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Abstract. Let C be a finite dimensional algebra with B a split extension by
a nilpotent bimodule E, and let M be a tc-rigid module with U its Bongartz 7c¢-
complement. If the induced module, M ®¢ B, is tp-rigid, we give a necessary and
sufficient condition for U ® ¢ B to be its Bongartz tz-complement. If M is tp-rigid,
we again provide a necessary and sufficient condition for U ® ¢ B to be its Bongartz
Tg-complement.

1. Introduction. Let C be a finite dimensional algebra over an algebraically closed
field k. By module is meant throughout a finitely generated right C-module and mod C
denotes the category of finitely generated right C-modules. Let add M denote the
full subcategory of mod C whose objects are direct sums of direct summands of M.
Following [1], we call a C-module M t¢-rigid if Homc(M, t¢ M) = 0 and tc-tilting if
M is tc-rigid and the number of pairwise non-isomorphic indecomposable summands
of M equals the number of pairwise non-isomorphic simple modules of C. We say M
is almost complete tc-tilting if M is t¢-rigid and |M| = |C| — 1. It was shown in [1]
that, given any 7¢-rigid module, there exists a t¢-rigid module U such that M @ U is a
tc-tilting module. This module U is called the Bongartz tc-complement of M. In this
paper, we are interested in the problem of extending Bongartz t-complements. More
precisely, let C and B be two finite dimensional k-algebras such that there exists a split
surjective algebra morphism B — C, whose kernel E is contained in the radical of B.
We then say B is a split extension of 4 by the nilpotent bimodule E.

Our first main result is the following theorem.

THEOREM 1.1 (Theorem 2.2). Let B be a split extension of C by a nilpotent bimodule
E, and let M be a tc-rigid module with U its Bongartz tc-complement. If M @¢ B is
tg-rigid, then U ®¢ B is the Bongartz tg-complement if and only if Hom¢(U ®¢
E, ‘EcM) =0.

Our second main result concerns M as a tg-rigid module and its Bongartz tz-
complement. Here, (1 M) denotes the C-module structure of tpM.

THEOREM 1.2 (Theorem 3.3). Let B be a split extension of C by a nilpotent
bimodule E, and let M be a tc-rigid module with U its Bongartz tc-complement.
If M is tp-rigid, then U ®c B is the Bongartz tg-complement if and only if
HOIl’lc(U, (‘L’BM)C) =0.
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We use freely and without further reference properties of the module categories
and Auslander—Reiten translations as can be found in [3]. For an algebra C, we denote
by t¢ the Auslander—Reiten translation in mod C.

1.1. Split extensions and extensions of scalars. We begin this section with the
formal definition of a split extension.

DEFINITION 1.3. Let B and C be two algebras. We say B is a split extension of C by
a nilpotent bimodule F if there exists a short exact sequence of B-modules

0—>E—>BéC—>O,

[

where © and o are algebra morphisms, such that w oo = 1¢, and E = kerm is
nilpotent.

A useful way to study the module categories of C and B is a general construction
via the tensor product, also known as extension of scalars, that sends a C-module to a
particular B-module. Here, D denotes the standard duality functor.

DEFINITION 1.4. Let C be a subalgebra of B such that 1¢ = 15, then
— ®c B:mod C — mod B,
is called the induction functor, and dually
D(B®c D—) : mod C — mod B,

is called the coinduction functor. Moreover, given M € mod C, the corresponding
induced module is defined to be M ®¢ B, and the coinduced module is defined to
be D(B®@c DM).

It was shown in [6, 3.6] that, as a C-module, M @ c B= M @& (M ®c E). Next, we
state a result that gives information about Homp(—, t13(M ®¢ B)) and Homp(M ®¢
B, —).

LEMMA 1.5. Let M be a C-module, M ® ¢ B the induced module, and let X be any
B-module. Then, we have

Homp(X, t3(M ®@¢ B)) = Homp(X, Homc(sBc, teM) = Home(X ®p Be, tcM)
and

Hompg(M Q¢ B, X) = Hom¢(M, Homp(cBg, X)).

