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Multistability of a long droplet in a capillary tube
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Bistable states for a sufficiently large amount of liquid can appear in an eccentric
capillary due to the eccentricity effect under zero gravity (J. Fluid Mech, vol. 863,
2019, pp. 364–385). A transverse body force, which can lead to rich physical phenomena
of a droplet, may lead to multistable states (bistability, tristability and the likes) of
a sufficiently large amount of liquid in a capillary. We theoretically investigate this
situation in a circular or annular capillary tube under a transverse body force. The results
show that there can be tristable (bistable) states in an annular (circular) capillary tube:
an occluding configuration and two (one) non-occluding configurations. In the annular
tube, for one of the non-occluding configurations, the gas–liquid interface in the middle
cross-section of the droplet meets both the inner and outer walls of the tube (bridging
configuration); for the other non-occluding configuration, the gas–liquid interface in
the middle cross-section of the droplet does not meet the inner wall (non-bridging
configuration). The multistability is dependent on the Bond number, the contact angle and
the cross-sectional shape. The multistability cannot occur for a zero or very large Bond
number. A hydrophilic condition (the contact angle smaller than 90°) contributes to the
non-occluding non-bridging configuration, while the hydrophobic condition (the contact
angle larger than 90°) contributes to the non-occluding bridging configuration (only for the
annular capillary). For the annular capillary with a not-so-large contact angle, increasing
the inner-to-outer radius ratio can lead to a larger range of Bond numbers, in which the
multistability occurs.
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1. Introduction

Capillary occlusion occurring mainly due to the effect of surface tension is a common
phenomenon in small tubes (de Gennes, Brochard-Wyart & Quéré 2004; Zhang, Yang &
Wang 2006; Mirski et al 2007; Cheah, Kevrekidis & Benziger 2013; Kim et al 2023).
A small but sufficient amount of liquid may occlude a capillary or adhere to part of the
wall of a capillary. On some occasions, capillary occlusion should be avoided or removed
to ensure or enhance the flow performance in containers/tubes. It is necessary to investigate
the non-existence and existence conditions, and the stable states of capillary occlusion.

For a droplet in a capillary, there are multiple equilibrium configurations under
different conditions and the change between two of the multiple equilibrium configurations
can occur by changing the conditions. Slobozhanin, Alexander & Fedoseyev (1999)
theoretically studied the shape and stability of equilibrium configurations with both
contact lines on the lateral wall of a cylinder under zero gravity, and found three
equilibrium configurations, i.e. a droplet, a liquid ring and a liquid bridge, dependent
on the droplet volume and contact angle. Lubarda (2015) theoretically investigated
the stability of a cylindrical liquid bridge in different types of unduloidal equilibrium
configurations and found that for a given volume of the liquid and specified height of the
bridge, the lateral surface of a uniform cylindrical bridge is smaller than the surface area
of any unduloidal equilibrium shape. Hallaby & Kizito (2016) carried out experimental
and simulation research on the dynamics of plug formation in a circular cylinder under
low-Bond-number conditions. They found that with the volume of the injected liquid
increasing to a large enough value, a transition of the droplet shape from a liquid annulus
to a liquid bridge occurs. Vogel (2019) theoretically observed two types of surfaces with
these properties in circular cylinders are Delaunay surfaces (toroidal drops are bounded
by them) and cylinders (i.e. the free surface of the liquid is another circular cylinder)
in the absence of gravity. Hu, Romanò & Grotberg (2023) developed the entropic lattice
Boltzmann model to investigate the surface tension effects on liquid plug rupture in two-
and three-dimensional channels.

Different from the equilibrium configurations occurring under different conditions,
bistability of a droplet in a capillary tube under the same conditions at zero-gravity has
been reported by several studies in the situation of zero gravity. Lv & Hardt (2021)
theoretically studied the wetting of a liquid ring with a small volume in a capillary
tube without considering the effect of gravity and found stable droplet configurations
including a liquid ring, a droplet attached at a side and a liquid plug. The tristability
(in any one of the three configurations) can occur. Pour & Thiessen (2019) theoretically
observed that the bistability in either the occluding configuration or the non-occluding
bridging configuration (defined as the gas–liquid interface in the middle cross-section of
a droplet meeting both the outer wall and the inner wall) appears for a sufficiently large
amount of liquid in an eccentric annular capillary tube under zero gravity. The occurring
condition of the bistability changes with the contact angle, the inner-to-outer radius ratio
and eccentricity. The occurrence of the multistability under zero gravity can be attributed
to a small volume of droplet (Lv & Hardt 2021) or the combination of the annulus shape
and the eccentricity of the annulus (Pour & Thiessen 2019) (the combination leads to
the possibility of non-occluding bridging configuration while under zero gravity, either a
concentric annulus shape or an eccentric non-annular cross-section does not result in the
existence of the bridging configuration).

A transverse body force can lead to rich physical phenomena of the gas–liquid interface
in a capillary (e.g. Manning, Collicott & Finn 2011). For a very large amount of liquid
in a capillary, the critical Bond number (measuring the gravitational force relative to
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Multistability of long droplet in horizontal capillary tube

the surface tension force) of liquid non-occlusion was first determined for a circular
capillary tube (Manning et al 2011). Subsequently, the critical Bond numbers of liquid
non-occlusion in capillary tubes of other cross-sections under transverse body forces were
studied (e.g. Parry et al 2012; Rascón, Parry & Aarts 2016; Zhu, Zhou & Zhang 2020). Tan
et al (2022) observed an interesting re-entrant transition between capillary non-occlusion
and plug in an eccentric annular capillary tube in a transverse body force field in a
two-parameter space (γ , Bo), with γ and Bo being the contact angle and Bond number,
when Bo gradually changes between zero and a large enough value at a contact angle. The
occurrence of the re-entrant liquid state transition is attributed to the shape of eccentric
annulus and the transverse body force both of which can cause liquid non-occlusion.

In addition to a common small circular tube, a small annular tube is an interesting tube
with rich physical phenomena due to the presence of inner and outer walls. The gas–liquid
interface in an annular tube has been widely studied. Elcrat, Kim & Treinen (2004)
theoretically studied the meniscus in a symmetric concentric annular capillary tube with
axial gravitational acceleration, where the contact angles on the inner and outer walls can
be different. Gordon & Siegel (2010a,b) theoretically approximated the concentric annular
capillary surfaces with equal contact angles in a gravity field along a radius. Based on the
theoretical research on the critical liquid non-occlusion condition in a transverse gravity
field, Zhou et al (2021) found that a concentric annular capillary is preferable to a circular
capillary in view of liquid non-occlusion. It was theoretically observed that eccentricity
can be employed to avoid liquid occlusion in an annular capillary at zero Bond number
(Smedley 1990; Pour & Thiessen 2019) or under transverse body forces (Tan et al 2022).
The majority of the above studies are based on an infinite or very large volume of liquid.
Whether the multistability of a sufficient amount of liquid can occur in a circular or annular
capillary tube in a transverse body force field is interesting and worthy of investigation, but
remains unknown to date.

In the above situation, we theoretically investigate the stable equilibria of a droplet,
which has a finite but sufficient volume to form a liquid column in a circular or annular
tube. In addition, we also use Surface Evolver (Brakke 1992) to numerically compute
the shape of a droplet in equilibrium state. Interestingly, bistability in a circular capillary
and tristability in a concentric annular capillary (the concentric annulus can lead to the
existence of bridging configuration, similar to Pour & Thiessen 2019) are observed in a
transverse body force field. Furthermore, the combination of the annulus effect and the
transverse body force effect can increase considerably the complexity of the liquid states.

In this paper, the multistability of a droplet with a finite but sufficient volume in
a circular or annular concentric capillary is theoretically investigated. The eccentricity
effect of the annulus is not thus considered here to clearly illustrate the combination
of the two effects on the multistability of liquid. This paper is organized as follows. In
§ 2, a mathematical model is developed to calculate the non-occluding interface, and the
condition for existence of the occluding interface is also given. Different stable states can
be predicted and the critical occurring conditions of theirs can then be determined. In
§ 3, the multistability of a droplet in a circular or annular capillary is studied, the effects
of Bond number, contact angle and radius ratio are examined, and the critical occurring
conditions of multistability are analysed. In § 4, the conclusions drawn are presented.

