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An analytical model of icicle growth

KRZYSZTOF SZILDER AND EDWARD P. LOZOWSKI
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ABSTRACT. A model of icicle growth has been developed based on an analytical
solution of the differential forms of the conservation of energy and mass. The problem
has been formulated using dimensionless variables defined as the ratios of the various
heat fluxes which determine the icicle’s growth. The evolution of the dimensionless
icicle shape has been expressed as a function of the variation of the convective heat
transfer with icicle radius. The time interval needed for the icicle to reach its
maximum length and the variation of the icicle mass and drip rate are expressed in

dimensionless form.

NOMENCLATURE

slope of the icicle’s lateral surface, Equation (17)

lateral surface area (m®)

dimensionless number, Equation (7)

dimensionless number, Equation (11)

convective heat transfer coefficient (Wm 2K ™)

coefficient, Equation (2)

icicle length (m)

dimensionless icicle length, Equation (7)

Ly latent heat of freezing (Jkg ™)

m1 icicle mass (kg)

mr total delivered water mass (kg)

M dimensionless mass, Equations (14) and (15)

mp drip rate (kgs ')

mh, supply rate (kgs ')

Mp dimensionless drip rate, Equation (11)

r  icicle radius (m)

T  radius of liquid core = radius of pendant drop
(assumed constant) (m)

R dimensionless icicle radius, Equation (4)

T dimensionless time, Equation (4)

Q heat loss from the lateral surface of the icicle (W)

X

Be

Skl el

dimensionless horizontal distance (radius) from icicle
axis, Equation (19)
dimensionless downward distance from the icicle
root, Equation (20)

AT the difference between the surface and air
temperature (K)

6  thickness of dendritic cylinder at tip (assumed
constant) (m)

p icicle density (kgm *)

Subscripts
¢ refers to the critical moment when dripping stops
p  refers to the pendant drop

% refers to the liquid core
r  refers to the icicle root

https://doi.org/10.3189/1994A0G19-1-141-145 Published online by Cambridge University Press

INTRODUCTION

Icicles occur most commonly when water flows from an
overhang and the heat loss from the water is large enough
for freezing to occur. The existence of icicles may be
undesirable because they represent an additional load on
a structure. They can also be dangerous when they fall.
The modelling of icicle formation is challenging since the
water flow is three-dimensional, and the heat transfer
determines not only the amount of freezing but also the
shape of the forming icicles.

Numerical models of fresh water icicles (Makkonen,
1988) and brine icicles (Chung and Lozowski, 1990) have
been developed. These models are comparatively com-
plex, the governing equations were solved numerically,
and consequently the results lack generality. Recently,
Szilder and Lozowski (1993) developed a stochastic
computer model of icicle formation, based on a con-
ceptual model in which the water drops supplied to the
icicle root move randomly downwards along the icicle’s
surface. During the downward motion of the drops, some
freeze along the way and others drip from the icicle’s tip.
This model predicts the details of the icicle’s shape
including the random occurrence of ribs on the icicle’s
surface.

In this paper, an analytical approach to modelling
icicle formation is taken which provides additional insight
into the growth process. Simple differential forms of the
heat and mass balance equations are solved analytically,
and the results are presented in a general, time-
dependent, dimensionless form.

MODEL DESCRIPTION AND RESULTS

In the model there are two stages of icicle growth if the
liquid supply rate is constant with time (Makkonen,
1988). In the first stage, some of the supplied water freezes
on the icicle’s lateral surface and at the tip. Any unfrozen
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water drips from the tip. When the icicle reaches a critical
length, all the supplied water freezes on the icicle’s lateral
surface, and there is no water available at the tip either to
freeze or to drip. After this critical point, in the second
stage, the icicle’s length remains constant and the icicle
grows only radially.

Based on observations (e.g. Maeno and Takahashi,
1984) it is assumed that the icicle elongates as a hollow
conical tube of ice with unfrozen water trapped in a
cylindrical core. The radius of the liquid core corresponds
to the radius of the pendant drop and is 2.5mm. It is
observed that the water eventually freezes in the liquid
core, possibly through heat conduction towards the
icicle’s root (Makkonen, 1988). This aspect of the
freezing process is not considered in the present paper.

