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Abstract. Let C be a finite dimensional algebra with B a split extension by
a nilpotent bimodule E, and let M be a τC-rigid module with U its Bongartz τC-
complement. If the induced module, M ⊗C B, is τB-rigid, we give a necessary and
sufficient condition for U ⊗C B to be its Bongartz τB-complement. If M is τB-rigid,
we again provide a necessary and sufficient condition for U ⊗C B to be its Bongartz
τB-complement.

1. Introduction. Let C be a finite dimensional algebra over an algebraically closed
field k. By module is meant throughout a finitely generated right C-module and mod C
denotes the category of finitely generated right C-modules. Let add M denote the
full subcategory of mod C whose objects are direct sums of direct summands of M.
Following [1], we call a C-module M τC-rigid if HomC(M, τCM) = 0 and τC-tilting if
M is τC-rigid and the number of pairwise non-isomorphic indecomposable summands
of M equals the number of pairwise non-isomorphic simple modules of C. We say M
is almost complete τC-tilting if M is τC-rigid and |M| = |C| − 1. It was shown in [1]
that, given any τC-rigid module, there exists a τC-rigid module U such that M ⊕ U is a
τC-tilting module. This module U is called the Bongartz τC-complement of M. In this
paper, we are interested in the problem of extending Bongartz τ -complements. More
precisely, let C and B be two finite dimensional k-algebras such that there exists a split
surjective algebra morphism B → C, whose kernel E is contained in the radical of B.
We then say B is a split extension of A by the nilpotent bimodule E.

Our first main result is the following theorem.

THEOREM 1.1 (Theorem 2.2). Let B be a split extension of C by a nilpotent bimodule
E, and let M be a τC-rigid module with U its Bongartz τC-complement. If M ⊗C B is
τB-rigid, then U ⊗C B is the Bongartz τB-complement if and only if HomC(U ⊗C

E, τCM) = 0.

Our second main result concerns M as a τB-rigid module and its Bongartz τB-
complement. Here, (τBM)C denotes the C-module structure of τBM.

THEOREM 1.2 (Theorem 3.3). Let B be a split extension of C by a nilpotent
bimodule E, and let M be a τC-rigid module with U its Bongartz τC-complement.
If M is τB-rigid, then U ⊗C B is the Bongartz τB-complement if and only if
HomC(U, (τBM)C) = 0.
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We use freely and without further reference properties of the module categories
and Auslander–Reiten translations as can be found in [3]. For an algebra C, we denote
by τC the Auslander–Reiten translation in mod C.

1.1. Split extensions and extensions of scalars. We begin this section with the
formal definition of a split extension.

DEFINITION 1.3. Let B and C be two algebras. We say B is a split extension of C by
a nilpotent bimodule E if there exists a short exact sequence of B-modules

0 → E → B
π

�
σ

C → 0,

where π and σ are algebra morphisms, such that π ◦ σ = 1C , and E = ker π is
nilpotent.

A useful way to study the module categories of C and B is a general construction
via the tensor product, also known as extension of scalars, that sends a C-module to a
particular B-module. Here, D denotes the standard duality functor.

DEFINITION 1.4. Let C be a subalgebra of B such that 1C = 1B, then

− ⊗C B : mod C → mod B,

is called the induction functor, and dually

D(B ⊗C D−) : mod C → mod B,

is called the coinduction functor. Moreover, given M ∈ mod C, the corresponding
induced module is defined to be M ⊗C B, and the coinduced module is defined to
be D(B ⊗C DM).

It was shown in [6, 3.6] that, as a C-module, M ⊗C B ∼= M ⊕ (M ⊗C E). Next, we
state a result that gives information about HomB(−, τB(M ⊗C B)) and HomB(M ⊗C

B,−).

LEMMA 1.5. Let M be a C-module, M ⊗C B the induced module, and let X be any
B-module. Then, we have

HomB(X, τB(M ⊗C B)) ∼= HomB(X, HomC(BBC, τCM) ∼= HomC(X ⊗B BC, τCM)

and

HomB(M ⊗C B, X) ∼= HomC(M, HomB(CBB, X)).

Proof. These isomorphisms follow from [2, Lemma 2.1] and the adjunction
isomorphism. �

We note that − ⊗B BC and HomB(CBB,−) are two expressions for the forgetful
functor mod B → mod C.
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1.2. τ -rigid modules and Bongartz τ -complements. We start with a definition.