2. Mathematical model

In a right capillary filled with two immiscible fluids (a liquid and a gas), different liquid
states can be observed including liquid non-occlusion and liquid occlusion. We consider
the volume of liquid large enough to form a liquid column (i.e. a sufficiently long and
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Figure 1. Schematic of general cross-section of a liquid column partially filling (a) an open circular capillary
tube of radius R or (b) a concentric annular capillary tube of outer radius R and inner radius Ri in a transverse
gravity field. The gas–liquid interface Γ intersects the circle(s) at contact points with the contact angles γ .
Here,Ω is the total area of the gap between the total inner and outer perimetersΣi andΣo. Additionally,Ω* is
the area of the liquid wetting the inner and outer perimetersΣ∗

i andΣ∗
o . When Ri = 0, the concentric annulus is

changed to the circle. Due to the symmetry of the cross-section, only the interface in the negative-x half-plane
is calculated, and the numerics 1 and 2 denote left and right boundary points of the calculated half-interface,
respectively. Additionally, α and β are the orientation angles of contact points on the outer and inner wall,
measured counterclockwise, starting from the positive y axis, and α, β ∈ [0, π ].

continuous droplet) and investigate the liquid states. In § 2.1, a mathematical model under
an invariant cross-section assumption is proposed to determine the shape of the stable
non-occluding interface. Furthermore, in § 2.2, the limitation of the invariant cross-section
assumption is discussed and the compensation for the mathematical model is provided.
Additionally, in § 2.3, the condition for the existence of an occluding interface is given.

2.1. Calculation of 2-D non-occluding interface
For a liquid column with a non-occluding configuration, the cross-sectional shape
can be assumed to be invariant along the axis direction of the tube, except for the
segments near the two ends. Then the total free energy is approximately obtained as the
product of the length of the liquid column and the energy of a general cross-section.
By determining the liquid cross-section which minimizes the total free energy, we
can obtain the non-occluding liquid column reaching stable equilibrium. Therefore, the
three-dimensional (3-D) problem about the stable equilibrium of a non-occluding droplet
is reduced to a two-dimensional (2-D) problem. This approach was applied to obtain the
equilibrium capillary bridge between the parallel cylinders (Princen 1970) and that in the
eccentric annular tube (Pour & Thiessen 2019); however, the transverse body force was
neglected in the two studies.

Figure 1 shows the schematic of a gas–liquid interface in a general cross-section of a
long open circular capillary tube of radius R, or a long concentric annular capillary tube of
inner radius Ri and outer radius R in the presence of a transverse gravity field in Cartesian
coordinates (x, y, z). The case of a circular capillary can be seen as a special case of a
concentric annular capillary with the inner radius of 0. The inner-to-outer radius ratio of
the concentric annular tube is defined as χ = Ri/R. The origin of the Cartesian coordinates
lies at the centre of the circle(s).

The forces of the liquid in a capillary tube are the capillary force due to the surface
tension and the transverse gravity. The Bond number, which is used to characterize the
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Multistability of long droplet in horizontal capillary tube

relative strength of gravity to the capillary force, is defined for a circular tube or a
concentric annular tube as

Bo = R2/l2ca, (2.1)

where the capillary length lca is given by lca = √
σ/ρg, where σ is the surface tension

between liquid and gas, ρ the density difference (positive) between liquid and gas, and g
the gravitational acceleration.

The non-occluding droplet with an invariant cross-section along the tube axis has the
relationship

L = V/|Ω∗|, (2.2)

where L, V and Ω∗ are the length, the volume and the cross-section area of the liquid,
respectively. The total free energy of a 3-D non-occluding droplet in a capillary tube,
which contains the free surface energy, the wetting energy and the gravitational energy, is
expressed as

E = σL|Γ | − σL|Σ∗| cos γ + σLl−2
ca

∫
Ω∗

y dx dy

=
(

|Γ | − |Σ∗| cos γ + l−2
ca
∫
Ω∗ y dx dy

|Ω∗|

)
σV, (2.3)

where Γ is the gas–liquid interface,Σ∗ is the wetting perimeter and γ is the contact angle.
For the case of concentric annular capillary tube, the total length of wetting perimeter is
given by

|Σ∗| = |Σ∗
i | + |Σ∗

o |, (2.4)

where Σ∗
i and Σ∗

o are the wetting inner and outer perimeters, respectively (see figure 1b).
Regarding the minimizing problem on the total free energy (2.3), for a specific liquid with
a sufficiently large and fixed volume (i.e. the values of σ and V in (2.3) are constant), we
only need to consider

Φ = |Γ | − |Σ∗| cos γ + l−2
ca
∫
Ω∗ y dx dy

|Ω∗| . (2.5)

Note that (2.5) represents the total energy of a non-occluding droplet but only relates to
the 2-D arguments in the cross-section, so that the minimization on the total energy of a
droplet is reduced to a 2-D problem.

The 2-D gas–liquid interface in the cross-section is described by the boundary value
problem (BVP) consisting of the Young–Laplace equation and the boundary conditions.
Due to the symmetry of the cross-section about the vertical line of symmetry, as shown in
figure 1, only the interface in the negative-x half-plane is calculated to save computational
time. Here, we use the Young–Laplace equation in two dimensions in the parametrization
form by the arclength s (Finn 1986; Bhatnagar & Finn 2016):

dx
ds

= cosψ,
dy
ds

= sinψ,
dψ
ds

= l−2
ca y + λ, (2.6a–c)

whereψ is the angle between the interface and the horizontal direction, and λ is a Lagrange
multiplier arising from the volume constraint of the liquid. Considering the free contact
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point, the conditions for the left and right boundary points of the interface curve in the
negative-x half-plane can be respectively given by

ψ1 = α + γ + π + 2Nπ, (2.7)

ψ2 = π

2
+ 2Mπ or ψ2 = β − γ + 2Mπ, (2.8a,b)

where the subscripts 1 and 2 denote the left and right boundary points of the interface, and
N and M are arbitrary integers. According to the different non-occluding configurations,
(2.8a) or (2.8b) is applied to the right boundary point. In the case of circular capillary,
the only 2-D non-occluding configuration is the liquid located on the bottom of the
cross-section (see figure 1a). In the case of concentric annular capillary, there may
exist two types of 2-D non-occluding configurations, i.e. non-bridging configuration
(the interface stays above or under the inner circle) and bridging configuration (see
figure 1b). For the configuration in the circular tube or the non-bridging configuration
in the concentric tube, the right boundary point of the interface is on the symmetrical
line and corresponds to condition (2.8a). However, for the bridging configuration in the
concentric tube, the right boundary point is a gas–liquid–solid contact point on the inner
perimeter and corresponds to condition (2.8b). In all cases, the left boundary point is a
contact point on the outer perimeter, and thus condition (2.7) is applied.

To obtain the 2-D gas–liquid interface with a specific configuration, a shooting method
is applied to solve the BVP from (2.6) to (2.8). We take a given point on the outer
perimeter of the tube as the initial point for the calculation on the interface. According
to the contact angle γ and (2.7), we can get a set of initial value (x1, y1, ψ1). Since the
Lagrange multiplier λ is unknown, we first guess a value for λ. Then, the interface given
by the Young–Laplace equation (2.6) is calculated from the initial point through a forward
Euler method, and the calculation ends when the interface reaches the right boundary.
It is checked whether the right boundary condition (2.8) is satisfied. If not, the value of
λ is changed and the calculation on (2.6) is repeated. The bisection method is used for
searching the correct value of λ that satisfies (2.8). Once the correct λ is determined, the
interface can be obtained. Notably, the Lagrange multiplier λ here is a pending parameter
depending on the shape of the non-occluding interface and the boundary conditions. This
is very different from the occluding case, in which the corresponding Lagrange multiplier
λP is constant for a given tube cross-section and contact angle (see (A4) in Appendix A).

The corresponding energy (2.5) can be calculated after obtaining the 2-D gas–liquid
interface in the cross-section. For a specific liquid configuration, we aim at searching the
interface which reaches a local minimum energy. The energy minimizing procedure is
performed as follows: (1) treat the position of the contact point on the outer perimeter
(i.e. the value of α) as the independent variable; (2) calculate the 2-D gas–liquid interface
by solving the BVP from (2.6) to (2.8) for a specific 2-D non-occluding configuration;
(3) calculate the value of Φ corresponding to the interface by (2.5); (4) vary the position
of the left contact point along the left half of the outer perimeter (from α= 0° to α= 180°)
to find the local minimumΦmin for a specific 2-D liquid configuration. For simplicity, both
the radius of the open circular capillary tube and the outer radius of the concentric annular
capillary tubes are set as 1 in computations. In the case of concentric annular capillary,
this procedure will be performed separately for the non-bridging configuration and the
bridging configuration.

