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This paper shows that if the errors in a multiple regression model are heavy-tailed,
the ordinary least squares (OLS) estimators for the regression coefficients are tail-
dependent. The tail dependence arises, because the OLS estimators are stochastic
linear combinations of heavy-tailed random variables. Moreover, tail dependence
also exists between the fitted sum of squares (FSS) and the residual sum of squares
(RSS), because they are stochastic quadratic combinations of heavy-tailed random
variables.

1. INTRODUCTION

Financial data are often heavy-tailed. For instance, Jansen and de Vries (1991)
investigate the tail behavior of stock returns and find tail index estimates consistent
with a finite variance, but with infinite higher moments. The heavy-tailed nature of
financial data can distort statistical analysis, especially in small samples. Mikosch
and de Vries (2013) show that in an ordinary least squares (OLS) regression—
an econometric method often applied to financial data—the estimator for the
regression coefficient is heavy-tailed if the errors are heavy-tailed. As a follow-up
study, we explore the joint tail behavior of the OLS estimators. In particular, we
establish that the OLS estimators in a multiple regression model with heavy-tailed
errors are tail-dependent.

This study contributes to the literature of regression analysis with heavy-tailed
data. There are two streams of literature dealing with heavy-tails in regression: one
stream aims at finding more robust, or more efficient, estimation methods than
OLS, and the other aims at characterizing the behavior of the OLS estimator(s)
when the errors are heavy-tailed.

The first stream of literature addresses the concern of efficiency loss of the
OLS estimator when applied to severely heavy-tailed data with infinite variance.
Blattberg and Sargent (1971) examine the performance of the minimum sum of
absolute errors (MSAE) estimator and a class of best linear unbiased estimators
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in a regression model with stable Paretian distributed errors. They find that the
turning point in efficiency lies at a tail index of approximately 1.5: for lower values
of the tail index, the MSAE estimator performs considerably better than the OLS
estimator, while the OLS estimator performs only slightly better for higher values
of the tail index. Others have studied the OLS estimator in terms of robustness. For
example, He et al. (1990) investigate the robustness of regression estimators by
means of their “tail performance.” They show that when the errors follow heavy-
tailed distributions, the tail performance of the OLS estimator does not depend
on the sample size and is effectively as worse as with a single observation only.
By contrast, the MSAE, or least absolute deviations, estimator and least median
of squares estimators have considerably better tail performance and are therefore
also not expected to exhibit tail dependence.

The second stream of literature aims at describing the (tail) behavior of the OLS
estimators under heavy-tailed errors. Mikosch and de Vries (2013) is the only study
to provide small sample analytical results on the distribution of the OLS estimator
when the errors follow heavy-tailed distributions. Specifically, they find that the
OLS estimator is heavy-tailed in the case of a simple linear regression model with
additive or multiplicative errors. Consequently, approximations prescribed by the
central limit theorem do not suffice in small samples. Our study fits into the second
stream of literature. Compared to Mikosch and de Vries (2013), we go beyond the
simple regression model and study the tail dependence among the OLS estimators
in a multiple regression model with heavy-tailed errors. Furthermore, we study
the tail dependence between the regression fitted sum of squares (FSS) and the
residual sum of squares (RSS).

To establish the theoretical result in this study, we express the OLS estimators for
the regression coefficients as stochastically weighted sums of the errors. van Oordt
(2013) shows that positive deterministic linear combinations of positive heavy-
tailed random variables exhibit tail dependence. We extend this result in three
ways: (i) allowing for real-valued weights, (ii) allowing for stochastic weights, and
(iii) allowing for real-valued heavy-tailed random variables, of which the second
extension is the most technically involved one. The tail dependence between the
OLS estimators then follows from this extended result. Furthermore, the FSS and
the RSS are stochastically weighted sums of squares and cross products of the
errors. Consequently, their tail dependence can be established in a similar way.

In Section 2, we will define the multiple regression model and present the main
result on the tail dependence between the OLS estimators and that between the FSS
and the RSS. Section 3 illustrates the theoretical results by means of a simulation
study. Proofs are deferred to Section 4.

2. THEORY

2.1. Model Setup

Consider the multiple regression model

Yt = X1,tβ1 +·· ·+Xk,tβk +ηt, for t = 1,2,..,n, (1)
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under the conditions that (i) {ηt}n
t=1 is an identically and independently dis-

tributed (i.i.d) sequence of random variables, and (ii) {(X1,t, . . . ,Xk,t)}n
t=1 is an

i.i.d. sequence of k-dimensional random vectors containing explanatory variables,
independent of the error sequence {ηt}n

t=1. We assume that ηt follows a heavy-tailed
distribution, i.e., its distribution function is regularly varying. More specifically, a
random variable, or its distribution function F, is said to be regularly varying with
tail index α > 0 if there exists p,q ≥ 0 with p+q = 1 and a slowly varying function
L such that, as x → ∞,

F(−x)+1−F(x) ∼ x−αL(x),

lim
x→∞

F(−x)

F(−x)+1−F(x)
= q, lim

x→∞
1−F(x)

F(−x)+1−F(x)
= p.

(2)

Here, a slowly varying function L is defined by having the property L(λx) ∼ L(x)
as x → ∞, for any λ > 0 (see Bingham, Goldie, and Teugels, 1989). Condition
(2) is referred to as a tail balance condition. Note that this assumption on F is
semiparametric in the sense that it does not impose any restrictions on the moderate
levels of the distribution. We do not restrict the range of α: when α < 1, ηt does
not have a finite mean.

Denote the vectors Y = (Y1, . . . ,Yn)
′, Xi = (Xi,1,Xi,2, . . . ,Xi,n)

′, η = (η1,η2, . . . ,

ηn)
′, β = (β1,β2, . . . ,βk)

′, and the matrix X = (X1,X2, . . . ,Xk). The OLS estimator
for β is then given by β̂ = (X′X)−1X′Y = β + (X′X)−1X′η. Observe that the
difference between the OLS estimator and the corresponding true value is a
stochastic linear combination of η. For example, if k = 2, we can write β̂1 =
β1 +∑n

t=1 Ctηt and β̂2 = β2 +∑n
t=1 Dtηt, where

Ct = X1,t
∑n

j=1 X2
2,j −X2,t

∑n
j=1 X1,jX2,j∑n

j=1 X2
1,j

∑n
j=1 X2

2,j − (
∑n

j=1 X1,jX2,j)
2 ,

Dt = X2,t
∑n

j=1 X2
1,j −X1,t

∑n
j=1 X1,jX2,j∑n

j=1 X2
1,j

∑n
j=1 X2

2,j − (
∑n

j=1 X1,jX2,j)
2 . (3)

Here,
{
(Ct,Dt)

}n

t=1 is an identically distributed, but not independent, sequence of
random vectors. Consequently, we omit subscripts and write (C,D) whenever only
the distribution of (Ct,Dt) is involved.

We aim at calculating the tail dependence between the OLS estimators. We
define tail dependence between any two random variables Z1 and Z2 as

λZ1,Z2 := lim
u→1

P(Z1 > Qu(Z1)|Z2 > Qu(Z2)),

where Qu(Z) = inf{l : FZ(l) ≥ u} denotes the quantile of a random variable Z at
probability level u. Similarly, we define multivariate tail dependence between Zi

and the other random variables as

λZi|Z−i := lim
u→1

P
(
Zi > Qu(Zi)| Zj > Qu(Zj) ∀j �= i

)
,
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where Z−i is a shorthand notation for denoting all random variables Z1, . . . ,Zn

except Zi.

