of the response
and forcing PSDs in figure 6. In addition, the resolvent captures the shift in the dispersion
relation due to the internal gravity waves in the stratified flow. The maximum σ 2

1 at
Riτ = 60 occurs at c+ ≈ 21, which is significantly lower than the centreline velocity of the
stratified flow and agrees with the most energetic structures observed in the DNS (medium
blue diamond in figure 7).

Finally, it is important to keep in mind that the integral of sk over ω recovers the
time-averaged PSDs. Similar amplification plots can thus be made for other wavenumber
combinations, and give insight into the spectral filtering across k, which was already
observed in figure 5 and figure 21 (Appendix B) for the homogeneous spatial directions.

4.3. Linearly most amplified mode shapes and their relation to DNS statistics
We next examine whether the linearly most amplified directions, or the left singular
vectors ψ̂ j, can reproduce aspects of the DNS flow statistics. This question has been
studied extensively in unstratified flows (e.g. Moarref et al. 2014; Zare et al. 2017; Towne
et al. 2018; Morra et al. 2021). Therefore, we limit the analysis to the stratified channel
at Riτ = 60, and focus on the buoyancy-dominated core region and mode kG = (kx =
2, kz = 2, c+ = 21)� that is representative of the internal gravity waves.

The compactness of the expansion equation (4.3) is indicative of how well the linearly
amplified structures capture the true flow. This compactness is explored in figure 8. From
(4.3), the expansion coefficients are the product of σj, which can be obtained from the
resolvent, and the projection coefficients b̂j whose statistics can be calculated from the
nonlinearity. Since the temporal frequency content is estimated from a finite time series,
the projection coefficients have to be interpreted in a stochastic sense and their statistics
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Figure 9. Absolute value of v̂k, T̂k and their nonlinear forcing at kG. The solid black lines represent DNS data,
while the dashed and dash-dotted lines denote the properly weighted first and second resolvent response and
forcing modes.

can be related to the discretized forcing CSD,

E[bib∗
j ] = φ̂H

i WE[ f̂ ηkf̂ H
ηk]W φ̂j = φ̂H

i W P̂kW φ̂j, (4.4)

which follows directly from the definition in (4.2). The decay of the singular values (black
squares in figure 8) indicates that the linear dynamics act as a selective filter not only
in wavenumber space. Only a handful of singular vectors (wall-normal basis functions)
are amplified, and σj drops by more than a decade for j > 5, consistent with the findings
by Ahmed et al. (2021). In contrast, the nonlinear projection coefficients (blue triangles)
increase with j and counteract the filtering by the linear dynamics. Consequently, the
expansion coefficients of q̂k themselves (red circles) still decay, but more slowly than the
singular values alone. Taken together, figure 8 indicates that a superposition of multiple
left singular vectors with weights set by the nonlinearity is likely required to represent the
structure of the internal gravity waves.

This notion is made more precise by comparing the weighted resolvent modes to
the DNS statistics. Figure 9 shows the absolute value of the wall-normal velocity and
temperature components for the first two left (flow response) and right singular vectors
(flow forcing). The figure also shows the true amplitude of the flow response and forcing
at k, observed in DNS, which corresponds to the square root of the PSDs along the green
vertical line in figure 6. The first left singular vector reproduces the DNS flow response
remarkably well in the channel core, but is less satisfactory in the outer and near-wall
regions. In contrast, the second resolvent response mode is anti-symmetric across the
centreline and has more support in the outer region. This and higher modes (see expansion
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Localization of internal gravity waves in stratified channel flow

coefficients in figure 8) are necessary to obtain the correct statistics. The relative weight
and phase of the left singular vectors in the superposition is set by the nonlinearity and
interested readers may refer to Appendix C for a quantitative assessment of this aspect.

The close resemblance between the DNS response profiles and left singular vectors
should be contrasted with the poor agreement between right singular vectors and DNS
forcing statistics (right column of figure 9). Many singular vectors would be required
to reproduce the DNS forcing, and the resolvent does not provide an efficient basis (in
the sense of compact representation) for the nonlinear terms. This is consistent with the
initial increase and subsequent plateau of b̂j in figure 8. The present results thus show that
the majority of the nonlinear forcing in the channel core is not aligned with the leading
resolvent forcing modes despite their associated left singular vectors being aligned with
the flow response. An alternative approach to analysing the forcing is therefore desirable,
which will be explored in § 5.