In the model the total heat loss from the icicle’s surface
to the cold air is expressed as the product of the heat
transfer coefficient (which includes heat loss by convec-
tion and evaporation) and the temperature difference
between the icicle’s surface and the air. The heat lost from
the lateral surface of a horizontal slice of thickness dl and

radius 7 is proportional to the amount of ice which forms.
Thus:

2rrdihATdt = pLpdld(nr?) . (1)

The relationship between the Nusselt number and the
Reynolds number gives the variation of the convective
heat-transfer coeflicient with icicle radius:

TU

h= ho(?)lfk. )

Nu = cRe" =

The coefficient k increases with increasing Reynolds
number from 0.33 (0.4 < Re < 4) 10 0.80 (4 x 10" < Re
< 4 x 10°) (Incropera and DeWitt, 1985). If k is unity,
the convective heat transfer coefficient is independent of
radius. Integration of Equation (1), using Equation (2),
leads to an expression for the dimensionless icicle radius as
a function of the dimensionless time:

R=[(2- k)T + 17 3)
where:
r hi AT
R=T—o, T:Lpprut' (4)

The icicle’s radial growth rate decreases with time for any
realistic value of the coefficient k£ (0 < k < 1). Equation
(3) may be applied for any horizontal section of the icicle,
provided the time is measured from the moment when the
icicle tip reaches that section.

The length growth of the icicle is calculated assuming
that heat is lost from a hemispherical pendant drop of
radius r,. The details of the dripping process are thus
ignored in favour of a time-independent average
geometry. This heat transfer leads to the downward
growth of a hollow dendritic cylinder of thickness § and
radius 72

2nro> hp ATpdt = pLp27ry6dl . (5)

For simplicity, the influence of water supercooling on the
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freezing process has been neglected. There is also some
question as to the magnitude of the supercooling and how
it arises. The dimensionless icicle length as a function of
dimensionless time is obtained by integrating Equation

(B}

L =BT (6)
where:
l ro hp Alp
L=—; B=2——, T
B & hNT (7)
»
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Fig. 1. Dimensionless profiles given by Equations (3) and
(6), of two icicles for a coefficient k of 0.33 and 1.0.
Shapes are shown at three dimensionless time inlervals
T = 1,2,3. The dimensionless number B 1s 35.

Using Equations (3) and (6), the changing profiles of an
icicle are shown in Figure 1 for two wvalues of the
coefficient k. For simplicity, we have assumed in drawing
the figures that the heat flux from the icicle tip is equal to
the lateral heat flux from the icicle at radius 7, (i.e.
hnATh = hoAT). In addition, the thickness of the
dendrite wall has been taken to be 75um (Makkonen,
1988). With these values and a liquid core radius of
2.5 mm, the value of B is 33. As a result of the decreasing
heat loss from the growing icicle when k < 1, the radial
rate of growth decreases with time. However, the icicle
shape, even for low values of the coeflicient k (e.g.
k= 0.33), does not deviate substantially from simple
conical geometry. Nevertheless, the ratio of icicle length
to icicle radius at the root increases with time if the
convective heat transfer coefficient is a function of radius.
The rate of change of the icicle’s mass is the difference
between the supply rate and the drip rate. It is also the
ratio of the heat loss from the entire icicle surface to the

latent heat of freezing:
dml .

F—m(,—rrm:E. (8)

We assume here that the icicle loses heat only from its
lateral surface. Integration over this area, Equations (3)
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and (6), leads to the following expression for the heat loss:
2
Q = mhoATr,B(((2 — K)T +1)7F - 1) . ()

Using Equations (8) and (9), the dimensionless drip rate
may be obtained as a function of dimensionless time:

. 2
Wy =T = Bc(((z — k)T +1)2F - 1) (10)
where:
s mp The ATr,2
— B el 11
Mp e C - (11)

The drip rate decreases with time because more of the
constant water supply freezes on the increasing lateral
surface of the icicle. For small values of the coefficient k,
the rate of freezing decreases rapidly with radius, and
consequently the drip rate decreases slowly with time
(Fig. 2). If the magnitude of the heat flux increases or the
supply rate decreases, the dimensionless product of B and
C increases and the dimensionless drip rate decreases
faster with time. Since the heat flux expression is also
included in the definition of the dimensionless time,
Equation (4), even for a constant dimensionless time, an
increase of the heat flux leads to a decrease in the actual
time to achieve a certain drip rate,
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Fig. 2. Dimensionless drip rate as a function of
dimensionless time, Equalion (10), for two values of the
product BC, 0.005 and 0.010, and two values of the
coefficient k, 0.33 and 1.0.

