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The Fourier Algebra for Locally Compact
Groupoids

Alan L. T. Paterson

Abstract. We introduce and investigate using Hilbert modules the properties of the Fourier algebra

A(G) for a locally compact groupoid G. We establish a duality theorem for such groupoids in terms

of multiplicative module maps. This includes as a special case the classical duality theorem for locally

compact groups proved by P. Eymard.

1 Introduction

For an abelian locally compact group H, the Fourier algebra A(H) and the Fourier-
Stieltjes algebra B(G) are just L1(Ĥ) and M(Ĥ) respectively, and are taken by the
Fourier transform into certain subalgebras of C(H). The Fourier algebra A(G) and
the Fourier-Stieltjes algebra B(G) for non-abelian locally compact groups G were in-

troduced and studied in the paper of Eymard [5]. These are commutative Banach
algebras and are also subalgebras of C(G). Eymard showed that the character space
of A(G) can be identified with G in the natural way. Walter [28] showed that both
A(G) and B(G) as Banach algebras determine the group G. Since [5, 28], the study of

A(G) has developed rapidly.

A corresponding theory of A(G) and B(G) for a locally compact groupoid G has
been developed only recently and has gone in two related directions. The first of
these, due to J. Renault, develops the theory for a measured groupoid G. So a quasi-

invariant measure on the unit space is presupposed. This fits in with the locally com-
pact group case, the measure on the singleton unit space there being, of course, just
the point mass. This work has been further developed by Jean-Michel Vallin [26, 27].
Using Hopf-von Neumann bimodule structures, he generalizes Leptin’s theorem re-

lating the amenability of the measured groupoid G to the existence of a bounded
approximate identity in the Fourier algebra.

The other approach, due to Ramsay and Walter [22] starts with a locally compact
groupoid without a choice of a quasi-invariant measure. They show that there exists

a natural candidate for the Fourier-Stieltjes algebra on G, viz. the span B(G) of the
bounded Borel positive definite functions on G. This is then realized as a Banach
algebra of completely bounded bimodule maps using the universal representation
of G. Oty [14] investigated the algebra of continuous functions in B(G), and, by

analogy with the group case, suggested a natural version of A(G).
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In this paper, we present a continuous version of A(G) parallel to that for the
group case. As the theory given is a continuous theory, we concentrate on that part

of the representation theory of G determined by continuous G-Hilbert bundles over
G0 rather than that determined by measurable Hilbert bundles for a given quasi-
invariant measure. The canonical example of a continuous G-Hilbert bundle is the
Hilbert bundle L2(G) of the L2(Gu)’s with natural left regular G-action, and using

Cc(G) in the obvious way as a total space of continuous sections for the bundle.
Accordingly, we can formulate an approach to the Fourier-Stieltjes and Fourier al-

gebras for G as follows. Group representations on a Hilbert space get replaced in the
groupoid case by continuous G-Hilbert modules, and the left regular representation

in the group case gets replaced in the groupoid case by L2(G). For a general continu-
ous G-Hilbert bundle, we consider the space ∆b of continuous bounded sections of
the bundle. This Banach space is a Hilbert C0(G0)-module. Of particular importance
for this paper is the space E2 of continuous bounded sections of L2(G) that vanish at

infinity. Again, E2 is a Hilbert C0(G0)-module.
The Fourier-Stieltjes algebra B(G) is just the space of “coefficients” (ξ, η) (x →

(Lxξ(s(x)), η(r(x)))) arising from a continuous G-Hilbert module with ξ, η ∈ ∆b.
A simple, but important, fact, is that these coefficients do not depend on any quasi-

invariant measure on G0. Of course, representation theory comes in when we put a
quasi-invariant measure on G0 for some G-Hilbert bundle.

In the first approach to norming B(G), we follow the approach of Renault [25] to
show that B(G) is a Banach algebra, the norm ‖φ‖ of φ ∈ B(G) being given by the inf

of ‖ξ‖‖η‖ over all possible ways of representing φ = (ξ, η).
We briefly consider another norm on B(G) inspired by Ramsay and Walters [22].

In their approach, the norm on B(G) is defined in terms of the completely bounded
multiplier norm on the C∗-algebra M∗(G). Here, M∗(G) is the completion of the

image under the universal representation of the convolution algebra of compactly
supported, bounded Borel functions on G. Each φ ∈ B(G) acts as a multiplier Tφ on
M∗(G) and this is a completely bounded operator on M∗(G). Define ‖φ‖cb = ‖Tφ‖cb

.
They show that B(G) is a Banach algebra under ‖ · ‖cb.

In our continuous situation, we follow this approach with M∗(G) replaced by
C∗(G), and we show that B(G) is a normed algebra under the resulting cb-norm
‖ · ‖cb. Further, ‖ · ‖cb ≤ ‖ · ‖ on B(G). In general, (B(G), ‖ · ‖cb) is not complete
(so that ‖ · ‖ is not equivalent to ‖ · ‖cb). However, by [29, 16], the two norms on

B(G) are the same for locally compact groups and for the trivial groupoids Gn =

{1, 2, . . . , n} × {1, 2, . . . , n}. The two norms always coincide on P(G).
The Fourier algebra A(G) is defined to be the closure in B(G) of the algebra gen-

erated by the coefficients of E2 (pointwise operations). An important subspace A(G)

of A(G) is also used in the paper. (The two spaces are the same in the group case.)
We need A(G) for duality reasons as it relates naturally to V N(G) (below).

In the case of the Hilbert bundle L2(G), Cc(G) has natural right and left convo-
lution actions on the Hilbert module E2. The right convolution operators are ad-

jointable and generate the reduced C∗-algebra C∗

red(G) of G. The strong operator
closure of the algebra of left convolution operators plays an important role in the
theory and is denoted by V N(G). The operators in V N(G) are rarely adjointable and
V N(G) has to be treated in Banach algebra terms. A useful fact is that V N(G) has a
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bounded left approximate identity.
With Eymard’s theorem in mind, and noting that A(G) is a commutative Banach

algebra and that G is contained in the natural way in the set of characters of A(G), we
would naturally ask if the character space of A(G) is equal to G. Eymard’s theorem
says that this is the case if G is a group. I do not know if this is true for groupoids.

We obtain instead another duality result by appropriately adapting Eymard’s

group argument to the groupoid case. This duality result involves sections and
C0(G0)-module maps rather than scalar homomorphisms. For motivation, consider
the case where G is a group bundle

⋃
u∈G0 Gu. Each character on A(Gu) is deter-

mined by a point xu of Gu and trying to involve the whole of the groupoid G rather

than just one Gu, it is reasonable to think of continuously varying the xu’s to get a
section u → xu of G. Such a section determines a multiplicative continuous module
map γ : A(G) → C0(G0).

For a general groupoid G, it is then natural to consider the group Γ of bisections of

G. A bisection is a subset a of G which determines homeomorphic sections u → au,
u → au for the r− and s− maps. The group Γ will be our “dual” for G. The main
theorem of the paper is that for a large class of groupoids G, Γ can be identified
with a certain set of multiplicative C0(G0)-module maps on A(G). Each of the maps

determines a pair of left and right module multiplicative maps linked up by a home-
omorphism of G0. We also require a condition on the restriction of these maps to
A(G) which enables us to use the operators of V N(G) to prove the identification. We
also have to restrict to groupoids for which there are “many” bisections and which

are locally a product. (There are many examples of such groupoids.)
A number of natural open questions are raised throughout the paper, and some

of these are listed at the end. I am grateful to Karla Oty, Arlan Ramsay and Marty
Walter for helpful discussions.

2 Preliminaries

All locally compact spaces are assumed Hausdorff and second countable, and all

Hilbert spaces separable.
Let X be a locally compact Hausdorff space. Then C(X) is the space of bounded

continuous complex-valued functions on X. The subalgebras of functions that vanish
at infinity and that have compact support are respectively denoted by C0(X) and

Cc(X). For f ∈ C(X), S( f ) denotes the support of f .
If E is a Banach space, then B(E) is the Banach algebra of bounded linear operators

on E. If A is a C∗-algebra and E, F are Hilbert A-modules, then L(E, F),K(E, F) are
the spaces of adjointable and compact maps from E to F. We write L(E, E) = L(E).

Of course L(E) is a C∗-algebra. A good account of Hilbert C∗-modules is the book
by Lance [11].

Throughout the paper, G will stand for a locally compact Hausdorff groupoid.
(This class of groupoids is treated in detail in the books [23, 12, 18] to which the

reader is referred for more information.) The unit space of G is denoted by G0, and
the range and source maps by r, s. For u ∈ G0, we define Gu

= r−1({u}) and Gu =

s−1({u}). Note that a product xy in G makes sense if and only if s(x) = r(y). We
define G2

= G ∗ G = {(x, y) ∈ G × G : r(y) = s(x)}. The product map (x, y) → xy
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is defined on G2. If A ⊂ G, then we write Au
= A ∩ Gu,Au = A ∩ Gu. An r-section

of G is a subset A of G such that for all u ∈ G0, the set Au is a singleton {au}, and the

map u → au is a homeomorphism from G0 onto A. An s-section is defined similarly,
and a bisection is a subset A of G that is both an r-section and an s-section.

As usual, a left Haar system u → λu is presupposed on the fibers Gu, and λu =

(λu)−1 (a measure on Gu). For the sake of brevity, we write D = C0(G0). Useful
norms on Cc(G) are the I-norm’s, ‖ · ‖I,r, ‖ · ‖I,s and ‖ · ‖I . Here, for f ∈ Cc(G),

‖ f ‖I,r = sup
u∈G0

∫

Gu

| f (t)| dλu(t),

‖ f ‖I,d = sup
u∈G0

∫

Gu

| f (t)| dλu(t)

and

‖ f ‖I = max{‖ f ‖I,r, ‖ f ‖I,d}.

Note that (Cc(G), ‖ · ‖I,r) is a normed algebra, whereas (Cc(G), ‖ · ‖I) is a normed
∗-algebra (isometric involution). The involution on Cc(G) is the map f → f ∗ where
f ∗(x) = f (x−1). We also define f ∨ ∈ Cc(G) by f ∨(x) = f (x−1).

We next recall some details concerning the disintegration of representations of
Cc(G). The theorem is due to J. Renault [24]. A detailed account of the theorem is

given in the book by Paul Muhly [12]. Let Φ be a representation of Cc(G) on a Hilbert
space H which is continuous in the inductive limit topology. Then Φ disintegrates as
follows.

There is a probability measure µ on G0 which is quasi-invariant (in the sense de-

fined below). Associated with µ is a positive regular Borel measure ν on G defined
by ν =

∫
λu dµ(u). (When we want to make the dependence of ν on µ explicit,

we will use (as in [22]) λµ in place of ν.) The measure ν−1 is the image under ν
by inversion: precisely, ν−1(E) = ν(E−1). There is also a measure ν2 on G2 given

by ν2
=

∫∫
λu × λu dµ(u). The quasi-invariance of µ just means that ν is equiv-

alent to ν−1. The modular function D is defined as the Radon-Nikodym derivative
dν/dν−1. The function D can be taken to be Borel [6, 21, 12], and satisfies the prop-
erties D(x−1) = D(x)−1 ν-almost everywhere, and D(xy) = D(x)D(y) ν2-almost

everywhere. Let ν0 be the measure on G given by dν0 = D−1/2dν.

Next, there exists a µ-measurable Hilbert bundle K over G0 and a G-representation

L on K. So each L(x) (x ∈ G) is a linear isometry from Ks(x) onto Kr(x), which
is multiplicative ν2-almost everywhere and inverse preserving ν-almost everywhere.
Further, for every pair of measurable sections ξ, η of K, it is required that the function

x →
(

L(x)ξ(s(x)), η(r(x))
)

is µ-measurable. The representation Φ of Cc(G) is then
given by:

(2.1) 〈Φ(F)ξ, η〉 =

∫
F(x)

〈
L(x)ξ(s(x)), η(r(x))

〉
dν0(x).

