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COVERINGS OF GROUPS BY ABELIAN SUBGROUPS

V. FABER, R. LAVER AND R. McKENZIE

Paul Erdos has suggested an investigation of infinite groups from the point
of view of the partition relations of set theory. In particular, he suggested that
given a group G, one considers the graph T with vertex set G whose edges are
the pairs {g, #} which do not commute. A subset X C G is a complete subgraph
of T if and only if no two elements of X commute, X is independent in T if and
only if it is a commutative subset of G, and the chromatic number of T', denoted
by x(I'), is the smallest number of abelian subgroups needed to cover G (we
write x(G) for x(T')).

In this setting, Erdos asked several natural questions. Let P(G) be the
smallest cardinal « such that T has no complete subgraphs of cardinality «.
Is P(G) = Xy if and only if x(G) < Ro? We answer this affirmatively in
Theorem 3. If « is an infinite cardinal, does P(G) =< x+ imply that x(G) =< «?
With G.C.H. we answer this negatively in Example 1.

R. Baer has proved that x(G) < Xy if and only if |G/Z(G)| < N, where
Z(G) is the center of G (see [11]). His proof uses a theorem of B. H. Neumann
[10] which only works for X¢. In Theorem 1, we show that x(G) < « if and
only if |G/Z(G)| < « for all strong limit cardinals «. In the corollary to Lemma
5 we show that x(G) = « implies that

(G: Z(G)] < 2 forall .
Some of the results of this paper were announced in [5].

Notation. Let G be a group. If S C G, then C(S) = C4(S) = {g € Glgs =
sgforall s € S}; Z(G) = Cg(G); {S) is the group generated by S. G is FC if
forallg € G,[G: C(g)] < Xo;ifkisacardinal, Gis«Cif forall g € G, |G: C(G)]
< k. (This is a change from the notation used in the first author’s previous
papers, where G was defined to be «C if for all g € C(g)] < k. The present
definition is the correct generalization of FC and is more workable.) If g, & €G
let ¢" = h'gh; if SCG, S7={s?|s€S}; let {g, h] = g 'hgh = g~'g".
Further notation can be found in [15].

A cardinal « is cofinal with a cardinal X\ if k is the sum of X smaller cardinals.
The cofinality of k, denoted by cf (x), is the first cardinal cofinal with «; « is
singular if cf (k) < « and regular otherwise;  is a strong limat if X < k implies
that 2* < «; « is strongly 1naccessible if it is a regular strong limit. We let log «
be the first cardinal X such that 2* = k. The cardinal successor of « is denoted
by «*. Some of the theorems and remarks below follow from the generalized
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continuum hypothesis, G.C.H., (for all infinite &, 2* = «*), but we state and
prove them under an appropriate instance of the weaker assumption 2<¢ = ,
where for any cardinal N\, A<* = 3, \".

If X isa set, let [X]*={V C X||Y]| = «}. Let (y«|a < \) be a collection
of cardinals. We shall employ the arrow notation of Erdés and Rado to denote
partition relations. We write k — (v, | @ < N\)* if whenever [k]* = Uscx Xe,
there exists an o < X\ and Y € [«]"® such that [V]* C X,. If v, = v for all
a < N\, we write k — (y)\". The partition relations used below, in addition to
Ramsey's theorem [14], are the following cases of theorems of Erdés and Rado
[3]. For all infinite cardinals «,

(i) @9+ — (291, «1)?,
(if) (297 = (k").&
(iii) If 2<x = «, then «* — (x),?, for all v < cf «.

A collection # of sets forms a A-system with kernel H if A M B = H for a
A # B ¢ & . The Erdés-Rado generalization [4] of Marczewski's theorem [7]
states: if k, X are regular cardinals with x < X, if a<* < \ for all @ < \, and if
% is a family of sets such that [4| < « for each 4 € ¥ and |%| = \, then
some # C & with |[# | = A forms a A-system. (If 2<° = o, then A = o+ and
k = cf o satisfy these hypotheses.)

Unless otherwise indicated, all the cardinals in this paper are infinite.

LEmMA 1. Letx, g, h € G. If [g, h] = 1 and [gx, hx] = 1, then gC(x) = hC(x).