When the drip rate reaches zero, the icicle ceases to
grow in length because there is no more water available at
the icicle tip to freeze. The critical dimensionless time at
which dripping just stops may be calculated from
Equation (10), by setting Mp = 0:

(12)

If the supply rate increases or the heat flux decreases, the
time required to reach the critical state increases (Fig. 3).
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Fig. 3. Dimensionless critical time as a function of the
product BC, Equation (12), for three values of the
coefficient k.

If the heat transfer decreases slowly with increasing
radius, the critical time is shorter. However, if BC is
large, the critical time is independent of k, and is simply
0.5/BC. At this critical moment, the icicle radius at the
root has a certain critical value and the icicle length
reaches a maximum:

rel—

1
RRC:(1+B—C) ; Lc=B

Interestingly, the critical radius of the icicle root is
independent of &, that is, it is independent of the way the
heat flux changes with radius.

The icicle mass as a function of time may also be
calculated. Integrating Equation (8) and using Equation
(9), the temporal variation of the dimensionless icicle
mass during the first stage when dripping occurs is given
by:

8B ik 3
=4 - = P
Mi=f— ((@-HT+1)7F-1) -
where :
my
M= —. 14
' Tr? (14)

It can readily be seen that the dimensionless icicle
mass is simply the number of drops of radius r, forming
the icicle. The rate of icicle mass growth increases with
time and is greater for larger values of the coefficient k
(Fig. 4). The mass growth rate reaches a maximum when
dripping stops and it is equal to the supply rate.

The cumulative mass of water delivered to the icicle
root is a linear function of time since the supply rate is
assumed to be constant. Hence:

3 mr

My = ET where My = (15)

—
FroTed

Since the definition of dimensionless time involves the
external heat flux, the dimensionless number C' must also
appear in Equation (15) in order to eliminate any
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Fig. 4. Dimensionless icicle mass as a function of
dimensionless time. The icicle mass My, Equation (14),
is depicted by the solid lines for two values of k, 0.33 and
1.0. The critical state at which dripping stops is
represented by the dots. The cumulative delivered waler
mass My, Equation (15), is represented by dashed line.
The dimenstonless number B is 53 and € is 0.001.

influence of the heat flux on the delivered water mass.
The variation of the dimensionless total delivered mass,
which may be interpreted as the number of drops
delivered to the icicle root, is shown for C' equal to
0.001 in Figure 4.

The ratio of the icicle mass to the total delivered water
mass at the critical time is:

m(T,) _2-k BC

mr(T.) 44—k 5 (1+%)2_k‘

R PR Ry i I
[(1+BC 1] BC  (16)

Thus the icicle mass represents 33.3 to 50% of the total
delivered water mass when dripping stops (Fig. 5). A
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Fig. 5. The ratio of icicle mass to cumulative delivered
liquid mass at the critical time, Equation (16), as a
Junction of the dimensionless product BC, for three values
of the coefficient k.
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more efficient heat loss from the icicle surface or a smaller
supply rate leads to an increase of this relative critical
icicle mass. In addition, if the convective heat flux
decreases rapidly with radius, the relative icicle mass also
increases. This occurs because smaller values of the
coellicient k mean more time is needed to reach the
critical root radius, which is independent of k. During this
greater time, the icicle length and icicle mass increase. We
can see therefore that icicles are quite efficient in
converting liquid water to ice, provided that they grow
until they stop dripping.