Proof. These isomorphisms follow from [2, Lemma 2.1] and the adjunction
isomorphism. O

We note that — ® g B¢ and Hompg(cBg, —) are two expressions for the forgetful
functor mod B — mod C.
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1.2. 7-rigid modules and Bongartz r-complements. We start with a definition.

DEFINITION 1.6. Let M be a C-module. We define Gen M to be the class of all
modules X in mod C generated by M, that is, the modules X such that there exists an
integer d > 0 and an epimorphism M“ — X of C-modules. Here, M is the direct sum
of d copies of M. Dually, we define Cogen M to be the class of all modules Y in mod C
cogenerated by M, that is, the modules Y such that there exist an integer d > 0 and a
monomorphism ¥ — M¢ of C-modules.

To describe Bongartz T-complements, we need the notion of a torsion class and
torsion pair.

DEFINITION 1.7. A pair of full subcategories (7, F) of mod Cis called a torsion pair
if the following conditions are satisfied:

(a) Hom¢(M,N)=0forall M € T,N € F.
(b) Hom¢(M, —)|7 = 0 implies M € 7.
(c) Homc¢(—, N)|7 = 0 implies N € F.
We call 7 and F a torsion class and torsionfree class, respectively.

DEFINITION 1.8. Let 7 be a full subcategory of mod C and X € 7. We say a
C-module X is Ext-projective in T if Extlc(X ,T) = 0. Wedenote by P(7) the direct sum
of one copy of each indecomposable Ext-projective module in 7 up to isomorphism.

It was shown in [1, 2.10] that, for every t¢-rigid module M, there exists a module
U such that M & U is tc-tilting. This module is called the Bongartz t¢c-complement
of M. To give an explicit construction, we define

L(teM) = {X € mod C | Hom¢(X, teM) = 0).

It was also shown in [1](2.11) that ~(z¢M) forms a torsion class, the corresponding
torsionfree class is Cogen(t¢ M), and (“(t¢ M), Cogen(tcM)) is a torsion pair.

Then, P(+(tcM)) is a tc-tilting module satisfying M e add(P(*(t¢M))). Let U be
the direct sum of one copy of each indecomposable Ext-projective module in *(zcM)
up to isomorphism that does not belong to add M. Then, M @ U is tc-tilting and U
is the Bongartz r¢-complement of M.

2. Main results and corollaries. Throughout this section, B is a split extension of
C by a nilpotent bimodule E£. We begin with a result proved in [2] that shows precisely
when an induced module, M ®¢ B, is tp-rigid (rp-tilting).

THEOREM 2.1 ([2, Theorem A]). Let M be a C-module. Then, M Q¢ B is tp-rigid
(tp-tilting ) if and only if M is tc-rigid (tc-tilting) and Home(M ®¢ E, tcM) = 0.

We are now ready for our main result. We assume throughout that M is t¢-rigid
with U its Bongartz tc-complement.

THEOREM 2.2. Suppose M Q¢ B is tp-rigid. Then, U ®¢ B is the Bongartz tp-
complement if and only if Hom¢c(U Q¢ E, tcM) = 0.

Proof. Suppose U ®¢ B is the Bongartz tz-complement of M ®¢ B. This implies
Hompz(U ®¢ B, 13(M ®¢ B)) = 0. Using Lemma 1.5 and [6, 3.6], we have the following
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isomorphisms

Homp(U Q¢ B, 13(M ®c B)) = Homp(U ®¢ B, Homc(gBc, tcM)) =

Hom(U ®c B®p Bc, tcM) = Home(U ®¢ Be, tcM) =

Homc(U ®¢c (C ® E)¢c, tcM) = Home(U & (U Q¢ E), tcM) =

Hom¢(U, tc M) ® Homc(U ®¢ E, t¢cM).

We conclude that Homc(U ®¢ E, tcM) = 0.