Through the above procedure, the shape of the 2-D liquid configuration can be
determined, allowing the energy to reach the local minimum Φmin. As a result, the
non-occluding liquid column with the corresponding invariant cross-section is expected
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Figure 2. Comparisons of theoretical results and SE results for the non-occluding interfaces for (a,b)
non-bridging configuration and (c) bridging configuration. The cases in panel (a) refer to an open circular
capillary tube, while those in panels (b) and (c) refer to a concentric annular capillary tube. The points on
the curves are the theoretical values of λ when the interfaces reach the local minimum energies. The asterisks
denote the SE results of λ. For each inset, the left half is the 2-D interface theoretically obtained, and the right
half is the axial view of the 3-D equilibrium droplet computed by SE. The dotted lines in panels (b) and (c)
denote the situations where the local minimum energies exist theoretically, but the SE results cannot attain
equilibria, as discussed in § 2.2.

to be stable to the planar perturbations which are the most dangerous to the liquid column
with an infinite liquid volume in a tube (Myshkis et al 1987). The stability can also be
determined by solving the associated eigenvalue problem for the second variation of the
energy functional (see Appendix B). The smallest eigenvalue is found to be positive for
any non-occluding interface determined by the above energy minimizing procedure, which
validates the stability.

The theoretical model proposed in this section essentially requires the droplet to be
infinitely long to precisely fulfil an invariant cross-section of liquid. We compare the
theoretical results with the results of droplets of finite but sufficiently large length
calculated using the Surface Evolver (SE) for various cases, as depicted in figure 2. In
addition to examining the cross-sectional shape of the liquid, the Lagrange multiplier λ in
the Young–Laplace equation (2.6) is taken as another validating parameter, because it is
crucial in calculating the interface during our numerical process and is easily accessible in
the SE program (Brakke 2013). The SE settings can be seen in Appendix C. The theoretical
results show good agreement with the SE results in terms of the cross-sectional shape
and the value of λ, as shown in figure 2. In SE modelling, we set a very large liquid
volume (the volume is 20 and the radius of the outer wall is unit length), which ensures
the formation of sufficiently long droplets in all configurations. If the volume is set to
a small value (empirically, such as a value less than 8 for the cases γ = 165° shown in
figure 2), the SE results will deviate significantly from the theoretical results. Furthermore,
setting a larger volume in SE will still maintain the good agreement between the SE results
and the theoretical results. This indicates that the theoretical model of infinite-length
non-occluding droplet can be applicable when the liquid volume is finite yet sufficiently
large. However, when the liquid volume is small, the curvature of the interface in the
axial direction along the tube becomes significant and thus the assumption of an invariant
cross-section is invalid, rendering the theoretical results inapplicable. In this research, we
consider a sufficiently large liquid volume (large enough to make the theoretical model
applicable) as a prerequisite condition.
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segment

Non-bridging 

segment

Bo = 1, Φmin,N  – Φmin,Br = 0.2441

Bridging configuration
Bo = 1.5, Φmin,N  – Φmin,Br = 0.0188

Bridging configuration

Bo = 1.58, Φmin,N  – Φmin,Br = –0.0157

Non-bridging configuration

(a)

(c)

(b)

Figure 3. Three-dimensional non-occluding capillary surfaces in a concentric annular tube computed by the
SE code for the bridging 3-D configuration at (a) Bo = 1 and (b) Bo = 1.5, and for the non-bridging 3-D
configuration at (c) Bo = 1.58. The radius of the tube R = 1, the radius of the rod Ri = 0.1 and the contact angle
γ = 15°. Only the right half-segment of the interface (which is symmetric to the left half-segment) is displayed
in each case. The values of Φmin,Br and Φmin,N are obtained according to the numerical procedure in § 2.1
concerning the bridging 2-D configuration and non-bridging 2-D configuration, respectively.

For some cases (denoted by the dotted lines in figure 2), the 3-D interface of the droplet
cannot attain equilibrium due to the non-uniform cross-section near the ends, even though
there exists the theoretical local minimum energy Φmin. This will be discussed in the
following section.

2.2. Supplementary condition of equilibrium for 3-D non-occluding interface
The energy minimizing procedure discussed in the previous section assumes an invariant
cross-section for the non-occluding liquid column. The non-occluding liquid column with
a uniform configuration attains stable equilibrium when the total free energy reaches a
local minimum. However, in reality, for a long droplet with a finite volume bounded in a
capillary tube, the cross-sectional shape can keep invariant in the mid-part segment of the
droplet, but naturally varies when approaching the ends. In a concentric annular capillary,
there is possibly a non-occluding liquid column having two 2-D configurations (i.e.
bridging and non-bridging 2-D configurations), as the non-occluding 2-D configuration
near the ends of the long droplet can differ from that in the mid-part segment (e.g. see
figure 3a,b). In this case, the liquid column can attain the equilibrium only under the
condition that the 2-D configuration in the mid-part segment corresponds to a lower energy
(serves as a supplementary condition for the existence of the 3-D non-occluding interface).
Therefore, a comparison should be made between the minimum energies of the 2-D
bridging configuration (represented by Φmin,Br) and the 2-D non-bridging configuration
(represented by Φmin,N). We illustrate this effect through the SE modelling results of the
3-D interfaces in a specific set of cases (see figure 3), in which the tube geometry and the
contact angle are fixed while the Bond number varies.
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Multistability of long droplet in horizontal capillary tube

Consider the 3-D interface with bridging configuration (the corresponding SE initial
geometry is shown in figure 10c in Appendix C). As shown in figure 3(a,b), the
3-D interface bridges the rod in the mid-part of the liquid column while there exist
non-bridging segments near the ends. The axial surface tension force along with gravity
can affect the length of the non-bridging segment, and further makes sense in terms of
the equilibrium of the 3-D interface. The value of Φmin,N −Φmin,Br decreases with an
increase in Bond number (i.e. an increase in the gravity relative to the surface tension
force), leading to the non-bridging segment longer and the bridging segment shorter.
The 3-D bridging interface can attain the equilibrium (the converged SE result) as long
as Φmin,N>Φmin,Br. However, when the Bond number increases to a value leading to
Φmin,N<Φmin,Br, the bridging segment cannot hold and is pulled down by the gravity,
and thus, the 3-D bridging interface cannot attain the equilibrium (the corresponding SE
result is non-converged) so that only the non-bridging solution exists, corresponding to
the non-bridging 3-D configuration with the interface under the rod, as seen in figure 3(c).
Regarding this situation, if the bridging interface starts in equilibrium at a Bond number
satisfying Φmin,N>Φmin,Br, we expect that the bridging interface will change into the
non-bridging interface under the rod when the Bond number exceeds a critical value and
results in Φmin,N<Φmin,Br.

In addition to the 3-D bridging interface mentioned above, a 3-D non-bridging droplet
covering the rod also refers to different types of 2-D configurations (see the SE result
for the point Q1 in figure 7c in § 3.2.2 or the SE result in figure 10d in Appendix C).
In this case, the interface is non-bridging with covering the rod in the mid-part of the
liquid column, and the interface is non-bridging with staying under the rod near the
ends. Furthermore, there exist two bridging segments each having a short distance from
one end. Likewise, the equilibrium for the corresponding 3-D interface is permitted if
Φmin,Br>Φmin,N and is not permitted if Φmin,Br<Φmin,N.

Regarding the above two types of 3-D interface (the 3-D bridging interface and the 3-D
non-bridging interface covering the rod), a critical condition on equilibrium can be given
as

Φmin,N −Φmin,Br = 0. (2.9)

By solving (2.9), we can obtain the transitional Bond number for a specific 3-D interface.
When the Bond number is larger than the transitional Bond number, the corresponding
3-D interface cannot attain equilibrium, such as for the cases denoted by dotted curves in
figure 2(b,c). In addition, the 3-D non-bridging droplet with the interface staying under
the rod (see figure 3c) has only one 2-D configuration, and thus, there is no need for
comparison between the minimum energies of different 2-D configurations.

Notably, despite the possibly different types of the cross-section configuration near the
ends for the 3-D non-occluding interface, we still name the corresponding droplet (if it
exists in stable equilibrium) according to the middle cross-section configuration, which is
expected to take up the majority of the liquid column under the condition of a sufficiently
large liquid volume.