We will refer to the triple (µ,K, L) as a representation of G.
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Of particular importance is the regular representation πu for u ∈ G0. Here, for
F ∈ Cc(G), πu : Cc(G) → B(L2(Gu)) is the representation given by:

(2.2) πu(F)(ξ)(x) =

∫
F(t)ξ(t−1x) dλr(x)(t) = F ∗ ξ(x).

(The quasi-invariant measure and measurable bundle associated with πu is calculated

in [12, Example 3.26].) We define a C∗-norm ‖ · ‖red on Cc(G) by setting ‖F‖red =

supu∈G0 ‖πu(F)‖. The reduced C∗-algebra C∗

red(G) is defined to be the completion of
(Cc(G), ‖ · ‖red).

We conclude this section with the following simple proposition. This is surely
well-known—a smooth version for pseudodifferential operators is given in [20]—
but for the convenience of the reader, we give a proof.

Proposition 1 Let X be a locally compact Hausdorff space and R : C0(X) → C0(X) be

a bounded linear map such that for all f ∈ Cc(X), we have S(R f ) ⊂ S( f ). Then there

exists a bounded continuous function k : X → C such that R f = k f for all f ∈ C0(X).

Proof Let f ∈ Cc(X), x0 ∈ X and φ ∈ Cc(X) be such that φ = 1 on a neighborhood
of x0. Let g = f − f (x0)φ. Then g(x0) = 0. There exists a sequence {gn} in Cc(X)
such that gn → g and gn = 0 on a neighborhood Un of x0. Since S(Rgn) ⊂ S(gn),

we have S(Rgn) ⊂ X \ Un. So Rgn(x0) = 0. Since Rgn → Rg, we have Rg(x0) = 0.
So R f (x0) = R(g)(x0) + f (x0)Rφ(x0) = ((Rφ) f )(x0). Now if ψ ∈ Cc(X) is such
that ψ = 1 on a neighborhood of x0, then φ − ψ vanishes on a neighborhood of
x0 and R(φ − ψ)(x0) = 0. So we obtain a well-defined function k on X by setting

k(x0) = Rφ(x0). Clearly, k is continuous since the same φ applies on a neighborhood
of x0, and ‖k‖ ≤ ‖R‖ (since we can arrange that ‖φ‖ = 1). Lastly, R f = k f for
f ∈ Cc(X) and by continuity, this is valid for f ∈ C0(X).

3 A Fourier-Stieltjes Algebra B(G)

In this section, we discuss the basic facts about the (continuous) Fourier-Stieltjes al-

gebra B(G) for a locally compact groupoid. The approach and proofs are inspired
by Jean Renault [25] for measured groupoids and by Arlan Ramsay and Marty Wal-
ters [22] for the Borel case. In order to fit in with the customary practice of the
theory of Hilbert C∗-modules, we will assume that the Hilbert modules (and spaces)

are conjugate linear in the first variable.

Let X be a locally compact Hausdorff space and H = {Hu} (u ∈ X) be a continuous

Hilbert bundle over X. In the notation of Dixmier [3, Ch. 10], H is just a continuous
field of Hilbert spaces over X. The norm on each Hu is denoted by ‖ · ‖

u
. Let ∆b

be the space of continuous bounded sections of H. Then ∆b is a Banach space with
norm given by ‖ξ‖ = supu∈X ‖ξ(u)‖u

. The space ∆0 of sections ξ ∈ ∆b of H that

vanish at infinity, i.e., such that ‖ξ‖
u
→ 0 as u → ∞ in X, is a closed subspace of ∆b.

The space ∆c of elements of ∆0 with compact support on X is a dense subspace of
∆0. We will write ∆b(H),∆0(H) and ∆c(H) instead of ∆b,∆0 and ∆c when we wish
to make explicit H. By [3, Proposition 10.1.9], all of the spaces ∆b,∆0,∆c are C0(X)
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modules under the action (a, ξ) → aξ, where aξ(u) = a(u)ξ(u). Note that if u ∈ G0

then the linear space {ξ(u) : ξ ∈ ∆c} is dense in Hu.

Now let G be a locally compact groupoid. A Hilbert bundle H over G0 is called a
G-Hilbert bundle if for each x ∈ G, there is given a linear isometry Lx from Hs(x) onto

Hr(x) such that for each ξ, η ∈ ∆b, the map x → (Lxξ(s(x)), η(r(x))) is continuous,
and the map x → Lx is a groupoid homomorphism from G into the isomorphism
groupoid of the fibered set ∪u∈G0 Hu [12, Ch. 1]. As in [25], we will denote the func-
tion x → (Lxξ(s(x)), η(r(x))) on G by (ξ, η), and will call (ξ, η) a coefficient of the

Hilbert bundle H.

Proposition 2 ‖(ξ, η)‖
∞

≤ ‖ξ‖‖η‖.

Proof |(ξ, η)(x)| = |(Lxξ(s(x)), η(r(x)))| ≤ ‖ξ(s(x))‖s(x)‖η(r(x))‖r(x) ≤ ‖ξ‖‖η‖.

A function φ ∈ C(G) is said [22] to be positive definite if for all u ∈ G0 and all
f ∈ Cc(G) we have

(3.1)

∫∫
φ(y−1x) f (y) f (x) dλu(x) dλu(y) ≥ 0.

The set of all positive definite functions in C(G) is denoted [14] by P(G). It is easy to
check that if ξ ∈ ∆b(H), then (ξ, ξ) ∈ P(G). The converse is also true.

Theorem 1 Let φ ∈ C(G). Then φ is positive definite if and only if φ is a coefficient

of the form (ξ, ξ) for some G-Hilbert bundle.

Proof The Borel version of this theorem is proved in [22, Theorem 3.5] and the

proof in the continuous case is easier. The relevant G-Hilbert bundle H is that deter-
mined by the semi-inner product spaces L2(Gu) where

( f | g)u =

∫∫
φ(y−1x)g(y) f (x) dλu(x) dλu(y).

This gives a continuous Hilbert bundle (since the λu’s vary “continuously”). The
continuity of the section ξ is given in [22, Theorem 3.5].

Proposition 3 A function φ ∈ C(G) is positive definite if and only if for any n, any

u ∈ G0, any x1, . . . , xn ∈ Gu and any α1, . . . , αn ∈ C, we have

(3.2)
∑

i, j

αiα jφ(x−1
i x j) ≥ 0.

Proof If φ ∈ P(G), then direct checking (using Theorem 1) shows that φ satisfies
(3.2). Conversely, approximating f λu weak∗ by measures of the form (

∑
i αiδxi

)
(r(xi) = u) gives (3.1).
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Let H,K be G-Hilbert bundles with groupoid actions x → Lx, x → L ′

x respectively.
Clearly, the direct sums and tensor products of G-Hilbert bundles are themselves

G-Hilbert bundles in the natural way. For example, the fiber Hilbert spaces of H ⊗ K

are Hu ⊗ Ku, and the continuous bundle structure is determined by the linear span
of sections of the form ξ ⊗ η where ξ ∈ ∆b(H), η ∈ ∆b(K). The groupoid action is
given by x → Lx ⊗ L ′

x.

Every fixed Hilbert space H gives rise to a trivial G-Hilbert bundle as follows.

Define Hu
= H for all u ∈ G0 and take ∆b = C(G0,H). The G-action on H = G0×H

is given by Lx(s(x), z) = (r(x), z).

The set of functions (ξ, η) with ξ, η ∈ ∆b(H) for some G-Hilbert bundle H is
denoted by B(G) and is called the Fourier-Stieltjes algebra of G. (Our B(G) is the

same as the B1(G) of [14].) From the existence of direct sums and tensor products of
G-Hilbert bundles, it follows that B(G) is an algebra under pointwise operations. By
Theorem 1, P(G) ⊂ B(G). Using the polarization identity, every element of B(G) is a
linear combination of elements of P(G).

The norm ‖ · ‖ of φ ∈ B(G) is defined by

‖φ‖ = inf ‖ξ‖‖η‖,

the inf being taken over all representations φ = (ξ, η).

Proposition 4 If φ ∈ B(G), then ‖φ‖
∞

≤ ‖φ‖. If φ ∈ P(G), then ‖φ‖ =

∥∥∥φ|G0

∥∥∥
∞

.

Proof The first part follows from Proposition 2. For the second, write φ = (ξ, ξ).
For u ∈ G0, 0 ≤ φ(u) = ‖ξ(u)‖2

, and so

‖ξ‖2
=

∥∥∥φ|G0

∥∥∥
∞

≤ ‖φ‖ ≤ ‖ξ‖2.

The proof that B(G) is a Banach algebra relies, as in the corresponding results of
[25, 22], on a result of [25] ennabling one to estimate B(G) norms by relating φ ∈
B(G) to an element F ∈ P(G× I2) where I2 is the trival groupoid {1, 2}×{1, 2}. This
can be regarded as a groupoid version of Paulsen’s “off-diagonalization technique”
[16, Theorem 7.3], [4, Theorem 5.3.2]. There seems to be a slight gap in the proof of
this result and so we give a complete proof of the result for our situation.

The elements of G × I2 are of the form (x, i, j) with x ∈ G, i, j ∈ {1, 2}. We

identify (G × I2)0 with G0 × {1, 2}. A function F : G × I2 → C will be identified in
the natural way with the 2 × 2 matrix-valued function

[
F(x11) F(x12)
F(x21) F(x22)

]

on G.
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Proposition 5 φ ∈ B(G) if and only if there exist F ∈ P(G × I2) of the form

(3.3)

[
ρ(x) φ(x)
φ∗(x) τ (x)

]

with ρ, τ ∈ P(G).

Proof It is proved in [25, Proposition 1.3] that given φ ∈ B(G), there exists an F

of the required form. Conversely, as in [25, Proposition 1.3], given such an F, there
exists a Hilbert (G × I2)-bundle H, with G × I2-action xij → L(xij), and a section
ζ = (ζ1, ζ2) of H such that F = (ζ, ζ). Let Hi be the restriction of H to G0 ×{i}. The
Hi are Hilbert G-bundles in the obvious way. The direct sum H ′ of the Hi ’s is then a

Hilbert G-bundle. For each x ∈ G, define L ′(x) : H ′

s(x) → H ′

r(x) by

L ′(x) = 1/2

[
L(x11) L(x12)
L(x21) L(x22)

]
.

It is true that L ′ is continuous and L ′(xy) = L ′(x)L ′(y), L ′(x)∗ = L ′(x−1). How-
ever, L ′ is not usually invertible. (For example, if G has one point {e}, H = C

2 with

the obvious I2-action, then L ′(e) is the (singular) scalar two-by-two matrix whose
entries are all 1.) To deal with this, we “cut down” H ′ as follows. For each u ∈ G0, let
Pu be the projection L ′(u) on H ′

u and Ku = Pu(H ′

u). Then K = {Ku} is a Hilbert bun-
dle in a natural way. Indeed, let Y be the set of sections of H ′ of the form ξ = ξ1 ⊕ ξ2

where ξi is a continuous section of Hi . Then let X be the vector space of sections of
K of the form Pξ : u → Puξ(u) where ξ ∈ Y . Then X satisfies (ii) and (iii) of [3,
10.1.2] using the fact that the functions u → (Puξ(u), η(u)) are continuous. So ([3,
10.2.3]) K is a Hilbert bundle. For x ∈ G, let M(x) = L ′(x)Ps(x). It is left to the reader

to check that K is a G-Hilbert bundle with G-action given by M. Then φ = 2(η, ξ)
where ξ = P(ζ1, 0), η = P(0, ζ2), and φ ∈ B(G).