2.2. Tail Dependence Between the OLS Estimators

Consider model (1) with k = 2. We then have the following result for the tail
dependence between the OLS estimators.

THEOREM 1. Assume that the errors {ηt}n
t=1 in model (1), for k = 2, follow

a heavy-tailed distribution—as defined in (2)—with p,q > 0 and tail index α. In
addition, assume that the weights (C,D) satisfy E|C|α+ε,E|D|α+ε < ∞, for some
ε > 0, where (C,D) is defined as in (3). Then, the tail dependence between the OLS
estimators for β1 and β2 is given by

λβ̂1,β̂2
= pE(IA∩{D>0}(C+)α)+qE(IAc∩{D<0}(C−)α)

pE(C+)α +qE(C−)α

+ pE(IAc∩{C>0}(D+)α)+qE(IA∩{C<0}(D−)α)

pE(D+)α +qE(D−)α
, (4)

where I{.} is the indicator function, C+ := max {C,0}, C− := max {−C,0}, the
variables D+ and D− are defined similarly, and A is the event

A =
{ |C|α

|D|α <
pE(C+)α +qE(C−)α

pE(D+)α +qE(D−)α

}
.

Mathematically, Theorem 1 can be interpreted as showing that stochastically
weighted sums of regularly varying random variables are tail-dependent. This also
follows directly from the multivariate version of Breiman’s lemma (see Proposition
A.1 in Basrak, Davis, and Mikosch, 2002). Our result, however, is more specific
in that we have an explicit formula relating the level of tail dependence to the
distribution of the regressors. With the explicit formula, one can estimate the tail
dependence using the observed regressors (see Section 3 below). Following (4), the
level of tail dependence is determined by the tail index, α, and the joint distribution
of the stochastic weights (C,D). We resort to a simulation study in Section 3 to
illustrate the effect of these determinants.

One high-level condition required in Theorem 1 is E|C|α+ε,E|D|α+ε < ∞. In
Proposition 1 below, we provide sufficient conditions on the distribution of the
regressors which guarantee such a requirement.

PROPOSITION 1. Assume that the following conditions are satisfied:

1. For i = 1,2, either.
a. the common marginal distribution of Xi,t satisfies that, for some γ > 2α

n , c >

0, and x0 > 0, such that, for all x < x0,

P(|Xi,t| < x) ≤ cxγ,
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or
b. the common density function of Xi,t is bounded in the neighborhood of zero

and n > 2α.
2. There exist some c1 > 0, γ1 > 2α, and 0 < x1 < 1 such that, for all 0 < x < x1,

P

⎛
⎜⎝
(∑n

j=1 X2,jX1,j

)2

∑n
j=1 X2

1,j

∑n
j=1 X2

2,j

> 1− x

⎞
⎟⎠≤ c1xγ1 .

Then, there exists some ε > 0 such that E|Ct|α+ε < ∞ and E|Dt|α+ε < ∞.

We remark that the first condition in Proposition 1 is a requirement on the
marginal distribution of the regressors. It is similar to the condition in Lemma 3.6
of Mikosch and de Vries (2013). Note that for financial data, condition 1(b) may
not be likely to hold (see, e.g., Han, Cho, and Phillips, 2011). The second condition
in Proposition 1 requires that the probability of having two linearly dependent
regressors is sufficiently low. Finally, as an example, these conditions hold when
the regressors

(
X1,t,X2,t

)
follow a bivariate normal distribution with correlation

parameter |ρ| < 1 and n > 4α + 2. Proofs for Proposition 1 and the example are
postponed to Section 4.

In the general case with k regressors, we may still write β̂i = βi + W(i)η,
where the vector W(i) = (Wi,1, . . . ,Wi,n) is a function of the regressor matrix X.
The weights

{
(W1,t,W2,t, . . . ,Wk,t)

}n

t=1 form an identically distributed, but not
independent, sequence of k-dimensional random vectors. Therefore, we omit the
time subscripts and continue to write (W1,W2, . . . ,Wk). Consequently, we have the
following extension of Theorem 1.

THEOREM 2. Assume that the errors {ηt}n
t=1 in (1) follow a heavy-tailed

distribution—as defined in (2)—with p,q > 0 and tail index α. In addition, assume
that the weights (W1,W2, . . . ,Wk) satisfy E(|Wi|α+ε) < ∞, for some ε > 0, for
i = 1, . . . ,k. Denote, for z = 1,2,

λβ̂z,...,β̂k

=
k∑

j=z

pE(IAj,z ∩{Wz, . . . ,Wk > 0}
(

W+
j

)α

)+qE(IBj,z ∩{Wz, . . . ,Wk < 0}(W−
j )α)

pE(W+
j )α +qE(W−

j )α
,

where the events Aj,z and Bj,z are given by

Aj,z =
{

j = argmax
z≤i≤k

p
(
W+

i

)α
pE
(
W+

i

)α +qE(W−
i )α

}
,

Bj,z =
{

j = argmin
z≤i≤k

q
(
W−

i

)α
pE
(
W+

i

)α +qE
(
W−

i

)α }.
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If λβ̂2,...,β̂k
�= 0, then the multivariate tail dependence between β̂1 and β̂2, . . . ,β̂k is

given by

λβ̂1|β̂2,...,β̂k
= λβ̂1,...,β̂k

λβ̂2,...,β̂k

.

2.3. Tail Dependence Between the FSS and the RSS

In regression analysis, two important quantities are the FSS and the RSS. These
quantities are often used to test the explanatory power of the regression model
via the F-test. That is, to test β1 = ·· · = βk = 0 in the regression model given by
(1). For example, under the assumption that the errors {ηt}n

t=1 in (1) are normally
distributed, the F-statistic is defined as

F =
(

Xβ̂
)′(

Xβ̂
)

(
Y −Xβ̂

)′(
Y −Xβ̂

) n− k

k
∼ F (k,n− k),

where the terms
(

Xβ̂
)′(

Xβ̂
)

and
(

Y −Xβ̂
)′(

Y −Xβ̂
)

are the FSS and the RSS,

respectively. Under the null hypothesis β1 = ·· · = βk = 0, we can write the FSS
and the RSS as

FSS = η′�η, RSS = η′ (I −�)η, with � = X
(
X′X
)−1

X′. (5)

Similar to the OLS estimators, the FSS and the RSS are weighted quadratic
combinations of the errors, where the weights are contained in �. Denote the
tth diagonal element of � as Ltt. Then, {Ltt}n

t=1 are identically distributed random
variables. We omit the subscripts and use L whenever only the distribution of Ltt

is involved. In the following theorem, we show that the FSS and the RSS are tail-
dependent when the errors are heavy-tailed.

THEOREM 3. Assume that the errors {ηt}n
t=1 in (1) follow a heavy-tailed

distribution with p,q > 0 and tail index α. Then, under the null hypothesis β1 =
·· · = βk = 0, the tail dependence between the FSS and the RSS is given by

λFSS,RSS = E
(
IBLα/2

)
E
(
Lα/2

) + E
(
IBc (1−L)α/2

)
E
(
(1−L)α/2

)
and B is the event

B =
{ Lα/2

(1−L)α/2 <
E
(
Lα/2

)
E
(
(1−L)α/2

)}.

We have two remarks about Theorem 3. First, for a given α, λFSS,RSS is solely
determined by the distribution of L—the distribution of a diagonal element of �.
In regression analysis, a diagonal element of � is known as the leverage of an
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observation and indicates to what extent the observation “determines” the OLS
estimate. Note that 0 ≤ Ltt ≤ 1, which guarantees the existence of all moments of
L. Therefore, no moment condition is needed in Theorem 3.