Proof. 1f gh = hg, then gxhx = hxgx implies that x = A~ lgxhg™! = h~'gxg™h.
Thus g='h € C(x), so hC(x) = gC(x).

LEMMmA 2. If X — (x)2? and P(G) = «, then G 1s \C.

Proof. Let x € G and {x,|a < A} € G. We want to find «a, 8, « # 8, such
that x,C(x) = xsC(x). Partition [{x.: & < A\}]? into two classes—the class of
commutative pairs and the class of noncommutative pairs. By A — (k).? and
P(G) = «, there is an .S € [A]* such that [x,, x3] = 1 for all «, 8 € S. Then
P(G) = « implies there are a, B € S, a # B8, such that [x.x, x3x] = 1. By
Lemma 1, x,C(x) = x5C(x).

Remark 1. If we assume 2<* = «, P (k) implies k7 C (use kt — (k)22).
LemMA 3. If x(G) < «, then G 1s «C.

Proof. Let x € G and let G = Ugs<x 4., with each A4, abelian and N < «.
Suppose G = Uger x5C(x). If || = N\, then for some @ < X and S € [T]ﬁ,
x5 € A, for all B € S. Consider {xsx|B € S}. There exists R € [S}" and
v < X such that xgx € 4, for every 8 € R. Now by Lemma 1, {xz|8 € T} is
not a set of distinct left coset representatives. [t follows that [G: C(x)] < \.

LemMmA 4. If x(G) = «, then there exists an abelian subgroup A such that
[G: 4] £ 22",
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Proof. By Lemma 3, G is «C. Assume the lemma fails. We construct se-
quences {aq}, {ba}, {Ca} (@ < (2%)F) such that

(1) [(la, ba] # ]-v

(2) ag, bﬁ E C3 = C({(Lm bn,| a < 8})
By (2), |G: Cs] £ Iacs [G: C(a)][G: C(ba)] £ (x7)181 < 22 s0 no Cs can be

abelian. Consider the products {a.bs} for @ # 8 < (29)*. Let G = Uscx(o) 4o
with each A4 abelian. Since x(G) = «, (2%)T — (3) (e Thus there exists 4,
and a, B8, v such that a.bg, agby, asb, € Ag. But a.bsashy, = agh,a.bs if and only
if bgag = agbg, a contradiction.

LemMma 5. (i) If G is kT C and has an abelian subgroup A such that [G: A] = «,
then [G: Z(G)] = 2~

(i1) If k 1s strongly inaccessible, if G is kC and if G has an abelian subgroup A
such that (G: A] < «, then (G: Z(G)] < «.

Proof. (i) Suppose G = U<« X.4. Then since

D=4N ( N C(xa)) C Z(G),

a<k

it follows that

G: ZG)] £ [G:D] £ [G:A] [] [G: Clwa)] < xx" = 2"

a<x
(ii) The proof is similar, so we omit it.

COROLLARY. If x(G) £ «, then [G: Z(G)] = 222",

Proof. The proof is immediate from Lemmas 3, 4 and 5 (i).

Remark 2. When « = R, this solves a problem of B. H. Neumann [12].
There is room for strengthening of the bound 22**—see Problem 2 below.

LEMMA 6. If G = U/3<)\ x,gH, [H C;;(.X‘ﬂ)] b K3, Zﬁ<)\ kg < K and X(H) < K,
then x(G) < «.

Proof. Let H = Uy Aq, then G = Ug o x3da. Since [A,: Clxg) M Aol = kg,
for each x5 there exists {yy.a8} € [Aa]™ such that Ay = Uy Vy.aps(Clxg) M
A.). Since G is covered by the abelian sets xgy, « s (C(xg) M Aa), it follows that

X(G) = X(H) : Zﬂ<>\ kg < K.

CoROLLARY. If G is «C and has an abelian subgroup A such that [G: A] <
cf (k), then x(G) < «.

Proof. The proof is immediate.