Theorem 2 The set B(G) is a unital commutative Banach algebra under pointwise

operations on G.

Proof The proof is effectively the same as the corresponding result [25, Proposition
1.4] in the measured groupoid case, with L∞(G) being replaced by C(G) and mea-
surable Hilbert bundles replaced by continuous Hilbert bundles. That B(G) is unital

follows using the trivial G-Hilbert bundle G0 × C (or by using Proposition 3).

Proposition 6

(i) If φ ∈ B(G), then both φ, φ∗ ∈ B(G), and ‖φ‖ =
∥∥φ

∥∥ = ‖φ∗‖.

(ii) C(G) is a two-sided D-module, where for b ∈ D and F ∈ C(G), the action is given

by

(3.4) (Fb)(x) = F(x)b(r(x)), (bF)(x) = b(s(x))F(x).
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Further, if f , g ∈ Cc(G), then

(3.5) ( f ∗ g)b = f b ∗ g, b( f ∗ g) = f ∗ bg

and if φ = (ξ, η) ∈ B(G), then φb = (ξ, bη), bφ = (bξ, η). Lastly, B(G) is a

D-submodule of C(G), and for φ ∈ B(G), b ∈ D, we have

(3.6) ‖φb‖ ≤ ‖φ‖‖b‖, ‖bφ‖ ≤ ‖b‖‖φ‖.

Proof (i) From the definition of P(G), it follows that φ, φ∗ ∈ P(G) whenever φ ∈
P(G). Let φ ∈ B(G). Since B(G) is the span of P(G), it follows that φ, φ∗ ∈ B(G). Let
φ = (ξ, η) for some G-Hilbert bundle (H, L).

As in the group case, there is a conjugate G-Hilbert bundle ({Hu}, L) for any given

G-Hilbert bundle ({Hu}, L). Here, if H is Hilbert space, then H is the Hilbert space
that coincides with H except that the inner product ( · ) ′ and scalar multiplication
(a, ξ) → a.ξ for H are given by (ξ, η) ′ = (η, ξ) and a.ξ = aξ. We take L = L.
One readily checks that φ(x) = (Lxξ, η) ′, so that

∥∥φ
∥∥ ≤ ‖ξ‖‖η‖. It follows that

‖φ‖ =
∥∥φ

∥∥. Since φ∗ = (η, ξ), we obtain ‖φ‖ = ‖φ∗‖.
For (ii), see [23, p. 59]. (Left and right actions of D are interchanged from those

in [23] for duality reasons.) For example, for (3.5),

( f ∗ g)b(x) = b(r(x))

∫
f (t)g(t−1x) dλr(x)(t) = f b ∗ g(x).

We now turn to the other way of norming B(G). The norm is a completely bound-
ed norm [4] and the result is a variation of [22, Theorem 6.1] which says that B(G)

is a Banach algebra. Let π : Cc(G) → C∗(G) be the canonical isomorphism, and for
φ ∈ B(G), define a map Tφ : π(Cc(G)) → π(Cc(G)) by Tφπ( f ) = π(φ f ).

Theorem 3 If φ = (ξ, η) ∈ B(G) is a coefficient of a continuous Hilbert bundle

({Hu}, L), then Tφ is completely bounded on C∗(G), and

(3.7) ‖Tφ‖cb
≤ ‖ξ‖‖η‖.

Proof Let (µ ′, {H ′

u}, L
′) be a representation of G. Let π ′ be the representation of

Cc(G) obtained by integrating this representation. Then (µ ′, {H ′

u ⊗ Hu}, L
′ ⊗ L)

is a G-representation. Let π̃ be its integrated form. Let n ≥ 1, A = [ fij] ∈
Mn(Cc(G)),Aφ = [ fijφ] and ξ ′i , η

′

i (1/ ≤ i ≤ n) be square integrable sections of
{H ′

u}. Let ξ ′ = [ξi]
′, η ′

= [ηi]
′. To obtain the complete boundedness of Tφ and

(3.7), it is sufficient to show that

(3.8) |(π ′(Aφ)(ξ ′), η ′)| ≤ ‖ξ‖‖η‖‖ξ ′‖‖η ′‖‖π̃(A)‖n.

Indeed

(π ′(Aφ)(ξ ′), η ′) =

∑ ∫
fij (t)

(
L ′

t ξ j(s(t)), ηi (r(t))
)
φ(t) dν0(t)

=

∑ ∫
fij

(
(L ′

t ⊗ Lt )(ξ ′j ⊗ ξ)(s(t)), (η ′

i ⊗ η)(r(t))
)

dν0(t)

= (π̃(A)(ξ ′ ⊗ ξ), η ′ ⊗ η).

So |(π ′(Aφ)ξ ′, η ′)| ≤ ‖π(A)‖n‖ξ‖‖η‖‖ξ
′‖‖η ′‖ and (3.8) follows.
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Corollary 1 ‖ · ‖cb ≤ ‖ · ‖ on B(G).

In the Borel case, Ramsay and Walter [22, Theorem 6.1] show that B(G) is a Ba-

nach algebra. However, (B(G), ‖ · ‖cb) is not always a Banach algebra. This follows
from the elegant counterexample at the end of [22] for which G is a bundle of groups
X×Z with X = {reıθ : 0 ≤ r ≤ 1, θ ∈ {0, 1, 1/2, 1/3, . . .}}. In some cases, however,
‖ · ‖ = ‖ · ‖cb on B(G). By [29, 16], this is the case for locally compact groups and

also for the case of the trivial groupoids Gn = {1, 2, . . . , n} × {1, 2, . . . , n}. (For the
Gn case, see §5, Example below.) The measured groupoid version of the result has
been proved in complete generality by Renault [25, Theorem 22] using the module

Haagerup tensor product. Note that from Corollary 1 and Banach’s isomorphism
theorem, if (B(G), ‖ · ‖cb) is a Banach algebra, then the norms ‖ · ‖, ‖ · ‖cb are equiva-
lent on B(G).

4 The Left Regular Hilbert Bundle

Let L2(G) = {L2(Gu)}. In the natural way, this is a G-Hilbert bundle, which we
will call the left regular Hilbert bundle of G. (This Hilbert bundle has been used by

Khoshkam and Skandalis [10] even in the non-Hausdorff context.) In more detail,
we regard the functions f ∈ Cc(G) in the obvious way as sections u → f u

= f |Gu

which determine the continuous sections of L2(G). In fact, the space of such sections
satisfies axioms (i), (ii) and (iii) of [3, Definition 10.1.2], and so [3, Proposition
10.2.3] determines a continuous field, the continuous sections in general just being
those sections that are locally close to Cc(G). The G-action on ∆b(L2(G)) is given by

(Lxξ)(t) = ξ(x−1t).

In particular, a section u → Fu of L2(G) is continuous iff the map u → ‖Fu‖ is

continuous and for all g ∈ Cc(G), the function u → 〈Fu, gu〉 is continuous for all
g ∈ Cc(G). Let E2(G), or simply E2, be the set of continuous sections of L2(G) that
vanish at infinity. Of course, Cc(G) ⊂ E2, and E2 is a Banach space under the section
norm: ‖F‖ = supu∈G0 ‖Fu‖. Also in the canonical way, E2 is a D-module: for ξ ∈ E2

and b ∈ D, we set bξ(t) = (ξb)(t) = ξ(t)b(r(t)).

Proposition 7 Cc(G) is dense in E2.

Proof Let F ∈ E2, ǫ > 0. We show that there exists f ∈ Cc(G) such that
‖F − f ‖ < ǫ. Since F vanishes at infinity, we can suppose (by multiplying F by a
suitable b ∈ D) that F has compact support C ⊂ G0. Let u ∈ C and f [u] ∈ Cc(Gu)
be such that ‖Fu − f [u]‖ < ǫ. Extend f [u] to a function f [u] ′ ∈ Cc(G). Then

there exists a neighborhood W (u) of u in G0 such that ‖Fv − ( f [u] ′)v‖ < ǫ for all
v ∈ W (u). Cover C by a finite number of the W (u)’s, say W (u1), . . . ,W (un) and let
{bi} be such that bi ∈ Cc(W (ui)) and bi ≥ 0,

∑n
i=1 bi = 1 on C . Then

∑n
i=1 biF = F,

and
∥∥F −

∑n
i=1 bi f [ui]

′
∥∥ < ǫ.

If G is a locally compact group, then the reduced C∗-algebra C∗

red(G) and its en-
veloping von Neumann algebra V N(G) are defined on the Hilbert space L2(G). We
need versions of these for the groupoid case. In the groupoid case, L2(G) is replaced

https://doi.org/10.4153/CJM-2004-055-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2004-055-8


The Fourier Algebra for Locally Compact Groupoids 1269

by E2. While E2 is not a Hilbert space, it is a Hilbert D-module. The right D-action
has been given above, while the D-valued inner product 〈 · 〉 on E2 is given by

〈ξ, η〉(u) = (ξu, ηu).

In this Hilbert module context, C∗

red(G) will be the C∗-subalgebra of L(E2) gener-

ated by the right regular antirepresentation of Cc(G). We will take V N(G) to be the
commutant of C∗

red(G) in B(E2). In general, V N(G) is only a Banach algebra. We
now discuss all of this in detail. We start with the right regular antirepresentation of
Cc(G) on E2.

Proposition 8 For F ∈ Cc(G), define RF : Cc(G) → Cc(G) by right convolution,

RF f = f ∗ F. Then RF extends to an element of L(E2) whose norm is ≤ ‖F‖I , and the

map F → RF is a ∗-antirepresentation of Cc(G), the closure of whose image in L(E2) is

canonically isomorphic to C∗

red(G).

Proof To prove that ‖RF‖ ≤ ‖F‖I , it is sufficient by Proposition 7 to show that for
f , g ∈ Cc(G) and u ∈ G0, that

(4.1) |〈RF f , g〉(u)| ≤ ‖F‖I‖ f ‖‖g‖.

This follows from cf. [23, p. 53]:

|〈RF f , g〉(u)| ≤

∫∫ ∣∣g(x)
∣∣ ∣∣F(t−1x)

∣∣ ∣∣ f (t)
∣∣ dλu(t)dλu(x)

=

∫∫ [∣∣ g(x)
∣∣ ∣∣F(t−1x)

∣∣ 1/2][ ∣∣ f (t)
∣∣ ∣∣F(t−1x)

∣∣ 1/2]
dλu(t)dλu(x)

≤ AB

where

A =
[ ∫∫ ∣∣ g(x)

∣∣ 2∣∣F(t−1x)
∣∣ dλu(t) dλu(x)

] 1/2
,

B =
[ ∫∫ ∣∣ f (t)

∣∣ 2∣∣F(t−1x)
∣∣ dλu(t) dλu(x)

] 1/2
.

Now

A2
=

∫ ∣∣g(x)
∣∣ 2

dλu(x)

∫ ∣∣F(t−1x)
∣∣ dλu(t)

≤

∫ ∣∣g(x)
∣∣ 2

dλu(x)

∫ ∣∣F∨(w)
∣∣ dλs(x)(w)

≤ ‖g‖
2
‖F∨‖I,r

= ‖g‖2‖F‖I,s.
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Similarly
B2 ≤ ‖ f ‖2‖F‖I,r

and (4.1) follows.
Next

〈RF f , g〉(u) =

∫∫
f (t)F(t−1x)g(x) dλu(t) dλu(x)

=

∫
f (t) dλu(t)

∫
g(x)F∗(x−1t) dλu(x)

= 〈 f ,RF∗g〉(u).