2.3. Determination of the permitted existence of occluding interface
In addition to the liquid non-occlusion, the liquid occlusion is another possibly liquid state
for the droplet with a sufficient volume in a capillary tube. In this section, the existence of
the occluding interface in a circular or concentric annular capillary tube is analysed. We
assume the tube is occluded by a droplet with a very large volume. The length of the liquid
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plug has the relationship as

LP ≈ V/|Ω|, (2.10)

where Ω is the area of the cross-section of the tube. The total free energy of the liquid
plug is expressed as

EP = −σLP|Σ | cos γ = −|Σ | cos γ
|Ω| σV, (2.11)

where Σ is the perimeter of the tube. Note that only the wetting energy is considered in
(2.11). This is because, for a sufficiently long liquid plug, the free surface energy can be
neglected compared with the wetting energy, and the gravitational energy is zero as the
centroid of the plugged liquid in a circular tube or a concentric annular tube lies on y = 0.
In the case of the concentric annular tube, the total length of perimeter |Σ | = |Σo| + |Σi|,
where Σo and Σi are the outer and inner perimeters.

We then let

ΦP = −|Σ | cos γ
|Ω| . (2.12)

From (2.3) and (2.11), the difference in free energy of non-occluding configuration and
occluding configuration can be expressed as

E − EP = (Φ −ΦP)σV = |Γ | − |Σ∗| cos γ + |Ω∗||Σ | cos γ /|Ω| + l−2
ca
∫
Ω∗ y dx dy

|Ω∗| σV.

(2.13)
Note that the expression

(Φ −ΦP)|Ω∗| = |Γ | − |Σ∗| cos γ + |Ω∗|
|Ω| |Σ | cos γ + l−2

ca

∫
Ω∗

y dx dy (2.14)

is just the functional given by Manning et al (2011) to introduce the existence criterion for
an occluding surface in a tube in a transverse force field. That is, only when the functional
(2.14) keeps positive for any 2-D interface, the occluding capillary surface is permitted,
and it is stable to the linearized perturbations (Finn 1986; Manning et al 2011). It follows
that a stable occluding surface exists if Φmin −ΦP > 0 for both of the two non-occluding
configurations and does not exist if Φmin −ΦP < 0 for any non-occluding configuration.
This suggests that the capillary plug in a tube cannot form when the non-occluding
interface has a lower free energy than the occluding interface. In addition, it also implies
that when the multistability occurs, the occluding configuration (if it exists) always has the
lowest free energy compared with any possible non-occluding configurations.

The critical condition for the existence of the liquid plug in a concentric annular tube
can be given by

min(Φmin,N, Φmin,Br)−ΦP = 0. (2.15)

For the circular tube case, (2.15) is reduced to Φmin,N −ΦP = 0.
The above derivation only declares the existence or non-existence of the occluding

interface. An extra numerical procedure is required to identify the shape of the occluding
capillary surface, for which the SE modelling is used (the corresponding SE initial
geometry is shown in figure 10a in Appendix C).
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Multistability of long droplet in horizontal capillary tube

3. Results

In this section, the liquid states in a capillary tube are investigated with gradually
increasing the Bond number at a contact angle. We initially analyse the case of circular
capillary (seen as a special case of annular capillary), and then analyse the case of
concentric annular capillary. The effect of contact angles of the liquid on the walls of
the capillary tube is also investigated. The multistability of a liquid in a capillary can
be observed. Notably, the volume of the liquid is considered to be sufficiently large, and
is kept constant for the different possibly liquid configurations when the multistability
occurs. The results in this section mainly come from the theoretical model described in
§ 2. We also present some SE modelling results, which are used for illustrating the shape
of the 3-D interfaces and validating the existence of multistability.

3.1. Circular capillary

3.1.1. Droplet configurations
As expected, we found that there are two configurations for a sufficiently large amount
of liquid in an open circular capillary tube in a transverse force field, which consists of
a liquid occluding configuration and a non-occluding long sessile droplet configuration
located on the bottom of the cross-section (figure 4), which is also called the liquid
non-occluding non-bridging configuration in a concentric annular capillary tube.

The differences in free energy of the non-occluding configuration (represented by Φ)
and the occluding configuration (represented by ΦP) at different contact point positions
α for γ = 15° are depicted in figure 4(a). Note that ΦP given by (2.12) is a constant for
the fixed tube geometry and contact angle. In this case, the curve in figure 4(a) is actually
equivalent to the variation of free energy of the non-occluding droplet with the potential
interfaces within the realizable contact line (contact point in two dimensions) positions.
According to the results, the local minimum Φmin,N for the non-occluding droplet occurs
when the Bond number exceeds a critical value Boc,N. For the situation in figure 4,
the critical value is Boc,N = 0.7864 (see the case of Bo = 0.7864 in figure 4a), and the
corresponding energy curve represents the limiting case for the non-existence of a local
minimum. For the case of Bo = 0.5, the point at the lowest value of α reaches the global
minimum energy. However, such a point represents the boundary of the realizable interface
with respect to the contact line position and cannot be identified as a stable equilibrium.
A capillary surface in stable equilibrium necessarily reaches a local minimum energy,
as derived from the positive second variation of potential energy for the stable system
(Myshkis et al 1987). When the Bond number is larger than 0.7864, a local minimum
appears on the energy curve, permitting the existence of a stable equilibrium for the
non-occluding configuration. This indicates that there is a certain threshold of gravity
above which the droplet with a sufficiently large volume in the circular tube can maintain
the non-occluding configuration. With Bo increasing (i.e. the relative strength of gravity
to surface tension increasing), the non-occluding interface naturally confines more to the
bottom (compare the cross-sections of Q1, Q2 and Q3 in figure 4a, and observe the increase
in α as Bo increases shown in figure 4b) with a lower value of Φmin,N, which leads to a
longer droplet. When Φmin,N −ΦP< 0 (i.e. for the cases of Bo> 1.6179 in figure 4), the
liquid plug cannot form. Consequently, there is an upper limit value of Bond number Boc,P
for the occluding interface, which is identified by (2.15).

Figure 4(b) presents the value of Φmin,N −ΦP for various Bo. The Boc,N corresponds
to the red vertical line, and the Boc,P corresponds to the black vertical line. When
Bo>Boc,N, there is the local minimum Φmin,N and the non-occluding configuration
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Figure 4. Free energy of a droplet with a sufficiently large volume in a circular capillary for γ = 15°:
(a) (Φ −ΦP) −α curves for non-occlusion for different Bond numbers and (b) (Φmin −ΦP) − Bo curve and
α− Bo curve for the non-occluding configuration reaching the local minimum energy, and 3-D droplet shapes
with the liquid volume of 10 for the representative cases of the three phases ( P, liquid plug; B12, bistability in
either liquid plug or non-bridging non-occlusion; and N, non-bridging non-occlusion) directly computed via
SE. The dot-dashed line denotes the line Φ −ΦP = 0 in panel (a) and Φmin −ΦP = 0 in panel (b). In panel
(b), only a half-segment is shown for the non-occluding non-bridging droplet.

in stable equilibrium is permitted. Otherwise, there is not Φmin,N within the realizable
contact line positions, and the non-occluding configuration does not exist in stable
equilibrium. When Bo<Boc,P, the relation Φmin,N −ΦP> 0 is satisfied, meaning that
the liquid plug can occur. Therefore, for a Bond number in the region between the red
line and black line (Boc,N<Bo<Boc,P), an interesting phase of the bistability in liquid
plug or non-bridging non-occlusion (B12) can occur, indicating that the liquid with a large
volume is in either plug or non-bridging non-occlusion. As Bo varies from 0 to a large
enough value, the three phases, i.e. plug, B12 bistability, and non-bridging non-occlusion,
appear in turn (see figure 4b). The liquid non-occlusion or occlusion is mainly determined
by the competition effect of the transverse gravity and the surface tension force.

Three-dimensional views of droplets with a sufficient volume for the representative
cases (Bo = 0.5, 1.2 and 1.7) of the three phases directly computed via SE with two
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Multistability of long droplet in horizontal capillary tube
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Figure 5. Three regions in a two-parameter space (γ , Bo). The black curve and the red curve denote Boc,P and
Boc,N, respectively. The inclined lines and the shading in grey represent the non-occlusion and the existence of
the plug, respectively. Thus, the region of B12 bistability are shaded in grey with incline lines.

different initial conditions (see Appendix C) are shown in figure 4(b). Here, the volumes
of the 3-D droplets in SE are set to a not-so-large value of 10 to display the views of the
liquid tongues clearly. The results calculated by using SE validate well the existence of the
three phases, especially the occurrence of bistability.

