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Abstract. We give characterisations of the linear relations that are injective and
open (respectively, almost open with dense range) in terms of the stability of the
nullity (respectively, of the deficiency). Results of Mbekhta about bounded operators
in Banach spaces (J. Operator Theory 35 (1996), 191–201) are covered.
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1. Introduction and preliminaries. We follow the notation and terminology of the
book [5]: X and Y are normed spaces, BX the closed unit ball of X , X ′ the dual space
of X . If M ⊂ X , N ⊂ X ′ are subspaces, then M⊥ := {x′ ∈ X ′ : x′(m) = 0 for all m ∈ M},
N� := {x ∈ X : x′(x) = 0 for all x′ ∈ N}.

A linear relation or multivalued linear operator T : X → Y is a mapping from a
subspace D(T) ⊂ X , called the domain of T , into P(Y )\{∅} (the collection of nonempty
subsets of Y ) such that T(αx1 + βx2) = αT(x1) + βT(x2), for all nonzero scalars α, β

and x1, x2 ∈ D(T). The class of such relations T is denoted by LR(X, Y ). If T maps the
points of its domain to singletons, then T is said to be a single valued linear relation
or simply operator.

The graph G(T) of T ∈ LR(X, Y ) is G(T) := {(x, y) : x ∈ D(T), y ∈ Tx}. The
closure of T , denoted by T , is defined by G(T) := G(T). Let M be a subspace of
D(T). Then the restriction T |M is defined in terms of its graph by

G(T |M) := {(m, y) : m ∈ M, y ∈ Tm}.

The inverse of T is the linear relation T−1 defined by G(T−1) := {(y, x) ∈ Y × X :
(x, y) ∈ G(T)}. If T−1 is single valued, then T is called injective; that is, T is injective if
and only if its null space N(T) := T−1(0) = {0}, and T is said to be surjective if its range
R(T) := T(D(T)) = Y . The nullity and the deficiency of T ∈ LR(X, Y ) are defined
respectively by α(T) := dim N(T) and β(T) := dim Y/R(T) := codim R(T). We also
write β(T) := dim Y/R(T) := codim R(T). If either α(T) or β(T) (respectively, α(T)
or β(T)) are finite, then we define the reduced index (respectively, the index) of T by
ı̄(T) := α(T) − β(T) (respectively, i(T) :=α(T) − β(T)).

The conjugate or adjoint T ′ of T is defined by G(T ′) := G(−T−1)⊥ ⊂ Y ′ × X ′

where 〈 (y, x), (y′, x′) 〉 := 〈 x, x′ 〉 + 〈 y, y′〉 . This means that (y′, x′) ∈ G(T ′) if and only
if y′(y) = x′(x) for all (x, y) ∈ G(T). For a given T ∈ LR(X, Y ) let QT denote the
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quotient map from Y onto Y/T(0). Clearly QT T is a single valued and the norm of T
is defined by ‖T‖ := ‖QT T‖.

A linear relation T ∈ LR(X, Y ) is said to be closed if its graph is a closed subspace,
continuous if for each neighbourhood V in R(T), T−1(V ) is a neighbourhood in D(T)
(equivalently ‖T‖ < ∞), open if T−1 is continuous (equivalently 0 < γ (T) := sup{λ :
‖Tx‖ ≥ λd(x, N(T)) for x ∈ D(T)}, almost open if TBX ⊃ λBR(T) for some λ > 0, φ+
if it has finite dimensional null space and closed range and φ− if its range is closed and
finite codimensional. Continuous everywhere defined linear relations are referred to as
bounded linear relations. The class of such relations is denoted by B(X, Y ).

Linear relations were introduced into Functional Analysis by J. von Neumann
[10] motivated by the need of considering conjugates of non-densely defined linear
differential operators which are considered by several authors (see, for example,
[3] and [4]). Problems in optimisation and control also lead to the study of linear
relations; (see [1] and [2] among others). Others works on multivalued linear operators
include the treatise of partial differential relations by Gromov [7] and the application
of multivalued methods to the solution of differential equations by Favini and Yagi [6].