So RF ∈ L(E2), and the map F → RF is a ∗-antirepresentation of Cc(G) into L(E2). It

remains to show that for F ∈ Cc(G), we have ‖RF‖ = ‖F‖red. To prove this, for each
u, there is an antirepresentation Ru

F of Cc(G) on L2(Gu) given by right convolution by
F on Cc(Gu). Of course for f ∈ Cc(G), RF f |Gu = Ru

F( f |Gu ). The map f → f ∨ is a

linear isometry from L2(Gu) onto L2(Gu) that intertwines Ru
F and πu(F∨) (2.2). So

‖RF‖ = supu∈G0 ‖πu(F∨)‖ = ‖F‖red using a well-known characterization of ‖F‖red

([1, 12]; for more details, see [18, p. 108]).

If ξ ∈ E2 and F ∈ Cc(G), then the convolution formula

ξ ∗ F(x) =

∫
ξ(t)F(t−1x) dλr(x)(t)

makes sense by the Cauchy-Schwartz inequality. (The value of ξ ∗ F(x) is the same

whichever representative of ξ we take in the integral.) We would expect that ξ ∗ F

should be the same as RFξ and be continuous on G, as indeed it is in the group case
[9, (20.14)]. We now show that this is the case.

Proposition 9 Let ξ ∈ E2 and F ∈ Cc(G). Then RFξ = ξ ∗ F, and is a continuous

function on G. Further, if ξn → ξ in E2, then ξn ∗ F → ξ ∗ F uniformly on G.

Proof Let { fn} be a sequence in Cc(G) such that ‖ fn − ξ‖ → 0. Then given x ∈ G

and any n ≥ 1, we have, using Proposition 9,

∣∣ (RF fn − ξ ∗ F)(x)
∣∣ =

∣∣∣
∫

( fn − ξ)(t)F(t−1x) dλr(x)(t)
∣∣∣

≤ ‖ fn − ξ‖r(x)
( ∫ ∣∣F∨(x−1t)

∣∣ 2
dλr(x)(t)

) 1/2

≤ ‖ fn − ξ‖‖F∨‖

→ 0

independently of x, and ξ ∗ F is the uniform limit of a sequence of continuous func-
tions. By the continuity of RF , RFξ = ξ ∗ F. The proof of the last assertion of the
proposition is similar.

https://doi.org/10.4153/CJM-2004-055-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2004-055-8


The Fourier Algebra for Locally Compact Groupoids 1271

In the next proposition, we note that Cc(G) is a normed algebra under the (I, r)-
norm. So the proposition shows that φ → Lφ is a norm decreasing homomorphism

from (Cc(G), ‖ · ‖I,r) into B(E2).

Proposition 10 Let F ∈ Cc(G) and LF : Cc(G) → Cc(G) be the map defined by left

convolution by F: LF f = F ∗ f . Then

(i) LF extends to a bounded linear map, also denoted by LF , on E2 for which ‖LF‖ ≤
‖F‖I,r , and the map F → LF is a norm decreasing homomorphism from

(
Cc(G), ‖ · ‖I,r

)

into B(E2);

(ii) if ξ, η ∈ E2 and F ∈ Cc(G), then F ∗ (ξ, η) = (ξ, LFη) ∈ B(G).

Proof (i) The only non-trivial thing to be shown is that ‖LF‖ ≤ ‖F‖I,r . This is

equivalent to showing that for f ∈ Cc(G) and hu ∈ Cc(Gu), we have

(4.2)
∣∣∣
∫

Gu

(LF f )(x)hu(x) dλu(x)
∣∣∣ ≤ ‖F‖I,r‖ f ‖‖hu‖2.

To this end,
∣∣∣
∫

LF f (x)hu(x) dλu(x)
∣∣∣ ≤

∫
|F(t)| dλu(t)

∫ ∣∣hu(x) f (t−1x)
∣∣ dλu(x)

≤

∫
|F(t)| dλu(t)‖hu‖

( ∫ ∣∣ f (t−1x)
∣∣ 2

dλu(x)
) 1/2

≤

∫
|F(t)|‖hu‖

( ∫ ∣∣ f (y)
∣∣ 2

dλs(t)(y)
) 1/2

dλu(t)

≤ ‖F‖I,r‖ f ‖‖hu‖.

(ii) If g ∈ C0(G) then

(4.3) ‖F ∗ g‖
∞

≤ ‖F‖I,r‖g‖
∞
.

It follows that the convolution F ∗ (ξ, η) is defined (and continuous). Suppose first
that η ∈ Cc(G). Then (F ∗ (ξ, η))(x) =

∫
F(t)

(
Lt−1xξ(s(x)), η(r(x))

)
dλr(x)(t) =∫∫

F(t)ξ(x−1s)η(t−1s) dλr(x)(t) dλr(x)(s) = (ξ, LFη). The same equality when η ∈ E2

follows from (4.3) and Proposition 2.

We note that if F, f ∈ Cc(G) and u ∈ G0, then

〈LF f , f 〉(u) =

∫
F ∗ f (x) f (x) dλu(x)

=

∫∫
F(t) f (t−1x) f (x) dλu(t) dλu(x)

=

∫
F( f , f ) dλu.
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Let ξ ∈ E2 and { fn} be a sequence in Cc(G) such that ‖ fn − ξ‖ → 0. Taking limits in
the preceding equalities with fn in place of f then gives

(4.4) 〈LFξ, ξ〉(u) =

∫
F(ξ, ξ) dλu.

which entails in the obvious way that for η ∈ E2,

(4.5) 〈LFξ, η〉(u) =

∫
F(ξ, η) dλu.

Proposition 11 There exists a bounded left approximate identity {Fn} ≥ 0 in the

normed algebra (Cc(G), ‖ · ‖I,r), such that LFn
→ I in the strong operator topology of

B(E2).

Proof The proof is a slight modification of the proof of [23, Proposition 1.9, p. 56].
There is a sequence {Un} of open neighborhoods of G0 in G such that each Un is
s-compact (i.e., Un ∩ s−1(K) is relatively compact for every compact subset K of
G0) and is a fundamental sequence for G0 in the sense that every neighborhood V

of G0 in G contains Un eventually. There is then an increasing sequence {Kn} of
compact subsets of G0 such that

⋃
Kn = G0. Using [13, Lemma 2.12], there exists

gn ≥ 0 in Cc(Un) such that
∫

gn dλu
= 1 for all u ∈ Kn. Next, there exists an open

neighborhood Wn of Kn in G0 such that 1/2 <
∫

gn dλu < 2 for all u ∈ Wn. Let

hn ∈ Cc(Wn) ⊂ C0(G0) be such that 0 ≤ hn ≤ 1 and hn = 1 on Kn, and set
Fn = gnhn ∈ Cc(G). Then ‖Fn‖I,r ≤ 2.

We now show that for f ∈ Cc(G), we have ‖Fn ∗ f − f ‖I,r → 0. Let K be the
support of f , L be the (compact) closure of U1K in G, and ǫ > 0. Then for large
enough n, Fn ∗ f , f have supports inside L and |Fn ∗ f (x) − f (x)| ≤ ǫ for all x ∈ L.
It follows that ‖Fn ∗ f − f ‖I,r ≤ ǫ supu∈r(L) λ

u(L ∩ Gu) for large enough n, and {Fn}

is a bounded left approximate identity in Cc(G). Similarly, ‖LFn
f − f ‖ → 0 in E2

for all f ∈ Cc(G). The rest of the proposition now follows using Proposition 10 and

Proposition 7.

In the preceding proposition, I do not know if there exists a bounded two-sided
approximate identity in Cc(G) for the (I, r)-norm. It is shown in [13, Corollary 2.11]
that there is always a two-sided (self-adjoint) approximate identity in Cc(G) for the
inductive limit topology.

5 The Fourier Algebra A(G)

It is natural to enquire how the Fourier algebra A(G) should be defined. By analogy

with the group case and also with the case of a measured groupoid [25], one might
be inclined to take this algebra to be the closure of the span of the coefficients of E2

in B(G). Oty [14, p. 186] suggests taking A(G) to be the closure of B(G) ∩ Cc(G) in
B(G). It will be convenient for our purposes to take A(G) to be the closure in B(G) of
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the subalgebra generated by the coefficients of E2. I do not know if the three versions
of A(G) coincide.

Let Ac f (G) be the set of coefficients ( f , g) of E2 with f , g ∈ Cc(G). Note that

(5.1) ( f , g) = g ∗ f ∗.

Let Asp(G) be the complex vector subspace of Cc(G) spanned by Ac f (G), and Ac(G)
be the subalgebra of Cc(G) generated by Ac f (G) (pointwise product). If V is an open
subset of G, then we set Ac f (V ) = Ac f (G)∩Cc(V ). Similarly we define Asp(V ),Ac(V ).

Definition The closure of Ac(G) in B(G) is called the Fourier algebra of G, and is
denoted by A(G).

If G is a locally compact group, then [5] Ac f (G) = Asp(G) = Ac(G). I do not know

if this is true for locally compact groupoids in general. However, when G is r-discrete
we have the following result. (The discrete group version of this argument appears in
[2, Lemma VII.2.7].)

Proposition 12 Let G be r-discrete and φ ∈ P(G) ∩ Cc(G). Then φ is a coefficient

of E2.

Proof Let T = Rφ ∈ L(E2). For g ∈ Cc(G), u ∈ G0, we have

〈Tg, g〉(u) =
∫∫

φ(y−1x)g(y)g(x) dλu(y) dλu(x) ≥ 0

since φ is positive definite. So 〈Tη, η〉 ≥ 0 for all η ∈ E2, and it follows from the
second part of the proof of [15, Proposition 6.1] that T ≥ 0 in C∗

red(G) ⊂ L(E2).

Let h ∈ Cc(G0) ⊂ Cc(G) be such that h = 1 on r(S(φ)) ∪ s(S(φ)). Then Th(x) =∫
h(t)φ(t−1x) dλu(t) = φ(x). Further, for x ∈ G,

(h, φ)(x) =

∫
h(x−1t)φ(t) dλu(t) = φ(x).

Let ξ = T1/2h ∈ E2. Since LF commutes with every R f , it follows from Proposition 8

that it commutes with every operator in C∗

red(G) and hence with T1/2. Then for each
u ∈ G0 and g ∈ Cc(G), we have using (4.5),

∫
g(x)(ξ, ξ)(x) dλu(x) = 〈LgT1/2h,T1/2h〉(u)

= 〈T1/2Lgh,T1/2h〉(u)

= 〈Lgh,Th〉(u)

=

∫
g(x)(h, φ)(x) dλu(x)

=

∫
g(x)φ(x) dλu(x).

So φ = (ξ, ξ).
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Corollary 2 If G is r-discrete then every φ ∈ Ac(G) is the sum of two coefficients of

E2.

Proof Let φ ∈ Ac(G). By definition, φ is a finite sum of functions that are products
φ1 . . . φn where each φi ∈ Ac f (G). By the construction of [23, Proposition 1.3, (ii)⇒
(iii)], there exists F ∈ P(G × I2) of the form (3.3) with ρ, τ ∈ P(G) ∩ Cc(G). So

F ∈ Cc(G×I2), and by Proposition 12, F ∈ Ac f (G×I2). So there exists ζ ∈ E2(G×I2)
such that F = (ζ, ζ). Let ζij(x) = ζ(xij). Then φ = (ζ21, ζ11) + (ζ22, ζ12).

Corollary 3 If G is r-discrete, then A(G) is an ideal in B(G).

Proof This follows since P(G)(Ac(G) ∩ P(G)) ⊂ P(G) ∩Cc(G).

We now discuss another possible version A(G) of the Fourier algebra that coin-

cides with A(G) in the group case and relates usefully to V N(G). In fact A(G) will be
a subspace of our A(G) in general, and they may even be the same. In the group case,
one way of defining A(G) is to regard it as a quotient space of L2(G)⊗̂L2(G) [5, 8].
(See also [17, p. 185].) This is just the norm on A(G) that comes from the identifi-

cation of A(G) with V N(G)∗. This approach can be adapted, as we will see, to work
for locally compact groupoids in general, with the Hilbert D-module E2 replacing the
L2(G) of the group case.