LEMMA 7. If G = Ugar xgH, [H: Cy(xs)] = x5, 2par kg < cf (k) and P(H) =
k, then P(G) = «.
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Proof. 1f
H = U y,5(Clxs) NVH),
B
7<"ﬂ
then

G = U xgyy,5(Clxg) M H).
B<A

r<Kg

The number of sets in this union is Y_s«x kg < cf (k). Let X € [G]*. Then there
exists a ¥ € [X]*and 8, v such that ¥ C xgy, 5(C(x) M H). Now for a, b €
C(xg) M H the following equations are equivalent:

XgYy 50X5Yy,80 = XgYy,80%XsYy 80,

XYy g0 = axgyy gb = bxgyy sa = xgbyy 50,
@Yy 80 = byy g0,

Yy 80V 80 = Yy g0Yy 50

Since y,5a¢ € H if a € C(xg) M H, there must be two commuting elements

in Y.
THEOREM 1. If k15 a strong limit cardinal, the following statements are equiva-
lent:
(M x(G) < «;

(D) [G/Z(G)] < «;
(II1) G is NC for some N < k and has an abelian subgroup A such that [G: A]
< k.

Proof. The casé k = Ry is proved in Theorem 3. That (I) implies (IT) follows
from the corollary to Lemma 5 (ii). That (II) implies (III) is obvious. That
(IIT) implies (I) follows from Lemma 6.

THEOREM 2. If k s a strongly inaccessible cardinal, the following stutements are
equivalent:
(1) x(G) <«
(D) |6/2(6)] < «;
(IIT) G 1s NC for some N < k and has an abelian subgroup A such that [G: A]
< K;
(IV) G 1s kC and has an abelian subgroup A such that [G: A] < «.

Proof. The case k = Ny is proved in Theorem 3. By Theorem 1, (I), (II) and
(IIT) are equivalent. Obviously, (IIl) implies (IV). That (IV) implies (I)
follows from Lemma 6.

THEOREM 3. The following statements are equivalent:
(1) x(G) < Ro;
(D) |G/Z(G)] < Re;
(III) G is nC for some n < Ro and has an abelian subgroup of finite index;
(IV) G is FC and has an abelian subgroup of finite index;
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(V) P(G) £ n for somen < No;
(VI) P(G) = Xo.

Proof. That (IV) implies (II) follows from Lemma 5(ii). That (II) implies
(IIT) is obvious. Lemma 6 yields (II1) implies (I). Itis obvious that (I) implies
(V) and (V) implies (VI).

We show VI implies IV. Suppose P(G) < NXo. By Lemma 2 and Ramsey’s
Theorem, G is FC. Assuming that G does not satisfy (IV), we construct
sequences {f,}, {a,}, {b,} with

(1) fifs #fifo §#

(2) fo€ {{asli =} U {bi|i < n});

(3) bufu # fubn

Let fo = ap and by be two non-commuting elements. Inductively, let C =
Cla; |1 = n} U {b;|7 = n}). Since G is FC, C has finite index in G and thus

is non-abelian. Let a,;1 and b, be two non-commuting elements in C and let
far1 = fubntni1. Clearly (2) is satisfied. Suppose b,41fnt1 = fat1bnr1. Then

Jabnbni1@nir = bpi1fabulnir = fubnlni1bnyr,
contradicting [@,41, bpy1] # 1. Suppose fri1fn = fufar1- Then

fnbnfnan+1 = fnbnan+ 1fn = fnfnbnan+ly

contradicting (3). Suppose fui1f: = fifur1 with ¢ < n. Then

fnfibnan+l = fnbnan+1fi = fifnbna'n+lv

contradicting (1). Thus (1), (2) and (3) are satisfied by f,41, aps1 and byy1.
The sequence {f,} contradicts P(G) < No.

Remark 3. As we mentioned in the introduction, the equivalence of (I) and
(IT) was shown by R. Baer by a different proof which does not generalize to
strong limit cardinals. The equivalence of (II), (II1) and (IV) was shown by
B. H. Neumann by essentially the same proof (see [9].) We can show that (I),
(V) and (VI) are equivalent for cancellation semigroups. B. H. Neumann has
independently shown the equivalence of (IV) and (VI) in [13].