We note that the definition of linear relation “open” (respectively, “almost open”)
is formally identical with Harte’s “relatively open” (respectively, “relatively almost
open”) of an operator (Harte [8, 3.4.1 and 3.5.5]). Thus, with our terminology and
according to [8, 6.10.1], we say that a bounded operator T : X → Y is almost upper
semi-Fredholm if T is open with finite dimensional null space and T is called almost
lower semi-Fredholm if it is almost open and dimY/R(T) < ∞.

These notions can be generalised naturally to arbitrary multivalued linear
operators as follows.

DEFINITION 1. A linear relation T ∈ LR(X, Y ) is called
(i) almost upper semi-Fredholm if it is open and dim N(T) < ∞,
(ii) almost lower semi-Fredholm if it is almost open and dim Y/R(T) < ∞.

The corresponding classes of linear relations will be abbreviated AUSF(X, Y ) and
ALSF(X, Y ) respectively.

The following Proposition is elementary and helps to understand the main results
(Theorems 7 and 11 below).

PROPOSITION 2. Let X and Y be Banach spaces and let T ∈ LR(X, Y ) be closed.
(i) T is injective and open if and only if T is injective and has closed range.

(ii) T is AUSF if and only if T is φ+.
(iii) T is almost open with dense range if and only if T is surjective.
(iv) T is ALSF if and only if T is φ−.

Proof. It is sufficient to note that a linear relation is almost open if and only if
its conjugate relation is open [5, III.5.2]. From the Closed Graph and Open Mapping
Theorems for multivalued linear operators (see [5, III.5.3 and III.5.4]), it follows that
for closed linear relations between Banach spaces T is open ⇔ T ′ is open ⇔ R(T) is
closed ⇔ R(T ′) is closed. �

In the context of bounded operators in Banach spaces, Mbekhta proves the
following characterisation results.

THEOREM 3 [9, 2.6]. Let T : X → Y be a bounded operator, where X and Y are
Banach spaces. The following conditions are equivalent.

(i) T is injective with closed range.

https://doi.org/10.1017/S0017089504002150 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089504002150


ALMOST SEMI-FREDHOLM LINEAR RELATIONS 189

(ii) T is φ+ with i(T) ≤ 0 and the limit limS→0(α(T) − α(T − S)) exists.
(iii) T is φ+ with i(T) ≤ 0 and there is a δ > 0 such that for every bounded operator

S : X → Y with ‖S‖ < δ one has α(T) = α(T − S).
(iv) T ∈ int{injective operators}, where int{M} denotes the interior of the set M.

THEOREM 4 [9, 2.7]. Let X and Y be Banach spaces and let T : X → Y be a bounded
operator. The following conditions are equivalent.

(i) T is surjective.
(ii) T is φ− with i(T) ≥ 0, and the limit limS→0(β(T) − β(T − S)) exists.

(iii) T is φ− with i(T) ≥ 0 and there exists a δ > 0 such that for every bounded operator
S : X → Y with ‖S‖ < δ we have β(T) = β(T − S).

(iv) T ∈ int{operators with dense range}.
The purpose of this paper is to obtain characterisations analogous to those of

Theorems 3 and 4 in the more general setting of linear relations in normed spaces. The
main results of Section 2 (Theorems 7 and 11 below) show that the nullity (respectively,
the deficiency) of an almost upper semi-Fredholm (respectively, almost lower semi-
Fredholm) linear relation T remains constant under small perturbations when T is
injective and open (respectively, T is almost open with dense range).

2. Characterisations.

PROPOSITION 5. Let T ∈ AUSF(X, Y ) with ı̄(T) ≤ 0. Then, for every ε > 0 there
exists Tε ∈ LR(X, Y ) such that Tε is injective and ‖Tε − T‖ ≤ ε.

Proof. Observe that as γ (T) > 0 and N(T) is closed, we have γ (T) = γ (QT T) and
N(T) = N(QT T) by virtue of [5, II.3.9]. Also, it is clear that R(T) + T(0) ⊂ R(T) and
R(QT T) = (R(T) + T(0))/T(0) and thus

β(QT T) := dim(Y/T(0))/(R(T) + T(0)/T(0)) = dim Y/R(T) + T(0)
≥ dim(Y/R(T) + T(0))/(R(T)/R(T) + T(0)) = dim Y/R(T) :=β(T).

In consequence, QT T is an almost upper semi-Fredholm operator such that
N(T) = N(QT T) and α(T) ≤ β(QT T) (as ı̄(T) ≤ 0).