More precisely, define a map θ : Cc(G) × Cc(G) → C0(G) by θ(( f , g)) = g ∗ f ∨.

Then θ is bilinear, and ‖θ(( f , g))‖ ≤ ‖ f ‖‖g‖ by Proposition 2. So θ extends to
a norm decreasing linear map, also denoted by θ, from Cc(G) ⊗ Cc(G) (with the
projective tensor product norm) into Cc(G). By Proposition 7, θ extends to a norm-
decreasing linear map from E2⊗̂E2 into C0(G).

Definition The Banach space A(G) is defined to be the completion of the normed
space E2⊗̂E2/ ker θ under the quotient norm. The norm on A(G) is denoted by ‖ · ‖1

(this norm being like a trace class norm).

We can regard A(G) as a linear subspace of C0(G). By construction, Asp(G) is
a dense subspace of A(G). Using the latter fact and Proposition 2 gives the next

proposition.

Proposition 13 A(G) is a subspace of B(G), and for φ ∈ A(G), we have

(5.2) ‖φ‖
∞

≤ ‖φ‖ ≤ ‖φ‖1.

The norm ‖ · ‖1 on A(G) is given by

(5.3) ‖φ‖1 = inf

∞∑

n=1

‖ fn‖‖gn‖,

the inf being taken over all expressions of the form φ =
∑

∞

n=1 gn ∗ f ∗n in C0(G) where
fn, gn ∈ Cc(G).
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Note It would be reasonable to use a fibered projective tensor product norm in place
of the projective tensor product norm in the above argument. Indeed let R be the

orbit equivalence relation on G0: so u ∼ v if and only if there exists an x ∈ G such
that s(x) = u, r(x) = v. Then we could consider the Banach space of functions
φ : G → C of the form

(5.4) φ =

∞∑

n=1

( fn, gn)

where fn, gn ∈ Cc(G) and are such that M = sup(u,v)∈R(
∑

∞

n=1 ‖ fn‖
u
‖gn‖

v
) < ∞.

Further we take ‖φ‖R to be the inf of such numbers M. (One uses the fact that

for each x ∈ G, |g ∗ f ∨(x)| ≤ ‖ f ‖
s(x)

‖g‖
r(x)

.) I do not know if this Banach space
coincides with A(G).

The proof of the next proposition is left to the reader.

Proposition 14 A(G) is a commutative Banach algebra, and is a subalgebra of B(G)∩
C0(G). Further, A(G) ⊂ A(G).

In our definition of the spaces A(G),A(G) we used the r-fibered Hilbert bundle E2.
We now show that these spaces are the same if we had used the corresponding defini-
tions using s rather than r. This is equivalent to saying that A(G) = A(G(r)),A(G) =

A(G(r)) where G(r) is G with reversed multiplication.

Proposition 15 B(G) = B(G(r)),A(G) = A(G(r)) and A(G) = A(G(r)).

Proof The map ({Hu}, L) → ({Hu}, L
′), where L ′(x) = L(x−1), is a bijection

from G-Hilbert bundles onto G(r)-Hilbert bundles. It follows that the map φ →
φ∨ is an isometric isomorphism from B(G) onto B(G(r)). From (i) of Proposi-
tion 6, B(G) = B(G(r)). Next, the map f → f ∨ is an isometry from E2(G) onto

E2(G(r)) and if ( f , g), ( f , g) ′ denote coefficients ( f , g ∈ Cc(G)) evaluated for E2,G
and E2(G(r)),G(r) respectively, then ( f , g)∨ = ( f ∨, g∨) ′. It then follows that A(G) =

A(G(r)) and A(G) = A(G(r)).

Proposition 16

(i) A(G) is a D-submodule of C0(G), and if φ ∈ A(G), then φ∗ ∈ A(G) and ‖φ‖1 =

‖φ∗‖1. The corresponding result holds equally for A(G).

(ii) If K ∈ C(G) and U is an open subset of G such that K ⊂ U , then there exists

φ ∈ Ac f (G) such that φ ∈ Cc(U ), φ(K) = {1} and 0 ≤ φ ≤ 1.

Proof (i) Use Proposition 6. (ii) cf. [25, Lemma 1.3], [5, Lemme 3.2]. We can
suppose that U is compact. Let L ∈ C(G) be such that K ⊂ Lo ⊂ L ⊂ U . There

exists a relatively compact open subset V of G such that s(L) ⊂ V, LV−1 ⊂ U and
KV ⊂ Lo. Let f ∈ Cc(Lo) be such that 0 ≤ f ≤ 1 and f = 1 on KV . Next let
g ∈ Cc(V ) be such that 0 ≤ g ≤ 1 and g(u) > 0 for all u ∈ s(K). Let b ∈ Cc(G0) be
such that b(u) = λu(g) for u ∈ s(K), b(u) ≥ λu(g) for all u ∈ G0 and b(u) > 0 for

https://doi.org/10.4153/CJM-2004-055-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2004-055-8


1276 Alan L. T. Paterson

u ∈ s(U ). Take φ = b( f ∗ g∨) ∈ Ac f (G). We check that φ has the desired properties.
Obviously, φ ≥ 0. Suppose that for some x ∈ G, we have φ(x) > 0. Then for some

t , f (t), g(x−1) > 0, and it follows that x ∈ LoV−1 ⊂ LoV−1 ⊂ U . So φ ∈ Cc(U ). If
x ∈ K, then any t for which f (t) > 0, g(x−1t) > 0 belongs to KV so that f (t) = 1.
(There is always such a t : t = x will do.) So φ(x) = (

∫
g(x−1t) dλr(x)(t))/b(s(x)) = 1.

Lastly, for any x ∈ U , φ(x) ≤
( ∫

g(x−1t) dλr(x)(t)
)
/b(s(x)) ≤ 1.

Definition The set of elements T ∈ B(E2) such that TRF = RFT for all F ∈ Cc(G)

is denoted by V N(G).

We now prove groupoid versions of results about V N(G) proved by Eymard [5]
in the group case.

Proposition 17 Let T ∈ V N(G), φ ∈ Ac f (G) and b ∈ C0(G0). Then

(i) Tφ is continuous on G;

(ii) T(bφ) = bT(φ).

Proof Write φ = f ∗ g for f , g ∈ Cc(G). Then Tφ = TRg( f ) = Rg(T f ) which
is continuous by Proposition 9. Next, using Proposition 6 and Proposition 9, we get
T(bφ) = T( f ∗ bg) = RbgT( f ) = T( f ) ∗ bg = bT(φ).

Proposition 18 V N(G) is the strong operator closure in B(E2) of the subalgebra L =

{LF : F ∈ Cc(G)}.

Proof Since LF ∈ V N(G) for all F ∈ Cc(G) and V N(G) is strong operator closed

in B(E2), we have that V N(G) contains the strong operator closure of L. Conversely,
let T ∈ V N(G) and {Fn} be an (I, r)-bounded left approximate identity for Cc(G)
(Proposition 11). Let f1, . . . , fr ∈ Cc(G), N be a positive integer and g ∈ Cc(G).
Then

∥∥T fi − Lg fi

∥∥ ≤ ‖T( fi − LFN
( fi))‖ + ‖(TFN − g) ∗ fi‖

≤ ‖T‖
[

max
i

‖ fi − LFN
( fi)‖

]
+

[
max

i

∥∥R fi

∥∥]
‖TFN − g‖.

The proposition now follows using Proposition 11 and Proposition 7 by taking N

large enough and g close enough to TFN in E2.

Proposition 19 Let T ∈ V N(G) and f , g ∈ Cc(G). Then

(5.5) T( f ∗ g∗) = 〈T f , g〉,

or equivalently, T( f ∗ g∗) = 〈g,T f 〉.
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Proof Let {Fn}, {Un} be as in the proof of of Proposition 11. Let u ∈ G0. By
Proposition 17, T( f ∗ g∗) is continuous. Let ǫ > 0, u ∈ G0. Since the sequence {Un}
is fundamental, there exists N such that for all n ≥ N ,

|T( f ∗ g∗)(x) − T( f ∗ g∗)(u)| < ǫ

for all x ∈ Un ∩ Gu. Note also that Fn ≥ 0 and
∫

Fn dλu
= 1. Further,

〈T( f ∗ g∗), Fn〉 = 〈Fn,T( f ∗ g∗)〉 = 〈RgFn,T f 〉 = 〈LFn
g,T f 〉 → 〈g,T f 〉

uniformly on G0. Now

∣∣ 〈T( f ∗ g∗), Fn〉(u) − T( f ∗ g∗)(u)
∣∣

≤

∫ ∣∣∣T( f ∗ g∗)(x) − T( f ∗ g∗)(u)
∣∣∣Fn(x) dλu(x)

≤ sup
x∈Un∩Gu

∣∣T( f ∗ g∗)(x) − T( f ∗ g∗)(u)
∣∣

→ 0.

So T( f ∗ g∗)(u) = 〈T f , g〉(u).

Proposition 20 Let T ∈ V N(G). Then T determines an element, also denoted by T,

in B(A(G)), and its norm ‖T‖1 in B(A(G)) is ≤ ‖T‖.

Proof Let φ ∈ Asp(G). Then φ ∈ E2 so that Tφ ∈ E2. If φ = g ∗ f ∗ ( f , g ∈ Cc(G))
then by Proposition 9, Tφ = Tg ∗ f ∗ ∈ A(G). Further, ‖Tφ‖1 ≤ ‖T‖‖g‖‖ f ‖, and
‖T‖1 ≤ ‖T‖.

Corollary 4 If φ ∈ A(G), then ‖Tφ‖
∞

≤ ‖T‖‖φ‖1 for all x ∈ G.

Proof Use (5.2).

Example Here is a very simple example to show (among other things) that in the
situation of the Proposition 10, we do not usually obtain that LF ∈ L(E2). Let G =

X × X be a trivial groupoid with measure µ on X. We can (and indeed will) take G

to be Gn = {1, 2, . . . , n} × {1, 2, . . . , n} and µ counting measure on {1, 2, . . . , n}.
Note that for (x, y) ∈ G, r(x, y) = x and s(x, y) = y.

For F ∈ Cc(G), we have

RF f (x, y) = ( f ∗F)(x, y) =

∫
f (x, t)F

(
(t, x)(x, y)

)
dµ(y) =

∫
f (x, t)F(t, y) dµ(t).

Also, LF f (x, y) =
∫

F(x, t) f (t, y) dµ(t).
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Now let G = Gn. We will calculate C∗

red(G), V N(G), L(E2), V N(G) ∩ C∗

red(G),
A(G) and A(G). We identify G0 with {1, 2, . . . , n} and Gi

= {i} × G0 with G0. We

also identify E2 with Mn, where for f ∈ Mn, the function f i (i ∈ G0) on G0 is given
by f i( j) = fij . The inner product on E2 is given by: 〈A,B〉(i) =

∑
j AijBij . Trivially,

C∗

red(G) = Cc(G) is just Mn multiplying itself on the right, and the adjoint of A ∈ Mn

is the usual adjoint A∗. The elements T of C∗

red(G) are thus those for which there is a

matrix ψ such that

(5.6) T(eij) =

∑

l

ψl jeil.

Similarly, V N(G) is just Mn multiplying itself on the left.

Now let T ∈ B(E2). Write T(eij) =
∑
αijklekl. Suppose that T is a module map.

Then for all b ∈ C(X), we have

∑
αijklb(i)ekl = T(eijb) = (Teij)b =

∑
b(k)αijklekl.

