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Abstract. The aim of this note is twofold. First, we prove an abstract version of the
Calderón transference principle for inequalities of admissible type in the general com-
mutative multilinear and multiparameter setting. Such an operation does not increase the
constants in the transferred inequalities. Second, we use the last information to study a
certain dichotomy arising in problems of finding the best constants in the weak type (1, 1)

and strong type (p, p) inequalities for one-parameter ergodic maximal operators.
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1. Introduction
1.1. Historical background. The Calderón transference principle [7] is a powerful tool in
ergodic theory which allows one to transfer various quantitative results, such as inequalities
of strong or weak type, from one specific dynamical system—called canonical—to all
systems of the same type. Somewhat paradoxically, its main application is related to a
purely qualitative property. Indeed, this kind of transference is widely used in verifying
almost everywhere convergence of ergodic averages as the time parameter goes to infinity.

The classical approach to the latter subject relies on the following two-step procedure:
• finding a dense class of functions for which pointwise convergence holds;
• proving an appropriate maximal inequality for the related averaging operators, which

implies that the set of functions enjoying pointwise convergence is closed.
What is transferred between systems is this maximal inequality, with the most remarkable
example being the Hardy–Littlewood maximal inequality for the one-sided averaging oper-
ators on Z, which, when combined with the mean ergodic theorem of von Neumann [21],
can be used to deduce the celebrated pointwise ergodic theorem of Birkhoff [2].
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In the modern approach, however, maximal estimates are replaced by some stronger
ones, where variation of a sequence of numbers rather than the maximum is controlled,
thanks to which pointwise convergence can be established for all functions directly. This
idea was crucial in a breakthrough series of articles by Bourgain [3–5] who obtained the
pointwise ergodic theorem for operators averaging along orbits with times determined by
polynomials. Very recently, Krause, Mirek, and Tao [14] were able to show a similar result
for certain bilinear operators, also using the ideas of [7] to reduce the problem to studying
canonical systems. These results are major steps toward confirming the general conjecture
about pointwise convergence of multilinear averages taken along polynomial orbits, see
Conjecture 1.2, promoted by Furstenberg and stated by Bergelson and Leibman in [1].

In this note, we shall show that the Calderón transference principle is valid for a broad
spectrum of scenarios regarding both the types of underlying dynamical systems and
the types of estimates to be transferred, see Theorem 1.6. In particular, all the settings
considered in Conjecture 1.2 are captured. As we shall prove, the whole process can
be carried out without increasing the optimal constants in the studied inequalities, see
equation (1.7).

In view of equation (1.7), the following dichotomy arises naturally. For a given
dynamical system, the best constant in the studied inequality is either equal or strictly
smaller than the best constant in the same inequality for the associated canonical system.
To illustrate the importance of this observation, we shall use equation (1.7) to classify for
which systems equality or strict inequality regarding the two constants occurs, in the case
of weak type (1, 1) and strong type (p, p) maximal inequalities for centered, uncentered, or
one-sided averages taken along linear orbits determined by a single ergodic transformation,
see Theorem 1.9.

1.2. Calderón transference. Let X be a measure-preserving dynamical system, that is,
a quadruple (X, B, μ, T ), where (X, B, μ) is a non-trivial σ -finite measure space and
T = (T1, . . . , Td), d ∈ N, is a family of measure-preserving transformations on X. (Here,
by ‘non-trivial’, we mean that there exists a subset of X with finite and strictly positive
measure.) The latter means that Ti : X → X are measurable and μ(T −1

i (E)) = μ(E) for
all E ∈ B. Throughout the paper, we assume that Ti are invertible and commute with each
other.

Next, for m, k ∈ N, let P = (P1,1, . . . , Pd,m) be a family of k-variate polynomials Pi,j

such that Pi,j (Z
k) ⊆ Zk . The associated m-linear averaging operators are defined by

AP
Nf (x) := En∈[N]k

∏
j∈[m]

fj (T
P1,j (n)

1 · · · T
Pd,j (n)

d x), x ∈ X. (1.1)

Here f = (f1, . . . , fm) is an m-tuple of μ-measurable functions fj : X → R, by [l], we
mean {1, . . . , l}, and Ey∈Y g(y) is the expected value of g, where the expectation is taken
with respect to the discrete uniform distribution over the indicated finite set Y.

Regarding the operators in equation (1.1), the following conjecture was posed in [1].