Let {x1, x2, . . . , xn} be a basis of N(T) and let [z1], [z2], . . . , [zn] be linearly
independent elements of Y/T(0) such that ‖xi‖ = ‖[zi]‖ = 1, 1 ≤ i ≤ n, and R(QT T) ∩
span{[z1], [z2], . . . , [zn]} = {[0]}. By the Hahn-Banach Theorem, we may choose
{x′

1, x′
2, . . . , x′

n} in X ′ such that ‖x′
i‖ = 1 and x′

i(xj) = δij, 1 ≤ i, j ≤ n. Since QT is
a surjective operator with QT BY = BQT Y there is a set {z1, z2, . . . , zn} of linearly
independent elements of Y such that QT zi = [zi] and ‖zi‖ ≤ 1, 1 ≤ i ≤ n.

Let ε > 0. Define Fε : x ∈ X → Fεx := ε/n
∑n

i=1 x′
i(x)zi ∈ Y .

Then, it is obvious that Fε is a bounded finite rank operator with ‖Fε‖ ≤ ε. We
shall verify that Tε := T + Fε is an injective linear relation and ‖Tε − T‖ ≤ ε.

Since T(0) = (T + Fε)(0) = (Tε − T)(0), it follows that QT = QTε
= QTε−T

and so QT+Fε
(T + Fε) = QT (T + Fε) = QT T + QT Fε . Consequently, ‖Tε − T‖ :=

‖QTε−T (Tε − T)‖ = ‖QT Fε‖ ≤ ε.
Finally, since N(T + Fε) ⊂ N(QT+Fε

(T + Fε)) = N(QT T + QT Fε), to establish the
injectivity of T + Fε it is enough to prove that QT T + QT Fε is an injective operator. But
this last property is trivially true since (QT T + QT Fε)x = 0 ⇒ QT Fεx = −QT Tx ⇒
QT Fεx = 0 = QT Tx (as R(QT T) ∩ span{[z1], [z2], . . . , [zn]} = {[0]}) ⇒ x = 0. �

In order to obtain the following Theorem we recall the notion of “graph operator”
which can be used to reduce T ∈ LR(X, Y ) to a bounded linear relation.
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190 T. ÁLVAREZ

DEFINITION 6 [5, IV.3.1]. Given T ∈ LR(X, Y ), let XT denote the vector space
D(T) normed by ‖x‖T :=‖x‖ + ‖Tx‖, x ∈ D(T). The graph operator, GT ∈ LR(XT , X)
is defined by D(GT ) := XT , GT x := x for x ∈ XT .

In [5, IV.3.2], Cross proves that ‖TGT‖ = ‖T‖/1 + ‖T‖ (where ∞/∞ := 1). In
particular, TGT is a bounded linear relation.

THEOREM 7. Let T ∈ LR(X, Y ). The following properties are equivalent.

(i) T is injective and open.
(ii) T ∈ AUSF(X, Y ) with ı̄(T) ≤ 0 and there exists the limit lim(α(T) − α(T − S))

as S ∈ LR(X, Y ) is continuous such that D(T) ⊂ D(S), S(0) ⊂ T(0) and S → 0.
(iii) T ∈ AUSF(X, Y ) with ı̄(T) ≤ 0 and there is a δ > 0 such that for every S ∈

LR(X, Y ) with D(T) ⊂ D(S), S(0) ⊂ T(0) and ‖S‖ < δ, we have α(T) = α(T − S).
(iv) There exists a δ > 0 such that for every S ∈ LR(X, Y ) with D(T) ⊂

D(S), S(0) ⊂ T(0) and ‖S‖ < δ, we have that T − S is injective.

Proof. (i) ⇒ (ii) Let ε > 0 and 0 < δ < min{ε, γ (T)}. Then, if S satisfies D(T) ⊂
D(S), S(0) ⊂ T(0) and ‖S‖ < δ, we have by [5, III.7.4] that α(T − S) ≤ α(T) and hence
0 = α(T) − α(T − S) < ε, as desired.