5. Nonlinear forcing and localization in channel core

The previous section showed that the linear dynamics localize the flow response in spectral
space and that a superposition of leading response modes is required to reproduce the
DNS flow statistics, with relative weights and phases set by the projection coefficients
of the nonlinear forcing. The nonlinearity therefore plays an important role in localizing
the gravity waves in the wall-normal direction, which will be examined in more detail in
this section. One approach could be to retain the resolvent basis and then scrutinize the
projection coefficients. Such an analysis would, however, be specific to the choice of basis
and may obfuscate the flow physics. Instead, we pursue an analysis that is independent
of the basis choice and study how subsets of the nonlinear-forcing CSD generate flow
responses. We first study how subsets of the CSD, formed either over distinct wall-normal
regions (§ 5.1) or components of the forcing vector (§ 5.2), translate to flow responses
and how the interaction of the forcing subsets contributes to the localization of the
gravity waves in the core region. We then offer a physical interpretation of the observed
statistics (§ 5.3) and demonstrate that the results generalize to stronger stratification levels
(§ 5.4). Similar to the previous section, the analysis is based on a single Fourier mode
representative of the internal gravity waves. The wavenumber combination kG = (kx =
2, kz = 2, c+ = 21)� is again chosen for case R60 and an appropriate choice for case
R120 will be discussed in § 5.4.

An analysis of how the forcing CSD generates flow responses is only meaningful if the
DNS flow statistics are sufficiently converged to satisfy the input–output relation equation
(2.12). This relation further provides a thorough validation for our DNS and processing
framework. The quality of the agreement for mode kG = (kx = 2, kz = 2, c+ = 21)� for
case R60 is shown in figure 10, which compares the response PSDs computed in two
different ways: the solid lines show the PSDs computed directly from the DNS data, and
the v and T curves correspond to the profiles shown earlier in figure 9. The open symbols,
on the other hand, report the PSDs obtained indirectly, by feeding the forcing CSD through
the input–output relation equation (2.12). The agreement between the two independent
evaluations of the response CSD is satisfactory, with a maximum relative error of 5 %
across all components. This error can be attributed to the different convergence rate of Ŝk,
which is a second-order statistical measure, and P̂k, which contains fourth-order statistics.
Convergence tests with smaller spatial scales, for which the available data contain more
independent samples, confirm that this error decreases as more data become available. The
validation of the input–output relation justifies subsequent use of the direct and indirect
method of calculating Ŝk, interchangeably.
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Figure 10. Validation of the input–output relation for Fourier mode kG at Riτ = 60. Panel (a) shows the
velocity PSDs, while (b) shows the temperature PSD. The solid lines are obtained directly from the response
CSD, while the symbols represent the forcing CSD fed through the resolvent.

5.1. Three-layer structure
The PSDs of figure 6 show that the nonlinear forcing at wavenumber combinations
associated with internal gravity waves spans the entire channel height and is strongest
in the core. The relevance of the forcing in different wall-normal regions is explored in
this section. Specifically, we divide the channel into a core, outer and inner region (as
demarcated in figures 1 and 4) and quantify the contribution of the forcing in each region
to the internal gravity waves. The core region is taken from the channel centre to y = 0.8,
similar to Lloyd et al. (2022); the inner layer extends from the wall up to y = 0.3 for case
R60. The height of this layer requires further justification, which will be given in this
section.

Earlier studies used mechanistic arguments and linearized flow models to explain the
generation of gravity waves in the channel core by disturbances that originate in the outer
region (Lloyd et al. 2022). In the present study we can quantify the contribution of the
forcing at different y exactly, by splitting the forcing CSD according to the three-layer
structure and studying the associated flow response. Formally, we split P̂k( y, y′) into
sub-matrices based on the values of y and y′. For example, to isolate the effect of forcing
in the core region, we split each component of the forcing CSD at {y, y′} = 0.8 and 1.2.
The first matrix, denoted P̂k|CC, contains all entries for which both y and y′ are located in
the core region of the channel. In other words,

P̂k|CC( y, y′) =
{

P̂k( y, y′) if y ∈ (0.8, 1.2) and y′ ∈ (0.8, 1.2),

0 otherwise.
(5.1)

The second sub-matrix is denoted P̂k|OO and contains non-zero entries when both y and
y′ lie in the near-wall or outer regions of the channel. For the lower channel half, this
translates to y ∈ [0, 0.8] and y′ ∈ [0, 0.8], and an analogous range can be defined for the
upper channel half. The last sub-matrix P̂k|CO contains terms for which y is located in the
core and y′ in the outer/near-wall region, or vice versa. By construction, the sum of the
three sub-matrices recovers the full forcing CSD,

P̂k = P̂k|CC + P̂k|OO + P̂k|CO. (5.2)
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Ŝk|CO

Ŝk
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Figure 11. Response of v and T due to forcing from various wall-normal regions. Response Ŝk|CC due to
forcing restricted to the core region (dashed orange curve), response Ŝk|OO due to forcing restricted to the
near-wall and outer region (dash-dotted blue curve), response Ŝk|CO due to the covariance of the forcing
between the two regions (dotted red curve). The three curves sum to the total flow response Ŝk (solid black
line). The dashed and dotted lines in the inset show the flow response to forcing in the inner region, whose
wall-normal extent is indicated by the grey shaded area.

Since the input–output relation equation (2.12) is linear in P̂k, each sub-block generates
an associated flow response,

Ŝk = Ŝk|CC + Ŝk|OO + Ŝk|CO, (5.3)

where, for example, Ŝk|CC = RP̂k|CCRH . In similar fashion, the forcing CSD can be split
at a different y and y′ to isolate the effect of forcing in the inner layer.