Second, under normally distributed errors, the FSS and the RSS are independent.
By contrast, we show that under heavy-tailed errors, the two are at least tail-
dependent. Consequently, the F-statistic may not follow an F-distribution, if
errors are heavy-tailed. Nevertheless, if the regressors are deterministic and the
errors are in the class of multivariate elliptical distributions, the F-statistic still
follows an F-distribution (see, e.g., Qin and Wan, 2004). Multivariate elliptical
distributions include heavy-tailed distributions, such as the Cauchy distribution
and the multivariate Student t distribution (recall the Gaussian scale mixture
representation; see Breusch, Robertson, and Welsh, 1997), but do not include the
i.i.d. case we are considering.

Although the null hypothesis in Theorem 3 appears to be specific, the same
conclusion is valid for a broader null where only a subset of the coefficients are set
to zero, i.e., a nested model test. Write X = [X(0),X(1)] and β = [(β(0))T,(β(1))T ]T ,
where the first term with ·(0) contains the first k0 dimensions and the second
term with ·(1) contains the other k − k0 dimensions. Suppose we are testing the
null that the first k0 dimensions of the coefficients are zero, i.e., β(0) = 0k0 .
By the Frisch–Waugh–Lovell theorem, the OLS estimator for β(0) is the same
as the OLS estimator obtained when regressing M1Y on M1X(0), where M1 =
I − X(1)((X(1))T(X(1)))−1(X(1))T . Moreover, the residuals in both regressions are
the same. Hence, testing β(0) = 0k0 in the full model is equivalent to testing the
explanatory power in the regression after eliminating the impact of X(1). Therefore,
the same conclusion as in Theorem 3 holds.

3. SIMULATION STUDY

The main results in Section 2 show that the tail dependence between the OLS
estimators depends on the tail index α and the joint distribution of the regressors.
Here, we perform a simulation study to validate this result and demonstrate to what
extent these determinants affect the level of tail dependence.

3.1. Bivariate Tail Dependence Between the OLS Estimators

We simulate data from the regression model

Yt = X1,t +X2,t +ηt, for t = 1,2, . . . ,n, (6)

where
{(

X1,t,X2,t
)}n

t=1 are i.i.d observations drawn from a bivariate normal dis-
tribution with mean zero, standard deviation 1/5, and correlation ρ. In addition,
{ηt}n

t=1 is an i.i.d. sequence of errors, independent of
{(

X1,t,X2,t
)}n

t=1. For the
heavy-tailed case, we draw these errors from a Student t distribution with mean
zero and α degrees of freedom. In this model, we have that β1 = β2 = 1. Under
these conditions, the regression model (6) satisfies the conditions of Theorems 1
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and 3, because the Student t distribution with α degrees of freedom is regularly
varying with tail index α and p = q = 0.5 due to its symmetry. To compare with
the heavy-tailed case, we also draw errors from a standard normal distribution. In
all simulation studies, we consider the regression model with n ∈ {25,50,100,200}
and repeat the simulation m times for each n.

Figure 1 shows the scatter plots of the (transformed) OLS estimators under the
heavy-tailed and normally distributed errors in the left and right panels, respec-
tively. For the sake of comparison, we transform the estimates to having uniform
marginal distributions using the empirical distribution functions estimated from the
m runs. The top two plots show the result of m = 2,000 runs. We observe that the
dependence structure of the OLS estimators under heavy-tailed errors is different
from that under normally distributed errors: observations are more concentrated
along the outer diagonals, suggesting the presence of tail dependence in the case of
heavy-tailed errors and the potential tail independence under normally distributed
errors. In order to further demonstrate the tail dependence structure in the right
tails, in the two bottom plots, we show the results of m = 10,000 runs with zooming
in to the joint tail regions when both transformed estimators are above 0.95. Under
(tail) independence, one would expect to find 10,000∗0.05∗0.05 = 25 such pairs
in this area. We observe that under the heavy-tailed errors, there are 152 such
pairs in this region, about five times more than the expected number under (tail)
independence. However, under the normally distributed errors, there are 32 such
pairs, close to the expected number.

Subsequently, we evaluate the tail dependence between the OLS estimators
by two methods. The first method involves estimating the tail dependence from
simulated regressors using the result in Theorem 1. Note that under the distribution
of {ηt}n

t=1 specified above, we simplify the tail dependence in Theorem 1 to

λβ̂1,β̂2
= E

(
I{D>0}

(
C+)α | C < D

)
E(C+)α

, (7)

because C and D are symmetrically and identically distributed. Based on (7),
we can estimate the tail dependence by its empirical analog using the observed
regressors as

λ̂β̂1,β̂2
= n∑n

i=1

(
C+

i

)α
∑n

i=1 I{Di>0}I{Ci<Di}
(
C+

i

)α∑n
i=1 I{Ci<Di}

. (8)

With the m simulation runs, we obtain m estimates of λ̂β̂1,β̂2
. From these estimates,

we calculate the mean and standard deviation of λ̂β̂1,β̂2
and report it in Table 1 as

the lower entry for each given set of parameters (α,n,ρ). For the case ρ = 0, we
consider a wider range of values for α from 1 to 5. In this case, we draw the errors
from the standard Student t(α) distribution. Notice that, for α = 1, the errors have
no finite mean, and for α = 2, the errors have no finite variance. For the other cases
where ρ �= 0, we only consider α > 2, because it is often assumed in regression
models that the errors have a finite variance. In these cases, we draw the errors from
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Figure 1. Scatter plot displaying marginally transformed β̂1,β̂2. Notes: the top two figures are
obtained by transforming the OLS estimators β̂1 and β̂2 to have marginal uniform distributions, using
m = 2,000 runs of model (6), n = 25, and ρ = 0 with errors following the standard Student t(1)
distribution (left) and the standard normal distribution (right). The bottom two figures are displaying
the tail regions obtained under the same conditions except that m = 10,000 runs have been used.

the standard Student t distribution with α degrees of freedom and unit variance.
This choice facilitates a better comparison across different values of α. Note that
in this simulation study, we refrain from estimating α and consider α to be known
in (8). In practice, one needs to estimate α from the observations {Yt}n

t=1, which
may potentially inflate the variance of the estimator.