It follows that T(eij) =
∑
αijileil, and it is easily checked that the latter is a neces-

sary and sufficient condition for T ∈ B(E2) to belong to L(E2), with T∗ given by:
T∗(eil) =

∑
αijileij . So the dimensions of B(E2),L(E2),V N(G), and C∗

red(G) are
respectively n4, n3, n2 and n2. We now show that V N(G) and C∗

red(G) intersect in the
multiples of the identity, so that all four spaces are different when n > 1.

For T to belong to C∗

red(G)∩V N(G), we require first that T = Lφ for some φ ∈ Mn

so that T(eij) =
∑
φkiek j (and in the notation of the preceding paragraph, aijkl = φki

if l = j and is 0 otherwise). For T = Lφ to belong to L(E2), we require by the
preceding paragraph that φki = 0 when k 6= i, so that for all i, j, T(eij) = φiieij .
Comparing this with (5.6) gives that T is a multiple of the identity, so that V N(G) ∩
C∗

red(G) = C1.

As vector spaces, A(G) = A(G) = B(G) = Mn. Indeed, as algebras, all four

algebras are just Mn under the Schur product (using the functions g∗ f and pointwise
multiplication). A result of Paulsen [16, p. 31] shows that ‖φ‖cb ≤ ‖φ‖C∗(G) for all
φ ∈ A(G). Another result of Paulsen [16, p. 112] can be used to show that ‖ · ‖cb =

‖ · ‖ on B(G). Indeed, the result is that ‖A‖cb ≤ 1 if and only if there exist f , g ∈ E2

with ‖ f ‖, ‖g‖ ≤ 1 and Aij = ( f j , gi) = ( f , g)(i, j). It follows that ‖ · ‖ ≤ ‖ · ‖cb on
A(G), and equality follows from Corollary 1. It also follows that ‖ · ‖ = ‖ · ‖1.

An important fact used by Eymard in his study of A(G) in the group case is that
V N(G) is identifiable in the natural way with A(G)∗ (i.e., A(G) is the predual of the
von Neumann algebra V N(G)). We need the groupoid version of this result. Of
course in the groupoid case, V N(G) is not a von Neumann algebra, but despite that,

we will show that there is a suitable version of this identification for groupoids.

Let BD(A(G),D) be the Banach space of continuous, linear, right D-module maps

from A(G) into D. The space BD(A(G),D) is a left D-module with dual action:
bα(φ) = α(φb). We think of BD(A(G),D) as the “dual” of A(G), and write it as
A(G) ′. Of course, A(G) ′ is very different from the Banach space dual space A(G)∗

in general, but the two do coincide in the group case.
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For f ∈ Cc(G), α ∈ BD(A(G),D), let fα : Cc(G) → D be given by fα(g) =

α(g ∗ f ). Then fα is linear, and ‖ fα(g)‖ ≤ ‖α‖‖g ∗ f ‖1 ≤ ‖α‖‖g‖‖ f ∗‖. So fα
extends to a bounded linear map, also denoted by fα, from E2 into D. Also each map
fα is a (right) module map. Indeed, using (3.5) and the fact that α is a module map,
we have fα(gb) = α(gb ∗ f ) = α((g ∗ f )b) = α(g ∗ f )b = ( fα(g))b. Further, for
fixed f , the map α→ fα is bounded and linear from A(G) ′ into BD(E2,D).

Let A
r
K(G) ′ be the set of α ∈ BD(A(G),D) such that fα ∈ K(E2,D) for all f ∈

Cc(G). It follows from the continuity of each of the maps α→ fα and the closedness
of K(E2,D) in BD(E2,D) that Ar

K(G) ′ is a closed subspace of BD(A(G),D). Further,
Ar

K (G) ′ is a left invariant subspace of BD(A(G),D). This follows since f (bα) =

( f b)α ∈ K(E2,D) whenever α ∈ A
r
K(G) ′. If G is a locally compact group, then

Ar
K (G) ′ = A(G)∗.
If G = Gn, then BD(A(G),D) = Ar

K(G) ′. Indeed, let α ∈ BCn (Mn,C
n). Since α is

a C
n-module map, we have α(eij) = λijei for some λij ∈ C. Then with f = B ∈ Mn,

we have Bα(eij) = ηijei , where ηij =
∑

k λikB jk. Then Bα = ((1, 1, . . . , 1), η) ∈
K(E2,D).

We can define Al
K (G) ′ to be Ar

K(G(r)) ′.

The following theorem shows that V N(G) identifies naturally with A
r
K(G) ′ as a

Banach space, and generalizes [5, Théorème (3.10)].

Theorem 4 For each T ∈ V N(G), there exists a unique element αT ∈ Ar
K(G) ′

defined by:

(5.7) αT(φ) = T(φ∗)|G0 (φ ∈ A(G)).

Further

(5.8) αT(g ∗ f ∗)(u) = 〈T f , g〉(u) = T( f ∗ g∗)(u).

Lastly, the map T → αT is a linear isometry from V N(G) onto Ar
K(G) ′.

Proof Let α ∈ A
r
K (G) ′. Let f ∈ Cc(G), u ∈ G0. Since f ∗α ∈ K(E2,C0(G0)), there

exists a unique F f ∈ E2 such that α(g ∗ f ∗) = 〈F f , g〉. (This is the Riesz-Fréchet
theorem for Hilbert modules [11, p. 13].) Define a linear operator T on E2 by setting
T f = F f . For any u, we can find g ∈ Cc(G) such that ((T f )u, gu) is close to ‖(T f )u‖
and both ‖gu‖ and ‖g‖ close to 1. Since ‖〈T f , g〉‖ ≤ ‖α‖‖g ∗ f ∗‖1 ≤ ‖α‖‖g‖‖ f ‖,
we obtain that T is bounded with ‖T‖ ≤ ‖α‖. For the reverse inequality, let φ ∈
A(G). Suppose first that φ = g ∗ f ∗ for some f , g ∈ Cc(G). Then ‖α(φ)‖ =

‖〈T f , g〉‖ ≤ ‖T‖‖ f ‖‖g‖. It follows that for general φ ∈ A(G), we have ‖α(φ)‖ ≤
‖T‖‖φ‖. So ‖α‖ = ‖T‖. Next we show that T ∈ V N(G). Indeed, for f1, f2 ∈ Cc(G),
we have 〈TR f2

f1, g〉 = α(g ∗ ( f1 ∗ f2)∗) = α(g ∗ f ∗2 ∗ f ∗1 ) = 〈T f1, (R f2
)∗g〉 =

〈R f2
T f1, g〉, so that T ∈ V N(G). (5.7) follows from Proposition 19.

Conversely, let T ∈ V N(G). For φ ∈ Asp(G), defineα(φ) = T(φ∗)|G0 . Then using
Corollary 4 and (ii) of Proposition 16, α extends to a bounded linear map on A(G),

and is a right module map since α(φb)(u) = T(bφ∗) = α(φ)b by Proposition 17.
Since fα(g) = 〈T( f ∗), g〉, we have that α ∈ Ar

K(G) ′. Trivially, α = αT .
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Example Let F ∈ Cc(G), T = LF and α = αT ∈ Ar
K(G) ′. From (5.8), for g ∈ Cc(G),

we have

α(g ∗ f ∗)(u) = LF( f ∗ g∗)(u) =
∫

F(t)( f ∗ g∗)(t−1) dλu(t),

from which it follows that α(φ) = 〈F, φ〉.

6 Duality for A(G)

In this section, we prove a groupoid version of Eymard’s duality theorem for groups.

Eymard’s duality result says that the character space (i.e., the space of non-zero mul-
tiplicative linear functionals) on A(G) is just G itself. I do not know if the character
space of the commutative Banach algebra A(G) (G a groupoid) can be identified with
G as in the group case. Instead, we replace scalar-valued homomorphisms by D-

valued module homomorphims. We will obtain a duality theorem for the groupoid
case which coincides with Eymard’s duality theorem in the group case. We will deal
initially with a more general situation than is strictly required for our main theorem
since the former may prove useful for a more general duality theorem.

For each u ∈ G0, adjoin a point ∞u to Gu, and let Hu
= Gu ∪ {∞u}, H =⋃

u∈G0 Hu. Extend the range map r to H by defining r(∞u) = u.

We give H a locally compact Hausdorff topology as follows. (Each subspace Hu in
the relative topology will turn out to be the one-point compactification of Gu.) Let
B be the family of sets that are either of the form U or of the form V , where U is any
open subset of G, and V is of the form r−1(W ) \C ⊂ H where W is any open subset

of G0 and C is a compact subset of G. The proof of the following proposition is left
to the reader.

Proposition 21 The family B is a basis for a locally compact, second countable Haus-

dorff topology on H, and r : H → G0 is an open map. Next, the relative topology inher-

ited by G from H is the original topology of G, and G is an open subset of H. Further,

for any u ∈ G0 and any sequence {xn} in H, we have xn → ∞u if and only if for any

compact subset C of G, the sequence {xn} is in H \C eventually, and r(xn) → u. Lastly,

the map u → ∞u is continuous, and the relative topology on Hu is that of the one point

compactification of Gu.

Let Γ
r be the set of continuous sections of (G, r), i.e., the set of continuous func-

tions γ : G0 → G such that γ(u) ∈ Gu for all u ∈ G0. Similarly, let ∆
r be the set of

continuous sections of (H, r). Of course, Γr ⊂ ∆
r . Since φ ∈ A(G) ⊂ C0(G), we can

regard φ ∈ C0(H) by defining φ(∞u) = 0 for all u ∈ G0. For γ ∈ ∆
r, define a map

αγ : A(G) → C0(G0) by

αγ(φ) = φ ◦ γ.

An element α ∈ BD(A(G),D) is said to be multiplicative if α(φψ) = α(φ)α(ψ)
for all φ, ψ ∈ A(G). The set of multiplicative elements of BD(A(G),D) is denoted by
Φ

r
A(G). When G is a group, then Φ

r
A(G) is just the set of multiplicative linear functionals

on A(G).
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Proposition 22 The map αγ belongs to Φ
r
A(G) for all γ ∈ ∆

r .

Proof Let φ ∈ A(G). Then (Proposition 4)

∥∥αγ(φ)
∥∥ = sup

u∈G0

| φ(γ(u)) |≤ ‖φ‖.

Further, αγ is a module map since

αγ(φb)(u) = φ
(
γ(u))b(r(γ(u))

)
= (αγ(φ)b)(u).

Next, it is trivial that αγ is multiplicative on A(G). So αγ belongs to Φ
r
A(G).

I do not know if every element of Φ
r
A(G) is of the form αγ for some γ ∈ ∆

r . A
tentative conjecture is that the answer is yes and that ∆

r with the topology of point-
wise convergence corresponds to Φ

r
A(G) with the pointwise topology on A(G) × G0.

In the group case this is effectively Eymard’s theorem, except that we are allowing the

0-linear functional in the character space of A(G). (This functional corresponds to
γ(e) = ∞e where e is the unit of the group G.) In our present situation, it is reason-
able to allow elements of Φ

r
A(G) to vanish for some u’s, i.e., to allow the existence of

u’s for which α(φ)(u) = 0 for all φ ∈ A(G). Adding on the points ∞u allows one to

incorporate this within the section viewpoint.
Instead, our main theorem is also a generalization of Eymard’s theorem in which

∆
r is replaced by elements of Γ

r that have a certain symmetry with respect to the
s-map, and indeed correspond to bisections of G. For the present, we show that every

α ∈ Φ
r(A(G)) is associated with (at least) a partially defined continuous section on

G0.
So let α ∈ Φ

r
A(G). Define A to be the set of x ∈ G such that for every neighborhood

V of x, there exists φ ∈ Ac f (V ) such that α(φ)(r(x)) 6= 0. Define N to be the

set of x ∈ G for which there exists an open neighborhood U of x such that for all
φ ∈ Ac f (U ), we have α(φ) = 0. Trivially, N is an open subset of G. Write A0

= r(A)
and B0

= G0 \ A0.