Conversely, suppose Homc(U ®¢ E, tcM) = 0. Then, Hom¢(U Q¢ E, tcU) =
0 because U is Ext-projective in +(t¢M) and proposition [3, VI, 1.11] shows tcU
is cogenerated by t¢M since Cogen(t¢M) is the corresponding torsionfree class by
[1, 2.11]. Thus, Theorem 2.1 says U ®¢ B is tp-rigid. Using the above vector space
isomorphisms, we see Homp(U ®¢ B, 13(M ®¢ B)) = 0. Next, we will show U ®¢ B
is Ext-projective in ~(tz3(M ®¢ B)). By proposition [1, 2.9], we need to show that

Gen(U ®c B) € *(13(M ®¢ B)) € *(z5(U ®c B)).

The first containment is clear so let X € *(z3(M ®c B)) but X ¢ *(t3(U ®c B)).
Using the above vector space isomorphisms, Hom¢(X¢, 7¢M) =0 and
Hom¢(X¢, tcU) # 0, where X¢ denotes the C-module structure of X. Since
proposition [3, VI, 1.11] says t¢ U is cogenerated by t¢ M, we have a contradiction.
Thus, U ®@c B is Ext-projective in *(t3(M ®c B)).

Finally, we need to show U ® ¢ B comprises all the indecomposable Ext-projective
modules in *(tz(M ®c¢ B)) up to isomorphism not in add(M ®c B). Suppose not
and let Y be the direct sum of all remaining Ext-projective modules in +(z3(M ®¢
B)) up to isomorphism not in add(M ®¢ B). Then, (U ®¢c B) ® Y is the Bongartz
tg-complement of M ®¢ B. Thus, (M ®¢ B) ® (U ®¢ B) ® Y is a t-tilting module
such that the number of pairwise non-isomorphic indecomposable summands equals
the number of pairwise non-isomorphic simple modules of B. However, [6, 3.4] implies
the number of pairwise non-isomorphic simple modules of C and B are equal. Thus,
we have the inequality |(M ®¢ B) ® (U ®¢ B) ® Y| > |B| but this contradicts [1, 1.3].
We conclude Y must be 0 and U ®c¢ B is the Bongartz tg-complement of M ® ¢ B. [

Next, we present three corollaries. If M € GenU, then Hom¢(U ®¢ E, tcM) =0
guarantees M Q¢ B is tp-rigid with U ®¢ B the Bongartz tz-complement.

COROLLARY 2.3. Suppose M € GenU. Then, M Q¢ B is tg-rigid with U Q¢ B its
Bongartz tg-complement if and only if Homc(U ®¢ E, tcM) = 0.

Proof. We only need to show M ®¢ B being tp-rigid follows from the assumption
Hom¢(U ®c E, t¢cM) = 0. The rest follows from Theorem 2.2. Since M € GenU,
there exists an epimorphism f : U? — M where d > 0. The functor - ®c E is right
exact and applying to /" yields an epimorphism f ®¢ 1z : (U ®¢ E)Y — M ®¢ E. Thus,
Hom¢(U ®¢ E, t¢M) = 0 implies Homc(M ®c¢ E, tcM) = 0 that further implies
M ®¢ B is tp-rigid by Theorem 2.1. U
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In the special case, where M is indecomposable and non-projective, we always have
M € GenU.

COROLLARY 2.4. Let M be indecomposable and non-projective. Then, M Q¢ B is tg-
rigid with U ® ¢ B its Bongartz tg-complement if and only if Homc(U Q¢ E, tc M) = 0.

Proof. We need to show M € GenU and the result will follow from corollary 2.3.
By [1, 2.22], either M € GenU or *(tcU) C *(rcM). Assume *(tcU) C H(zeM) is
true. Since U is the Bongartz t¢-complement, we have “(t¢M) € *(zcU) by [1, 2.9].
Thus, *(tcU) = Y(r¢M). Again, since U is the Bongartz t-complement of M, we
know ¢ U € Cogen(tcM). Now, GenM C *(z¢M) = L(rcU) and [1, 2.9] implies M
is Ext-projective in *(rcU). [3, VI, 1.11] gives 1¢M € Cogen(tcU). Since ¢ U and
tcM cogenerate each other, we conclude t¢M = 7o U. This is only possible if both
tcM and tc U are 0 that implies M and U are projective. But we assumed M is not
projective and thus a contradiction. We conclude M € GenU. O

Next, we assume that £ € GenM when E is viewed as a right C-module.