Conjecture 1.2. Fix d , m, k ∈ N and let X, P be as before. Then, for the operators in
equation (1.1),
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lim
N→∞ AP

Nf (x)

exists μ-almost everywhere for each m-tuple f = (f1, . . . , fm) with fj ∈ L∞(X),
j ∈ [m].

As mentioned before, the conjecture was verified in some specific cases and the proofs
usually required some quantitative knowledge about the behavior of (AP

Nf (x))N∈N. It is
very likely that the general case, if true, will be proved in a similar fashion.

With this in mind, we introduce an abstract map O : RN → [0, ∞] whose arguments
are sequences of real numbers. The only assumption imposed on O will be that it is
approximated from below by a sequence of measurable mappings (OK)K∈N depending
on finitely many coordinates. Precisely, for each K ∈ N, let OK : RK → [0, ∞) be
measurable with respect to the standard topology on RK . We assume that OK can be
chosen so that

O(an : n ∈ N) ≥ OK(an : n ∈ [K]), K ∈ N, (an : n ∈ N) ∈ RN (1.3)

and

O(an : n ∈ N) = lim
K→∞ OK(an : n ∈ [K]), (an : n ∈ N) ∈ RN. (1.4)

Given p = (p0, p1, . . . , pm) ∈ (0, ∞)m+1 with 1/p1 + · · · + 1/pm = 1/p0, we
examine the inequalities

‖O(AP
Nf : N ∈ N)‖p0 ≤ C

∏
j∈[m]

‖fj‖pj
and

‖O(AP
Nf : N ∈ N)‖p0,∞ ≤ C

∏
j∈[m]

‖fj‖pj
, (1.5)

where by O(gn : n ∈ N), we mean the function x 	→ O(gn(x) : n ∈ N), while ‖g‖q and
‖g‖q,∞ stand for the usual Lebesgue and weak Lebesgue q-quasinorms of g with respect
to μ. More precisely, given g : X → R and q ∈ (0, ∞), we have

‖g‖q :=
( ∫

X

|g(x)|q dμ(x)

)1/q

and ‖g‖q,∞ := sup
λ∈(0,∞)

λμ({x ∈ X : |g(x)| ≥ λ})1/q .

We write respectively CPO(X, p, s) and CPO(X, p, w) for the smallest constants C ∈ [0, ∞]
such that these inequalities hold true for all m-tuples f ∈ Lp1(X) × · · · × Lpm(X).

While reading, one can think of a model case, where O is the supremum norm

M(an : n ∈ N) := sup
n∈N

|an|.

Notice that M is approximated from below by MK(an : n ∈ [K]) := maxn∈[K] |an|.
Another important example is the r-variation seminorm, r ∈ [1, ∞), given by

Vr (an : n ∈ N) := sup
J∈N

sup
n0<n1<···<nJ

( ∑
j∈[J ]

|anj
− anj−1 |r

)1/r

approximated by its truncated versions Vr
K , where we additionally demand nJ ≤ K .
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Let us observe that M and Vr control respectively the size and variability of the input
values. This is why estimates for Vr can be used to prove pointwise convergence directly,
while maximal inequalities are only effective in estimating error terms, therefore requiring
a dense class of functions for which pointwise convergence is known a priori.

In practice, estimates for Vr are more difficult to prove than their counterparts for M.
Moreover, quite often they hold only in a limited range. For example, sequences of
expected value operators coming from martingales enjoy variation estimates for r ∈
(2, ∞) but not for r ∈ [1, 2], see [15, 18]. For more details and other important examples
related to oscillation or jump inequalities, we refer the reader to [12, 17, 19].

Regarding the underlying system X, our reference point is the d-dimensional canonical
system Xd = (Zd , 2Z

d
, #d , Td), that is, Zd equipped with the σ -algebra of all subsets,

counting measure, and the family Td = (Td,1, . . . , Td,d) of d independent shifts defined by

Td,i (l1, . . . , li−1, li , li+1, . . . ld ) := (l1, . . . , li−1, li + 1, li+1, . . . ld ).

We shall show the following result relating the actions of O on X and Xd to each other.

THEOREM 1.6. (Calderón transference) Fix d , m, k ∈ N and let X, P , p be as before.
Then,

CPO(X, p, s) ≤ CPO(Xd , p, s) and CPO(X, p, w) ≤ CPO(Xd , p, w) (1.7)

hold for all O admitting equations (1.3) and (1.4), where Xd is the d-dimensional canonical
system.