(ii) ⇒ (iii) We first prove the assertion for the case when T is bounded. By the
definition of the limit, there are δ > 0 and d ∈ � such that for every S ∈ B(X, Y ) with
S(0) ⊂ T(0) and ‖S‖ < δ one has 0 ≤ α(T) − α(T − S) − d < 1. Hence α(T − S) =
α(T) − d for all S ∈ B(X, Y ) with S(0) ⊂ T(0) and ‖S‖ < δ. If S := (δ/2‖T‖)T ,
then it is clear that S(0) = T(0), ‖S‖ < δ and thus α((1 − δ/2‖T‖)T) = α(T) − d,
and consequently, d = 0. Therefore α(T) = α(T − S) for all S ∈ B(X, Y ) such that
S(0) ⊂ T(0) and ‖S‖ < δ, as required.

Passing to the general case, we consider the bounded linear relation TGT . Then we
have R(T) = R(TGT ), α(T) = α(TGT ) ([5, I.6.11]), and γ (TGT ) = γ (T)/1 + γ (T) ([5,
IV.3.10]), and so if T satisfies (ii), TGT also satisfies (ii) and by what has already been
proved, TGT satisfies the condition (iii). Now, let S ∈ LR(X, Y ) such that D(T) ⊂ D(S),
S(0) ⊂ T(0) and ‖S‖ < δ. (This δ is obtained in the property (iii) applied to TGT .)
Therefore, applying (iii) to TGT we obtain α(TGT ) = α((T − S)GT ) and hence α(T) =
α(T − S).

(iii) ⇒ (iv) By Proposition 5, for every ε > 0 there is an element Tε ∈ LR(X, Y )
that is injective such that Tε(0) = T(0), D(T) = D(Tε) and ‖Tε − T‖ ≤ ε. Let ε = δ/2
and Sε := T − Tε . Then it is obvious that D(T) = D(Sε), Sε(0) ⊂ T(0) and ‖Sε‖ < δ,
so that we have α(T) = α(T − Sε) = α(Tε) = 0. Thus for every S ∈ LR(X, Y ) with
D(T) ⊂ D(S), S(0) ⊂ T(0) and ‖S‖ < δ, we obtain α(T − S) = 0; that is, the condition
(iv) is true.

(iv) ⇒ (i) Suppose that T is not injective and open. Then there exists a sequence (xn)
in X for which ‖xn‖ = 1 and ‖Txn‖ → 0 as n → ∞. By the Hahn-Banach Theorem
let (x′

n) be a sequence in X ′ such that 1 = x′
n(xn) = ‖x′

n‖, (n ∈ �).
For each n ∈ N, we define Tn ∈ LR(X, Y ) by Tnx := x′

n(x)Txn, x ∈ X . Then
Tnxn = Txn and thus (Tn − T)(0) = T(0) = Txn − Txn = Tnxn − Txn = (Tn − T)xn;
that is, xn ∈ N(Tn − T). Moreover, since ‖T − (T − Tn)‖ ≤ ‖QT Txn‖ → 0 as n → ∞,
we have the implication (iv) ⇒ (i). �

COROLLARY 8. Let T ∈ LR(X, Y ) be closed, where X and Y are complete. The
following properties are equivalent.
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(i) T is injective with closed range.
(ii) T is φ+ with i(T) ≤ 0 and there exists the limit, lim(α(T) − α(T − S)) as S ∈

LR(X, Y ) is continuous with D(T) ⊂ D(S), S(0) ⊂ T(0) and S → 0.
(iii) T is φ+ with i(T) ≤ 0 and there is a δ > 0 such that for every S ∈ LR(X, Y ) with

D(T) ⊂ D(S), S(0) ⊂ T(0) and ‖S‖ < δ, we have α(T) = α(T − S).
(iv) There exists a δ > 0 such that for every S ∈ LR(X, Y ) with D(T) ⊂ D(S),

S(0) ⊂ T(0) and ‖S‖ < δ one has T − S injective.

Proof. This result follows immediately from Proposition 2 and Theorem 7. �

For the particular case of bounded operators the above Corollary coincides with
the Theorem 3.

LEMMA 9. Let T ∈ LR(X, Y ).
(i) α(T) ≤ β(T ′) and α(T ′) = β(T). In particular, if T is ALSF with ı̄(T) ≥ 0, then

T ′ is AUSF with closed range and i(T ′) ≤ 0.
(ii) Let S ∈ LR(X, Y ) be continuous. Then

(ii1) S′ is continuous and ‖S‖ = ‖S′‖.
(ii2) If D(T) ⊂ D(S), then S′(0) ⊂ T ′(0) and (T + S)′ = T ′ + S′.
(ii3) If S(0) ⊂ T(0), then D(T ′) ⊂ D(S′).