We first isolate the forcing in the core and split the CSD at {y, y′} = 0.8 and 1.2. The
flow response to the different forcing sub-matrices is shown in figure 11 and following
our earlier approach, the analysis focuses on the PSD of the wall-normal velocity and the
temperature. The largest contribution to the flow response (solid black curve Ŝk) comes
indeed from the forcing in the near-wall and outer regions (dash-dotted blue curve Ŝk|OO),
consistent with the work by Lloyd et al. (2022). The strong nonlinear forcing in the channel
core on the other hand results in a much weaker flow response (orange dashed line Ŝk|CC).

It is also interesting to note that the response to forcing in the near-wall and outer regions
alone (Ŝk|OO) consistently overshoots the true flow statistics of v and T . The covariance
of the forcing between the two wall-normal regions results in damping (dotted red line
Ŝk|CO) that adjusts the response to the correct amplitude in the outer region and beyond.

So far, the flow response, which peaks in the core region, has been attributed to non-local
forcing in the layer that extends from y = 0.8 down to the wall. This forcing region thus
contains the critical layer of the Fourier mode kG at y ≈ 0.53 (horizontal line in figure 6),
which is important to be effective at inducing a flow response. However, this region also
contains the energetic near-wall turbulence that leads to a substantial near-wall forcing
(see figure 6b,d). We now examine whether this near-wall turbulence contributes to the
generation of internal gravity waves. To investigate this aspect, the forcing CSD is split
again by wall-normal location, but this time with a boundary at {y, y′} = 0.3 and 1.7. The
resulting flow response is shown in the insets of figure 11, with the selected extent of the
inner region indicated by the grey shaded area. The dashed and dotted curve represent the
response to forcing where either one or both of y and y′ are located in the inner region
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Figure 12. Response PSD of v and T due to forcing from various nonlinear terms. Response Ŝk|TT due to
temperature forcing alone (dashed orange curve), response Ŝk|uu due to velocity forcing alone (dash-dotted
blue curve) and response Ŝk|uT due to covariance between velocity and temperature forcing (dotted red curve).
The three curves sum to the total response Ŝk (solid black line).

and it is evident that the associated flow response is nearly zero. This behaviour is true
as long as the divide of the CSD is at y ≤ 0.3 and the maximum y = 0.3 is therefore
taken as the boundary of the inner layer and shown in figure 11. The inner layer therefore
represents a flow region with active turbulence, which includes the near-wall cycle and
peak in turbulent kinetic energy production, but the nonlinear forcing in this region does
not contribute to internal gravity waves, at least at kG.

In summary, the majority of the gravity wave is generated from forcing in the outer
layer 0.3 < y < 0.8 (red dotted line Ŝk|CO and blue dash-dotted curve Ŝk|OO), which is
approximately centred around the critical layer of the mode at y ≈ 0.53.

5.2. Phase relation between response to velocity and temperature forcing
We next introduce a physics-based decomposition of the forcing, and examine how the
resulting flow responses lead to localization in y. Specifically, instead of splitting the
forcing CSD by wall-normal region as in § 5.1, we now split it by forcing contributions
from the momentum equations, the temperature equations and their covariance. This
partition of the forcing CSD results in three sub-matrices:

P̂k = P̂k|uu + P̂k|TT + P̂k|uT . (5.4)

The subscript u or T indicate which block matrices of P̂k are non-zero for a given partition.
For example, P̂k|TT represents contributions from temperature forcing alone and only
has one non-zero block. Analogously, P̂k|uu represents velocity forcing alone (first 3 × 3
blocks are non-zero) and P̂k|uT captures the covariance between velocity and temperature
forcing.

The flow response to each sub-matrix of the forcing CSD is shown in figure 12 in terms
of skvv and skTT . The majority of the total flow response (black solid line) comes from
the velocity forcing (blue dash-dotted line), while the contribution from the temperature
forcing (orange dashed line) is significantly smaller. Interestingly, the flow response to the
covariance between velocity and temperature forcing leads to negative contributions to the
v and T statistics. These cancellations are required to localize the temperature response,

1000 A27-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

83
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.836


Localization of internal gravity waves in stratified channel flow

as is evident from figure 12, and they limit the magnitude of the velocity and temperature
fluctuations in the channel core. In the context of the resolvent bases discussed in § 4,
these results indicate that the projection of the nonlinear velocity and temperature forcing
onto the right singular vectors leads to different complex phases. These phases in turn
translate to cancelling effects between the associated response modes, which leads to the
localization of the gravity waves in y. It is also important to keep in mind from the previous
section that the forcing in the outer region contributes most to the internal gravity waves.
The observed destructive interference is largely due to the velocity and temperature forcing
in this region as well.