As a second method, we use a nonparametric estimator from multivariate
extreme value theory to estimate the tail dependence. Note that the m simulation
runs result in m pairs of estimates (β̂1,β̂2). Therefore, we can use a nonparametric
estimator for the tail dependence between β̂1 and β̂2 as follows:

Iβ̂1,β̂2
(m,k) =

∑m
j=1 I

(
β̂1,j > β̂

(m−k)
1 , β̂2,j > β̂

(m−k)
2

)
k

, (9)

where β̂
(1)
i ≤ β̂

(2)
i ≤ ·· · ≤ β̂

(m)
i are the order statistics of the m estimates

β̂i,1, . . . ,β̂i,m, for i = 1,2, and k is an intermediate sequence such that k/m → 0
as (k,m) → ∞. For each given set of parameters (α,n,ρ), we report the estimate
Iβ̂1,β̂2

in Table 1 as the upper entry. All estimates in Table 1 are obtained by fixing
m = 1,000,000 and k = 1,000.
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Table 1. Tail dependence estimates: I
β̂1,β̂2

and the mean and standard deviation

of λ̂
β̂1,β̂2

ρ = 0
α = 1 α = 2 α = 3 α = 4 α = 5

n = 25 0.28 0.18 0.09 0.04 0.03
0.30 (0.19) 0.20 (0.21) 0.15 (0.22) 0.12 (0.23) 0.11 (0.25)

n = 50 0.31 0.19 0.11 0.04 0.01
0.30 (0.13) 0.19 (0.14) 0.13 (0.14) 0.10 (0.15) 0.08 (0.16)

n = 100 0.32 0.17 0.09 0.02 0.01
0.29 (0.09) 0.19 (0.10) 0.12 (0.10) 0.09 (0.10) 0.07 (0.10)

n = 200 0.32 0.17 0.07 0.01 0.00
0.29 (0.07) 0.18 (0.07) 0.07 (0.12) 0.08 (0.07) 0.06 (0.07)

ρ = 0.9 ρ = 0.3

α = 2.01 α = 3 α = 5 α = 2.01 α = 3 α = 5

n = 25 0.00 0.00 0.00 0.09 0.05 0.01
0.01 (0.01) 0.00 (0.01) 0.00 (0.00) 0.11 (0.14) 0.07 (0.13) 0.04 (0.14)

n = 50 0.01 0.00 0.00 0.08 0.03 0.00
0.01 (0.01) 0.00 (0.00) 0.00 (0.00) 0.11 (0.09) 0.06 (0.08) 0.03 (0.08)

n = 100 0.01 0.00 0.00 0.09 0.04 0.00
0.00 (0.01) 0.00 (0.00) 0.00 (0.00) 0.10 (0.06) 0.06 (0.05) 0.02 (0.04)

n = 200 0.00 0.00 0.00 0.10 0.03 0.00
0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.10 (0.04) 0.06 (0.03) 0.02 (0.03)

ρ = −0.3 ρ = −0.9

α = 2.01 α = 3 α = 5 α = 2.01 α = 3 α = 5

n = 25 0.27 0.16 0.07 0.70 0.68 0.55
0.32 (0.27) 0.26 (0.31) 0.21 (0.37) 0.73 (0.41) 0.70 (0.51) 0.67 (0.64)

n = 50 0.30 0.18 0.05 0.70 0.63 0.50
0.30 (0.19) 0.24 (0.22) 0.17 (0.27) 0.72 (0.29) 0.69 (0.38) 0.65 (0.53)

n = 100 0.28 0.16 0.04 0.72 0.62 0.48
0.30 (0.13) 0.23 (0.15) 0.15 (0.19) 0.72 (0.21) 0.68 (0.28) 0.63 (0.43)

n = 200 0.27 0.15 0.04 0.69 0.61 0.48
0.30 (0.09) 0.22 (0.11) 0.14 (0.13) 0.72 (0.15) 0.67 (0.21) 0.61 (0.33)

Note: For each set of parameters (α,n,ρ), the upper entry presents an estimate of I
β̂1,β̂2

as in (9)

and the lower entry presents the mean and standard deviation of λ̂
β̂1,β̂2

(in parentheses) obtained
from (8).
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We have the following observations from the simulation. First, the result in
Theorem 1 is in line with the simulations. The average of λ̂β̂1,β̂2

coincides closely
with Iβ̂1,β̂2

for most combinations of α, ρ, and n. Some differences occur between

the two estimators Iβ̂1,β̂2
and λ̂β̂1,β̂2

for high values of α: for example, for α = 5,

n ≥ 25, and ρ = 0, the average of λ̂β̂1,β̂2
and Iβ̂1,β̂2

differ in excess of 50%. This
result might be a consequence of the fixed choice of k in the estimator Iβ̂1,β̂2

.

Second, for given α and ρ, the mean of λ̂β̂1,β̂2
is generally invariant as n

increases. For given n and ρ, both Iβ̂1,β̂2
and λ̂β̂1,β̂2

decrease as α increases. As
α increases, the Student t distribution with α degrees of freedom becomes more
similar to the normal distribution. Consequently, tail dependence between the
OLS estimators decreases as the tail of the errors becomes lighter. Table 1 also
illustrates that more negative correlation corresponds to higher tail dependence
between the OLS estimators. This is due to the increase in P(C > 0,D > 0) as ρ

decreases.
Finally, we remark that the standard deviation of λ̂β̂1,β̂2

can be relatively high for
small n. This suggests that one should be cautious when applying the estimator in
(8) for regressions with limited number of observations. In addition, the standard
deviation of λ̂β̂1,β̂2

increases as the correlation ρ decreases, but is relatively
insensitive to the level of α except in the case ρ = −0.9.

3.2. Tail Dependence Between the FSS and the RSS

Similar to the previous subsection, we estimate the tail dependence between the
FSS and the RSS from the simulated regression model. We use an estimator based
on Theorem 3 and a nonparametric estimator, denoted as λ̂FSS,RSS and IFSS,RSS,
respectively. These estimators are constructed in a similar way as λ̂β̂1,β̂2

and Iβ̂1,β̂2
.

We omit the details.
Table 2 displays the tail dependence estimates λ̂FSS,RSS and IFSS,RSS under

model (6), with m = 10,000,000 and k = 1,000. We only present the results for
n = 25, since results for other values of n remain qualitatively the same.1 The
average of λ̂FSS,RSS and IFSS,RSS coincide closely except for the highest value
of α. Furthermore, we observe that the tail dependence between the FSS and
the RSS decreases as α increases. In contrast with the results in Table 1, the
level of tail dependence between the FSS and the RSS does not depend on the
correlation between the regressors, ρ. In addition, the tail dependence between
the FSS and the RSS is stronger than the tail dependence between the OLS
estimators in the base case ρ = 0. This can partly be explained by the fact
that the quadratic forms of the FSS and the RSS are more heavy-tailed, with
tail index α/2, and by the fact that the weights Ltt and (1 − Ltt) are always
nonnegative.

1The results are available upon request.
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Table 2. Tail dependence estimates between the FSS and the RSS: IFSS,RSS and
λ̂FSS,RSS

ρ = 0 α = 3
α = 2.01 α = 3 α = 5 ρ = 0.9 ρ = 0.3 ρ = −0.3 ρ = −0.9

n = 25 0.63 0.48 0.23 0.48 0.47 0.49 0.47
0.62 (0.05) 0.49 (0.06) 0.31 (0.07) 0.49 (0.06) 0.49 (0.06) 0.49 (0.06) 0.49 (0.06)

Note: For each set of parameters (α,n,ρ), the upper entry presents an estimate of IFSS,RSS and the
lower entry presents the mean and standard deviation of λ̂FSS,RSS (in parentheses).

4. PROOFS

To calculate the tail dependence between the OLS estimators, we will analyze the
joint probability that the estimators exceed high thresholds. Since the estimators
β̂1, . . . ,β̂k are stochastically weighted sums of regularly varying errors, we start
by analyzing nonstochastic linear combinations of regularly varying random
variables.

4.1. Extension of the Feller Theorem

Theorem 4 provides an approximation to the joint probability that two real-valued
linear combinations of real-valued regularly varying random variables exceed high
thresholds.