LEmMA 8. (2% = «*). Let V be a «t dimensional vector space over Fy and let
V. be a k dimensional subspace. Let po be an alternating bilinear function from
Ve X Vi into the Fy vector space W. Suppose also that for every (N, u, w) €
kK XV X V,S\(u, w) is a non-empty subset of W. Then there exists an alternating
bilinear function p: V. X V — W satisfying

(1) p=ps onVy '

(2) for every T € [V]5, D(T) = Unex {n € V]p(w, u) ¢ Sx(w, u) ¥V w € T}

has cardinality at most «. ~
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Proof. We assume that {v.| e < «*} is a basis for 1" such that {v.]|e <k} isa
basis for . Let 17, be the subspace of 1”7 spanned by {v,|a < ¢). Well-order
[V]*with order type «t, {X .| e < «*},suchthat X, CV.Let #Z. = {X,|7 < €.
We suppose inductively that p has been defined on V. and we want to extend
to Vepr. Well-order Ve X #. X &, { (ay Xay Ma)}acx Let {w,|a < &} be an
independent set of vectors such that w, € X, and extend this set to a basis
# for V. Then define p(wa, ve) + p(Way, %a) € Si,(Wa, e + v.) for each
a < k. Complete the definition of p by defining p(v., v.) = 0 and p(b, v.) =
p(ve, b) forall b € #. In this way p is extended to V. Now suppose 7" € [K]*.
Then 7" = X, for some n such that X, © V,. Let u = > <5 @avn + vs with
6 = g such that u € D(T). We used #; = {X,|r < 6} going from V; to
Vg1, Since . — vy € V5, for each N < « there exists @ < « such that (u — v;,
Xo N) = (#ay Xay \o). Thus for every X\ there exists w = w, € X, such that

plw,u) = p(w,vs) + p(w,u — v5) € Ss(w,u — v5 + v;) = Sa(w, u).
Hence u ¢ D(T"). It follows that D(T") C V,.

Remark 4. This construction was used in [1, p. 206] to show that under the
assumption 2% = «* there is a 2-step nilpotent, FC group without equipotent
abelian subgroups. Further details concerning this construction and those in
the following three examples can be found in [1].

Example 1. (2¢ = «*) There exists a group G of cardinality «* such that for
each X € [G]*and YV € [G]“Jr there exist (x, y), (4, v) € X X ¥ such that
1 =[x, y] # [u, v].

Proof. Let W = Fo, So(w, u) = {0}, Si(w, u) = {1} in Lemma 8. Let v:
V X VV— F, be any bilinear form such that p(x, y) = v(x, ¥) — v(y, x). We
form a group G = V v F, on the set V' X F, with multiplication defined by
(x, a)- (y, b) = (x +y, a + b+ v(x, y)). Note that [(x, ), (y, )] =
0, p(x, ¥)). If X € [G]* let

X={x€eV]|Jac€ Fy(x,a) € X}.
Then C(X) ={y € V]plx, y) =0V x € X} X Fo, and {g € G|[g, x] # 1

VY x € X} {y € V|p(x, y) =1V x € X} X Fa. Both of these sets have
cardinality at most « by construction.

Example 2. (2% = x+) There exists a group G of cardinality «* satisfying
P(G) = «*, which is not «*C. Consequently, P(G X G) > P(G).

Proof. In Lemma 8, let W = V, So(w, u) = {0}, Si(w, u) = {w + u}. Let
T € [Fy X V]*. Suppose for all (q, x), (b, y) € T, p(x, y) % ay + bx. There
exists S € [T']¥" such that for every (¢, x) and (b, ¥) € S, a = b. Then, letting
S={xecV|Fac F:(x,a) €S},

D(S)= U {ue€V]phwu) ¢ SYwec S} D5,

a€F2
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contradicting [D(S)| £ k. Now let U = Fy X V and define p(1, v) = v for all
v € V and extend p to an alternating bilinear function p: U X U— V. As in
Example 1,let G = UyV where y: U X U — V satisfies p(x,y) = y(x,y) —
v(y, x) for all x, y € U. Elements of G have the form (a + x, v) with a € Fs,
vandov € V;if (¢ + x,9), (b + v, w) € G,

[(a+x0), 04y w)]=(0p+xb+y)=1(0a +bx+ p(x,y)).

By construction, if X € [G]"+ there exists (a + x, v), (b + y, w) € X such
that p(x, v) = ay + bx. Thus

(@ +x9v), ¢+ w)]=(00 =1,

which implies that P(G) = «*. The elements (1, v) forv € V are all conjugates
of (1, 0), so G is not «*C. By Lemma 1, P(G X G) > «t.