5.3. Physical interpretation of localization

The throughout negative value of Ŝk|CO in figure 11 and Ŝk|uT in figure 12 hint at distinct
relative phase shifts between the flow response to forcing sub-blocks. This is perhaps not
immediately obvious from the CSD itself and it is therefore instructive to decompose the
forcing CSD into SPOD modes, which have a clear physical interpretation, and to study the
associated flow response. A visual representation of this approach is given in the bottom
right of figure 2. The forcing SPOD modes χ̂k are obtained from the eigenvalue problem

P̂kW χ̂ j = λjχ̂ j, (5.5)

where λj denotes the associated eigenvalue that describes the energy contribution of
each mode. The SPOD modes are orthonormal with respect to the energy inner product
(χ̂ i, χ̂ j)E = δij and can be used to expand the solenoidal forcing at each k according to

f̂ k =
∑

j

(χ̂ j, f̂ k)E︸ ︷︷ ︸
=âj

χ̂ j. (5.6)

The complex-valued expansion coefficients âj are uncorrelated and can be related to the
SPOD eigenvalues

E[âiâ∗
j ] = λiδij. (5.7)

Interested readers may refer to Towne et al. (2018) for further details on the SPOD.
Different from the standard approach, we are interested in the forcing SPOD modes not

based on this eigenvalue but rather on the total energy of the associated flow response,

|êj|2 = λj(Rχ̂ j, Rχ̂ j)E, (5.8)

since we are interested in energetic flow structures that arise from the forcing. The total
energy of the flow response to each forcing SPOD mode is shown in figure 13, where
the indices j are ordered based on the SPOD eigenvalues. The decay of total energy is
less pronounced than the typical decay of λj, but nonetheless provides an objective metric
to select a SPOD mode to illustrate the physical mechanism that leads to the negative
correlation coefficients. The following analysis will focus on the first SPOD mode χ̂1,
which leads to the most energetic flow response, but it is important to point out that the
same conclusions apply to all j with substantial |êj|.

The spatial representation of the leading SPOD forcing mode and associated flow
response is shown in figure 14. Each quantity is normalized by its maximum value, which
is indicated above the figure. The mode represents a periodic structure in x and z (with
periodicities λx = λz = π) that advects downstream at the speed c+ = 21. The mode shape
is shown for a yz cross-section of the channel. Also keep in mind that the x and z coordinate
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Figure 13. Total energy of the flow response to forcing with the jth SPOD mode.
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Figure 14. Spatial structure of the leading SPOD forcing mode χ̂1 (b) and associated flow response (a). In each
figure, the contour lines indicate the normalized v component of the velocity response and forcing, respectively,
while the colour contours represent temperature. The contour lines denote {−0.75, −0.5, . . . , 0.75}, with
positive values shown as solid and negative values as dashed lines. The horizontal lines denote the core region
of the channel.

are interchangeable for this specific mode, since kx = kz = 2. The wall-normal velocity
(line contours in figure 14(b), with positive contours drawn as solid and negative contours
as dashed lines) and temperature forcing (colour contours) extend throughout the channel,
with peaks in the outer and core regions (delineated by the horizontal lines). This lack
of wall-normal localization in the forcing SPOD mode is consistent with the full forcing
statistics (see figure 6).

The flow response to the leading SPOD mode on the other hand is clearly localized in
the core region, as illustrated in figure 14(a). It is also apparent that the v (contour lines)
and T (colour contours) flow response are shifted by about π/2 or, equivalently, quarter
of a wavelength. This phase shift is consistent with the phase relation set by the linearized
temperature equation and is commonly interpreted in the literature as additional evidence
for the presence of internal gravity waves (see e.g. García-Villalba & del Álamo 2011).

We next give a physical interpretation of the negative response PSD contributions
that result from the covariance of the forcing in the core and outer region (Ŝk|CO in
figure 11). Analogous to the partitioning of P̂k in § 5.1, we split the forcing SPOD mode
into wall-normal sub-vectors

χ̂1 = χ̂1|C + χ̂1|O. (5.9)
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Figure 15. Wall-normal velocity (black lines) and temperature (colour contours) response due to forcing
restricted to the near-wall and outer regions (a) and core region (b), respectively. The contour levels are as
in figure 14.

As before, the subscript C denotes the vector that contains non-zero entries at all y
locations in the core region, while the subscript O denotes the vector with non-zero entries
in the near-wall and outer regions. Note that unlike P̂k, the SPOD modes are linear in f so
that there is no cross-term between the two regions. We can now study the flow response
to each subset of the forcing independently,

Rχ̂1 = Rχ̂1|C + Rχ̂1|O, (5.10)

and the corresponding spatial structures are shown in figure 15. In both cases, the response
is localized in the channel core and the velocity and temperature responses are shifted by
π/2 relative to each other. As anticipated from figure 11, the response to forcing in the
near-wall and outer regions is appreciably stronger than that to forcing in the core region,
and dominates the overall response. The spatial structures of the two responses have a
distinct spatial arrangement relative to each other, as becomes apparent by comparing
the flow structure along the vertical orange line, which marks z = 1.0. The wall-normal
velocity response (black contour lines) to χ̂1|C reaches its minimum close to z = 1.0,
while the corresponding response to χ̂1|O reaches its maximum. In other words, the two
flow structures are approximately out of phase and their pointwise products are negative
valued. The same comment applies to the temperature response as well. The products
of such cross-terms make up Ŝk|CO and illustrate that the negative covariance between
forcing in different wall-normal regions is due to relative spatial shifts in the corresponding
responses. Since the covariance Ŝk|CO is a product between a large (e.g. Rχ̂1|O) and a small
term (e.g. Rχ̂1|C), its magnitude is smaller than Ŝk|OO, but larger than Ŝk|CC.