DEFINITION 1.6. Let M be a C-module. We define Gen M to be the class of all
modules X in mod C generated by M, that is, the modules X such that there exists an
integer d ≥ 0 and an epimorphism Md → X of C-modules. Here, Md is the direct sum
of d copies of M. Dually, we define Cogen M to be the class of all modules Y in mod C
cogenerated by M, that is, the modules Y such that there exist an integer d ≥ 0 and a
monomorphism Y → Md of C-modules.

To describe Bongartz τ -complements, we need the notion of a torsion class and
torsion pair.

DEFINITION 1.7. A pair of full subcategories (T ,F) of mod C is called a torsion pair
if the following conditions are satisfied:

(a) HomC(M, N) = 0 for all M ∈ T , N ∈ F .

(b) HomC(M,−)|F = 0 implies M ∈ T .

(c) HomC(−, N)|T = 0 implies N ∈ F .

We call T and F a torsion class and torsionfree class, respectively.

DEFINITION 1.8. Let T be a full subcategory of mod C and X ∈ T . We say a
C-module X is Ext-projective inT if Ext1

C(X, T ) = 0. We denote by P(T ) the direct sum
of one copy of each indecomposable Ext-projective module in T up to isomorphism.

It was shown in [1, 2.10] that, for every τC-rigid module M, there exists a module
U such that M ⊕ U is τC-tilting. This module is called the Bongartz τC-complement
of M. To give an explicit construction, we define

⊥(τCM) = {X ∈ mod C | HomC(X, τCM) = 0}.

It was also shown in [1](2.11) that ⊥(τCM) forms a torsion class, the corresponding
torsionfree class is Cogen(τCM), and (⊥(τCM), Cogen(τCM)) is a torsion pair.

Then, P(⊥(τCM)) is a τC-tilting module satisfying M ∈ add(P(⊥(τCM))). Let U be
the direct sum of one copy of each indecomposable Ext-projective module in ⊥(τCM)
up to isomorphism that does not belong to add M. Then, M ⊕ U is τC-tilting and U
is the Bongartz τC-complement of M.

2. Main results and corollaries. Throughout this section, B is a split extension of
C by a nilpotent bimodule E. We begin with a result proved in [2] that shows precisely
when an induced module, M ⊗C B, is τB-rigid (τB-tilting).

THEOREM 2.1 ([2, Theorem A]). Let M be a C-module. Then, M ⊗C B is τB-rigid
(τB-tilting) if and only if M is τC-rigid (τC-tilting) and HomC(M ⊗C E, τCM) = 0.

We are now ready for our main result. We assume throughout that M is τC-rigid
with U its Bongartz τC-complement.

THEOREM 2.2. Suppose M ⊗C B is τB-rigid. Then, U ⊗C B is the Bongartz τB-
complement if and only if HomC(U ⊗C E, τCM) = 0.

Proof. Suppose U ⊗C B is the Bongartz τB-complement of M ⊗C B. This implies
HomB(U ⊗C B, τB(M ⊗C B)) = 0. Using Lemma 1.5 and [6, 3.6], we have the following

463

https://doi.org/10.1017/S0017089518000290 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089518000290


STEPHEN ZITO

isomorphisms

HomB(U ⊗C B, τB(M ⊗C B)) ∼= HomB(U ⊗C B, HomC(BBC, τCM)) ∼=

HomC(U ⊗C B ⊗B BC, τCM) ∼= HomC(U ⊗C BC, τCM) ∼=

HomC(U ⊗C (C ⊕ E)C, τCM) ∼= HomC(U ⊕ (U ⊗C E), τCM) ∼=

HomC(U, τCM) ⊕ HomC(U ⊗C E, τCM).

We conclude that HomC(U ⊗C E, τCM) = 0.
Conversely, suppose HomC(U ⊗C E, τCM) = 0. Then, HomC(U ⊗C E, τCU) =

0 because U is Ext-projective in ⊥(τCM) and proposition [3, VI, 1.11] shows τCU
is cogenerated by τCM since Cogen(τCM) is the corresponding torsionfree class by
[1, 2.11]. Thus, Theorem 2.1 says U ⊗C B is τB-rigid. Using the above vector space
isomorphisms, we see HomB(U ⊗C B, τB(M ⊗C B)) = 0. Next, we will show U ⊗C B
is Ext-projective in ⊥(τB(M ⊗C B)). By proposition [1, 2.9], we need to show that

Gen(U ⊗C B) ⊆ ⊥(τB(M ⊗C B)) ⊆ ⊥(τB(U ⊗C B)).