Example 3. (2« = «T) There exist groups G and H which are «C, P(G) =
P(H) = «*, but P(G X H) > «*.

Proof. We proceed as in Lemma 8 and Example 1. Let V be «* dimensional
over Fyand W be k dimensional over Fs. Let { V,: a < &t} be a basis for V. We
construct alternating bilinear p;, p» from V' X V into W such that

(1) forevery a < B8 < «*, p1(va, v8) = 0 implies that ps(va, v5) #= 0;

(2) for every T € [V]%, Di(T) = {u € V]pi(w, u) # 0V w € T} has car-

dinality at most « for 7z = 1, 2.
Let V. = {{v,]|a < ¢} ), the subspace of V spanned by {v,|a < ¢}. We suppose
[V]* = {X |k £ e < ¢t} with X, C V.. First define p1, p2 on V, so that (1)
is satisfied for o < 8 < «.

Now suppose p1, ps have been defined on V., (x = € < «*) so that (1) holds
for all a < 8 < e Well-order {v,|]a < ¢ as {v,/|r <«} and let V,/ =
(v, |y < 7}). Well-order V. X {X.|k £ 7= ¢} as {(tay Xa)}lacx To extend
p1, p2 to V1, we make the following construction. Suppose 8 = 3 -a + 7,
0 = v < 3 and py, p2 have been defined on Q.5 X {v.} where V., C Q.4 and

|Qe,B] <k

Case 1. v = 0. Find w € X,\Qcs. Put pi(w, v.) = p1(w, tta). Put Q.pp1 =
(Qep \J {w}). If there is no v,/ € Qe p41\Qe.s, let p2(w, v,) be arbitrary. Other-
wise, let {w + ¢u}u<,<« be all such v,”. Pick x € W\{{p2(g,, v¢)|n < p}) and put
p2(w, 've) = X.

Case 2. v = 1. Make the same construction as in case 1, but switch the roles
of p; and p..

Case 3. v = 2. If v,/ € Qcp, put Qeps+1 = Qe and do nothing. If not, put
Qepsr = (Qep\J {v./}) and define p,(v,’, v.) so that p;(v./, v.) ¥ 0 for all
v € Qepr1\Qep-

We leave it to the reader to verify that (1) and (2) are satisfied. Now let
v VX V— W be any bilinear maps such that p;(x, y) = v,(x, y) —
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vi(y,%). Put G = Vy;Wand H = V v, W. Clearly, (1) implies that P(G X H)
> «*, but the proof in Example 1 shows that both G and H are xC and P(G) =
P(H) = «t.

Remark 5. The existence of a group with the properties described in Example
1 for x = X, is independent of the usual axioms of set theory. Namely, it is a
theorem of [6] that if 280 > X, and Martin’s axiom [8] hold, then w; —
(w1, (w: w1))?, that is, if [w;]? = 4 U B then either there isan X € [w;]"* with
[X]? C Aorthereisa ¥V € [w;]*andan X € [w]** such that {{y, x} |y € YV and
x € X} C B. This partition relation implies that there are no groups with the
properties of Example 1, for x = N,.

Example 4. For each cardinal A, there is a group G\ which has an abelian
subgroup 4, such that [G\: 4)] = 2, but Gy is not AC.

Proof. Let Ay be an F, vector space of dimension \ with basis {v,, w, |a < \}.
Let ¢ be the automorphism of A, defined by ¢(v,) = w,, o(w,) = v,. Let
Gy = (0)4, be the split extension of Ay by (¢). Then [G: 4,] = 2, but
(o, 0)1?) = (g, w, + v,) for all @ < \, so G is not \C.

Example 5. For every limit cardinal « there is a group G which is «C, has
x(G) = « and has an abelian subgroup 4 such that [G: 4] = cf (x). If « is
regular, P(G) = «. If « is singular, P(G) = «*.