Finally, we illustrate the flow response to the covariance of velocity and temperature
forcing, which generates negative contributions to the response PSD in figure 16 (red
dotted line Ŝk|uT ). To this end, we split the leading forcing SPOD mode into velocity
and temperature components

χ̂1 = χ̂1|u + χ̂1|T , (5.11)

where, for example, χ̂1|u contains all the velocity forcing entries. The response to each
subset of the forcing can then be studied independently,

Rχ̂1 = Rχ̂1|u + Rχ̂1|T , (5.12)
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Figure 16. Wall-normal velocity (black lines) and temperature (colour contours) response due to velocity
forcing (a) and temperature forcing (b). The contour levels are as in figure 14.

and the corresponding spatial structures are shown in figure 16. It is important to recall
that the sum of the two sub-figures recovers the total flow response shown in figure 14(a).

We first discuss the shared features in both responses and then comment on the relative
phase differences. For each flow response, the velocity and temperature have a relative
phase shift of π/2. The robustness of this phase difference suggests that it depends only
weakly on the details of the forcing and is imprinted by the linear dynamics. Both flow
responses further have local maxima in the channel core, but their level of localization
varies. For example, the temperature responses (colour contours) extend well into the
outer region, while the v responses (black contour lines) do not. The overall temperature
response (figure 14a) is also more localized, which suggests that the relative phase between
the sub-vector responses leads to cancellations.

To explore this aspect, we compare the flow responses across the figures and use
the reference location z = 1, marked by the orange vertical line. The two wall-normal
velocity responses are both localized in the channel core and are almost out of phase, so
that their pointwise products are mostly negative. The phase relation of the temperature
response is more complex and depends on the wall-normal location. The two temperature
responses are out of phase in the outer region and, thus, cancel out and localize the
overall temperature response in the channel core. Within the core, the phase shift between
the two temperature responses approaches π/2 towards the channel centre, and the
overall response localizes similarly to figure 16(a), which is dominant. Pointwise products
between quantities like Rχ̂1|u and Rχ̂1|T make up Ŝk|uT and the extended spatial regions
where this product is negative (i.e. where the two responses are out of phase) generate
the negative contributions to the response PSD. A comparison between the overall and
component-wise responses suggests that robust phase relations are necessary to localize
the overall flow response in the core region, especially the temperature field.

5.4. Behaviour at higher Richardson number
The analysis of the nonlinear dynamics has so far focused on the weakly stratified flow
R60 (Riτ ≈ 60, Reτ ≈ 180). The present section explores whether the three-layer flow
structure and the destructive interference that localize the flow response in y persist
at higher stratification levels. To this end, we analyse configuration R120 (Riτ ≈ 120,
Reτ ≈ 180), which in preliminary simulations was identified to be near the stratification
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Figure 17. Temporal PSD of the Fourier mode ξG. The PSDs in (a) and (b) are normalized by their maximum
value, which is reported above each figure in order {R0 (light blue), R60 (medium blue), R120 (dark blue)}. The
contour lines label sk/(max sk) = {0.25, 0.5, 0.75}, the dashed lines indicate the mean-velocity profiles and the
dark blue triangles denote the wave speed of the gravity waves according to the empirical relation of Lloyd et al.
(2022) for case R120. The green vertical line denotes c+ = 22.4, which will be analysed subsequently, and the
dotted horizontal line marks the associated critical-layer height (y ≈ 0.48).

limit for sustaining a fully turbulent flow at the given Reynolds number. Narrow laminar
patches typical of strongly stratified channel flows appear in the near-wall region at this
Richardson number, but no low-frequency oscillations are observed in the time series of
planar-averaged quantities, indicating that the domain is sufficiently large relative to the
size of the patches (see García-Villalba & del Álamo 2011 for an in-depth discussion). It
is also important to emphasize that the flow is fully turbulent beyond the near-wall region
and, in particular, in the channel core.

The analysis follows the approach outlined in §§ 3, 4, 5.1 and 5.2, but only the most
relevant results are shown here for conciseness. In a first step, a pair of suitable streamwise
and spanwise wavenumbers is identified from the time-averaged v and T PSDs. Again,
large streamwise and spanwise scales contribute most to the velocity and temperature
fluctuations in the channel core, and are suitable candidates. The scale ξG = (kx = 2, kz =
2)� studied in the previous sections lies within this energetic spectral region and will
serve as a representative example also in the following analysis to enable meaningful
comparisons with case R60. The temporal PSDs of v and T at ξG are shown in figure 17,
along with reference data from cases R0 and R60. Analogous to case R60, the structures
in the channel core advect more slowly than the mean flow and it is clear that the offset
from the mean increases with stratification. The energy content further clusters around the
slower wave speed of the empirical dispersion relation for internal gravity waves (dark blue
triangle), but no imprint of the faster travelling solution is observed. The most energetic
wave speed in the temperature response occurs at c+ ≈ 22.4, and we will subsequently
analyse the mode kG = (kx = 2, kz = 2, c+ = 22.4)� as an example for internal gravity
waves in configuration R120.