THEOREM 4. Let η1,η2, . . . ,ηn be real-valued regularly varying random vari-
ables. Assume that they are independent. In addition, assume that ci,di are real-
valued coefficients, for i = 1,2, . . . ,n. In addition, assume that x

y → κ as x → ∞,
with κ > 0. Then, it holds that, as x → ∞,

P

(
n∑

i=1

ciηi > x,
n∑

i=1

diηi > y

)
∼

n∑
i=1

I{ci > 0,di > 0}P
(

ηi >
x

ci
∨ y

di

)

+
n∑

i=1

I{ci < 0,di < 0}P
(

ηi <
x

ci
∧ y

di

)
. (10)

The relation in (10) has a similar interpretation as the Feller theorem (see Feller,
1971, p. 278); for high x and y, the events {∑n

i=1 ciηi > x} and {∑n
i=1 diηi > y} occur

simultaneously solely due to a sufficiently extreme value of one of the η1, . . . ,ηn

if their corresponding coefficients have the same sign.
As a corollary of Theorem 4, we consider the joint tail probability of k linear

combinations of n real-valued regularly varying random variables.

COROLLARY 1. Let η1,η2, . . . ,ηn be real-valued regularly varying random
variables. Assume that they are independent. In addition, assume that w1,i, . . . ,wk,i
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are real-valued coefficients, for i = 1,2, . . . ,n. In addition, assume that x1
xj

→ κj as

x1 → ∞, with κj > 0, for j = 2, . . . ,k. Then, it holds that, as x1 → ∞,

P

(
n∑

i=1

w1,iηi > x1 , . . . ,

n∑
i=1

wk,iηi > xk

)

∼
n∑

i=1

I{w1,i > 0, . . . ,wk,i > 0}P
(

ηi >

k∨
z=1

xz

wz,i

)

+
n∑

i=1

I{w1,i < 0, . . . ,wk,i < 0}P
(

ηi <

k∧
z=1

xz

wz,i

)
.

To prove Theorem 4, we first deal with n nonnegative regularly varying random
variables in Lemma 1. In addition, this lemma does not require the assumption of
independence. Instead, it only requires the weaker assumption that each pair of
random variables are either independent or satisfying P

(
ηi > 0, ηj > 0

)= 0.

LEMMA 1. Let η1,η2, . . . ,ηn be nonnegative regularly varying random vari-
ables. Assume that, for all 1 ≤ i ≤ n, ηi is independent of {ηj : P(ηi > 0,ηj > 0) >

0)}. In addition, assume that ci,di are real-valued coefficients, for i = 1,2, . . . ,n. In
addition, assume that x

y → κ as x → ∞, with κ > 0. Then, it holds that, as x → ∞,

P

(
n∑

i=1

ciηi > x,
n∑

i=1

diηi > y

)
∼

n∑
i=1

I{ci > 0,di > 0}P
(

ηi >
x

ci
∨ y

di

)
. (11)

If
∑n

i=1 I{ci > 0,di > 0} = 0, the above relation should be read as

P

(
n∑

i=1

ciηi > x,
n∑

i=1

diηi > y

)
= o

(
n∑

i=1

P(ηi > x)

)
.

Proof of Lemma 1. We prove Lemma 1 by mathematical induction. We start by
proving the Lemma for n = 2. Here, we only deal with c1 < 0 and c2,d1,d2 > 0. The
other cases, including the case

∑2
i=1 I{ci > 0,di > 0} = 0, are similar or simpler.

We handle the joint probability on the left-hand side of (11) by providing its upper
and lower bounds using set manipulation.

Note that, for any 0 < δ < 1/2, we have that

{c1η1 + c2η2 > x, d1η1 +d2η2 > y} ⊃
{
η1 <

δx

−c1
, η2 > (1+ δ)

(
x

c2
∨ y

d2

)}
,

(12)

{c1η1 + c2η2 > x, d1η1 +d2η2 > y} ⊂
{
η2 > (1− δ)

(
x

c2
∨ y

d2

)}
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∪
{
η1 >

δy

d1
, η2 >

x

c2

}
. (13)

From (12), we get that the lower bound on the joint probability is

P(c1η1 + c2η2 > x, d1η1 +d2η2 > y) ≥P

(
η1 <

δx

−c1
, η2 > (1+ δ)

(
x

c2
∨ y

d2

))
.

If P(η1 > 0,η2 > 0) = 0, we have that

P

(
η1 <

δx

−c1
,η2 > (1+ δ)

(
x

c2
∨ y

d2

))
= P

(
η2 > (1+ δ)

(
x

c2
∨ y

d2

))
,

and if η1 and η2 are independent, we have

P

(
η1 <

δx

−c1
,η2 > (1+ δ)

(
x

c2
∨ y

d2

))

= P

(
η1 <

δx

−c1

)
P

(
η2 > (1+ δ)

(
x

c2
∨ y

d2

))
.

Note that P
(
η1 < δx

−c1

)
→ 1 as x → ∞. By first letting x → ∞ and then letting

δ → 0, we have that

liminf
x→∞

P(c1η1 + c2η2 > x, d1η1 +d2η2 > y)

P

(
η2 > x

c2
∨ y

d2

) ≥ 1.

From (13), we get that the upper bound on the joint probability is

P(c1η1 + c2η2 > x, d1η1 +d2η2 > y)

≤ P

(
η2 > (1− δ)

(
x

c2
∨ y

d2

))
+P

(
η1 >

δy

d1
, η2 >

x

c2

)
. (14)

If η1 and η2 are independent, the last term on the right-hand side of (14) is then

P

(
η1 >

δy
d1

)
P

(
η2 > x

c2

)
, which is of higher order than the first term as x → ∞.

If P(η1 > 0, η2 > 0) = 0, then the last term on the right-hand side of (14) is zero.
Therefore, by letting δ → 0, we have that

limsup
x→∞

P(c1η1 + c2η2 > x, d1η1 +d2η2 > y)

P

(
η2 > x

c2
∨ y

d2

) ≤ 1.

Combining the upper and lower bounds gives the result for n = 2.
Assuming that the lemma holds for n−1 nonnegative regularly varying random

variables, we prove that it also holds for n. First, we deal with the case
∑n

i=1 I{ci >

0,di > 0} �= 0. Then, there is at least one positive pair (ci,di). Without loss of
generality (w.l.o.g.), assume that cn,dn > 0. Note that, for any 0 < δ < 1/2, we

https://doi.org/10.1017/S0266466621000311 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466621000311


TAIL DEPENDENCE OF OLS 287

have that{
n∑

i=1

ciηi > x,
n∑

i=1

diηi > y

}
⊃
{

n−1∑
i=1

ciηi > x,
n−1∑
i=1

diηi > y

}

∪
{

ηn > (1+ δ)

(
x

cn
∨ y

dn

)
,

n−1∑
i=1

ciηi > −δx,
n−1∑
i=1

diηi > −δy

}
, (15)

and{
n∑

i=1

ciηi > x,
n∑

i=1

diηi > y

}

⊂
{

n−1∑
i=1

ciηi > x(1− δ),

n−1∑
i=1

diηi > y(1− δ)

}
∪
{
ηn > (1− δ)

(
x

cn
∨ y

dn

)}

∪
({

n−1∑
i=1

ciηi > δx or
n−1∑
i=1

diηi > δy

}
∩
{
ηn > δ

(
x

cn
∧ y

dn

)})
. (16)

By (15), we have that

P

(
n∑

i=1

ciηi > x,
n∑

i=1

diηi > y

)

≥ P

(
n−1∑
i=1

ciηi > x,
n−1∑
i=1

diηi > y

)

+P

(
ηn > (1+ δ)

(
x

cn
∨ y

dn

)
,

n−1∑
i=1

ciηi > −δx,
n−1∑
i=1

diηi > −δy

)

−P

(
n−1∑
i=1

ciηi > x,
n−1∑
i=1

diηi > y,ηn > (1+ δ)

(
x

cn
∨ y

dn

))

:= I1 + I2 − I3.