In particular, regarding maximal, variation, oscillation, or jump inequalities, it is enough
to deal with canonical systems.

1.3. Dichotomy. Theorem 1.6 motivates the following question.

When does the equality take place in equation (1.7)?

We shall show how to deal with such a kind of problem by solving it in a very particular
relatively easy case. In this subsection, we take d = m = k = 1 and P(n) = n. Moreover,
we assume that T is ergodic, which means that T −1(E) = E implies μ(E) = 0 or
μ(X \ E) = 0.

In this context, we introduce the one-sided maximal operator T os∗ by using the formula

T os∗ f (x) := sup
N∈N ∪{0}

∣∣∣∣ 1
N + 1

N∑
n=0

f (T nx)

∣∣∣∣, x ∈ X.

Similarly, we define the two-sided maximal operators, centered T c∗ and uncentered T u∗ , by

T c∗ f (x) := sup
N∈N ∪{0}

∣∣∣∣ 1
2N + 1

N∑
n=−N

f (T nx)

∣∣∣∣ and

T u∗ f (x) := sup
r ,r∈N∪{0}

∣∣∣∣ 1
r + r + 1

r∑
n=−r

f (T nx)

∣∣∣∣.
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Regarding these operators, it is natural to ask about the weak type (1, 1) and strong
type (p, p) inequalities for p ∈ (1, ∞]. Thus, we put Cos(X, 1) := CP

T os∗ (X, (1, 1), w) and
similarly Cos(X, p) := CP

T os∗ (X, (p, p), s) for each p ∈ (1, ∞), while Cos(X, ∞) will stand
for the best constant C in the inequality ‖T os∗ f ‖∞ ≤ C‖f ‖∞, where

‖g‖∞ := inf{λ ∈ [0, ∞] : |g(x)| ≤ λ for μ-almost every x ∈ X}.
We define Cc(X, p) and Cu(X, p), p ∈ [1, ∞], in the same manner, replacing T os∗ with T c∗
and T u∗ . In view of Theorem 1.6, properties of the Hardy–Littlewood maximal operators
on Z, and obvious bounds for p = ∞, all these quantities are finite regardless of X.

Given a non-trivial ergodic system X, we say that X consists of finitely many atoms
if it splits into disjoint measurable sets X0, X1, . . . , XL, L ∈ N, such that μ(X0) = 0,
T (Xl) ⊆ Xl+1 for l ∈ [L − 1], T (XL) ⊆ X1, and none of Xl , l ∈ [L], can be split further
into two disjoint sets of non-zero measure. Observe that then μ(X1) = · · · = μ(XL) ∈
(0, ∞).

The following well-known fact will be useful later on.

Fact 1.8. (Kakutani–Rokhlin lemma) Let X be a non-trivial ergodic system. Then exactly
one of the following two possibilities holds:
(A) the set X consists of finitely many atoms;
(B) for each L ∈ N, there exists EL ∈ B such that μ(EL) ∈ (0, ∞) and the sets

T −l(EL), l ∈ [L], are disjoint.

We are ready to formulate our second main result.

THEOREM 1.9. (Sharp constants dichotomy) Let X be as before. Then for p ∈ {1, ∞}, we
have Cos(X, p) = Cos(X1, p), while for p ∈ (1, ∞), the following dichotomy occurs:
• if case (A) from Fact 1.8 holds, then Cos(X, p) < Cos(X1, p);
• if case (B) from Fact 1.8 holds, then Cos(X, p) = Cos(X1, p).
Moreover, we have Cc(X, ∞) = Cc(X1, ∞) and Cu(X, ∞) = Cu(X1, ∞), while for
p ∈ [1, ∞), the following dichotomy occurs:
• if case (A) from Fact 1.8 holds, then Cc(X, p) < Cc(X1, p) and Cu(X, p) <

Cu(X1, p);
• if case (B) from Fact 1.8 holds, then Cc(X, p) = Cc(X1, p) and Cu(X, p) = Cu(X1, p).

This result has interesting consequences because some of the constants on X1 are
known.