Similar to the earlier results at R60, the flow response for R120 is localized in spectral
space and in y, while the nonlinear forcing is not similarly localized (not shown).
A detailed analysis of the linear dynamics for case R120 is beyond the scope of this section;
however, we note that the largest linear energy amplification is again highly selective
in c. Moreover, the peak wave speed of the temperature PSD at c+ ≈ 22.4 coincides
with the location of maximum energy amplification, which occurs at c+ ≈ 22.1. These
observations suggest that the linear dynamics localize the flow response in spectral space
at higher stratification levels as well.
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Figure 18. Response of v and T due to forcing from various wall-normal regions at Riτ = 120. Response Ŝk|CC

due to forcing restricted to the core region (dashed orange curve), response Ŝk|OO due to forcing restricted to
the outer region (dash-dotted blue curve) and response Ŝk|CO due to the covariance of the forcing between the
two regions (dotted red curve). The inset shows that forcing from the inner region does not contribute to the
flow response. The coloured curves sum to the total flow response Ŝk (solid black line).

We now turn our attention to the nonlinear dynamics and localization in the wall-normal
direction. In a first step, the analysis of § 5.1 is repeated to investigate if the nonlinear
forcing of flow R120 exhibits the same three-layer structure. Figure 18 shows the response
to wall-normal sub-blocks of the forcing CSD, as defined earlier in (5.2) and (5.3). The
inset confirms that an inner layer, whose forcing does not contribute significantly to the
internal gravity waves (dashed and dotted lines), exists under stronger stratification as
well. The wall-normal extent of the inner layer depends on the Richardson number and
decreases with stratification: for case R60, it extended from the wall to y = 0.3, while in
the present configuration R120 it only extends to y = 0.2 (indicated by the grey shaded
area). The majority of the internal gravity wave is generated from forcing in the outer
region (blue dash-dotted curve Ŝk|OO), which is approximately centred around the critical
layer of the mode (y ≈ 0.48, see figure 17). The nonlinear forcing in the core region
generates a weak flow response (Ŝk|CC), but the negative contributions of Ŝk|CO (response
to covariance between forcing in the two regions) are required to limit the wave amplitude.
These observations are consistent with flow R60 and confirm that the three-layer structure
persists at higher Ri.

Finally, we explore if destructive interference between the response to velocity and
temperature forcing is still required to localize the flow response at stronger stratification.
Figure 19 shows the flow response to velocity and temperature sub-blocks of the forcing
CSD, according to (5.4). With regards to the wall-normal velocity response, Ŝk|uT is
close to zero throughout the channel, which indicates that the response to velocity and
to temperature forcing are approximately π/2 out of phase and do not interact. This is
different from the destructive interference that limited the v amplitude in case R60. The
features of the temperature response on the other hand are very similar to the less stratified
case. In particular, it is apparent that the cancellations persist and are required to limit the
extent of the gravity waves to the channel core even at higher stratification levels.

6. Conclusions

In this study we considered a stably stratified turbulent channel flow and used data
from DNS at Riτ = {60, 120} to assess the role of linear and nonlinear mechanisms in
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Ŝk|uu
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Figure 19. Response PSD of v and T due to forcing from various nonlinear terms at Riτ = 120. Response
Ŝk|TT due to temperature forcing alone (dashed orange curve), response Ŝk|uu due to velocity forcing alone
(dash-dotted blue curve) and response Ŝk|uT due to covariance between velocity and temperature forcing (dotted
red curve). The three curves sum to the total response Ŝk (solid black line).
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Figure 20. Conceptual wall-normal structure of a stably stratified turbulent channel flow with three layers
(divided by the dashed and solid horizontal lines) in each half. Each layer plays a distinct role with regards to
the internal gravity waves (IGW). The side panel displays temperature fluctuations, while the cross-flow plane
shows the nonlinear temperature forcing. The isosurfaces visualize vortical structures, coloured in grey (inner
layer) and by the distance from the wall (outer layer).

the localization of internal gravity waves. The classification into linear and nonlinear
mechanisms was based on the resolvent form of the NSE, where the velocity and
temperature fluctuations (output) are the result of a linear operator (resolvent) acting on
the nonlinear terms (input). The dynamics associated with the resolvent operator were
classified as linear, while effects associated with the forcing were termed nonlinear.
Throughout the study, particular emphasis was placed on the wall-normal velocity and
temperature, which are directly coupled by gravity effects and display the signature of the
internal waves most clearly.