The first containment is clear so let X ∈ ⊥(τB(M ⊗C B)) but X �∈ ⊥(τB(U ⊗C B)).
Using the above vector space isomorphisms, HomC(XC, τCM) = 0 and
HomC(XC, τCU) �= 0, where XC denotes the C-module structure of X . Since
proposition [3, VI, 1.11] says τCU is cogenerated by τCM, we have a contradiction.
Thus, U ⊗C B is Ext-projective in ⊥(τB(M ⊗C B)).

Finally, we need to show U ⊗C B comprises all the indecomposable Ext-projective
modules in ⊥(τB(M ⊗C B)) up to isomorphism not in add(M ⊗C B). Suppose not
and let Y be the direct sum of all remaining Ext-projective modules in ⊥(τB(M ⊗C

B)) up to isomorphism not in add(M ⊗C B). Then, (U ⊗C B) ⊕ Y is the Bongartz
τB-complement of M ⊗C B. Thus, (M ⊗C B) ⊕ (U ⊗C B) ⊕ Y is a τB-tilting module
such that the number of pairwise non-isomorphic indecomposable summands equals
the number of pairwise non-isomorphic simple modules of B. However, [6, 3.4] implies
the number of pairwise non-isomorphic simple modules of C and B are equal. Thus,
we have the inequality |(M ⊗C B) ⊕ (U ⊗C B) ⊕ Y | > |B| but this contradicts [1, 1.3].
We conclude Y must be 0 and U ⊗C B is the Bongartz τB-complement of M ⊗C B. �

Next, we present three corollaries. If M ∈ GenU , then HomC(U ⊗C E, τCM) = 0
guarantees M ⊗C B is τB-rigid with U ⊗C B the Bongartz τB-complement.

COROLLARY 2.3. Suppose M ∈ GenU. Then, M ⊗C B is τB-rigid with U ⊗C B its
Bongartz τB-complement if and only if HomC(U ⊗C E, τCM) = 0.

Proof. We only need to show M ⊗C B being τB-rigid follows from the assumption
HomC(U ⊗C E, τCM) = 0. The rest follows from Theorem 2.2. Since M ∈ GenU ,
there exists an epimorphism f : Ud → M where d ≥ 0. The functor ⊗C E is right
exact and applying to f yields an epimorphism f ⊗C 1E : (U ⊗C E)d → M ⊗C E. Thus,
HomC(U ⊗C E, τCM) = 0 implies HomC(M ⊗C E, τCM) = 0 that further implies
M ⊗C B is τB-rigid by Theorem 2.1. �
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In the special case, where M is indecomposable and non-projective, we always have
M ∈ GenU .

COROLLARY 2.4. Let M be indecomposable and non-projective. Then, M ⊗C B is τB-
rigid with U ⊗C B its Bongartz τB-complement if and only if HomC(U ⊗C E, τCM) = 0.

Proof. We need to show M ∈ GenU and the result will follow from corollary 2.3.
By [1, 2.22], either M ∈ GenU or ⊥(τCU) ⊆ ⊥(τCM). Assume ⊥(τCU) ⊆ ⊥(τCM) is
true. Since U is the Bongartz τC-complement, we have ⊥(τCM) ⊆ ⊥(τCU) by [1, 2.9].
Thus, ⊥(τCU) = ⊥(τCM). Again, since U is the Bongartz τ -complement of M, we
know τCU ∈ Cogen(τCM). Now, GenM ⊆ ⊥(τCM) = ⊥(τCU) and [1, 2.9] implies M
is Ext-projective in ⊥(τCU). [3, VI, 1.11] gives τCM ∈ Cogen(τCU). Since τCU and
τCM cogenerate each other, we conclude τCM ∼= τCU . This is only possible if both
τCM and τCU are 0 that implies M and U are projective. But we assumed M is not
projective and thus a contradiction. We conclude M ∈ GenU . �

Next, we assume that E ∈ GenM when E is viewed as a right C-module.

COROLLARY 2.5. Let E ∈ GenM. Then, M ⊗C B is τB-rigid with U ⊗C B its
Bongartz τB-complement.