COROLLARY 1.10. Let X be as before and assume that case (B) from Fact 1.8 holds.
Then:
• for p = 1, we have Cos(X, 1) = 1, Cu(X, 1) = 2, and Cc(X, 1) = (11 + √

61)/12;
• for p ∈ (1, ∞) and the uncentered operator, we have Cu(X, p) = cp, where cp is the

unique positive solution of the equation (p − 1)xp − pxp−1 − 1 = 0;
• for p = ∞, we have Cos(X, ∞) = Cu(X, ∞) = Cc(X, ∞) = 1.

Indeed, the equality Cos(X1, 1) = 1 is well known, see Lemma 3.1 for an easy proof. Next,
Cu(X1, 1) = 2 because Cu(X1, 1) ≤ 2 follows from the classical covering lemma on Z
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with overlap 2, while Cu(X1, 1) ≥ 2 can be seen by taking f̃ = 1{0} and letting λ → 0.
However, Cc(X1, 1) = (11 + √

61)/12 follows by combining the famous result of Melas
[16], where the best constant in the weak type (1, 1) inequality for the centered maximal
operator on R is obtained, with [13, Theorem 1], where the best constants in discrete
and continuous inequalities are compared to each other (in our case, both constants are
equal). For p = ∞, the claim is trivial, and for p ∈ (1, ∞), just like before, we combine
the result on R of Grafakos and Montgomery-Smith [9] with the following transference
principle.

PROPOSITION 1.11. Fix p ∈ (1, ∞) and let X be as before. Then Cu(X, p) = cp, where
cp is the best constant in the strong type (p, p) inequality for Mu

R
, the uncentered

Hardy–Littlewood maximal operator R.

Proof. The inequality Cu(X, p) ≥ cp follows by repeating the arguments used to prove
[13, equation (1.3)]. We only sketch the proof. Let fcont : R → [0, ∞) be a smooth function
for which cp is almost attained. Using dilations, we can assume that fcont is very slowly
varying. Define fdis : Z → [0, ∞) by sampling fdis(l) := fcont(l). Then the constant in the
maximal inequality stated for fdis will be almost the same as that corresponding to fcont.

However, Cu(X, p) ≤ cp follows easily, since for any fdis : Z → [0, ∞), we have

‖T u∗ fdis‖p

‖fdis‖p

≤ ‖Mu
R
fcont‖p

‖fcont‖p

,

where fcont : R → [0, ∞) is given by fcont(x) := fdis(l) for x ∈ [l, l + 1), l ∈ N. Indeed,
this inequality can be easily seen, since for each x ∈ [l, l + 1), one has Mu

R
fcont(x) ≥

T u∗ fdis(l) (it is important here that we are working with operators of uncentered type).

Similar arguments give an analog of Proposition 1.11 for the one-sided operator. For the
centered operator, the situation is different and only the lower bound for Cc(X, p) can be
easily transferred from the continuous setting to the discrete one, cf. [13, Theorem 1].

1.4. Ergodicity. The canonical system Xd can be viewed as a topological group with
Haar measure and transformations Td,i being translations by group elements, say gd,i .
Since the subgroup G generated by gd,i is just Zd , the canonical system is ergodic, that
is, there are no non-trivial G-invariant sets E ⊆ Zd . We take this opportunity to highlight
the importance of ergodicity in this context.

Let us specify our measure space (X, B, μ) to be [1, 0) with the usual Borel sets and
Lebesgue measure. We consider the group Aut(X, B, μ) of bimeasurable automorphisms
of that space, that is, invertible maps T : X → X such that T , T −1 are measure preserving.
In fact, elements of Aut(X, B, μ) are equivalence classes, with T ∼ T ′ if and only if
T (x) = T ′(x) holds μ-almost everywhere, and we shall refer to their representatives.

We say that (Tn)n∈N converges weakly to T if limn→∞ μ(Tn(E)�T (E)) = 0 for
all E ∈ B with � being the symmetric difference symbol. Also, if μ({x ∈ [0, 1) :
T n(x) = x}) = 0 for all n ∈ N, then T is called aperiodic. Following Halmos [10], we
notice that for aperiodic T, its conjugacy orbit {S−1T S : S ∈ Aut(X, B, μ)} is weakly
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dense. If T is ergodic instead, then so are all S−1T S, while properties of μ imply that
T is aperiodic as well. (Note that ergodic systems satisfying case (A) from Fact 1.8 lack
aperiodicity, so referring to μ is necessary.) In view of ergodicity of Tπ(x) := x + π

mod 1, say, ergodic automorphisms are weakly dense. This fact alone suggests that many
problems are reducible to the case of ergodic transformations.