If
∑n−1

i=1 I{ci > 0,di > 0} > 0, we apply the induction hypothesis on I1 to get that

liminf
x→∞

I1∑n−1
i=1 I{ci > 0,di > 0}P

(
ηi > x

ci
∨ y

di

) = 1.

Denote Iind = {ηi : P(ηn > 0,ηi > 0) > 0}. Since ηn is independent of (ηi,i ∈ Iind)

and P(ηn > 0,ηi > 0) = 0, for i ∈ Ic
ind, it follows that

I2 = P

⎛
⎝ηn > (1+ δ)

(
x

cn
∨ y

dn

)
,
∑
i∈Iind

ciηi > −δx,
∑
i∈Iind

diηi > −δy

⎞
⎠
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= P

(
ηn > (1+ δ)

(
x

cn
∨ y

dn

))
P

⎛
⎝ n−1∑

i∈Iind

ciηi > −δx,
n−1∑

i∈Iind

diηi > −δy

⎞
⎠,

which leads to

liminf
x→∞

I2

P

(
ηn >

(
x
cn

∨ y
dn

)) ≥ (1+ δ)−α .

The term I3 is of a higher order than
∑n

i=1P(ηi > x): the proof follows a similar way
as handling I2 by splitting variables into the set Iind and its complement. Combining
all three terms and further taking δ → 0, we obtain the lower bound that

liminf
x→∞

P
(∑n

i=1 ciηi > x,
∑n

i=1 diηi > y
)

∑n
i=1 I{ci > 0,di > 0}P

(
ηi > x

ci
∨ y

di

) ≥ 1.

For the upper bound, we get from (16) that

P

(
n∑

i=1

ciηi > x,
n∑

i=1

diηi > y

)

≤ P

(
n−1∑
i=1

ciηi > x(1− δ),

n−1∑
i=1

diηi > y(1− δ)

)

+P

(
ηn > (1− δ)

(
x

cn
∨ y

dn

))

+P

({
n−1∑
i=1

ciηi > δx or
n−1∑
i=1

diηi > δy

}
∩
{
ηn > δ

(
x

cn
∧ y

dn

)})

:= L1 +L2 +L3.

The proof follows a similar way as handling the lower bound: the term L1 can
be handled using the induction hypothesis. The term L2 can be handled using
the regular variation. Finally, similar to I3, the L3 term is of a higher order than∑n

i=1P(ηi > x). Combining the three terms together and further taking δ → 0, we
obtain the upper bound as

limsup
x→∞

P
(∑n

i=1 ciηi > x,
∑n

i=1 diηi > y
)

∑n
i=1 I{ci > 0,di > 0}P

(
ηi > x

ci
∨ y

di

) ≤ 1.

The combination of the lower and upper bounds yields the result for n.
If
∑n−1

i=1 I{ci > 0,di > 0} = 0, the proof is similar and simpler, because the terms
I1 and L1 are of a higher order than

∑n
i=1P(ηi > x).

Next, we handle the statement regarding the case
∑n

i=1 I{ci > 0,di > 0} = 0 by
mathematical induction. The proof for n = 2 is trivial. Assume that the result holds
for n−1.
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If all ci and all di are nonpositive, the result for n holds trivially. Suppose at least
one ci or di is positive. w.l.o.g., assume that cn > 0 and dn ≤ 0. Notice that{

n∑
i=1

ciηi > x,
n∑

i=1

diηi > y

}

⊂
{

n−1∑
i=1

ciηi > x(1− δ),

n−1∑
i=1

diηi > y

}
∪
{

ηn > (1− δ)
x

cn
,

n−1∑
i=1

diηi > y

}

∪
{

n−1∑
i=1

ciηi > δx, ηn > δ
x

cn

}
.

The statement is proved for n provided that the probability of each set on the right-
hand side is of a higher order than

∑n
i=1P(ηi > x). The first set can be handled

by the induction hypothesis. The second and third sets can be handled again by
splitting the variables into the set Iind and its complement. �

To prove Theorem 4, we separate the positive and negative parts of a real-
valued regularly varying random variable and “absorb” the negative part into the
corresponding coefficient. The result then follows by Lemma 1.

Proof of Theorem 4. W.l.o.g., consider the case that n = 2 and let η+
i =

max {ηi,0} and η−
i = max {−ηi,0}. In addition, let ei = −ci and zi = −di. By

definition, it holds that P(η+
i > 0, η−

i > 0) = 0. In addition, by definition, it holds
that

c1η1 + c2η2 = c1η
+
1 + e1η

−
1 + c2η

+
2 + e2η

−
2 ,

d1η1 +d2η2 = d1η
+
1 + z1η

−
1 +d2η

+
2 + z2η

−
2 .

Since the random variables {η+
1 ,η−

1 ,η+
2 ,η−

2 } satisfy the conditions of Lemma 1, the
theorem is proved by applying the lemma. �

4.2. Proofs of Theorems 1 and 2

We can apply the results in Section 4.1 to the OLS estimators by a conditioning
argument. Denoting P(...|X) by P̃(...), we have that

λβ̂1,β̂2
= lim

u→1
E

⎛
⎝ P̃

(
β̂1 −β1 > Qu

(
β̂1 −β1

)
, β̂2 −β2 > Qu

(
β̂2 −β2

))
1−u

⎞
⎠ .

In the Appendix, we show that we may interchange the limit and the expectation,
which leads to

λβ̂1,β̂2
= E

⎛
⎝lim

u→1

P̃

(
β̂1 −β1 > Qu

(
β̂1 −β1

)
, β̂2 −β2 > Qu

(
β̂2 −β2

))
1−u

⎞
⎠ . (17)
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Then, the “conditional tail dependence,” the term within the expectation in (17),
can be calculated with the aid of Theorem 4.

We start with obtaining an approximation for P
(
ηt > Qu

(
β̂1 −β1

))
—the prob-

ability which needs to be dealt with after we apply Theorem 4 to the conditional
tail dependence. To obtain the required approximation, we need to deal with the
unconditional marginal distribution of β̂1 − β1. For that purpose, we state here
Lemma 3.4 of Mikosch and de Vries (2013), which extends Breiman’s result (see
Proposition 3 in Breiman, 1965) to a multivariate regularly varying random vector
ξ and another random vector ζ of the same dimension. We define a random vector
ξ = (ξ1, . . . ,ξd)

′ to be multivariate regularly varying with index α > 0 if there exists
a Radon measure μ on R

d \ (−ε,ε)d, for some ε > 0, such that for every Borel set
E ⊂ R

d \ (−ε,ε)d satisfying that μ(∂E) = 0,

lim
x→∞

P(ξ ∈ xE)

P(|ξ | > x)
= μ(E),

with the homogeneity condition μ(xE) = x−αμ(E), see Theorem 6.1 in Resnick
(2007). A special case of multivariate regular variation of ξ is when ξ1, . . . ,ξd are
independent regularly varying random variables (Resnick, 2007, Sect. 6.5.1).