Proof. (i) We have N(T) ⊂ R(T ′)�. Indeed, x ∈ N(T) ⇔ (x, 0) ∈ G(T) ⊂
G(T) := G(T) ⇔ x ∈ N(T) and N(T) = R(T ′)� by [5, III.1.4(c]. Therefore α(T) ≤
β(T ′). Since N(T ′) = R(T)⊥ by [5, III.1.4(a)] is α(T ′) = β(T). Moroever, noting that
the conjugate of a linear relation is always a closed linear relation we have by [5, III.5.2
and III.5.3] that T is almost open if and only if T ′ is open and T ′ open ⇒ R(T ′) closed.

(ii) If S is continuous, then so is S′ and ‖S‖ = ‖S′‖ by virtue of [5, III.4.6(c)].
Suppose that S is continuous with D(T) ⊂ D(S). Then S′(0) = D(S)⊥ ⊂ D(T)⊥ =

T ′(0) by [5, III. 1.4(b)] and that (T + S)′ = T ′ + S′ follows immediately from [5,
III.1.5(b)].

Finally, if S ∈ LR(X, Y ) is continuous with S(0) ⊂ T(0), then since
T(0) ⊂ T(0) = D(T ′)� by [5, II.5.19 and III.1.4(d)], it follows that D(T ′) ⊂
D(T ′)�⊥ ⊂ T(0)

⊥ ⊂ S(0)⊥ = D(S′), where the last equality is deduced by the continuity
of S (see [5, III.4.6(a)]. Hence the result follows. �

PROPOSITION 10. Let T ∈ ALSF(X, Y ) with ı̄(T) ≥ 0. Then, for every ε > 0 there
exists Tε ∈ LR(X, Y ) that is almost open with dense range and ‖Tε − T‖ ≤ ε.

Proof. From Lemma 9 (i) we have that T ′ ∈ AUSF(Y ′, X ′) such that R(T ′) is closed
and i(T ′) ≤ 0. Moreover, as R(T ′) is closed so is R(QT ′T ′) and β(T ′) = β(QT ′T ′).
Indeed, as T ′ is a closed linear relation T ′(0) is a closed subspace of X ′ by
[5, II.5.3 and III.1.2] and hence R(QT ′T ′) = R(T ′)/T ′(0) is closed in X ′/T ′(0)
and β(QT ′T ′) := dim(X ′/T ′(0))/(R(T ′)/T ′(0)) = dim X ′/R(T ′) := β(T ′) by virtue of
[5, IV.5.2].

Let {y′
1, y′

2, . . . , y′
n} be a basis of N(T ′) = N(QT ′T ′) and we can find a set

{[z′
1], [z′

2], . . . , [z′
n]} of linearly independent elements of QT ′X ′ (so that [z′

i] = QT ′x′
i

with {x′
1, x′

2, . . . , x′
n} linearly independent) such that ‖y′

i‖ = ‖[z′
i]‖ = 1, R(QT ′T ′) ∩

sp{[z′
1], [z′

2], . . . , [z′
n]} = {[0]} and ‖x′

i‖ ≤ 1. Let y1, y2, . . . , yn be chosen in Y such that
‖yi‖ = 1 and y′

i(yj) = δij.
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Now define for ε > 0 the operator Fε ∈ LR(X, Y ) as follows:

Fε(x) := ε/n
n∑

i=1

x′
i(x)yi (x ∈ X).

Observe that Fε is a bounded finite rank operator such that its norm does not
exceed ε and its conjugate F ′

ε is defined by F ′
εy′ = ε/n

∑n
i=1 y′(yi)x′

i, y′ ∈ Y ′.
We shall verify that Tε := T + Fε is almost open with dense range and ‖Tε − T‖ ≤

ε. Since γ (T ′) > 0 , β(T) < ∞ and Fε is a bounded finite rank operator, it follows
from [5, V.5.2 and V.5.12] that Tε is almost open. Upon observing that R(QT ′T ′) ∩
R(QT ′F ′

ε) = {[0]}, (T + Fε)′ = T ′ + F ′
ε (by Lemma 9 (ii)) and proceeding exactly as in

the proof of Proposition 5 we deduce that (T + Fε)′ is injective (equivalently T + Fε

has dense range) and ‖Tε − T‖ ≤ ε, as required. �
THEOREM 11. Let T ∈ LR(X, Y ). The following conditions are equivalent.