Yet another relevant result is the so-called Conze principle [8]. Its original formulation
is as follows. Given a sequence (in)n∈N of integers, for each S ∈ Aut(X, B, μ), the sharp
constant in the weak type (1, 1) inequality for S∗f (x) := supN∈N |(1/N)

∑N
n=1 f (Sinx)|

is not larger than its counterpart for T∗ defined analogously for any aperiodic
T ∈ Aut(X, B, μ). The proof uses weak density of the conjugacy orbit of T, and the
principle can be generalized in many ways. Again, by properties of μ, the same is true for
any ergodic T instead.

The last related issue we would like to discuss is the Stein maximal principle [20]. As we
have seen, pointwise convergence results are often consequences of weak type inequalities,
while proving the latter can be reduced to the ergodic case whenever the Conze principle
is available. Stein’s result, saying that in some cases, pointwise convergence is equivalent
to the associated weak type inequality, makes these observations more fundamental.

Let this time X be a homogeneous space of a given compact group G. By this, we mean
that, in particular, the structure of X is inherited from G, there is a unique normalized
G-invariant measure μ on X, and G acts transitively on X. For example, X may be the
n-dimensional sphere with G consisting of all rotations of X. Transitivity implies that there
are no non-trivial G-invariant sets E ⊆ X, and ergodicity indeed is crucial here.

Now Stein’s result reads as follows. For each p ∈ [1, 2] and each given sequence
(Tn)n∈N of operators bounded on Lp(X, μ) and commuting with all transformations
determined by the actions of g ∈ G on X, if limn→∞ Tnf (x) exists almost everywhere
for all f ∈ Lp(X, μ), then T∗f (x) := supn∈N |Tnf (x)| satisfies the weak type (p, p)

inequality.
Let us check that ergodicity cannot be dropped. To see this, suppose that X consists of

disjoint G-invariant sets Xl , l ∈ N, admitting Stein’s principle and such that μ(Xl) = 2−l .
Then pointwise convergence gives weak type inequalities on all Xl separately but the same
for X may be false, as the best constants may tend to infinity with l. This happens when
Tnf (x) equals nf (x) for x ∈ Xn and 0 otherwise.

For another instructive example, take Xl := {(l, 0), (l, 1), . . . , (l, l)} with equal masses
2−l/(l + 1), and set G := Z2 × Z3 × · · · with the action of g = (g1, g2, . . .) ∈ G

on X given by τg(l, i) := (l, i + glmod l + 1). Then for g∗ := (1, 1, . . .) ∈ G and
Tnf (x) := (1/n)

∑n
i=1 f (τ i2

g∗x), we see that limn→∞ Tnf (x) exists everywhere for all
f ∈ L1(X, μ), while there is no weak type (1, 1) inequality in view of the famous result
by Buczolich and Mauldin [6].

2. Proof of Theorem 1.6
Let us now prove Theorem 1.6.

Proof of Theorem 1.6. We only prove the first inequality and the second one can proved
by using very similar arguments.
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Let f = (f1, . . . , fm) with fj ∈ Lpj (X). For each K ∈ N, we define

FK
j (x, l) := fj (T

−KRK+l1
1 · · · T

−KRK+ld
d x) · 1{l∈[KRK ]d }, x ∈ X, l ∈ Zd ,

with RK ∈ N so large that |Pi,j (l)| ≤ RK for all i, j when ‖l‖∞ ≤ K . Then,

‖FK
j ‖pj

= (KRK)d/pj ‖fj‖pj

by the Fubini–Tonelli theorem, since Ti are measure preserving. The first norm above is
with respect to the product of μ and counting measure. Set FK = (FK

1 , . . . , FK
m ). We

have

OK(AP
NFK(x, l) : N ∈ [K]) = OK(AP

Nf (T
−KRK+l1

1 · · · T
−KRK+ld
d x) : N ∈ [K])

for all x ∈ X and l ∈ {RK + 1, . . . , (K − 1)RK}d when K ≥ 3. Hence,

‖OK(AP
NFK : N ∈ [K])‖p0 ≥ ((K − 2)RK)d/p0‖OK(AP

Nf : N ∈ [K])‖p0

by the Fubini–Tonelli theorem, since Ti are measure preserving. Letting K → ∞ gives

‖O(AP
Nf : N ∈ N)‖p0 ≤ CPO(Xd , p, s) lim

K→∞((K − 2)RK)−d/p0
∏

j∈[m]

‖FK
j ‖pj

by Fatou’s lemma, equation (1.3), equation (1.4), and the definition of CPO(Xd , p, s). The
limit is equal to

lim
K→∞((K − 2)RK)−d/p0(KRK)d/p1+···+d/pm

∏
j∈[m]

‖fj‖pj
=

∏
j∈[m]

‖fj‖pj

thanks to the Hölder exponent hypothesis. This completes the proof.