Proof. Since E ∈ GenM, we have HomC(E, τCM) = 0. Since τCU is cogenerated
by τCM by [3, VI, 1.11], we also have HomC(E, τCU) = 0. Using the adjunction
isomorphism,

0 = HomC(M, HomC(E, τCM)) ∼= HomC(M ⊗C E, τCM).

By Theorem 2.1, M ⊗C B is τB-rigid. By the same reasoning, HomC(U ⊗C E, τCM)
and HomC(U ⊗C E, τCU) are equal to 0. The result now follows from Theorem 2.2. �

Our next proposition concerns almost complete τ -tilting modules.

PROPOSITION 2.6. Suppose M is an almost complete τC-titling module such that
M ⊕ Y is τC-tilting and Y is not the Bongartz τC-complement for some indecomposable
C-module Y. Suppose M ⊗C B is τB-tilting. Then, (M ⊗C B) ⊕ (Y ⊗C B) is τB-tilting if
and only if HomC(M ⊗C E, τCY ) = 0.

Proof. Since Y is indecomposable and not the Bongartz τC-complement, we have
Y ∈ GenM by [1, 2.22]. Thus, there exists an epimorphism f : Md → Y where d ≥ 0.
The functor ⊗C B is right exact and applying to f yields an epimorphism f ⊗C 1E :
(M ⊗C B)d → Y ⊗C B. Since M ⊗C B is τB-rigid and Y ⊗C B ∈ Gen(M ⊗C B), we
have HomB(Y ⊗C B, τB(M ⊗C B)) = 0. Using Lemma 1.5 and [6, 3.6], we have

HomB(M ⊗C B, τB(Y ⊗C B)) ∼= HomC((M ⊗C B)C, τCY ) ∼=

HomC(M, τCY ) ⊕ HomC(M ⊗C E, τCY ).

Thus, HomC(M ⊗C E, τCY ) = 0 if and only if HomB(M ⊗C B, τB(Y ⊗C B)) = 0 and
our statement follows. �

3. M as a τ -rigid B-module. In this section, we present several results concerning
a C-module M which is τB-rigid. Throughout, we assume B is a split extension of C
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by a nilpotent bimodule E and M is τC-rigid. We begin with a sufficient condition for
M to be τB-rigid.

PROPOSITION 3.1. If HomC(M ⊗C E, GenM) = 0, then M is τB-rigid.

Proof. By [6, 3.6], we have the following short exact sequence in mod B

0 → M ⊗C E → M ⊗C B → M → 0.

Applying HomB(−, GenM), we obtain an exact sequence

HomB(M ⊗C E, GenM) → Ext1
B(M, GenM) → Ext1

B(M ⊗C B, GenM).

First, we wish to show Ext1
B(M ⊗C B, GenM) = 0. We know from [5, 5.8] this is

equivalent to HomB(M, τB(M ⊗C B)) = 0. By Lemma 1.5 and the assumption that
M is τC-rigid, HomB(M, τ (M ⊗C B)) ∼= HomC(M, τCM) = 0. Next, we want to show
HomB(M ⊗C E, GenM) = 0. By restriction of scalars, any non-zero morphism from
M ⊗C E to GenM in mod B would give a non-zero morphism in mod C, contrary to our
assumption. Thus, HomB(M ⊗C E, GenM) = 0. We conclude Ext1

B(M, GenM) = 0
and [5, 5.8] implies M is τB-rigid. �

The following determines precisely when M ⊗C B is Ext-projective in ⊥(τBM).
Recall, we denote the C-module structure of τBM by (τBM)C .

PROPOSITION 3.2. Suppose M is τB-rigid. Then M ⊗C B ∈ P(⊥(τBM)) if and only if
HomC(M, (τBM)C) = 0.

Proof. Assume M ⊗C B ∈ P(⊥(τBM)). Then HomB(M ⊗C B, τBM) = 0. Using
Lemma 1.5, we have HomB(M ⊗C B, τBM) ∼= HomC(M, (τBM)C) = 0. Next, assume
HomC(M, (τBM)C) = 0. Again, Lemma 1.5 gives HomB(M ⊗C B, τBM) = 0. Thus,
M ⊗C B ∈ ⊥(τBM) and we need to show M ⊗C B ∈ P⊥(τBM). We have τB(M ⊗C B) ∈
Cogen(τBM) by [4, 1.2] and [3, VI, 1.11] gives M ⊗C B is Ext-projective in ⊥(τBM). �

Suppose U is the Bongartz τC-complement of M. If M is τB-rigid, our main
result gives a necessary and sufficient condition for U ⊗C B to be the Bongartz τB-
complement.