3.1.2. Phase diagram
Three regions corresponding to the three phases mentioned above are divided by the Boc,P
curve (the black curve) and the Boc,N curve (the red curve) in a two-parameter space (γ ,
Bo), as shown in figure 5. The contact angle studied here ranges from 1° to 179° at intervals
of 1°. As excepted from figure 4(b), with Bo increasing, the plug configuration, the B12
bistability and the non-occluding non-bridging configuration appear in turn in the lower,
middle and upper regions in figure 5.

The results of Boc,P representing the upper limit Bond numbers for occluding droplet
are consistent with those given by Manning et al (2011). The curve for Boc,P is symmetric
with respect to γ = 90° at which the maximum is attained. The symmetry of the Boc,P
curve can be attributed to the duality of solutions for the occluding interface in a circular
tube with respect to the wettability. That is, the solution of the occluding interface in a
circular tube at a contact angle γ and the contact angle 180° − γ can exist in pairs and
follow a symmetry (e.g. see figure 9 in Appendix A). One of the reasons for this duality is
the Lagrange parameter for the occluding interface at a contact angle γ being the opposite
to that at 180° − γ (see Appendix A).

For the non-occluding droplet, the Boc,N curve prescribes the lower limit Bond numbers,
which is asymmetric with the maximum at approximately γ = 102°. Unlike the occluding
interface, the duality with respect to the wettability does not exist for the non-occluding
interface under a transverse gravity. This can be attributed to the fact that the opposite
relation between the Lagrange parameters at γ and at 180° − γ is not necessarily true for
non-occluding interface (e.g. see the cases of γ = 15° and γ = 165° shown in figure 2a).
The non-existence of the duality results in the asymmetry of the Boc,N curve. In addition,
the Boc,N is found to be always larger than zero for any contact angle. This indicates
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that the sufficiently large bounded droplet with non-occluding interface cannot exist in
the circular tube in a zero-gravity environment. Previous research has reported that under
zero gravity, the existence of non-occluding droplet in a circular tube is constrained by
a maximum stable volume which depends on the contact angle (Roy & Schwartz 1999;
Collicott, Lindsley & Frazer 2006). The present results suggest that this maximum stable
volume disappears when introducing a transverse gravity field and satisfying Bo>Boc,N,
implying that transverse gravity has a stabilizing effect on the non-occluding droplet in
the circular tube. The asymmetric Boc,N curve shown in figure 4 also suggests the fact
that larger gravity is needed to pull the droplet downwards to form a stable non-occluding
interface for a contact angle γ > 90° compared with the contact angle 180° − γ .

Above the Boc,N curve and below the Boc,P curve is the B12 region, in which the
configuration of the droplet can be either occluding or non-occluding. Within the B12
region, there exists a free-energy barrier between the two configurations, and the occluding
configuration always has a lower energy than the non-occluding configuration (i.e.
Φmin,N −ΦP> 0 for such as the B12 part depicted in figure 4b). When the bistability
occurs, both of the two configurations can reach the local minimum energies and are
stable to small perturbations. However, for some larger perturbation, the configuration
with a lower energy is expected to be more stable (Collicott et al. 2006). Therefore, the
occluding droplet is more stable in the B12 region. The free-energy barrier disappears (i.e.
Φmin,N −ΦP = 0) for the cases on the Boc,P curve. As the symmetry of the Boc,P curve
and the asymmetry of the Boc,N curve shown in figure 5, the Bond number range for the
B12 bistability at a contact angle γ > 90° is smaller than that at 180° − γ , and the B12
bistability nearly dissipates when the contact angle approximates to 180°.

3.2. Concentric annular capillary

3.2.1. Droplet configurations for γ = 15°
To examine the effect of inner wall on the liquid states, a concentric annular capillary
is considered in this section. In addition to the liquid occluding configuration and
non-occluding non-bridging configuration presented in the circular tube case, the
non-occluding bridging configuration of the droplet can occur in an annular capillary.

The free energy as a function of contact line position for the non-bridging and bridging
configurations at γ = 15° is plotted in figure 6(a,b), respectively. The contact angle γ = 15°
is chosen as a representative case for the hydrophilic condition (γ < 90°). In figure 6(a),
the disconnection of the curves for the non-bridging configuration is found. This is because
the inner wall results in the non-existence of non-bridging interfaces at some contact line
positions α. Furthermore, it does not appear that the disconnected curves will join up
smoothly with non-existing curve segments. For example, for Bo = 2.5 in figure 6(a), the
energy at α= 32.4° is obviously lower than that at α= 48.7°. This is reasonable because
the interface for the former is over the inner wall, but the interface for the latter is below
the inner wall, while the inner circle perimeter has a non-negligible effect on the energy for
the former (not for the latter), as shown in the expressions (2.4) and (2.5). The interface
reaching the local minimum energy is under the inner wall, which is a common feature
observed in the non-bridging configuration under the hydrophilic condition. In addition,
if the non-bridging configuration can exist in equilibrium, the inner wall has no effect on
the shape of the interface (see the cases of Bo = 1.2, Bo = 1.7 and Bo = 2.5 in figures 4a
and 6a). In figure 6(b), the curve for bridging configuration corresponds to a smaller
range of the contact line positions for realizable interfaces than that for a non-bridging
configuration at the same Bond number. This difference arises from the shape constraint
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Multistability of long droplet in horizontal capillary tube

α (deg.)α (deg.)

–10

–8

–6

–4

–2

0

2

–1

0

1

2

3

4

Bo = 0.5
Bo = 1.2
Bo = 1.7

Bo = 1.8818
Bo = 2.5

–1

0

1

2

3

4

Bo = 0.5
Bo = 1.2
Bo = 1.7

Bo = 2.2225
Bo = 2.5

Bo = 1.2

P Br (point Q4)

N (point Q2)

Bo = 1.7

P

For Br

N (point Q1)

Enlarged view 

Φ
m

in
–

 Φ
P

P

For N

Q2Q1 Q3
Q5Q4 Q6

Q6

Q3

Q2

Q1

Q3

1500 30 60 90 120 150 180 1200 30 60 90

Q5

Q4

Q6

Φ
–

 Φ
P

Boc,P

N
0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

–0.5

0

0.5

1.0

Q1

Q4

Q2

Q5

Boc,N Boc,Br Botr,Br

B12TB12

Bo
0

90

180

α
 (

d
eg

.)

2 4 6 8 10 12

(a)

(c)

(b)

Figure 6. Free energy of a droplet with a sufficiently large volume in a concentric annular capillary
(χ = 0.1) for γ = 15°: (Φ −ΦP)–α curves for different Bond numbers for (a) non-bridging and (b) bridging
non-occlusion and (c) (Φmin −ΦP)–Bo curves and α–Bo curves for the non-bridging (denoted by red curves)
and bridging (denoted by blue curves) configurations reaching the local minimum energies, and 3-D droplet
shapes with the liquid volume of 10 for the representative cases of the two new phases directly computed via SE.
The dot-dashed line denotes the line Φ −ΦP = 0 in panels (a,b) and Φmin −ΦP = 0 in panel (c). In panel (c),
the dashed and solid segments of each curve represent the non-existence and existence of the corresponding
configuration, respectively; P, B12, T and N respectively denote liquid plug, bistability in either plug or
non-bridging non-occlusion, tristability in either plug, non-bridging non-occlusion or bridging non-occlusion,
and non-bridging non-occlusion, respectively; only a half-segment is shown for the non-occluding non-bridging
droplet.
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on the bridging configuration that the left and right halves of the interface do not touch
each other.

For the non-bridging or bridging configuration in a concentric tube, only when
exceeding a lower limit of Bond number (Boc,N for non-bridging configuration and
Boc,Br for bridging configuration) can the minimum energy exist, and the 2-D equilibrium
interface tends to move towards the bottom of the tube with the Bond number increasing.
For the bridging configuration, an upper limit of Bond number for the existence of the
minimum energy occurs when the left and right halves of the 2-D equilibrium interface
just touch each other, while for the non-bridging configuration, no such upper limit has
been found within a significantly large range of Bond numbers (e.g. 0 ≤ Bo < 100).

For the situation shown in figure 6, the 3-D bridging interface can change into the
non-bridging interface when increasing the Bond number and reaching the condition
Φmin,N<Φmin,Br. The corresponding transitional Bond number Botr,Br is determined by
(2.9), which corresponds to the intersection point between the local minimum energy
curves for the two non-occluding configurations (see figure 6c).