COROLLARY 2.5. Let E € GenM. Then, M ®c B is tg-rigid with U Q¢ B its
Bongartz tg-complement.

Proof. Since E € GenM, we have Hom¢(E, t¢ M) = 0. Since t¢ U is cogenerated
by t¢M by [3, VI, 1.11], we also have Hom¢(E, 1¢U) = 0. Using the adjunction
isomorphism,

0 = Hom¢(M, Hom¢(E, t¢M)) = Home(M ®c E, t¢cM).

By Theorem 2.1, M ®¢ B is tg-rigid. By the same reasoning, Hom¢(U Q¢ E, t¢ M)
and Hom¢(U Q¢ E, t¢ U) are equal to 0. The result now follows from Theorem 2.2. [

Our next proposition concerns almost complete t-tilting modules.

PROPOSITION 2.6. Suppose M is an almost complete tc-titling module such that
M & Y is te-tilting and Y is not the Bongartz tc-complement for some indecomposable
C-module Y. Suppose M Q¢ B is tp-tilting. Then, (M ®¢ B) ® (Y ®¢ B) is tp-tilting if
and only if Hom¢(M ®@¢ E, t¢Y) = 0.

Proof. Since Y is indecomposable and not the Bongartz t¢-complement, we have
Y € GenM by [1, 2.22]. Thus, there exists an epimorphism /' : M¢ — ¥ where d > 0.
The functor _ ®¢ B is right exact and applying to f yields an epimorphism f ®¢ 1 :
(M ®c B — Y ®c B. Since M ®c¢ B is tp-rigid and Y ®¢ B € Gen(M Q¢ B), we
have Homp(Y ®¢ B, t5(M ®¢ B)) = 0. Using Lemma 1.5 and [6, 3.6], we have

HOl’IlB(M ®c B, ‘L'B(Y Rc B)) = Homc((M Rc B)C, TC Y) =

Hom¢(M, 1¢Y) ® Homc(M Q¢ E, 1cY).

Thus, Hom¢(M ®¢ E, t¢ Y) = 0 if and only if Homg(M ®¢ B, 13(Y ®¢ B)) = 0 and
our statement follows. O

3. M as a t-rigid B-module. In this section, we present several results concerning
a C-module M which is tg-rigid. Throughout, we assume B is a split extension of C
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by a nilpotent bimodule £ and M is t¢-rigid. We begin with a sufficient condition for
M to be tp-rigid.

PrOPOSITION 3.1. If Hom¢(M Q¢ E, GenM) = 0, then M is tg-rigid.

Proof. By [6, 3.6], we have the following short exact sequence in mod B

0> MQE—>MB—M—D0.
Applying Homg(—, GenM), we obtain an exact sequence
Homp(M ®c¢ E, GenM) — Exth(M, GenM) — Exth(M ®c¢ B, GenM).

First, we wish to show Ext}g(M ®c B,GenM) = 0. We know from [5, 5.8] this is
equivalent to Hompg(M, 13(M ®¢ B)) = 0. By Lemma 1.5 and the assumption that
M is te-rigid, Homg(M, t(M ®¢ B)) = Hom¢(M, ¢ M) = 0. Next, we want to show
Homp(M ®¢ E, GenM) = 0. By restriction of scalars, any non-zero morphism from
M ®c¢ EtoGenM in mod B would give a non-zero morphism in mod C, contrary to our
assumption. Thus, Homg(M Q¢ E, GenM) = 0. We conclude Ext}g(M ,GenM) =0
and [5, 5.8] implies M is tp-rigid. O

The following determines precisely when M ®c B is Ext-projective in *(tzM).
Recall, we denote the C-module structure of tgM by (t3M)c.

PROPOSITION 3.2. Suppose M is tg-rigid. Then M ®@c B € P(*(tgM)) if and only if
Homc(M, (tpgM)c) = 0.