LEMMA 2. Assume that ξ is multivariate regularly varying in R
d with index

α > 0 and is independent of the random vector ζ . Furthermore, it holds that
E|ζ |α+ε < ∞, for some ε > 0, where | · | denotes any given norm on R

d. Then,
the scalar product ψ = ξ ′ζ is regularly varying with index α. Moreover, if ξ has
independent components, then as x → ∞,

P(ψ > x) ∼ P(|ξ | > x)

(
d∑

i=1

r+
i E(ζ+

i )α +
d∑

i=1

r−
i E(ζ−

i )α

)
, with

r+
i = lim

x→∞
P(ξi > x)

P(|ξ | > x)
, r−

i = lim
x→∞

P(ξi < −x)

P(|ξ | > x)
.

We now present an approximation for P(ηt > Qu(β̂1 − β1)) in the following
lemma.

LEMMA 3. Let {ηt}n
t=1 be a sequence of real-valued regularly varying i.i.d. ran-

dom variables satisfying p,q > 0. Assume that {Ct}n
t=1 is a sequence of identically

distributed real-valued random variables independent of {ηt}n
t=1. Furthermore,

assume that Ct satisfies E|Ct|α+ε < ∞, for some ε > 0. Then, it holds as u → 1,

P

⎛
⎝ηt > Qu

⎛
⎝ n∑

j=1

Cjηj

⎞
⎠
⎞
⎠∼ p(1−u)

npE
(
C+

t

)α +nqE
(
C−

t

)α , (18)
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P

⎛
⎝ηt < −Qu

⎛
⎝ n∑

j=1

Cjηj

⎞
⎠
⎞
⎠∼ q(1−u)

npE
(
C+

t

)α +nqE
(
C−

t

)α . (18)

Proof of Lemma 3. Define |η|∞ := max
t

(|ηt|). By regular variation of ηt and

the tail balance condition (2), we have that, as x → ∞,

P(|η|∞ > x) ∼ nP(|ηt| > x) ∼ n

p
P(ηt > x) .

Recall that, by definition, P
(∑n

t=1 Ctηt > Qu

(∑n
j=1 Cjηj

))
= 1−u. Equation (18)

follows immediately from Lemma 2 and the tail balance condition. �

Using Lemma 3, we can now prove Theorem 1.

Proof of Theorem 1. We start by deriving the conditional tail dependence
between the OLS estimators, which is the limit appearing in (17).

First, we show that Qu(β̂1 −β1)/Qu(β̂2 −β2) → κ > 0 as u → 1, with

κ =
(

pE
(
D+

t

)α +qE
(
D−

t

)α
pE
(
C+

t

)α +qE
(
C−

t

)α
)−1/α

.

From Lemma 3, we get that, as u → 1,

P

(
η > Qu(β̂1 −β1)

)
P

(
η > Qu(β̂2 −β2)

) → pE
(
D+

t

)α +qE
(
D−

t

)α
pE
(
C+

t

)α +qE
(
C−

t

)α .

The statement thus follows from the fact that η has a regularly varying tail.

We can then take x = Qu

(
β̂1 −β1

)
and y = Qu

(
β̂2 −β2

)
in Theorem 4 to obtain

that, as u → 1,

P̃

(
β̂1 −β1 > Qu

(
β̂1 −β1

)
, β̂2 −β2 > Qu

(
β̂2 −β2

))
1−u

∼ M+
u

1−u
+ M−

u

1−u
, (19)

where M+
u and M−

u are given by

M+
u =

n∑
t=1

I(Ct > 0,Dt > 0)

×
⎡
⎣P̃
⎛
⎝ηt >

Qu

(
β̂1 −β1

)
Ct

⎞
⎠∧ P̃

⎛
⎝ηt >

Qu

(
β̂2 −β2

)
Dt

⎞
⎠
⎤
⎦,

M−
u =

n∑
t=1

I(Ct < 0,Dt < 0)
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×
⎡
⎣P̃
⎛
⎝ηt <

Qu

(
β̂1 −β1

)
Ct

⎞
⎠∧ P̃

⎛
⎝ηt <

Qu

(
β̂2 −β2

)
Dt

⎞
⎠
⎤
⎦ .

We first handle the term M+
u . Note that P̃(ηt > Qu(β̂j −βj)) = P(ηt > Qu(β̂j −βj)),

for j = 1,2. Therefore, by Lemma 3 and the regular variation of ηt, we have, as
u → 1,

P̃

⎛
⎝ηt >

Qu

(
β̂1 −β1

)
Ct

⎞
⎠∼ p(1−u)Cα

t

npE
(
C+

t

)α +nqE
(
C−

t

)α if Ct > 0,

P̃

⎛
⎝ηt >

Qu

(
β̂2 −β2

)
Dt

⎞
⎠∼ p(1−u)Dα

t

npE
(
D+

t

)α +nqE
(
D−

t

)α if Dt > 0.

The indicator functions in the expression of M+
u allow us to consider only

Ct > 0 and Dt > 0. Furthermore, note that the limit of the minimum of two
convergent sequences is equal to the minimum of the two limits of the sequences.
Consequently, we have that

lim
u→1

M+
u

1−u
=

n∑
t=1

pI{Dt>0}
(
C+

t

)α
npE

(
C+

t

)α +nqE
(
C−

t

)α ∧ pI{Ct>0}
(
D+

t

)α
npE

(
D+

t

)α +nqE
(
D−

t

)α := M+.

Similarly, we have that

lim
u→1

M−
u

1−u
=

n∑
t=1

qI{Dt<0}
(
C−

t

)α
npE

(
C+

t

)α +nqE
(
C−

t
α) ∧ qI{Ct<0}

(
D−

t

)α
npE

(
D+

t

)α +nqE
(
D−

t

)α := M−.

By relation (19), we have that

lim
u→1

P̃

(
β̂1 −β1 > Qu

(
β̂1 −β1

)
, β̂2 −β2 > Qu

(
β̂2 −β2

))
1−u

= M+ +M−.

It follows that the unconditional tail dependence between the OLS estimators
is given by E

(
M+ +M−). Since {(Ct,Dt)}n

t=1 are identically distributed random
vectors, we obtain that

E(M+)=E

(
pI{Dt>0}

(
C+

t

)α
pE
(
C+

t

)α +qE
(
C−

t

)α ∧ pI{Ct>0}
(
D+

t

)α
pE
(
D+

t

)α +qE
(
D−

t

)α
)

:= E
(
M+

1 ∧M+
2

)
.

E(M−)=E

(
qI{Dt<0}

(
C−

t

)α
pE
(
C+

t

)α +qE
(
C−

t

)α ∧ qI{Ct<0}
(
D−

t

)α
pE
(
D+

t

)α +qE
(
D−

t

)α
)

:= E
(
M−

1 ∧M−
2

)
.

By the law of total expectation, we obtain the right-hand side of (4), which yields
the theorem by (17). �
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The proof of Theorem 2 follows similar steps as that of Theorem 1 and is
therefore omitted.

4.3. Proof of Theorem 3

Recall from (5) that under the null hypothesis β = 0, the FSS and the RSS can be
written as η′�η and η′ (I−�)η, respectively, where � = X

(
X′X
)−1

X′. Therefore,
the tail dependence between the FSS and the RSS is given by

λFSS,RSS = lim
u→1

P
(
η′ �η > Qu

(
η′�η

)
,η′ (I−�)η > Qu

(
η′ (I−�)η

))
1−u

.

We shall interchange the expectation and the limit. Because � contains bounded
entries only, the justification of the interchanging can be obtained in a similar
manner as in the situation of (17) (see the Appendix). Consequently, we get that

λFSS,RSS = E

(
lim
u→1

P̃
(
η′ �η > Qu

(
η′�η

)
,η′ (I−�)η > Qu

(
η′ (I−�)η

))
1−u

)
.