Regarding the occluding interface, the equilibrium is permitted below the corresponding
critical Bond number Boc,P, which is theoretically determined by (2.15) based on the
smaller Φmin of the two non-occluding configurations for each Bond number. In this case,
Boc,P is identified when Φmin,N −ΦP = 0 (see figure 6c).

Figure 6(c) presents the values of Φmin,N −ΦP and Φmin,Br −ΦP at various Bond
numbers. The curves for non-bridging configuration and bridging configuration start
from Boc,N and Boc,Br, respectively. The dashed portion of the curve for the bridging
configuration represents the region of Bond number Bo>Botr,Br, indicating the
non-existence of the non-occluding droplet with bridging configuration in equilibrium as
Φmin,N<Φmin,Br. Note that the upper limit Bond number for the existence of Φmin,Br is
found to be much larger than Botr, and accordingly, makes no sense on the equilibrium of
the bridging droplet.

In figure 6(c), the phases for the equilibrium state of the long droplet in a concentric
tube are identified based on Boc,N (red vertical line), Boc,Br (blue vertical line), Botr,Br
(orange vertical line) and Boc,P (black vertical line). In this situation, there are the plugged
configuration for Bo smaller than that for the red line (Bo<Boc,N), the B12 bistability (in
either plugged configuration or non-occluding non-bridging configuration) for Bo between
the red and the blue lines (Boc,N<Bo<Boc,Br) and between the orange and black lines
(Botr,Br<Bo<Boc,P), and the non-occluding non-bridging configuration for Bo larger
than that corresponding to the black line (Bo>Boc,P) all also occurring for the circular
capillary case.

In addition to the above states, tristability in either plugged, non-bridging or bridging
configuration occurs for Bo between the blue and orange lines (Boc,Br <Bo<Botr,Br,
e.g. see the case Bo = 1.2 of SE simulations with three different initial conditions, see
Appendix C). The SE calculated results shown in figure 6(c) clearly prove the existence of
the tristability.

3.2.2. Droplet configurations for γ = 165°
Different from the cases in a circular capillary tube, the contact angle has a considerable
effect on the liquid states in a concentric annular capillary tube. Another representative
contact angle γ = 165° is used for further investigation, as shown in figure 7.

Due to the hydrophobic property, the gas–liquid interface of the non-bridging
configuration at the local minimum energy is over the inner circle for a not-so-large Bo
(e.g. see the inset for case Bo = 2.1 in figure 7a) and becomes below the inner circle when
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Figure 7. Free energy of a droplet with a sufficiently large volume in a concentric annular capillary (χ = 0.1)
for γ = 165°: (Φ −ΦP)–curves for different Bond numbers for (a) non-bridging and (b) bridging non-occlusion
and (c) (Φmin −ΦP)–Bo curves and α–Bo curves for the non-bridging (denoted by red curves) and bridging
(denoted by blue curves) configurations reaching the local minimum energies, and 3-D droplet shapes with
the liquid volume of 10 for the representative cases of the three new phases directly computed via SE. The
dot-dashed line denotes the line Φ −ΦP = 0 in panels (a,b) and Φmin −ΦP = 0 in panel (c). In panel (c),
the dashed and solid segments of each curve represent the non-existence and existence of the corresponding
configuration, respectively; P, B13, T, B23, Br and N respectively denote liquid plug, bistability in either plug
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Bo increases to a large enough value (e.g. see the inset for case Bo = 7 in figure 7a).
However, for some medium Bo (e.g. the case Bo = 6 in figure 7a), the local minimum
energy does not exist for the non-bridging configuration.

The variations of the local minimum energies for the two non-occluding configurations
with respect to the Bond number are presented in figure 7(c). For the non-bridging
configuration, the local minimum energy curve is disconnected due to the absence of
the non-bridging interface in equilibrium at some medium Bond numbers. The first
part of the curve starting from Boc,N (the red vertical solid line) corresponds to the
non-bridging interface over the inner wall, while the second part starting from Bo∗

c,N(the
red vertical dotted line) corresponds to the non-bridging interface under the inner wall. For
the bridging configuration, the corresponding energy curve starts from Boc,Br (the blue
vertical solid line) and refers to a much larger range of Bo than that in the case γ = 15°.

As shown in figure 7(c), the transitional Bond number Botr,N (the green vertical
solid line) for the non-bridging configuration is identified according to the intersection
point of the first part of the energy curve for non-bridging configuration and the energy
curve for the bridging configuration. However, as the second part of the energy curve
for the non-bridging configuration is consistently below the energy curve for bridging
configuration, the transitional Bond number Botr,Br (the orange vertical solid line) for
the bridging configuration here is equal to Bo∗

c,N (the orange vertical solid line and the red
vertical dotted line coincide with each other) and does not satisfy (2.9). The dashed portion
of an energy curve indicates that the Bond numbers for the cases exceed the transitional
Bond number and the long droplets for the corresponding configuration do not exist in
equilibrium. Regarding the liquid plug, the corresponding critical Bond number Boc,P
(the black vertical solid line) can be identified by Φmin,Br −ΦP = 0 in this case.

As shown in figure 7(c), in addition to the only plug phase (for Bo<Boc,Br), the
tristability (for Boc,N <Bo<Boc,P) and the only non-bridging non-occluding phase (for
Bo>Botr,N) all also occurring in figure 6, new types of phases for the droplet equilibrium
state are found. There exist the B13 bistability (in either the plugged or non-occluding
bridging configuration, see the case Bo = 1.2 in figure 7c) for Bo between the blue
and red vertical solid lines (Boc,Br <Bo<Boc,N), and the B23 bistability (in either
the non-occluding non-bridging configuration or bridging configuration, see the case
Bo = 2.1) for Bo between the black and orange vertical solid lines (Boc,P<Bo<Botr,Br).
In addition, there is only the non-occluding bridging configuration for Bo between the
green and orange solid lines (Botr,N <Bo<Botr,Br, e.g. see the case Bo = 3.5).

3.2.3. Phase diagram
The phases for the concentric annular capillary tubes with different inner-to-outer radius
ratios are presented in the two-parameter space (γ , Bo) in figure 8, and the contact angle
studied here ranges from 1° to 179° at intervals of 1°. Due to the insertion of a central
rod, the non-occluding bridging configuration occurs, which results in the more complex
property than the case in a circular capillary tube. By comparisons with the three regions
for a circular capillary tube, there are seven regions in a two-parameter space (γ , Bo) in
figure 8. The representative liquid configurations (directly computed by SE) of the four
multistability phases are shown in figures 6(c) and 7(c).

The results of Boc,P (the black curves in figure 8) representing the upper limit Bond
numbers for occluding droplet are consistent with those given by Zhou et al (2021). The
Boc,P curve here follows the symmetry with respect to γ = 90° similar to the circular tube
case, because the duality of the solutions also occurs for the occluding interface in the
concentric annular tube. For the non-occluding droplet, the lower limit Bond numbers for
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both the non-bridging configuration Boc,N (the red curves in figure 8) and the bridging
configuration Boc,Br (the blue curves in figure 8) always exist and are larger than zero,
which indicates the stabilizing effect of gravity on the non-occluding liquid with large
volume in the concentric annular tube. Interestingly, the value of Boc,N varies significantly
with the changes in the contact angle γ and the inner-to-outer radius ratio χ , while Boc,Br
is relatively insensitive to these conditions, as shown in figure 8. In addition, for the
majority of contact angles, Boc,Br is smaller than Boc,N and also smaller than the lower
limit Bond number for the non-occluding configuration in the circular tube (see figure 5).
Hence, under the low-Bond-number condition, the concentric annular tube is more likely
to permit the non-occluding state compared with the circular tube, owing to the existence
of a bridging configuration.

When Bo<Boc,P, the liquid plug is permitted and always has the lowest energy
compared with other configurations (if they exist). Accordingly, within the B12, B13 and
T regions, the occluding configuration is the most stable (for some larger perturbation).
Note that the B13 bistability only occurs in a single region at medium Bond numbers.
However, the B12 bistability occurs at small enough contact angles and has upper and
lower disconnected small regions. The tristability regions contain a small region at large
enough contact angles (as shown in the enlarged views in figure 8a,b) and a medium-large
region at not-too-large contact angles and both of them occur at not-too-large Bond
numbers.

The B23 bistability can also occur in two distinct regions: a small region occurring at
large enough contact angles (as shown in the enlarged views in figure 8a,b), and a large
region in a broader range of contact angles and Bond numbers. The Botr,N curve (the green
curve) is the upper boundary of the former B23 region, within which the non-occluding
non-bridging configuration has a lower free energy and therefore is more stable. However,
the Botr,Br curve (the orange curve) is the upper boundary of the latter B23 region, within
which the non-occluding bridging configuration has a lower free energy and is more
stable.