Proof. Let G = Y x<er(v Gay Where Ga,, of power ay, is the group in Example 3
and « = limy ap. Clearly [G: 3~ A)\] = |2 Gay/Ay| = cf (k) and G is «C. Since
G is not yC for any v < «, x(G) = «. Suppose « is regular. Let X € [G]*. For
each x € X, A(x) = {a|x(a) = 1} is finite. By Marczewski’'s theorem there
exists ¥ = [X]* such that the sets 4 (x) with x € ¥ form a A-system with
kernel H = {ay, as, ..., an}. If xy ## yx for all y % x € V, there exists an
it = nand a Z € [V]* such that xy(a;) # yx(a;) for all x # y € Z, contra-
dicting |Ga,| < k. If « is singular, P(G) = «* follows directly from the next
lemma and the fact that |G| = «.

LEMMA 9. Suppose « is a singular cardinal and k = liMacorry Na- If G has a
family of subsets Xa, a < cf (x), with the properties

1) [x,y] #1 whenx # vy € X,;

(2) |Xal = Ao

(8) X5 C C(X,) fora < B,
then P(G) > «.

Proof. Since cf(x) < k, we may suppose Xy = cf(x). Well-order X, =
{22 @ < cf(k)}. Consider the set S = {xeya|Va € Xa}. If Vo, 24 € X, and
XoYoXaBa = XaZaXeYay, then ¥.2, = 2., which implies z, = y,. If a % 8 and
XoVaXgY = XgVpXoYa, then x,xs = xgx., a contradiction. Thus S is a set of «
pairwise non-commuting elements.

https://doi.org/10.4153/CJM-1978-081-1 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1978-081-1

COVERINGS OF GROUPS 941

LEMwMA 10. Let « be a strong limit cardinal. If G is a group which is «C and has
P(G) = «. then G has a subgroup H and a normal subgroup K C H such that
[H: K] = cf k), P(H) = xand P(K) < «.

Proof. If « is regular, let H = G and K = E. Now assume that « is singular.
/If G has a subgroup L such that [G: L] < kand P(L) < «, then K = (Nz¢e L*
is normal in G and [G: K] £ [G: L)% < k. Let « = liMacer() Ae With Ao =
cf(x). By Lemma 7, for each a < cf(x) there exists y, € G\K such that
[K: Ck(¥a)] 2 Moo Let H = ({yo]a < cf(k)})K. Clearly [H: K] = |H/K| =
cf(x). If P(H) = v < k, then by Lemma 2, H is (2)*C. Since « is a strong
limit cardinal, (27)* < « and there exists an « such that A\, > 2. Since v, has
at least A\, conjugates in [, we have a contradiction. Thus we may assume that
every subgroup L such that [G: L] < « has P(L) = «. We construct sets X,
a < cf(k), having the properties (1), (2) and (3) in Lemma 9 and the addi-
tional property

4) [G: C(x)] = ke <k when x € X,.
Let C = C(X.|a < B). Then

G:Cl1= 1 IT 1G:c@)] =[] xka < .
alf 7€X, a<p

Since P(C) = «, we can choose X C C, X a set of pairwise non-commuting

elements and |X| regular and at least \s. There exists kg < « and X € (X7

such that x € Xy implies that [G: C(x)] = k. Lemma 9 yields P(G) > «, a

contradiction.

THEOREM 4. Suppose « is a strong limit cardinal cofinal with w. If G s «C, then
P(G) # «.

Proof. By Lemma 10, if P(G) = «, there exists an Hy <1 G with P(H,) < «
and [G: Hy] < k. Let ¥k = lim,<s A\, with \, > v = P(H,). By Lemma 2, H,
is (21)*C. By Lemma 7, if K C H, with [H,: K] < «, then for every n there
exists a y € G such that [K: Cx(y)] = (2M)*. Let p, = (2*)* and choose v,
such that [Ho: Cy,(¥0)] = wo. Then let Dy = {hoa|a < po} be a commutative
subset of a transversal for Cg (y,) in H, (this is possible since (2*)* —
((22)*, Not)?). Suppose H,, y, and D, = {h,|a < p,} have been defined for
all » v with [H,: Ha] <k We let Hipr = Cy(9x) M C{hyala < p
n = k}). Then