THEOREM 3.3. Suppose M is τB-rigid. Then U ⊗C B is the Bongartz τB-complement
if and only if HomC(U, (τBM)C) = 0.

Proof. Assume U ⊗C B is the Bongartz τB-complement. Then HomB(U ⊗C

B, τBM) = 0 and Lemma 1.5 gives HomB(U ⊗C B, τBM) ∼= HomC(U, (τBM)C) =
0. Next, assume HomC(U, (τBM)C) = 0. Again, Lemma 1.5 gives HomB(U ⊗C

B, τBM) = 0. Thus, U ⊗C B ∈ ⊥(τBM) and we need to show U ⊗C B ∈ P⊥(τBM).
Using [1, 2.9], we need to show the following containments

Gen(U ⊗C B) ⊆ ⊥(τBM) ⊆ ⊥(τB(U ⊗C B)).

The first is clear so let X ∈ ⊥(τBM). We need to show X ∈ ⊥(τB(U ⊗C

B)). If X /∈ ⊥(τB(U ⊗C B)), then Lemma 1.5 implies HomB(X, τB(U ⊗C B)) ∼=
HomC(XC, τCU) �= 0. Since τCU ∈ Cogen(τCM), we would have HomC(XC, τCM) �=
0. Since we assumed X ∈ ⊥(τBM) and τB(M ⊗C B) ∈ Cogen(τBM) by [4, 1.2],
we must have HomB(X, τB(M ⊗C B)) = 0. However, using Lemma 1.5, we see
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HomB(X, τB(M ⊗C B)) ∼= HomC(XC, τCM) = 0, a contradiction. Thus, we must have
X ∈ ⊥(τB(U ⊗C B)) and conclude by proposition [1, 2.9] that U ⊗C B ∈ P⊥(τBM).
Finally, to show U ⊗C B comprises all the indecomposable Ext-projective modules in
⊥(τBM) up to isomorphism not in addM, we apply the same reasoning used in the
conclusion of Theorem 2.2. �

Our next result shows that (M ⊗C B) ⊕ (U ⊗C B) and M ⊕ U are both τB-tilting
if and only if they are isomorphic to each other.

PROPOSITION 3.4. M ⊕ U and (M ⊗C B) ⊕ (U ⊗C B) are both τB-tilting if and only
if M ⊗C E = 0 and U ⊗C E = 0.

Proof. Assume M ⊕ U and (M ⊗C B) ⊕ (U ⊗C B) are both τB-tilting. Since
M ⊗B U is τB-tilting, we know Ext1

B(M ⊕ U, Gen(M ⊕ U)) = 0 by [5, 5.8]. Since
(M ⊗C B) ⊕ (U ⊗C B) is τB-tilting, we know HomC((M ⊗C E) ⊕ (U ⊗C E), τC(M ⊕
U)) = 0 by Theorems 2.1 and 2.2. Thus, (M ⊗C E) ⊕ (U ⊗C E) ∈ Gen(M ⊕ U) by [1,
2.12]. However, we know Ext1

B(M ⊕ U, (M ⊗C E) ⊕ (U ⊗C E)) �= 0 by [6, 3.6]. This
contradicts the fact that Ext1

B(M ⊕ U, Gen(M ⊕ U)) = 0 unless M ⊗C E and U ⊗C E
are equal to 0.

Assume M ⊗C E and U ⊗C E are equal to 0. [6, 3.6] implies (M ⊗C B) ⊕ (U ⊗C

B) ∼= (M ⊕ U). Also, HomC((M ⊗C E) ⊕ (U ⊗C E), τC(M ⊕ U)) = 0 implies (M ⊗C

B) ⊕ (U ⊗C B) is τB-tilting by Theorems 2.1 and 2.2 and our statement follows. �

If we don’t assume M is τC-rigid (τC-tilting), our last result shows M being τB-rigid
(τB-tilting) guarantees M being τC-rigid (τC-tilting).

PROPOSITION 3.5. Suppose M is τB-rigid (τB-tilting), then M is τC-rigid (τC-tilting).