(i) T is almost open with dense range.
(ii) T is ALSF with ı̄(T) ≥ 0 and there exists the limit lim(β(T) − β(T − S)) as

S ∈ LR(X, Y ) is continuous with D(T) ⊂ D(S) and S(0) ⊂ T(0).
(iii) T is ALSF with ı̄(T) ≥ 0 and there is a δ > 0 such that, for every S ∈ LR(X, Y )

with D(T) ⊂ D(S), S(0) ⊂ T(0) and ‖S‖ < δ we have β(T) = β(T − S).
(iv) There exists a δ > 0 such that for every S ∈ LR(X, Y ) with D(T) ⊂ D(S),

S(0) ⊂ T(0) and ‖S‖ < δ, T − S has dense range.

Proof. (i) ⇒ (ii) Assume that (i) holds. Let ε > 0 and 0 < δ < min{ε, γ (T ′)}. Then,
for every S ∈ LR(X, Y ) with D(T) ⊂ D(S), S(0) ⊂ T(0) and ‖S‖ < δ we conclude from
Lemma 9 and [5, III.7.4] that 0 = β(T) − β(T − S) < ε.

(ii) ⇒ (iii) This implication is an immediate consequence of (ii) ⇒ (iii) of Theorem
7 using Lemma 9.

(iii) ⇒ (iv) By Proposition 10, for every ε > 0 there exists Tε ∈ LR(X, Y ) such
that D(T) = D(Tε), Tε(0) = T(0) and ‖Tε − T‖ ≤ ε. Let ε = δ/2 and Sε := T − Tε .
Then it is easy to show that Sε(0) ⊂ T(0), D(T) ⊂ D(Sε) and ‖Sε‖ < δ and so we
have β(T) = β(T − Sε) = β(Tε) = 0. Thus for every S ∈ LR(X, Y ) with D(T) ⊂ D(S),
S(0) ⊂ T(0) and ‖S‖ < δ we obtain β(T − S) = 0, as desired.

(iv) ⇒ (i) Suppose that (i) does not hold. Then T ′ is not injective and open and
thus there are a pair of sequences (y′

n) in D(T ′) and (yn) in Y such that 1 = y′
n(yn) and

‖T ′y′
n‖ → 0 as n → ∞. We define Tn ∈ LR(X, Y ) by

Tnx := T ′y′
n(x)yn, x ∈ X.

Then T ′
ny′ = y′(yn)T ′y′

n for y′ ∈ Y ′ and hence T ′y′
n = T ′

ny′
n. Arguing as in the last

paragraph of the proof of Theorem 7 (iv) ⇒ (i), we obtain that y′
n ∈ N((T − Tn)′) =

N(T ′ − T ′
n) (this equality is true by Lemma 9(ii)), so that (T − Tn)′ is not injective; that

is, R(T − Tn) is not dense. Furthermore, it is obvious that ‖T − (T − Tn)‖ ≤ ‖T ′y′
n‖ →

0 as n → ∞, contradicting (iv). Therefore (iv) ⇒ (i) as required. �
COROLLARY 12. Let T ∈ LR(X, Y ) be closed where X and Y are Banach spaces.

The following properties are equivalent.
(i) T is surjective.

(ii) T is φ− with i(T) ≥ 0, and there exists the limit lim(β(T) − β(T − S)) as S ∈
LR(X, Y ) is continuous with D(T) ⊂ D(S), S(0) ⊂ T(0) and S → 0.
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(iii) T is φ− with i(T) ≥ 0 and there exists a δ > 0 such that for every S ∈ LR(X, Y )
with D(T) ⊂ D(S), S(0) ⊂ T(0) and ‖S‖ < δ we have β(T) = β(T − S).

(iv) There exists δ > 0 such that for every S ∈ LR(X, Y ) with D(T) ⊂ D(S),
S(0) ⊂ T(0) and ‖S‖ < δ one has R(T − S) dense.

Proof. Apply Proposition 2 with Theorem 11. �
For the particular case of bounded operators the above Corollary coincides with

Theorem 4.
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