[Ho: Hey1] £ [Ho: Hel[Hy: CHk(yk)] H H [Ho: Crro(hna)]

nsk a<pk

< [G: Cu(yi)] 1_<Ik (ko)™ < k.
Now let yxy1 be such that [Hiyi: Cry,, i+1)] 2 mesr and Dy = {Migra

a < pre1} be a commutative subset of a set of coset representatives for
Cuy,, Wr41) in Hyyy. Thus we define H,, y, and D, for all n < w. Let C, =
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Cr, () for n < w. There is an equipotent subset Eq of Dy and an infinite set
1, of positive integrers such that either

@) yoEo N ( U Ci) =@ or (i) yEsC N C.
i€Io i€lo
Namely to each d € Dy let f;: w — 2 satisfy yod € C, if and only if f(z) = 0.
Pick Ey € Dy with |Eo| = |Do| such that e;, 2 € Eo implies that f, = fo, = f
(wo is regular and greater than 2%%), and let Iy be an infinite set on which f is
constant. Suppose we have continued this construction and have found £,
1 < k, and I, an infinite set of natural numbers, satisfying

(A) mo = 0and {n;|0 < 4 < k} is an initial segment of I;

(B) E,, € D,;

(C) |Ew]| = tny;

(D) either (i) y,,E,, VYC; =0 ¥V j € I, j> n,; or (i) y,E, € C;

Vie€lyj>ng
we find £,, , and I, by exactly the same method used to find Eq and /.

Now consider the sets J, = {n;|D(z) holds} and J, = {n,| D (4i) holds}.
Consider further the elements x, . = Y./, for all n < w and a < w,. If x,.4
commutes with x,g, then k, .k, 57! € Cy,(y,). which by definition implies
thata = B. If n < m, since A,, s commutes with both y, and %, o, %, .. commutes
with %, 5 if and only if x, 4, € C(yn). Suppose J; is infinite. Then

{Xpoa:m € Jiand h, o € E,}

is a set of « pairwise non-commuting elements, contradicting P(G) =< «. On
the other hand, if J» is infinite, let X, = {x, 4| kp.« € E,} for each n € J,. Since
(Xnay Xnpg] #= 1if @ £ B, but [X,.4, Xme]l = 1if n % m € Jo, Lemma 9 implies

that P(G) > «.

Definition. We denote by I1l., G, the subgroup of I, G, consisting of all
x € I\ G, such that [{a|x(a) # 1}] < 7.

THEOREM 5. Let G = Ik, G, with each G, mon-abelian. Let o = SUPa<x
x(G,) and let 6 = max {o, log «}. Assume 2<% = 6. If v < cf 0, then x(G) = 0.

Proof. (i) x(G) = 0. Clearly x(G) = x(G.) for all ¢, so x(G) = o.

We claim that x(G) = log . Suppose on the contrary that G is a disjoint
union of abelian sets 44, § < X for some cardinal A with 2* < «. In each G.
choose two non-commuting elements x, and y,. For each @ < 8 < « consider
the element s,5 of G defined by

1 e#a,fB
Saa(f)= Xa €=«
Ys €= 0.

Partition the pairs {ea, 8}, @« < 8 < k, into A classes—put {a, 8} in the 6th
class if s,5 € Ap. Since k — (3),2, there exists Ay and «, 8, v such that s.s, Ssy,
Sey € Ag. However [sa.6, say](B) = [vs, x5] # 1, a contradiction.
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(i1) x(G) = 6. Consider the tree T = (2)<? of functions from ordinals < 6
into 2, ordered by function extension. 7" has 6 nodes and 2¢ 2 k paths (a path
corresponds to a function from 6 into 2). We label « of these paths by ordinals
less than x. We also suppose that for each a < «, G, = Ug<s 4a g with each
A, g abelian. For each function ¢ such that the domain of ¢ is a set of incom-
parable nodes of 7" with cardinality < v and the range of ¢ is a subset of 8, we
form a set C, C G. For f € G,f € C, if and only if

(a) there is a one to one correspondence ¥: dom ¢ — {a|f(a) # 1};

(b) for each node ¢ € dom ¢, a is on the path labeled ¢ (a);

(c) for each node a € dom ¢, f(¥(¢)) € Aywew-

The number of C,’s is <7, which, since v £ cf  and 2<% = ¢, equals 4.