Proof. Since M is τB-rigid (τB-tilting), HomB(M, τBM) = 0. Since τC(M ⊗C B) is
a submodule of τBM by [4, 1.2], we must have HomB(M, τB(M ⊗C B)) = 0. Using
Lemma 1.5 and the fact M is also a C-module, we have

HomB(M, τB(M ⊗C B)) ∼= HomC(M ⊗B BC, τCM) ∼= HomC(M, τCM).

Thus, we have HomC(M, τCM) = 0 and conclude M is τC-rigid (τC-tilting). �

4. Examples. In this section, we give two examples illustrating our results. We
will construct a cluster-tilted algebra from a tilted algebra. Such a construction is an
example of a split extension. Let A be the path algebra of the following quiver:

4

��������

1 2�� 3��

5

��������

Since A is a hereditary algebra, we may construct a tilted algebra. To do this, we
need an A-module which is tilting. Consider the Auslander–Reiten quiver of A which
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is given by
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Let T be the tilting A-module

T = 5 ⊕
4 5
3
2
1

⊕
5
3
2
1

⊕ 2
1

⊕ 1.

The corresponding titled algebra C = EndAT is given by the bound quiver

1
α �� 2

β �� 3
γ �� 4 �� 5 αβγ = 0.

Then, the Auslander–Reiten quiver of C is given by

2
3
4
5

���
��

��

3
4
5
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BONGARTZ τ -COMPLEMENTS

The corresponding cluster-tilted algebra B = C � Ext2
C(DC, C) is given by the

bound quiver

1
α �� 2

β �� 3
γ �� 4

δ

�� �� 5 αβγ = βγ δ = γ δα = δαβ = 0.

Then, the Auslander–Retien quiver of B is given by

2
3
4
5

��




5

���
��

�

4
1
2

���
��

��
· · ·

4
1

���
��

3
4
5



��

��





2
3
4

��





4
1 5
2

		���

���
�

4
1

���
��

· · ·

4
5

��
3

44
1 5

		��

���
�

��
3
4
1

�� 3
4



���

��
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3

��





��
1
2
3

�� 1
2

���
��

�

		��
4

1 5

���
��

�

��



���� 3
4

1 5

��
3

44
1 5



����

���
��

�

�� · · ·

3
4

1 5



��

4



���

3



���

2



���

1



����

4
5



���

· · ·

EXAMPLE 4.1. In mod C, consider M =
2
3
4
5

⊕
2
3
4

⊕ 3 . M is a τC-rigid module with

Bongartz τC-complement U =
1
2
3

⊕ 3
4

. In this case, we have M ⊗C B ∼= M that implies

M ⊗C E = 0. Thus, M ⊗C B ∼= M is τB-rigid and the induced module of U , U ⊗C B =
1
2
3

⊕
3
4
1

, is the Bongartz τB-complement. Notice, we have τCM =
3
4
5

⊕ 4 , U ⊗C E = 1 ,

and HomC(U ⊗C E, τCM) = 0, in accordance with Theorem 2.2.

EXAMPLE 4.2. In mod C, consider M =
3
4
5

. M is projective with Bongartz

τC-complement U = 5 ⊕ 4
5

⊕
2
3
4
5

⊕
1
2
3

. We have M ⊗C E = 1 and it is clear to

see HomC(M ⊗E C, GenM) = 0. Thus, M is τB-rigid by proposition 3.1 with
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τBM = 4
1

. Since M ⊗C B =
3
4

1 5
, Proposition 3.2 says M ⊗C B ∈ P(⊥(τBM)) because

HomC(M, (τBM)C) = HomC(M, 4 ⊕ 1) = 0.

We have U ⊗C B = 5 ⊕
4

1 5
2

⊕
2
3
4
5

⊕
1
2
3

. Here, not every summand of U ⊗C B

is a summand of the Bongartz τB-complement because HomB

⎛
⎝

1
2
3

⊕
4
1 5
2

,
4
1

⎞
⎠ �= 0.

Notice, (τBM)C = 4 ⊕ 1 and HomC

⎛
⎝

1
2
3
⊕, 4 ⊕ 1

⎞
⎠ �= 0 in accordance with Theorem

3.3. However, Theorem 3.3 guarantees 5 ⊕
2
3
4
5

are summands of the Bongartz τB-

complement since HomC

⎛
⎜⎜⎝ 5 ⊕

2
3
4
5

, 4 ⊕ 1

⎞
⎟⎟⎠ = 0.
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