Once we have seen the proof of Theorem 1.6, several remarks are in order.
• Apart from those specified in equation (1.5), other types of estimates could be

considered in Theorem 1.6. One of the key factors is good scaling, which in our case
was assured by assuming 1/p1 + · · · + 1/pm = 1/p0.

• Properties of Xd resemble the structure of the group of transformations generated
by Ti . Dropping commutativity is possible but it leads to more complicated canonical
systems, see [11] for the case of nilpotent groups of step 2.

• Instead of AP
N , one can consider different operators, for example, the averaging

operators used to define T os∗ , T c∗ , T u∗ from Theorem 1.9, see Proposition 2.1.

PROPOSITION 2.1. Under the assumptions of Theorem 1.9, for each p ∈ [1, ∞], we have
Cos(X, p) ≤ Cos(X1, p), Cc(X, p) ≤ Cc(X1, p), and Cu(X, p) ≤ Cu(X1, p).

Proof. We repeat the proof of Theorem 1.6.

3. Proof of Theorem 1.9
The proof of Theorem 1.9 is divided into several lemmas. Throughout this section,
d = m = k = 1, T is ergodic, and P(n) = n.
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LEMMA 3.1. (Sharp constant equals 1) We have Cos(X1, 1) = Cos(X1, ∞) = Cc(X1, ∞) =
Cu(X1, ∞) = 1. Consequently, Cos(X, 1) = Cos(X1, 1), Cos(X, ∞) = Cos(X1, ∞),
Cc(X, ∞) = Cc(X1, ∞), and Cu(X, ∞) = Cu(X1, ∞).

Proof. We only need to prove the first part and the rest of the claim follows directly from
Proposition 2.1 and the fact that |f | ≤ min{T os∗ f , T c∗ f , T u∗ f }. The case p = ∞ is obvious.
Also, Cos(X1, 1) = 1 is well known but we include the proof for the sake of completeness.

We shall show that Cos(X1, 1) ≤ 1 and the remaining inequality Cos(X1, 1) ≥ 1 is
obvious. Let f ∈ L1(X1) be non-negative and assume that λ ∈ (0, ∞) is such that the set

Eos
λ (f ) := {l ∈ Z : |T os∗ f (l)| ≥ λ}

is non-empty. Thus, Eos
λ (f ) = {l1, . . . , lJ } for some integers l1 < · · · < lJ , J ∈ N. For

each j ∈ [J ], we let Nj be the smallest number N ∈ N ∪ {0} such that 1/(N + 1)
∑N

n=0
f (lj + n) ≥ λ. We set Bj := {lj , . . . , lj + Nj } and observe that Eos

λ (f ) ⊆ ⋃J
j=1 Bj .

Next, define D1 := B1 and Dj := Bj \ ⋃j−1
i=1 Bi for 1 �= j ∈ [J ]. Then Dj are disjoint, we

have
⋃J

j=1 Bj = ⋃J
j=1 Dj , and for each j, either Dj = ∅ or Dj = {lj + rj , . . . , lj + Nj }

for some rj ∈ [Nj ] ∪ {0}. In the latter case, by the definition of Nj , we have
∑

l∈Dj
f (l) ≥

λ |Dj |. Consequently,

λ |Eos
λ (f )| ≤

∑
j∈[J ]

λ |Dj | ≤
∑
j∈[J ]

∑
l∈Dj

f (l) ≤ ‖f ‖1,

which justifies Cos(X1, 1) ≤ 1.

Let us now consider the case p ∈ (1, ∞) for atomic systems.

LEMMA 3.2. (Case (A), p ∈ (1, ∞)) Assume that case (A) from Fact 1.8 holds. Then
for each p ∈ (1, ∞), we have Cos(X, p) < Cos(X1, p), Cc(X, p) < Cc(X1, p), and
Cu(X, p) < Cu(X1, p).