The evolution of the icicle’s shape after dripping
stops and all the incoming water freezes on the icicle
surface has also been investigated. To simplify the
ensuing calcul-ations, it is assumed that the vertical
cross-section of the growing portion of the lateral icicle
surface can be approximated by a straight line, for any
value of the coefficient k. Figure 1 shows that this
assumption is reasonable even for a k of 0.33. It is further
assumed that the heat flux is constant, and hence that
the extent of the area on which the water freezes is
independent of time. Thus the water freezes in uniform
layers, and the lateral surface of the growing icicle
remains parallel to the surface at the critical time. In the
other words, the slope of an icicle surface close to the root
remains constant.

At the critical time, water freezes on the entire lateral
icicle surface. This area can be approximated as the
difference between the lateral surface of a cone of radius
rre and height arge (@ is the slope of the icicle’s lateral
surface) and the area of a cone of radius r, and length
ary:

A= m’ncg(l -+ az)% —mro2(1+ az)%
L (17)

where a = m

This constant arca Ac is expressed as a function of the
radius of the icicle’s root rg and the distance z from the
icicle’s axis to the freezing [ront, assuming a constant
slope of the icicle’s surface. The [reezing front is the
location along the icicle wall beyond which there is no
flow of liquid water. Thus Ag is given by:

Ap = mrr2(1 + a?)t — mz?(1 + a?)?. (18)

Comparing Equations (17) and (18), the dimensionless
distance from the icicle axis to its retreating (ascending)
freezing front is given by:

Tty

T‘(l

X = (1+ Rr®— Rrc®)* where

It may easily be shown that the dimensionless vertical
coordinate of the freezing front is given by:

=

¥ = a[Rn — (14 Ry? — RRU2) ] where Y :#

o

(20)

Equations (19) and (20) yield the variation of the
dimensionless location of the freezing front with dimen-
sionless icicle root radius, which in turn is a function of
time, Equation (3).
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Elimination of the icicle root radius leads to a time-
independent function describing the final shape of the
icicle:
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Fig. 6. The dimensionless profiles of two icicles after
dripping stops. The icicle shapes are shown at _five time
intervals Tes, ..., 5Tc, Equations (19) and (20 ), and the
Jinal contours are also displayed, Equation (21). The
dimensionless number B is 53, C is 0.002, and k is 0.33
and 1.0.

Figure 6 shows the icicle shape when dripping stops and
therealter [or two values of the coefficient k and constant
values of B = 33 and C = 0.002. Since the critical
dimensionless root radius does not depend on the value of
k. Equation (13), but a longer time interval is needed to
reach this critical size for smaller &, the critical icicle
length is larger for & = 0.33. The critical time is 5.513
and 3.012 for k 0f 0.33 and 1, respectively. The shapes for
Te,...,5T¢ are plotted for the two cases. Note that the
scale is not the same for X and Y.

Some qualitative comparisons of the present model
results with experiments and other models have been
accomplished. Experiments show (Maeno and Taka-
hashi, 1984) that with a constant supply rate, the icicle-
length growth rate is almost constant and that the radial
growth rate has a tendency to decrease with time. In
addition, the numerical model of Makkonen (1988) shows
that the rate of icicle mass growth increases gradually
with time and reaches a maximum when dripping stops.
A similar time-dependent behaviour is predicted by the
present analytical model. The experiments also show
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(Maeno and Takahashi, 1984) that changes of the supply
rate may influence the icicle length, but that the diameter
is independent of the supply rate. The present model
predicts insensitivity of the icicle diameter to the supply
rate; however, as a result of neglecting supercooling, the
length growth rate in the model is also insensitive to the
supply rate. Both experimental results and our model
show that an increase in the heat transfer from the icicle
leads to an increase of both the icicle diameter and length.

CONCLUSIONS

A simple analytical model has been proposed which
successfully emulates some of the main features of the
icicle growth process. The model predicts the time-
dependent evolution of the dimensionless icicle shape,
size, drip rate and mass. It provides some general insight
which would be hard to obtain from experiments or
numerical models. The analytical solution shows, for
example, that at the moment when dripping stops, 33 to
50% of the water delivered to the icicle actually forms the
icicle, the rest of the water having dripped from the tip. In
spite of its simplicity, the model predicts realistic icicle
shapes, and the variation of some icicle parameters agrees
qualitatively with experimental results and with other
icicle models.
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