For χ = 0.1, with Bo increasing from 0 to a large enough value, the case γ = 15° can
undergo the phases, i.e. plug, B12 bistability, tristability, B12 bistability and non-bridging
non-occlusion, in turn. Therefore, in the above analysis, we choose γ = 15° as an example
(figure 6) to study the liquid states in a hydrophilic condition (γ < 90°), and then choose
the supplementary angle γ = 165° (the case undergoes the phases, i.e. plug, B13 bistability,
tristability, B23 bistability, bridging non-occlusion and non-bridging non-occlusion, in
turn) as an example (figure 7) to study the liquid states in a hydrophobic condition
(γ > 90°). The most phases occur for the contact angle ranging 139°<γ < 162°, where
Bo∗

c,N exists and is smaller than Botr,Br. For such cases, there exists an additional region
Bo∗

c,N < Bo < Botr,Br for the B13 bistability compared with the case γ = 165°. For the
contact angle ranging 162°<γ < 179°, Bo∗

c,N exists but is equal to Botr,Br. When the
radius ratio χ increases to a larger value (e.g. χ = 0.3, see figure 8c), Bo∗

c,N does not
exist for any contact angle, which indicates that the non-bridging interface over the inner
wall is not permitted for the non-occluding droplet in the concentric annular tube.

With the radius ratio increasing from 0.1 to 0.3, the large-contact-angle one of the two
regions of the B23 bistability, the large-contact-angle one of the two tristability regions, and
the upper larger one of the two regions of the B12 bistability gradually dissipate. Tristability
only occurs at small contact angles. However, the B12 bistability can occur in a larger range
of contact angles. It is concluded that with the radius ratio increasing, the number of the
phases at a very large or a very small contact angle is reduced a little, but the radius ratio
does not change the number of phases at remaining contact angles.

996 A28-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

68
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.689


Multistability of long droplet in horizontal capillary tube

4. Conclusions and discussion

In this paper, a mathematical model is developed to determine the possible stable states of
a sufficiently large amount of liquid in a capillary tube. The stable states of a sufficiently
large amount of liquid in a circular or concentric annular capillary tube are theoretically
investigated. The effects of the parameters, i.e. the Bond number, the contact angles and
the radius ratio (only existing for an annular capillary tube) are examined. The following
conclusions are drawn.

It is clear from our analysis that a sufficiently large amount of liquid leads to
the interesting physical phenomenon, i.e. the existence of multistability of gas–liquid
interface. Bistability is found for a droplet in an open circular capillary tube. The states of
the gas–liquid interface can depend upon the parameters, i.e. the Bond number, the contact
angles and the radius ratio (only for an annular capillary tube, here). A two-parameter
space (γ , Bo) for an open circular capillary tube is divided into three regions, i.e. plug
region, bistable region and non-occluding region, and the corresponding three phases
can occur at different Bond numbers regardless of the contact angle. The plug phase
exists from zero Bond number to a relatively low Bond number, while the non-occluding
phase exists from a relatively high Bond number to infinity. The bistability region is
situated between the plug region and the non-occluding region. The bistable region size
is determined by the contact angle, but very small for the contact angle approximating to
180°. When the bistability occurs in a circular tube, the liquid plug has a lower total free
energy.

A two-parameter space (γ , Bo) for an annular capillary tube is divided into seven
regions. For a droplet in a concentric annular capillary tube, three types of bistable
regions and a tristable region are found, all of which are dependent on the contact
angle. The B13 and B23 bistabilities and the bridging configuration possibly do not appear
for a small enough contact angle, while the B12 bistability does not appear for a large
enough contact angle. The occurrence or non-occurrence of different multistable phases
at a contact angle and the region sizes if existing are also affected significantly by the
radius ratio. Small radius ratio can permit the non-occluding interface in equilibrium
over the inner wall, leading to the occurrence of the B23 bistability and the tristability
in the annular capillary tube under a hydrophobic condition (γ > 90°). Large radius ratio
contributes to the formation of the stable bridging interface, and the region of bridging
non-occlusion and the region of the B23 bistability become larger for a larger radius
ratio. Additionally, for a capillary tube, a large enough Bo can lead to the occurrence
of absolute non-occlusion, while a small enough Bo can result in the existence of absolute
occlusion. Within the B12, B13 and T regions, the liquid plug has a lowest total free
energy. When the B23 bistability occurs for a large enough contact angle at a medium
Bond number, the non-occluding non-bridging configuration has a lower free energy.
However, when the B23 bistability occurs for a not-so-large contact angle or occurs at
a very high Bond number, the non-occluding bridging configuration has a lower free
energy.

The multistability of liquid in a capillary tube includes the occluding configuration and
one or more non-occluding configurations. In the circular and the concentric annular tube,
there always exists a non-negative lower limit Bond number for the stable non-occluding
configuration (either bridging or non-bridging configuration), indicating the stabilizing
effect of transverse gravity on the non-occluding liquid. The inner wall of the concentric
annular tube induces the non-occluding bridging configuration that has a relatively smaller
lower limit Bond number for the majority of contact angles. When other factors (in
addition to gravity and the concentric annulus) contribute to the stable non-occluding
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configuration, we expect that further multistability (more than three liquid configurations)
can occur in the tube. Such factors could possibly be the rounded corners (Tan & Zhou
2024) or the gap induced by the eccentric annulus (Pour & Thiessen 2019), in which the
capillary force may stabilize the non-occluding liquid.

When the multistability occurs, different configurations of the liquid can exist and are
stable to small perturbations. However, for some larger perturbation, the configuration
with lowest energy will be the most probable state. In addition, during a physical
process over time, the hysteresis is expected to play an important role in determining the
liquid configuration. Take the circular tube case for example. If the long droplet in the
circular tube begins in the non-occluding (occluding) configuration with a large (small)
Bond number, the droplet is expected to keep the non-occluding (occluding) state when
decreasing (increasing) Bond number to a value within the bistable region due to the
hysteresis effect. The variation of the Bond number is related to the change in the strength
of gravity, or equivalently, the change in the magnitude of the acceleration of the system,
which can occur during the aircraft launch or landing process.

The results in this research are based on the prerequisite condition of a sufficiently
long liquid (or equivalently, a sufficiently large volume of the liquid) to form an
approximately invariant liquid cross-section along the axis direction of the tube. For
the liquid with a not-so-large volume, the shape of the non-occluding droplet cannot
be assumed cross-sectional invariant as the axial curvature of the gas–liquid interface
will make sense. Compared with a large volume, a small volume is more likely to
form a non-occluding configuration because the non-occluding droplet with a shorter
gas–liquid interface suffers lower risk of instability to the axial perturbations (Myshkis
et al 1987; Roy & Schwartz 1999). Hence, when the liquid volume is relatively small,
we expect the region of permitting the non-occluding configuration (either bridging or
non-bridging configuration) in the two-parameter space (γ , Bo) to be larger compared
with the present results. For the occluding configuration, though the shape of the interface
is independent of the liquid volume, there always requires a volume to form the liquid
plug. When approaching the critical Bond number for the liquid plug, the occluding
interfaces in a circular (Rascón et al 2016) or a concentric annular (Zhou et al 2021)
tube will be elongated by gravity, necessitating a larger volume to form the liquid plug.
Therefore, a fixed and relatively small liquid volume will result in a smaller region of
permitting the liquid plug in the two-parameter space (γ , Bo) compared with the present
results. Additionally, the liquid plug is no longer the energetically preferred in some
multistability cases of small volume as the occluding configuration can have a larger
gas–liquid interface, which can be validated by the SE calculations and was reported by a
previous study (Collicott et al. 2006). Moreover, for a small droplet, there can exist new
non-occluding configurations in the circular or the concentric annular tube such as the
liquid annulus partially covering the outer tube wall (Lv & Hardt 2021) and possibly the
sessile droplet or the pendant droplet on the inner tube wall (Soligno, Dijkstra & van Roij
2014).