Proof. We only prove Cos(X, p) < Cos(X1, p) and the remaining inequalities can be
proved by using very similar arguments.

It suffices to show that for each fixed L ∈ N and p ∈ (1, ∞), we have Cos(X[L], p) <

Cos(X1, p), where X[L] = ([L], 2[L], #[L], T[L]) is the finite shift system with L elements,
that is, T[L](l) := l + 1 for l ∈ [L − 1] and T[L](L) := 1.

Given ε ∈ (0, 1), let f : [L] → [0, ∞) be such that ‖T os∗ f ‖p ≥ (1 − ε)Cos(X[L], p)

‖f ‖p. Then for a large parameter R ∈ N, we define F : Z → [0, ∞) by

F(l) :=
{

f (l mod L) for l ∈ [RL],
0 otherwise,

where we identify f (0) with f (L). Note that ‖F‖p = R1/p‖f ‖p. Moreover, if R is
sufficiently large (with respect to L, p, and ε), then

‖T os∗ F · 1[RL]‖p ≥ (1 − ε)2Cos(X[L], p)‖F‖p.
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For each l ∈ {−RL + 1, . . . , 0}, by using Hölder’s inequality, we obtain

T os∗ F(l) ≥ 1
2RL

∑
n∈[RL]

F(n) = 1
2L

∑
n∈[L]

f (n) ≥ ‖T os∗ f ‖∞
2L

≥ ‖T os∗ f ‖p

2L1+1/p

≥ (1 − ε)Cos(X[L], p)

2L1+1/pR1/p
‖F‖p.

Consequently,

‖T os∗ F · 1{−RL+1,...,RL}‖p
p ≥

(
(1 − ε)2p + RL · (1 − ε)p

2pLp+1R

)
Cos(X[L], p)p‖F‖p

p

> Cos(X[L], p)p‖F‖p
p,

provided that ε is sufficiently small (with respect to L and p).

Next, we consider the case p ∈ [1, ∞) for other systems.

LEMMA 3.3. (Case (B), p ∈ [1, ∞)) Assume that case (B) from Fact 1.8 holds. Then
for each p ∈ [1, ∞), we have Cos(X, p) = Cos(X1, p), Cc(X, p) = Cc(X1, p), and
Cu(X, p) = Cu(X1, p).

Proof. We only prove Cos(X, p) = Cos(X1, p) for p ∈ (1, ∞) and the remaining equali-
ties or the case p = 1 can be verified by using very similar arguments.

Given ε ∈ (0, 1), one can find L ∈ N and F : Z → [0, ∞) such that F(l) = 0 for each
l ∈ Z \ [L] and

‖T os∗ F · 1[L]‖p ≥ (1 − ε)Cos(X1, p)‖F‖p.

Choose EL ⊆ X as in case (B) from Fact 1.8, and define f ∈ Lp(X) by

f (x) :=
{

F(L + 1 − l) for x ∈ T −l(EL), l ∈ [L],
0 otherwise.

Then it is easy to see that ‖T os∗ f ‖p ≥ (1 − ε)Cos(X1, p)‖f ‖p.

It remains to consider the case p = 1 for atomic systems. We only focus on T c∗ and T u∗ ,
since the claim for T os∗ has already been proven in Lemma 3.1.

LEMMA 3.4. (Case (A), p = 1, centered operator) Assume that case (A) from Fact 1.8
holds. Then we have Cc(X, 1) < Cc(X1, 1).

Proof. It suffices to show that for each fixed L ∈ N, we have Cc(X[L], 1) < Cc(X1, 1),
where X[L] is as in Lemma 3.2. We follow the proof of [16, Theorem 3].

First, observe that there exists f0 : [L] → [0, ∞) such that ‖T c∗ f0‖1,∞ = Cc(X[L], 1)

‖f0‖1. Indeed, let (fj )j∈N be a sequence of non-negative functions such that

lim
j→∞

‖T c∗ fj‖1,∞
‖fj‖1

= Cc(X[L], 1).

By applying the appropriate translation and scaling, we can assume that fj (1) =
‖fj‖∞ = 1 holds. Choose a subsequence (ji)i∈N such that limi→∞ fji

(l) exists for
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each l ∈ [L]. Then f0 defined by f0(l) := limi→∞ fji
(l) is the function for which

we are looking. Similarly, observe that there exists λ ∈ (0, 1] such that λ |Ec
λ(f0)| =

Cc(X[L], 1)‖f0‖1. We define f := f0/λ and note that f (l) ∈ [0, L] holds for each l ∈ [L]
(if f (l) > L, then ‖T c∗ f ‖1,∞ < ‖f ‖1, which leads to a contradiction). Below, we identify
f with its L-periodic extension.