Proposition 23

(i) For every u ∈ A0, the set A ∩ Gu is a singleton {xu}.

(ii) For every u ∈ A0, we have Gu \ {xu} ⊂ N.

(iii) If u ∈ B0 and φ ∈ Ac f (G), then α(φ)(u) = 0.

(iv) If u ∈ G0, φ ∈ Ac f (G) and S(φ) ∩ Gu ⊂ N, then α(φ) = 0 in a neighborhood

of u in G0.

(v) A0 is an open subset of G0.

(vi) The map u → xu is continuous from A0 into G.

(vii) Let φ ∈ Ac f (G) be such that S(φ) ⊂ G \ {xu : u ∈ A0}. Then α(φ) = 0.

Proof

(i) and (ii). Let x ∈ A and u = r(x). Let y ∈ Gu with y 6= x. Let Wx,W y be disjoint
open neighborhoods of x, y in G. Let φ ∈ Ac f (Wx) be such that α(φ)(r(x)) 6= 0. Let

https://doi.org/10.4153/CJM-2004-055-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2004-055-8


1282 Alan L. T. Paterson

Ux = {z ∈ Wx : α(φ)(r(z)) 6= 0}. Since α(φ) is continuous, we have that Ux is an
open neighborhood of x. Let U y = r−1(r(Ux))∩W y . Since r is open and continuous

and r(y) = r(x) ∈ r(Ux), it follows that U y is an open neighborhood of y, and
r(U y) ⊂ r(Ux). Letψ ∈ Ac f (U y). We will show thatα(ψ) = 0 so that y ∈ N . Indeed,
since φψ = 0 (since Wx ∩ U y ⊂ Wx ∩W y = ∅), we have 0 = α(φψ) = α(φ)α(ψ).
Since α(φ)(u) 6= 0 on r(U y), it follows that α(ψ) = 0 on r(U y). It remains to show

that α(ψ) vanishes outside r(U y). To this end, r(S(ψ)) is a compact subset of r(U y).
Let b ∈ Cc(G0) be such that b = 1 on r(S(ψ)) and 0 outside r(U y). Then b ◦ r = 1
on S(ψ), so that

α(ψ) = α(ψb) = α(ψ)b = 0

outside r(U y). (i) and (ii) now follow since A ∩ N = ∅.

(iii) Let u ∈ B0 and φ ∈ Ac f (G). Let Cu
= S(φ) ∩ Gu. Since Gu ∩ A = ∅, we can

cover Cu by a finite number of relatively compact, open sets U1, . . . ,Un, Ui ∩Gu 6= ∅

for each i, and such that α(ψ)(u) = 0 for all ψ ∈ Ac f (Ui), 1 ≤ i ≤ n. Let U =

∪n
i=1Ui . There exists an open neighborhood W of u in G0 and a function b ∈ Cc(W )

with b(u) = 1 such that φ ′
= φb ∈ Ac f (U ). Since α is a module map and b(u) = 1,

we have α(φ ′)(u) = α(φ)(u). Using a partition of unity argument [7, p. 7] we can
write φ ′

=
∑m

j=1 φ
′

j where φ ′

j ∈ Ac f (Ui). Then α(φ ′)(u) =
∑m

j=1 α(φ ′

j)(u) = 0,
and (iii) is proved. (iv) is proved in the same way as (iii).

(v), (vi) and (vii). Let u0 ∈ A0. Let U be an open neighborhood of xu0 in G. Since
xu0 ∈ A, there exists φ ∈ Ac f (U ) such that α(φ)(u0) 6= 0. By continuity, there exists
an open subset W of r(U ) such that u0 ∈ W and α(φ)(u) 6= 0 for all u ∈ W . Let

u ∈ W . By (iii), u does not belong to B0 and so W ⊂ A0. (v) now follows. By (iv),
S(φ) ∩ Gu is not contained in N . From (ii), xu ∈ S(φ) ⊂ U . (vi) now follows since
the inverse image of U under the map u → xu contains an open neighborhood of u0.
(vii) follows from (ii), (iii) and (iv).

Let α, {xu} be as in Proposition 23. Define γ : G0 → H by setting γ(u) = xu if
u ∈ A0 and = ∞u otherwise. We note that γ ∈ Γ

r if and only if A0
= G0.

Proposition 24 The map γ ∈ ∆
r if and only if G = A ∪ N.

Proof Suppose that γ ∈ ∆
r . Suppose that G 6= (A ∪ N). Let x0 ∈ G \ (A ∪ N)

and u0 = r(x0). By Proposition 23, (ii), (iii), u0 ∈ B0 and for all φ ∈ Ac f (G),

α(φ)(r(x0)) = 0. Let U be a neighborhood of x0. Since x0 /∈ A ∪ N , there exists
a ψ ∈ Ac f (U ) such that α(ψ) 6= 0. Using (iii) and (ii) of Proposition 23, xv ∈ U

for some v ∈ r(U ) ∩ A0. So there exists a sequence {vn} in A0 such that vn → u0

and γ(vn) = xvn → x0. Since γ is continuous, x0 = γ(u0) and x0 ∈ A. This is a

contradiction. So G = A ∪ N .

Conversely, suppose that G = A ∪ N and let un → u in G0. If u ∈ A0, then by (v)

and (vi) of Proposition 23, un ∈ A0 eventually, and γ(un) → γ(u). Suppose then that
u ∈ B0. Let C be a compact subset of G. Suppose that γ(un) ∈ C eventually. (So un ∈
A0 eventually.) We can suppose that γ(un) → x for some x ∈ C . Since r(x) = u /∈ A0

and G = A∪N , it follows that x ∈ N . So γ(un) ∈ N eventually (since N is open) and
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we contradict γ(un) ∈ A. So γ(xn) /∈ C eventually, and r(γ(un)) = un → u. From
Proposition 21, γ(xn) → ∞u

= γ(u).

For the rest of this paper, we leave H behind and instead consider only maps α ∈
Φ

r
A(G) for which A0

= G0. Then γ is an r-section of G. We now want γ to determine
also an s-section of G. Two reasons for this are as follows. First, we would like,

as in the group case, to have a multiplicative structure on the set of such γ’s and the
product of two r-sections is not usually an r-section. Another indication that we need
to consider s-sections is that r-sections give right module maps, and a reasonable
“dual” for A(G) should not have a “bias” for right over left. To deal with these, we

want to pair together α as above with a corresponding left module map β. The pair
(α, β) can usefully be thought of in terms similar to that for multipliers, where a
(two-sided) multiplier is a pairing of a left and right multiplier.

Definition A multiplicative module map on A(G) is a pair of maps α, β ∈
B(A(G),D) such that

(i) α ∈ BD(A(G),D) and β ∈D B(A(G),D);
(ii) α(A(G))(u) 6= 0 for all u ∈ G0;
(iii) there exists a homeomorphism J of G0 such that for all φ ∈ A(G),

(6.1) β(φ) ◦ J = α(φ);

(iv) α|A(G)
∈ Ar

K (G) ′;

(v) α is multiplicative on A(G).

The set of multiplicative module maps on A(G) is denoted by ΦA(G).

In the above definition, (ii), (iv) and (v) involve only α. But in fact using (i) and
(iii), the corresponding properties for β in (ii),(iv) and (v) follow. (In (iv), β ∈ G(r).)
So the roles of α, β in a multiplicative module map on A(G) are symmetrical.

Let (α, β) ∈ ΦA(G). The condition that α(A(G))(u) 6= 0 in (ii) is equivalent to

the section γ associated with α in Proposition 23 being a global section of (G, r),
i.e., A0

= G0. Similarly, β determines a section δ of (G, s). We now show that the
pair (γ, δ) determine a bisection, i.e., a subset B of G such that both r : B → G0 and
s : B → G0 are homeomorphisms.

Proposition 25 There exists a bisection B such that γ = (r|B)−1 and δ = (s|B)−1.

Proof Let u ∈ G0 and x = γ(u). By the definition of γ, for every open neigh-

borhood V of x, there exists φ ∈ Ac f (V ) such that α(φ)(u) 6= 0. Then from (iii),
β(φ)( J(u)) = α(φ)(u) 6= 0. Suppose that J(u) 6= s(x). By contracting V , we can
suppose that S(φ) ∩ G J(u) = ∅. Applying (iv) of Proposition 23 to G(r), it follows
that β(φ)( J(u)) = 0. This is a contradiction. So J(u) = s(x). By the definition of δ,

we have δ(s(x)) = x. Take B to be the range of γ (= the range of δ).

In the above, we have J(u) = s(γ(u)) = (δ−1◦γ)(u), and β is uniquely determined
by α, i.e., if there is a β such that (α, β) ∈ ΦA(G), then β is unique. Let Γ be the
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set of bisections of G. Each B ∈ Γ is identifiable with a pair (γ, δ) of sections of
(G, r) and (G, s) respectively, and conversely. Further, Γ is a group under setwise

products and inversion. See e.g., [18, Proposition 2.2.4] for the r-discrete case. To
check that BC ∈ Γ if B,C ∈ Γ suppose that B,C are associated with the pairs of
sections (γ, δ) and (γ ′, δ ′) respectively. Then the pair of sections associated with BC

are u → γ(u)γ ′
(

s(γ(u))
)

and u → δ
(

r(δ ′(u))
)
δ ′(u) respectively.

The main theorem of this paper shows that under certain conditions, ΦA(G) = Γ.
Let us make this more precise. Each a ∈ Γ determines sections γ : u → au, δ : u →
au as above. These in turn determine bounded linear maps αa, βa from A(G) into
C0(G0) by setting:

(6.2) αa(φ)(u) = φ(au), βa(φ)(u) = φ(au).

Proposition 26 The pair (αa, βa) belongs to ΦA(G).

Proof First, αa is a bounded linear operator from A(G) into D using Proposition 4.
It is also a module map since for b ∈ D, we haveα(φb)(u) = (φb)(au) = α(φ)(u)b(u)
= (α(φ)b)(u). So αa ∈ BD(A(G),D). Next, if f , g ∈ Cc(G), we have fαa(g)(u) =

(g ∗ f )(au) =
∫

g(t) f (t−1au) dλu(t) = θh,k(g)(u) where k(t) = f (t−1ar(t)) ∈ Cc(G)
and h ∈ Cc(G0) is such that h(u) = 1 on (γ−1 ◦ δ)(s(S( f ))). So αa ∈ Ar

K(G) ′.
Similarly, βa ∈ Al

K (G) ′. Trivially, both αa, βa are multiplicative. The map J in (6.1)
is of course just δ−1 ◦ γ.

We noted above that Γ is naturally a group. We now turn to the natural, two-
sided, jointly continuous action of the group Γ on A(G). This is defined as follows:
for x ∈ G, define xa, ax ∈ G by setting xa = xas(x), ax = ar(x)x. The continuity
of this action follows from the continuity of the maps u → au, u → au and that of

the multiplication of G. For f ∈ Cc(G), define a f , f a ∈ Cc(G) by setting: a f (x) =

f (xa), f a(x) = f (ax).

Proposition 27 Let a ∈ Γ, f , g ∈ Cc(G) and φ ∈ B(G), T ∈ V N(G). Then a( f ∗
g) = f ∗ ag, ( f ∗ g)a = f a ∗ g. Further, aφ, φa ∈ B(G), and these two functions have

B(G)-norms equal to that of φ. Lastly, if φ ∈ A(G), then aφ, φa ∈ A(G), the norms of

φ, aφ, φa are all equal in A(G) and T(aφ) = aTφ.