Proof. Assume M ®c B € P(*(t3M)). Then Homp(M ®¢ B, 13M) = 0. Using
Lemma 1.5, we have Homg(M ®¢ B, 1pM) = Homc(M, (t3M)¢) = 0. Next, assume
Hom¢(M, (tpM)c) = 0. Again, Lemma 1.5 gives Homp(M ®¢ B, tpM) = 0. Thus,
M ®¢ B € +(tpM) and we need to show M ®¢ B € P+(tpM). We have 13(M ®¢ B) €
Cogen(tzM) by [4, 1.2] and [3, VI, 1.11] gives M ®¢ B is Ext-projective in +(zpM). (]

Suppose U is the Bongartz te-complement of M. If M is tg-rigid, our main
result gives a necessary and sufficient condition for U ® ¢ B to be the Bongartz tg-
complement.

THEOREM 3.3. Suppose M is tg-rigid. Then U Q¢ B is the Bongartz tg-complement
if and only if Homc(U, (tgM)¢) = 0.

Proof. Assume U ®¢ B is the Bongartz tg-complement. Then Homp(U ®¢
B, 13M) =0 and Lemma 1.5 gives Homg(U Q¢ B, t3M) = Hom¢(U, (t3M)¢c) =
0. Next, assume Hom¢(U, (tpM)c) = 0. Again, Lemma 1.5 gives Hompg(U ®¢
B,t3M)=0. Thus, U®c B e *(tpM) and we need to show U ®c B € P+(tzM).
Using [1, 2.9], we need to show the following containments

Gen(U ®c B) € “(tpM) S *(z5(U ®c B)).

The first is clear so let X € *(zpM). We need to show X e *(z3(U ®c
B)). If X ¢ *(r3(U ®c B)), then Lemma 1.5 implies Homp(X, 13(U ®¢ B)) =
Hom¢(X¢, tcU) # 0. Since 1 U € Cogen(tc M), we would have Hom¢(X¢, ¢ M) #
0. Since we assumed X € *(rzpM) and t3(M ®c B) € Cogen(rzM) by [4, 1.2],
we must have Hompg(X, t3(M ®¢ B)) = 0. However, using Lemma 1.5, we see
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Homp(X, t3(M ®¢ B)) = Hom¢(X¢, teM) = 0, a contradiction. Thus, we must have
X € “(t3(U ®¢ B)) and conclude by proposition [1, 2.9] that U ®c B € P+(tgM).
Finally, to show U ®¢ B comprises all the indecomposable Ext-projective modules in
L(zgM) up to isomorphism not in addM, we apply the same reasoning used in the
conclusion of Theorem 2.2. ]

Our next result shows that (M ®¢ B) ® (U ®¢ B) and M & U are both tp-tilting
if and only if they are isomorphic to each other.

PROPOSITION 3.4. M & U and (M ®¢ B) ® (U ®¢ B) are both tg-tilting if and only
ifM®cE:0andU®cE:0.

Proof. Assume M & U and (M ®¢ B) ® (U ®¢ B) are both tp-tilting. Since
M ®p U is tp-tilting, we know ExtL(M @ U, Gen(M @ U)) =0 by [5, 5.8]. Since
(M ®c B)® (U ®c B) is tp-tilting, we know Hom¢(M Q¢ E) ® (U Q¢ E), tc(M &
U)) = 0 by Theorems 2.1 and 2.2. Thus, (M ®¢ E) ® (U ®¢ E) € Gen(M & U) by [1,
2.12]. However, we know Extp(M @ U, (M ®c E) ® (U ®c E)) # 0 by [6, 3.6]. This
contradicts the fact that Exty(M @ U, Gen(M @ U)) = O unless M ®¢ Eand U ®c¢ E
are equal to 0.