The theorem will be completed by showing that each C, is abelian and that
Ue C, = G. Suppose f, g € C,. For each a such that f(a), g(a) # 1, only one
node a € dom ¢ can be on the path «, and so f(a), gla) € Aapw, and
[f(@), g(@)] = 1. Thus [f, g] = 1. If f € G, then since |[{a|f(a) # 1}| <y =
cf 6, then there is a set B of incomparable nodes of 7" and a bijection ¢: B —
{a|f (@) # 1} such that b is on the path labeled by y(b) for each b € B. Now
for each b € B let ¢(b) satisfy f(¥ (b)) € Aymom. Then f € C,.

THEOREM 6. Let G = 11%e, G, and let ¢ = supecx P(G,). Assume 2<° = o. If
v £ of o, then P(G) £ ot

Proof. Suppose there were a set X € [G]"" of pairwise non-commutative
elements. Applying the Erdés-Rado generalization of Marczewski’s theorem,
there isa ¥ € [X]°* such that the sets 4, = {a]y(a) # 1}, fory € V, form a
A-system with kernel H. For y,, y» € ¥ with y; 5 y,, there is an « € H with
[y1(a), y2(a)] # 1. Since |H| < cf ¢, we apply o+ — (0)x® to obtain a
Z € [Y]°and an a € H with [z1(a), 22(a)] # 1 for all 21, 25 € Z with z; # 2,
contradicting P(G,) = o.

Remark 6. It is not hard to give examples where ¢* is attained in the theorem.
In addition to Examples 2 and 3, if G is the direct sum of free groups F, on X,
generators for all #n < w, P(G) = Ruy1. However, if P(G) = P(H) = Xy,
then clearly from Theorem 3, P(G X H) = Xo. Can P(G) be a singular
cardinal?

Remark 7. It follows from Theorems 5 and 6 that if « is an infinite cardinal
and if G = Y.<« G, with each G, finite and non-abelian, then x(G) = log «
while P(G) = NX,.

TureoreEM 7. Let G be a group of cardinality (2%)*+. Let v < x*. If for every
collection of sets (Xo|a <) with X, € [G]** there exists o # B such that x, € X,
and xg € Xg with [Xa, x5] = 1, then P(G) £ v.

Proof. Suppose P(G) > v. Let X € (G)*. Write X = Usca X, with
| Xl = «t. There exists @ # 8 such that x, € X,, x5 € X5 and [xa, x5] = 1.
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Thus P(G) = «t. Let X € [G]” such that xy # yx for each x, y € X. Since
G:cX)] =[] [G: Clx)] = ) = 25,

T€X
we have |C(X)| = (2%)*. Since (2%)*— (x*)2? we can choose an abelian sub-
group A € [C(X)]*. Consider X, = {xa|a € A}, x € X. If xayb = ybxa, then
xyab = yxab and xy = yx, a contradiction.

Remark 8. (G.C.H.) If G = Y .«+ G, with each G, a finite simple group,
then P(G) £ Xy, G is FC and x(G) = \; on the other hand, [G: Z] > X and
for every abelian 4, [G: A] > \. The group G in Example 2, has P(G) = «*
and [G: Z] = «*; on the other hand, G is not k*C. The group G in Example 1
is FC and has [G: Z] = «*, but has x(G) = «t, P(G) = «* and for every
abelian subgroup 4 of G, [G: A] = «*. If G is a free group on « generators,
x(G) = « and [G: Z] =k, but G is «*C and P(G) = «*. The groups G\ in
Example 4 show that having an abelian subgroup of index 2 need not imply

AC for any A.
[G: A] < «**
P (k)
[G: A] < «t \
[G: 4] <«
\ «*C and [G: 4] <« P(x)

G:Z] <«

Class Inclusions (G.C.H.)

The figure illustrates the class inclusions under G.C.H. (4 denotes an
abelian subgroup for which [G: A] is minimal.) All inclusions are proper if
& is a successor cardinal.

Problem 1. Does x(G) =< « imply that [G: 4] < «+?

Problem 2. Does x(G) = « imply that [G: Z] < 2* or even [G: Z] < «t?
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Problem 3. 1f « is a limit cardinal, does P(G) < « imply that G is kC?

Problem 4. Does |G| £ (29)* and P(G) £ «* imply that x(G) < 2+
Problem 5. Can P(G) be a singular cardinal?
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