Time-averaged PSDs were used to assess the scale-by-scale effect of stratification, and
to identify scales of interest for further analysis. Stratification localizes the flow response
in the channel core and in spectral space, but has less effect on the nonlinear forcing, which
remains substantial across y and broadband in wavenumber space. The spatial localization
is contrasted in figure 20, where the temperature response (side panel) is concentrated in
the core region, while the temperature forcing (back panel) has large fluctuations at all y.
Most of the flow energy in the core region is carried by large-scale internal gravity waves
that travel more slowly than the channel centreline, and the mode kG = (kx = 2, kz =
2, c+ = 21)� was identified as a representative example for the internal waves at Riτ = 60.
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A SVD of the resolvent operator revealed that the linear dynamics act as a selective
filter that localizes the flow response in spectral space. Spectral regions that contain a
large portion of the total fluctuation energy coincide with regions of large leading singular
value. The nonlinear forcing away from these k, even when appreciable, does not lead
to a significant response due to the filtering by the linear operator. The wave speed of
the internal gravity waves also coincides with the location of the largest singular value.
The relevance of linear dynamics for gravity waves was further investigated based on
the example mode kG. The leading left singular vectors of the resolvent constrain the
wall-normal structure of the velocity and temperature fluctuations, but a superposition
of modes is required to capture the wave structure across the entire channel height. This
highlights the importance of the nonlinear forcing, which is not well represented by the
corresponding right singular vectors, but sets the relative weights and phases of the modes.

A detailed analysis of the nonlinearity was pursued based on its CSD tensor, which is
independent of the basis choice. The forcing CSD tensor was split into wall-normal or
component-wise sub-matrices, and the flow response associated with each sub-matrix was
studied to interpret its role in the wall-normal localization of gravity waves. The channel
can conceptually be divided into three wall-parallel layers, which are shown in figure 20:
the inner region contains active near-wall turbulence and substantial nonlinear forcing
(see back panel), but does not contribute to the generation of internal gravity waves. The
adjacent outer region is approximately centred around the critical layer of the wave and
the forcing in this region generates the majority of the internal gravity-wave response.
A destructive interference between the response to velocity and temperature forcing in
this region is further essential to localize the temperature response in y. The internal
gravity waves themselves propagate in the core region, which also contains significant
nonlinear forcing, but this forcing is not essential to sustain the waves. We confirmed that
the three-layer structure and destructive interference persist at Riτ = 120, but observed
that the boundaries between the wall-parallel regions depend on the stratification level.

From a modelling perspective, the present study suggests that linear models can capture
the localization in wavenumber space (§ 4.2), but information about the nonlinearity has
to be incorporated to capture the localization in y (§§ 4.3 and 5.2). Our results confirm and
quantify earlier arguments by Lloyd et al. (2022) about the relevance of the outer region
for the generation of internal gravity waves. Modelling efforts should therefore be focused
on the forcing in the outer region of the flow and capture a combination of the velocity and
temperature forcing, including their correct relative phase relation, to properly localize the
internal waves in the channel core.
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Appendix A. Operator expressions

This section summarizes the expressions for the spectral operators in (2.4) and (2.6). The
nomenclature follows the unstratified transition literature (see e.g. Schmid & Henningson
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(2001) for reference), with necessary extensions to account for stratification (loosely
following Ahmed et al. 2021).

The operators C and D map between the state vectors in the primitive variable and
velocity–vorticity formulation of the NSE⎛⎜⎝

ûk
v̂k
ŵk

T̂k

⎞⎟⎠ = 1
ξ2

⎛⎜⎝
ikxdy −ikz 0
ξ2 0 0

ikzdy ikx 0
0 0 ξ2

⎞⎟⎠
︸ ︷︷ ︸

=C

⎛⎝ v̂k
ω̂yk
T̂k

⎞⎠ , (A1a)

⎛⎝ v̂k
ω̂yk
T̂k

⎞⎠ =
⎛⎝ 0 1 0 0

ikz 0 −ikx 0
0 0 0 1

⎞⎠
︸ ︷︷ ︸

=D

⎛⎜⎝
ûk
v̂k
ŵk

T̂k

⎞⎟⎠ , (A1b)

where ω̂yk is the wall-normal component of the vorticity vector and ξ2 = k2
x + k2

z is the
magnitude of the spatial wavenumber vector. For an incompressible flow, the curl operation
implied in D can be inverted and a concatenation of the two operators results in the
identity map I on the respective spaces, i.e. CD = I and DC = I . The NSE written in
velocity–vorticity form provide an evolution equation for the Laplacian of the wall-normal
velocity �v rather than v itself. The operator B provides the required map from primitive
variables to (�v̂k, ω̂yk, T̂k)� and the mass matrix M relates the latter to the state vector in
velocity–vorticity form⎛⎝� 0 0