This work provides a comprehensive analysis of the liquid configurations in a capillary
tube. Not limited to the circular or the concentric annular geometry, the analytical
framework can be extended to other geometries of the capillary tube. In addition, the
results in this research cover different usage environments of the capillary tube by
considering the factors of wettability, strength of transverse body force and tube size.
Some results have the potential to be helpful for designing or using a capillary tube. For
example, since the lower limit Bond number of the non-occluding bridging configuration is
relatively small and insensitive to the variation of the contact angle, the concentric annular
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tube is superior to the circular tube with respect to the non-occluding performance under
the low-Bond-number condition. Moreover, in certain microfluidic systems (Manning
2017), the transition between the occluding and the non-occluding states of a fluid channel
is required. This function can possibly be achieved based on the bistability of a capillary
such as the B13 bistability observed in a concentric annular tube with a large inner-to-outer
radius ratio at a low Bond number.
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Appendix A. Duality of occluding interfaces with respect to wettability

Considering a capillary tube with a circular cross-section, as shown in figure 1(a), we here
investigate the occluding interface (the capillary surface covering the whole cross-section
of the tube). The occluding interface in the tube can be expressed as z = u(x, y), where (x,
y) ∈Ω . Then, the Young–Laplace equation in three dimensions used for determining the
interface can be given by (Finn 1986; Manning et al 2011)

∇ · T u = l−2
ca y + λP, T u = ∇u

(1 + |∇u|2)0.5
, (A1a,b)

where λP is a Lagrange multiplier for the occluding interface arising from the volume
constraint of the liquid. The contact angle condition for the interface is expressed as

ν · T u = cos γ, (A2)

where ν denotes the unit exterior normal to the tube wallΣ . Integrating (A1a) overΩ and
applying the divergence theorem, we can obtain that∫

Ω

∇ · (T u) dx dy =
∮
Σ

(ν · T u) ds =
∫
Ω

(l−2
ca y + λP) dx dy. (A3)

Note that
∫
Ω

y dx dy = 0 for the circular tube where the centre of the cross-section lies on
y = 0. By substituting (A2) into (A3), it follows that

λP = |Σ |
|Ω|cos γ, (A4)

which only relates to the contact angle for a fixed geometry of the tube.
It can be found that for the circular boundary, the solutions for (A1) and (A2) can exist

in pairs in the form of z = u(x, y; γ ) and z+ = −u(x, −y; 180° − γ ). This indicates the
symmetry between the occluding interface in the circular tube at a contact angle γ and that
at 180° − γ (e.g. see figure 9). Not limited to the circular tube, it can be further deduced
that this duality of solutions also occurs for the occluding interface in the concentric
annular tube or in any other general tube whose geometry is up-down symmetric (i.e.
invariant under a 180° rotation).
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(a) (b)

y = 0

Figure 9. Occluding liquid configurations in a circular tube for Bo = 1 at (a) γ = 15° and (b) γ = 165° shown
in a side view. The occluding interfaces are obtained from the results of SE modelling.

Appendix B. Equations for stability of liquid non-occluding configurations.

To determine the stability of the non-occluding droplet, we solve the eigenvalue problem
for the second variation of the total energy functional of the system. The interface will
be stable if the minimum eigenvalue μmin > 0, while it will be unstable if μmin < 0. The
stability problem relating to the non-occluding droplet in a tube with free contact lines
is three dimensional. However, when the length of the droplet approaches to infinity, the
stability of the corresponding interface can be reduced to a plane problem concerning the
cross-section, as the planar perturbation withdrawing the volume conservation condition
will be the most dangerous in this case (Myshkis et al 1987). The associated eigenvalue
problem can be described as (Myshkis et al 1987; Slobozhanin & Alexander 2003; Zhang
& Zhou 2020)

−φ′′ + (l−2
ca cosψ − K2)φ = μφ on the interface, (B1)

−φ′
1 + χ1φ1 = 0, φ′

2 + χ2φ2 = 0 at the boundary points, (B2a,b)

where φ is a perturbation in the cross-sectional plane, μ is the eigenvalue, χ is the
boundary parameter, and the subscripts 1 and 2 denote the left and right boundary points
(see figure 1), respectively. The boundary parameters at the contact points are given by

χm = Km cos γm − K̄m

sin γm
, m = 1, 2, (B3)

where K = l−2
ca y + λ is the curvature of the liquid and K̄ is the curvature of the solid.

Note that we can only consider the left half of the interface due to the symmetry.
Therefore, for the non-bridging configuration (see figure 1a), we have K̄1 = 1/R and
γ 1 = γ at the contact point 1, and K̄2 = 0 and γ 2 = 90° at the contact point 2 (which is
on the symmetrical plane). Regarding the non-occluding bridging configuration, we have
K̄1 = 1/R and γ 1 = γ at the contact point 1, and K̄2 = −1/Ri and γ 2 = γ at the contact
point 2 (which is on the rod).

For a given interface, the corresponding eigenvalue problem (B1)–(B3) can be
numerically solved by the simple centred differences method (Pryce 1993), and then the
stability is identified by the minimum eigenvalue μmin.

Appendix C. Surface evolver modelling

Three-dimensional shapes of a sufficient amount of liquid in a circular or concentric
annular capillary tube are directly calculated by Surface Evolver (SE) (Brakke 1992).
The SE software minimizes the energy of a capillary surface subject to constraints by
using the gradient descent method. Starting with an initial state, the surface which is
discretized into a set of triangular facets is evolved down the energy gradient with each
computing iteration of SE. After enough iterations, the surface can reach a minimum
energy state (if it exists), in which the surface is regarded as an equilibrium surface.
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(a)

(b)

(c)

(d)

Figure 10. Initial geometries (the left column) and the corresponding converged solution (the right column)
of SE modelling on the (a) plug configuration, (b) non-occluding non-bridging configuration with the interface
under the rod, (c) non-occluding bridging configuration and (d) non-occluding non-bridging configuration with
the liquid surface over the rod in a concentric annular capillary tube. The radius of the tube in each case is set
to be unit, the radius of the rod is 0.1 and the actual liquid volume is 10. Here, γ = 15° and Bo = 1 in panels
(a–c), and γ = 165° and Bo = 1.8 in panel (d). Since the converged interface in panel (b) is too long in the axial
direction, only a half-segment is displayed.

Under a given set of conditions (geometrical size of the tube, contact angle and Bond
number), a capillary surface in different initial states could be evolved to the different
equilibria. We here take concentric annular capillary to illustrate the SE modelling on the
different liquid configurations. When χ = 0.1, γ = 15° and Bo = 1, the converged solutions
of all the three liquid configurations can be attained (shown in figure 10a–c), in which the
interface of non-occluding non-bridging configuration is under the rod. We also gave the
non-occluding non-bridging configuration with the interface covering the rod (shown in
figure 10d) in the case of χ = 0.1, γ = 165° and Bo = 1.8.

The liquid configurations in the concentric annular capillary are supposed to be
symmetric with aspect to the vertical plane of symmetry in a downward gravity field.
Thus, a symmetrical plane constraint is used on SE modelling and only half of the capillary
surface is computed to reduce computational time. The constraint on body volume should
be set as half of the actual liquid volume. The span of the initial interface in SE along the
tube axis can be set as L or Lp, which is determined by (2.2) or (2.10), respectively.

For plug configuration (see figure 10a), the two separate occluding interfaces are
computed, and notably, sufficient liquid volume is required to avoid the two occluding
interfaces contacting to each other during iterating. For non-bridging configuration with
the interface under the rod (see figure 10b), the rod has no effect on computing. Thus, it
is alright if the interface contacts to the rod before convergence, but for the converged
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interface, a check should be performed to ensure all the vertices on the interface
being out of the rod. For the non-occluding bridging configuration (see figure 10c) and
the non-occluding non-bridging configuration with the interface covering the rod (see
figure 10d), the interface is initially bounded by the inner and outer perimeters.

For better illustration, postprocessing is performed. We first obtain the complete
interface by duplicating the computed interfaces across the symmetrical plane, and then
recolour the interface and the walls of the tube. The results after postprocessing are shown
in figures 4(b), 6(c), 7(c) and 9(a,b).

In addition, the stability of the 3-D interface obtained by SE is checked. The SE program
provides the eigenvalue analysis on the Hessian matrix, which consists of the second
derivative of the energy in terms of the vertex coordinates. If all the eigenvalues are
positive, the interface is stable. To access the eigenvalue, a radial guide plane constraint
is used in place of the CONVEX constraint to tackle the gap between the straight grid
edge and the curved tube wall, as recommended in the Hint section of the SE manual
(Brakke 2013). Moreover, the grid is highly refined to further weaken the influence of the
gap (Chen 2003). Because of the substantial computational time required for this method,
only the SE results in figure 10 are tested as the representative cases, which includes all
the possible configurations of a 3-D interface in a concentric annular tube. It is found that
all the tested interfaces are stable.
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