We have Ec
1(f ) = {l1, . . . , lJ } for some J ∈ [L] and l1 < · · · < lJ . For each j ∈ [J ],

we choose Nj ∈ N ∪ {0} such that f (lj − Nj) + · · · + f (lj + Nj) ≥ 2Nj + 1. Consider
the set

S := {(x1, . . . , xL) ∈ [0, L]L : xlj −Nj
+ · · · + xlj +Nj

≥ 2Nj + 1 for each j ∈ [J ]}.
Notice that (f (1), . . . , f (L)) ∈ S. Consequently, S is a non-empty, compact, convex
polyhedron contained in RL. We introduce a linear operator � : RL → R defined by

�(x1, . . . , xL) := x1 + · · · + xL.

Then there exists a vertex of S, say (x∗
1 , . . . , x∗

L), such that

�(x∗
1 , . . . , x∗

L) = min{�(x1, . . . , xL) : (x1, . . . , xL) ∈ S} ≤ �(f (1), . . . , f (L)).

We observe that (x∗
1 , . . . , x∗

L), as a vertex of S, is the only solution of the linear
system consisting of all those of the equations x1 = 0, . . . , xL = 0, x1 = L, . . . , xL = L,
and xl1−N1 + · · · + xl1+N1 = 2N1 + 1, . . . , xlJ −NJ

+ · · · + xlJ +NJ
= 2NJ + 1, which

are satisfied with (x∗
1 , . . . , x∗

L) in place of (x1, . . . , xL). Applying a standard argument
from the theory of linear systems, we obtain that x∗

l ∈ Q for each l ∈ [L].
Consider f ∗ : [L] → [0, ∞) defined by f ∗(l) := x∗

l . Then we have ‖f ∗‖1 ≤
‖f ‖1 and Ec

1(f
∗) ⊇ Ec

1(f ). Consequently, |Ef ∗ | = Cc(X[L], 1)‖f ∗‖1, which implies
Cc(X[L], 1) ∈ Q. By using Proposition 2.1 and the fact that Cc(XZ, 1) = (11 + √

61)/12 /∈
Q (see [16] and [13, Theorem 1]), we conclude that Cc(X[L], 1) < Cc(XZ, 1).

LEMMA 3.5. (Case (A), p = 1, uncentered operator) Assume that case (A) from Fact 1.8
holds. Then we have Cu(X, 1) < Cu(X1, 1).

Proof. It suffices to show that for each fixed L ∈ N, we have Cu(X[L], 1) < Cu(X1, 1),
where X[L] is as in Lemma 3.2. We also recall the well-known fact that Cu(X1, 1) = 2.

Take f : [L] → [0, ∞) and λ ∈ (0, ∞) such that Eu
λ(f ) is non-empty. Again, we

identify f with its L-periodic extension. Then, Eu
λ(f ) = Eleft ∪ Eright, where

Eleft := {l ∈ [L] : f (l − r) + · · · + f (l) ≥ (n + 1)λ for some r ∈ N ∪ {0}},
Eright := {l ∈ [L] : f (l) + · · · + f (l + r) ≥ (n + 1)λ for some r ∈ N ∪ {0}}.

Applying the result for the one-sided maximal operator, we see that

|Eleft| ≤ ‖f ‖1/λ and |Eright| ≤ ‖f ‖1/λ.

Since Eleft ∩ Eright �= ∅, we deduce that, under the conditions specified above, the
following estimate using the ceiling function must be satisfied:

λ |Eu
λ(f )| ≤ max

E,E′⊆[L]:E∩E′ �=∅
|E ∪ E′|

max{|E|, |E′|}‖f ‖1 = 2�L/2� − 1
�L/2� ‖f ‖1.
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Consequently, Cu(X[L], 1) ≤ (2�L/2� − 1)/�L/2� < 2, as desired. In fact, Cu(X[L], 1) =
(2�L/2� − 1)/�L/2�, which can be proven by taking f̃ := 1�L/2� and λ̃ := �L/2�−1, and
observing that Eu

λ̃
(f̃ ) = [2�L/2� − 1].
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