0 1 0
0 0 1

⎞⎠
︸ ︷︷ ︸

=M

⎛⎝ v̂k
ω̂yk
T̂k

⎞⎠ =
⎛⎝−ikxdy −ξ2 −ikzdy 0

ikz 0 −ikx 0
0 0 0 1

⎞⎠
︸ ︷︷ ︸

=B

⎛⎜⎝
ûk
v̂k
ŵk

T̂k

⎞⎟⎠ , (A2)

where � = d2
y − ξ2. The operator B further maps the solenoidal part of the velocity

forcing vector to the velocity–vorticity forcing vector.
The flow dynamics linearized about a turbulent mean state are finally represented by the

operator L,

L =
⎛⎝ LOS 0 −Rib ξ2

LC LSQ 0
−dyT 0 LT

⎞⎠ , (A3)

with components given by

LOS = −ikxu� + ikx(d2
y u) + �2

Reb
, (A4a)

LC = −ikz(dyu), (A4b)

LSQ = −ikxu + �

Reb
, (A4c)

LT = −ikxu + �

Reb Pr
. (A4d)
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Figure 21. Time-averaged PSD at kz = 2 as a function of the wall-normal coordinate y and streamwise
wavenumber kx. The spectral densities are normalized by their maximum value, which is reported above each
figure in order {R0 (light blue), R60 (medium blue)}. The contour lines label sξ /(max sξ ) = {0.25, 0.5, 0.75}
and the green vertical line denotes kx = 2.

The expressions in (2.4) and (2.6) represent the NSE as a concatenation of these maps. The
state variables are transformed to velocity–vorticity form (B, D), the linearized dynamics
is applied (L, M) and the result is then mapped back to primitive variables (C).

Appendix B. Selection of streamwise scale

Section 3.2 presented time-averaged PSDs integrated over kx and informed the selection
of a suitable spanwise wavenumber for further analysis. The wavenumber selection was
guided by the energetic scales of the temperature response and kz = 2 was chosen based
on figure 5. The present section considers time-averaged spectral densities as a function of
y and kx to select a suitable streamwise length scale. In contrast to § 3.2, the PSDs are not
integrated over the remaining wavenumber kz. Instead, the spanwise wavenumber is fixed
to the previously identified scale of interest, kz = 2, and the resulting spectral densities
sξ (kz = 2) are shown in figure 21.

The effect of stratification on each flow quantity and the difference in energetic regions
between the flow response and forcing are analogous to § 3.2. Stratification localizes the
flow response and temperature forcing in the channel core, but seems to have little impact
on the wall-normal velocity forcing (compare the contour lines and the colour contours in
each figure). It is also apparent that the flow response and forcing are energetic at different
streamwise length scales. The forcing has more energy at smaller streamwise scales (kx ≈
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Figure 22. Covariance of the weighted projection coefficients, normalized by the maximum value. The
red diagonal line denotes i = j and the non-negligible off-diagonal entries indicate the importance of the
nonlinearity in setting the relative phase between the resolvent response modes.

5–10), while the flow response is most energetic at larger scales (kx ≈ 2–4). Analogous
to the approach in § 3.2, we select the example kx as the most energetic temperature
response scale, which occurs at kx = 2 and is marked by the vertical green line in figure 21.
The subsequent analysis in § 3.3 thus considers the example spatial mode kG = (kx = 2,

kz = 2)�.

Appendix C. Projection of the nonlinear forcing on the right singular vectors

We showed that the projection of the nonlinear forcing on the right singular vectors of
the resolvent operator is small and broadband. This raises the question of what role the
nonlinearity plays. To analyse this aspect, we first expand the response CSD in terms of
resolvent modes,

Ŝk = E[q̂kq̂H
k ] =

∑
i

∑
j

σi E[b̂ib̂∗
j ]σjψ̂ iψ̂

H
j . (C1)

Since the modes ψ̂ i are normalized, the contribution of each term in the sum is determined
by the complex-valued scalar coefficients. The terms with i = j, which will be referred
to as diagonal terms, play a special role in the expansion. Their coefficients are purely
real valued, which implies that the relative phase between contributions at different i is
determined by the singular vectors and ultimately the linear dynamics alone. Dominance of
the diagonal terms therefore implies that the nonlinearity is not important to determine the
relative phase of the resolvent modes, while significant off-diagonal contributions indicate
a dependence of the flow statistics on the nonlinear forcing (see Towne et al. 2018 for an
in-depth discussion).

Figure 22 shows the absolute value of the projection coefficients σiE[b̂ib̂∗
j ]σj,

normalized by the maximum value. The colour scale is logarithmic and the red line
indicates the diagonal entries i = j. Note that the coefficient covariance is Hermitian, and
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therefore, the absolute value is symmetric about the diagonal. The largest contribution
to the CSD comes from i = j = 1, consistent with the statistics of figure 9, followed
by the diagonal term i = j = 2. Beyond that, off-diagonal terms involving i = 1 provide
the largest contribution, indicating that covariances between the highly amplified leading
resolvent mode with subsequent ones play an important role in the CSD. In each case,
the relative phase in the expansion coefficients will determine whether the covariances
are constructive or destructive. In other words, even if the leading resolvent gives a
good approximation of the flow in the channel core, information about the nonlinearity
is required to obtain the relative phase between subsequent resolvent modes, which is
required to obtain the correct statistics in the outer and near-wall region of the channel.
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