Assume M Q¢ E and U ®¢ E are equal to 0. [6, 3.6] implies (M ®¢ B) ® (U ®c¢
B)=Z (M & U). Also, Homc(M ®¢ E) & (U ®c¢ E), tc(M & U)) = 0 implies (M Q¢
B) ® (U ®¢ B) is tp-tilting by Theorems 2.1 and 2.2 and our statement follows. ]

If we don’t assume M is t¢-rigid (t¢-tilting), our last result shows M being tp-rigid
(rp-tilting) guarantees M being t¢-rigid (tc-tilting).

PROPOSITION 3.5. Suppose M is tp-rigid (tp-tilting ), then M is tc-rigid (tc-tilting ).
Proof. Since M is tp-rigid (tp-tilting), Homg(M, tgM) = 0. Since 1¢(M Q¢ B) is

a submodule of M by [4, 1.2], we must have Homg(M, 13(M ®¢ B)) = 0. Using
Lemma 1.5 and the fact M is also a C-module, we have

Homp(M, 13(M ®¢ B)) = Homc(M ®p B¢, tc M) = Homc(M, tc M).

Thus, we have Hom¢(M, ¢ M) = 0 and conclude M is t¢-rigid (tc-tilting). ]

4. Examples. In this section, we give two examples illustrating our results. We
will construct a cluster-tilted algebra from a tilted algebra. Such a construction is an
example of a split extension. Let 4 be the path algebra of the following quiver:

4

e

l<=—2<—3

Since A is a hereditary algebra, we may construct a tilted algebra. To do this, we
need an 4A-module which is tilting. Consider the Auslander—Reiten quiver of 4 which
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is given by

45

\/\/&J\

\/\45/\/\

33
29 922939339 —
1 2
Let T be the tilting 4-module

45 5

3 3 2
T=56@ ) 692691691.

1 1

The corresponding titled algebra C = End 4T is given by the bound quiver

| —2sn Lty Vo y 5 afy =0.

Then, the Auslander—Reiten quiver of C is given by

(L SRS I NS

VAR
SN

/\/\/\/\
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The corresponding cluster-tilted algebra B = C x ExtZ(DC, C) is given by the
bound quiver

1 2 3 4 5  aPy =Bys =yda=sap =0.

: 4
5 1
4 2
s \
12 7\
3 2 4
T 4 3 15 ‘1‘
5 4 2
NN A N N4
3 3 3 5 1 1 4 3 3
5944>4>4 3>2>2 15> 4 > 44 > ...
15 1 VAR 3 y 15 15
N NSNS
4 4 3 2 1 4
15 5
T 2
EXAMPLE 4.1. In mod C, consider M = 4 @ 3 d 3. M is a tc-rigid module with
5 4
! 3
Bongartz te-complement U = 2 @ 4 In this case, we have M ® c B = M that implies
3
M ®c E=0.Thus, M ® c B= M is tz-rigid and the induced module of U, U ® ¢ B =
1 3 3
2 @ 4,1s the Bongartz 7g-complement. Notice, wehavetcM = 4 ® 4, UQc E= 1,
3 1 5
and Hom¢(U Q¢ E, t¢M) = 0, in accordance with Theorem 2.2.
3
ExXAMPLE 4.2. In mod C, consider M = 4. M is projective with Bongartz
5
2
tc-complement U = 5 @ 5 @ 4 ® 2. We have M@ E =1 and it is clear to
3
5

see Homc(M ®f C, GenM) = 0. Thus, M is tg-rigid by proposition 3.1 with
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3
3M = ‘1‘ Since M ®c B= 4 , Proposition 3.2 says M ®c B € P(*(t3M)) because
15
Hom¢(M, (tpM)¢) = Homce(M,4® 1) = 0.
4 g 1
We have UQcB=5® 15® 4 @ 2. Here, not every summand of U ®c B
2 3
5
1 4 4
is a summand of the Bongartz tg-complement because Homg [ 2 & 15, ) #0.
3 2
1
Notice, (tgM)c = 4 ® 1 and Hom¢ | 26, 4 & 1 | # 0inaccordance with Theorem
3
2
3.3. However, Theorem 3.3 guarantees 5 @ i are summands of the Bongartz ;-
5
2
complement since Hom¢ | 5 & i 41| =0.
5
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