Proof We have

( f ∗ g)a(x) =

∫
f (t)g((a−1t)−1x) dλr(ax)(t)

=

∫
f (az)g(z−1x) dλr(x)(z)

= ( f a ∗ g)(x).
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Similarly, a( f ∗ g) = f ∗ ag. Next, write φ as a coefficient (ξ, η). Then φa = (ξ, η ′)
where η ′(u) = (L(au))−1η( J−1u). Then ‖η ′‖ = ‖η‖, and φa ∈ B(G), ‖φa‖ = ‖φ‖.

Similarly, aφ ∈ B(G) and ‖aφ‖ = ‖φ‖. Next, let φ ∈ A(G). It is left to the reader to
check that aφ, φa ∈ A(G), and that ‖φ‖1 = ‖aφ‖1 = ‖φa‖1. Lastly, by Proposition 9,
T(a( f ∗ g)) = RagT( f ) = T( f ) ∗ ag = a(T( f ) ∗ g) = aT( f ∗ g).

For our main theorem, we need to restrict the class of groupoids under consider-
ation to those for which r is locally trivial.

Definition A locally compact groupoid G is said to be locally a product if the fol-

lowing holds: for each x0 ∈ G, there exists an open neighborhood U of x0 in G, a
locally compact Hausdorff space Y , a positive regular Borel measure µ on Y and a
homeomorphism Φ from U onto r(U ) × Y such that:

(i) p1(Φ(x)) = r(x) for all x ∈ U , where p1 is the projection from r(U ) × Y onto

the first coordinate;
(ii) for each u ∈ r(U ) and with Φ

u the restriction of Φ to U u, we have (Φu)∗µ =

λu
|U u .

Such an open set U is called a product open subset of G. Examples of groupoids G

that are locally a product include Lie groupoids (more generally, continuous family

groupoids [19]) and r-discrete groupoids.
We now come to our main theorem. We require two conditions on our groupoid

G. The first (i) of these is that G is locally a product, i.e., is “locally trivial”, has “lots
of” local sections. The second (ii) says that every point of G lies on a global bisection.

(i) and (ii) are reasonable section conditions to require given that our duality theorem
is formulated in terms of the group Γ of global bisections. There are many examples
of groupoids satisfying (i) and (ii). For example, every ample groupoid [19, p. 48]
does, and also the tangent groupoid for a manifold.

Under these conditions, the theorem says that the map a → (αa, βa) is a homeo-
morphism from Γ onto ΦA(G). (In particular, ΦA(G) is a group.) It is easy to see that
the map a → (αa, βa) is one-to-one. What requires more work (as it also does in the
original group case considered by Eymard) is to show that the map is onto.

We now specify the topologies that we will use on Γ and ΦA(G). We will call each of
these the pointwise topology. Precisely, each a ∈ Γ is regarded as a function a : G0 →
G2, where a(u) = (au, a

u). We then give Γ the topology of pointwise convergence
on G0. So an → a in Γ if and only if an(u) → a(u) in G2 for all u ∈ G0. Turning

to ΦA(G), regard each (α, β) ∈ ΦA(G) as a function (α, β) : A(G) × G0 → C
2 by

(α, β)(φ, u) = (α(φ)(u), β(φ)(u)). The pointwise topology on ΦA(G) is then the
topology of pointwise convergence on A(G) × G0.

Theorem 5 Assume

(i) G is locally a product.

(ii) if x ∈ G, then there exists a ∈ Γ such that x ∈ a.

Then the map ζ taking a → (αa, βa) is a homeomorphism for the pointwise topologies

from Γ to ΦA(G).
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Proof The proof is an adaptation to the groupoid case of Eymard’s proof that G is
the character space of A(G) in the locally compact group case. Let (α, β) ∈ ΦA(G) and

a ∈ Γ be the element determined by (α, β). We want to show that (α, β) = (αa, βa).
(This will give that ζ is onto.) We show then that α = αa, the result that β = αa

following using G(r). By Proposition 13 and Proposition 14, α determines a bounded
linear map, also denoted by α, from A(G) into D. Define αa−1 : A(G) → D by

αa−1(φ) = α(a−1φ). By Proposition 27, the map αa−1 is a bounded right module
map. Further since f (αa−1) = (a−1 f )α, it follows that αa−1 ∈ Ar

K (G) ′. Next,
if U is a neighborhood of u ∈ G0 in G, then there exists φ ∈ Ac f (U a) such that
α(φ)(au) 6= 0. But then aφ ∈ Ac f (U ) and αa−1(aφ)(u) = α(φ)(u) 6= 0. So G0 is the

element of Γ determined by αa−1. Clearly, αa−1
= αG0

if and only if α = αa. For
the purposes of the theorem, we can therefore suppose that a = G0.

Let T be the operator in V N(G) determined by α|A(G)
. So αT = α (Theorem 4).

Then using (5.8), α = αG0

if and only if for all f , g ∈ Cc(G), we have 〈T f , g〉(u) =

g ∗ f ∗(u) = 〈 f , g〉(u), i.e., if and only if T is the identity map I. So we have to show
that T = I.

We first show that S(Tφ) ⊂ S(φ) for φ ∈ Asp(G). Let x /∈ S(φ) and u = r(x).
By (ii), there exists c ∈ Γ such that x = cu. Then by Proposition 27 and (5.8),
T(φ)(x) = (cT(φ))(u) = α((cφ)∗)(u). Now (cφ)∗(u) = φ(x) and since φ = 0 on a
neighborhood of x, it follows by continuity that (cφ)∗ = 0 on a neighborhood of u

in G. By Proposition 23, (ii), (iv), it follows that α((cφ)∗)(u) = 0. So T(φ)(x) = 0,
and Tφ vanishes on the complement of S(φ). So S(Tφ) ⊂ S(φ).

Now let Ω be an open relatively compact subset of G. Suppose that φ ∈ Asp(G) is
such that for each u ∈ G0, the restriction φ|Ωu is constant, say ju. We will say that φ is

fiber constant on Ω. Note that the map j, where j(u) = ju, is a continuous bounded
function on r(Ω).

We will now show that Tφ is also fiber constant on Ω. Let u ∈ r(Ω), and q, p ∈
Ω

u. We have to show that Tφ(q) = Tφ(p). To this end, let c, d ∈ Γ be such that

cu
= q, du

= p, and V be an open neighborhood of u in G such that V c ∪ V d ⊂ Ω.
Let U = V c and x ∈ U . Then x, xc−1d ∈ Ω

r(x). Let ψ = (φ−c−1dφ) ∈ Asp(G). Then
ψ is zero on U . Since S(Tψ) ⊂ S(ψ), it follows that Tψ is zero on U . In particular,
since q ∈ U , 0 = Tψ(q) = (Tφ− T(c−1dφ))(q) = Tφ(q) − Tφ(p) as claimed.

Now let f ∈ Cc(G) and suppose that the support S( f ) of f lies in a relatively
compact, product open subset U . In the preceding notation, we will identify U with
a product r(U ) × Y , with associated r-fiber preserving homeomorphism Φ : U →
r(U )×Y and measure µ on Y . Let L be a compact subset of Y for which µ(L\Lo) = 0.

Let Vn be a sequence of open subsets of Y with Vn ⊂ Vn ⊂ Vn+1, ∪Vn = Lo and such
that µ(L \ Vn) = µ(Lo \ Vn) < 1/n. Let Z be an open subset of r(U ) such that
Z is compact and contained in r(U ). Let b ∈ C0(Z). By Proposition 16, (ii), there
exists φn ∈ Ac f (r(U ) × Lo) such that 0 ≤ φn ≤ 1 and φn(z, y) = 1 for all (z, y) in a

neighborhood V of Z×Vn. Let F(z, x) = b(z)χL(x) for (z, x) ∈ r(U )×Y . For z ∈ Z,
we have ‖φnb − F‖

z
≤ ‖b‖

∞
(1/n)1/2. So ‖φnb − F‖ → 0, in E2, and by continuity,

(6.3) T(φnb) → TF in E2.

Next, φnb is fiber constant on V , and so T(φnb) also has constant fiber on V . So
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for some continuous function kn on r(V ), we have T(φnb)(z, x) = kn(z) on Z ×
Vn. Further kn is independent of n since (φn+1b)|Z×Vn

= (φnb)|Z×Vn
. Next, since

S(T(φnb)) ⊂ S(φnb), we have kn vanishing on r(V ) \ Z, so that kn ∈ C0(Z). Also

S(kn) ⊂ S(b). Write kb in place of kn. Note that TF = χZ×Lkb using (6.3).
Let F ′ ∈ Cc(r(U ) × Y ) be such that 0 ≤ F ′ ≤ 1 and F ′

= 1 on Z × L. Then for
z ∈ Z and any n, we have

|kb(z)|µ(L)1/2
= lim

n
‖T(φnb)‖z

≤ ‖T‖‖b‖
∞

lim
n

‖φn‖
z

≤ ‖T‖‖b‖
∞
‖F ′‖.

It follows that the map R : C0(Z) → C0(Z), where Rb = kb, is a linear, bounded map.

Further, S(Rb) ⊂ S(b) for all b. So R satisfies the conditions of Proposition 1, and
there exists a bounded continuous function k on Z such that T( f ) = f k for f of the
form χZ×Lb.

Then contract down onto a general compact subset K of Y by open relatively com-

pact sets L with null boundary. We get the same k for each L, and obtain that each
function χZ×K b ∈ E2 and T(χZ×K b) = (k ◦ r)(χZ×K b). Next for g ∈ Cc(Y ), ap-
proximate in L2(µ) the function g by linear combinations of χK ’s to get T(b ⊗ g) =

(k ◦ r)(b ⊗ g). Using the Stone-Weierstrass theorem, we then get T( f ) = f k for all

f ∈ Cc(Z × Y ).
Let U ′ be the product open set in G corresponding to Z × Y . The functions k for

different choices of such U ′ are all compatible. So there exists a continuous function
h such that whenever U ′ is a such a product open subset of G and f ∈ Cc(U

′),

then T f = f h. The latter equality is true for all f ∈ Cc(G) by a partition of unity
argument. So for all f ∈ Cc(G),

(6.4) T f = f h.

It follows from (6.4) that ‖h‖
∞

≤ ‖T‖ so that h ∈ C(G).

Now for f , g ∈ Cc(G), we have

α(g ∗ f ∗)(u) = 〈T f , g〉(u) = h(u)〈 f , g〉(u) = h(u)g ∗ f ∗(u).

So α(φ)(u) = h(u)φ(u) for all φ ∈ Ac f (G), and since α is multiplicative, we get

h(u)
2
φ(u)φ1(u) = h(u)φ(u)φ1(u) for all φ, φ1 ∈ Ac f (G). It follows that h(u) is either

1 or 0. In fact h(u) = 1 since α(Ac(G))(u) 6= {0} for all u ∈ G0. So T = I and
α = αG0 as we had to prove.

Using (6.2) and the fact that A(G) separates the points of G (Proposition16, (ii))
it follows that ζ is a homeomorphism.

Some Open Problems All of the following questions are answered positively for Gn

and for all locally compact groups.
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(i) Is it true that Ac f (G) = Asp(G) = A(G) = A(G)?
(ii) Is the character space of A(G) equal to G?

(iii) Is Φ
r
A(G) = ∆

r?
(iv) When is ‖ · ‖cb = ‖ · ‖ on B(G)?
(v) If G is amenable, does A(G) have a bounded approximate identity, and is B(G)

the multiplier algebra of A(G).
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249–300.

https://doi.org/10.4153/CJM-2004-055-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2004-055-8


The Fourier Algebra for Locally Compact Groupoids 1289

[28] M. Walter, W∗-algebras and nonabelian harmonic analysis. J. Funct. Anal. 11(1972), 17–38.
[29] M. Walter, Dual algebras. Math. Scand. 58(1986), 77–104.

Department of Mathematics

University of Mississippi

University, MS 38677

U.S.A.

e-mail: mmap@olemiss.edu

https://doi.org/10.4153/CJM-2004-055-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2004-055-8