(20)

Note that under the P̃ measure, the matrix � can be regarded as nonstochastic. In
regression analysis, the elements on the diagonal of �, Ltt, reflect the “leverage”
of observation Yt and satisfy 0 ≤ Ltt ≤ 1, whereas the elements on the off-diagonal,
Ltj, satisfy −1/2 ≤ Ltj ≤ 1/2, for t �= j.

In the proof, we use the fact that for the cross products ηtηj with t �= j, both the
left and right tails are regularly varying with tail index α (Embrechts and Goldie,
1980), whereas the squared terms η2

t are regularly varying with tail index α/2.

Proof of Theorem 3. For any x > 0, define the following sets:

A0(x) =
{

n∑
t=1

Lttη
2
t > x

}
and A1(x) =

{
n∑

t=1

(1−Ltt)η
2
t > x

}
,

B0(x) = {∃t < j, s.t.2Ltjηtηj > x
}

and B1(x) = {∃t < j, s.t.−2Ltjηtηj > x
}
,

C0(x) =
⎧⎨
⎩

n∑
t=1

Lttη
2
t +
∑
t<j

2Ltjηtηj > x

⎫⎬
⎭ and

C1(x) =
⎧⎨
⎩

n∑
t=1

(1−Ltt)η
2
t −
∑
t<j

2Ltjηtηj > x

⎫⎬
⎭ .

We study the probability of these sets under the measure P̃.

https://doi.org/10.1017/S0266466621000311 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466621000311


294 JOCHEM OORSCHOT AND CHEN ZHOU

First, we handle the sets Ai(x), for i = 0,1. From the Feller theorem, we have
that

lim
x→∞

P̃(A0(x))

P(η2
t > x)

=
n∑

t=1

Lα/2
tt and lim

x→∞
P̃(A1(x))

P(η2
t > x)

=
n∑

t=1

(1−Ltt)
α/2. (21)

Here, in the denominators, we use the fact that P̃(η2
t > x) = P(η2

t > x) due to
independence between the error terms and the regressors.

Next, we handle the sets Bi(x), for i = 0,1. Note that B0(x) =⋃t<j

{
2Ltjηtηj > x

}
and B1(x) =⋃t<j

{
2Ltjηtηj < −x

}
. For any t < j, since

∣∣ηtηj

∣∣ has a lower tail index

than η2
t , we get that, as x → ∞, P̃(2Ltj

∣∣ηtηj

∣∣> x) = o(P(η2
t > x)), which implies

that, for both i = 0,1,

lim
x→∞

P̃(Bi(x))

P(η2
t > x)

= 0. (22)

Finally, we handle the sets Ci(x), for i = 0,1. Note that, for any 0 < ε < 1/2,

A0(x(1+ ε))
⋂

Bc
1

(
ε

n(n−1)/2
x

)
⊂ C0(x) ⊂ A0 (x(1− ε))

⋃
B0

(
ε

n(n−1)/2
x

)
.

Hence, we get the upper bound for P̃(C0(x)) as

limsup
x→∞

P̃(C0(x))

P(η2
t > x)

≤ limsup
x→∞

P̃(A0(x(1− ε)))+ P̃

(
B0

(
ε

n(n−1)/2 x
))

P(η2
t > x)

= (1− ε)−α/2
n∑

t=1

Lα/2
tt ,

where, in the last step, we apply (21), (22), and the fact that P(η2
t > x) is a

regularly varying function with index −α/2. Similarly, we have the lower bound
for P̃(C0(x)) as

liminf
x→∞

P̃(C0(x))

P(η2
t > x)

≥ limsup
x→∞

P̃(A0(x(1+ ε)))− P̃

(
B1

(
ε

n(n−1)/2 x
))

P(η2
t > x)

= (1+ ε)−α/2
n∑

t=1

Lα/2
tt .

By taking ε → 0, the upper and lower bounds coincide, which yields the limit of
P̃(C0(x)). A limit result for P̃(C1(x)) can also be obtained in a similar way. We
present both limit results as follows:

lim
x→∞

P̃(C0(x))

P(η2
t > x)

=
n∑

t=1

Lα/2
tt and lim

x→∞
P̃(C1(x))

P(η2
t > x)

=
n∑

t=1

(1−Ltt)
α/2.
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By taking expectation on both sides of the two limit relations, we get that

lim
x→∞

P(C0(x))

P(η2
t > x)

= nE(Lα/2) and lim
x→∞

P(C1(x))

P(η2
t > x)

= nE(1−L)α/2.

Recall that C0(x) = {η′�η > x
}
, from the properties of regularly varying function,

we get that, as u → 1,

lim
u→1

Qu(η
′�η)

Qu(η2
t )

= (nE(Lα/2)
) 2

α and lim
u→1

Qu(η
′(I −�)η)

Qu(η2
t )

= (nE(1−L)α/2)
) 2

α ,

which further yields

lim
u→1

Qu(η
′�η)

Qu(η′(I −�)η)
=
(

E(Lα/2)

E(1−L)α/2)

) 2
α

. (23)

We are now ready to calculate the limit inside the expectation in (20). Choose
specific values x = Qu(η

′�η) and y = Qu(η
′(I −�)η). Using the notation of the

Ci sets, we can write the set in the numerator as C0(x)
⋂

C1(y). Similar to the way
we handled Ci individually, for any 0 < ε < 1, we can get an upper bound of this
set as

C0(x)
⋂

C1(y) ⊂
(

A0 (x(1− ε))
⋃

B0

(
ε

n(n−1)/2
x

))
⋂(

A1 (y(1− ε))
⋃

B1

(
ε

n(n−1)/2
y

))
.

Clearly, the upper bound can be expanded as the union set of four sets in the form
of A0

⋂
A1, B0

⋂
A1, A0

⋂
B1, and B0

⋂
B1. Under the P̃ measure, the limit relation

(22) ensures that the probability of the last three sets involving Bi sets tends to zero
faster than 1−u as u → 1. Hence, we only need to handle the first set in the form
of A0

⋂
A1.

The limit in (23) shows that x/y converges to a positive constant as u → 1. Since
{η2

t }n
t=1 are n i.i.d. heavy-tailed random variables, we can apply Lemma 1 to the

series {η2
t }n

t=1, which leads to an upper bound for P̃
(
C0(x)

⋂
C1(y)

)
as

limsup
u→1

P̃
(
C0(x)

⋂
C1(y)

)
1−u

≤ lim
u→1

P̃
(
A0 (x(1− ε))

⋂
A1 (y(1− ε))

)
1−u

= lim
u→1

∑n
t=1 P̃

(
η2

t > (1− ε)
(

x
Ltt

∨ y
1−Ltt

))
1−u

=(1− ε)−α/2
n∑

t=1

Lα/2
tt

nE(Lα/2)
∧ (1−Ltt)

α/2

nE((1−L)α/2)
. (24)

Similarly, to obtain a lower bound for P̃
(
C0(x)

⋂
C1(y)

)
, we use the fact that

C0(x)
⋂

C1(y) ⊃
(

A0 (x(1+ ε))
⋂

Bc
1

(
ε

n(n−1)/2
x

))
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⋂(
A1 (y(1+ ε))

⋂
Bc

0

(
ε

n(n−1)/2
y

))

=
(

A0 (x(1+ ε))
⋂

A1 (y(1+ ε))
)⋂

×
(

B1

(
ε

n(n−1)/2
x

)⋃
B0

(
ε

n(n−1)/2
y

))c

.

Under the P̃ measure, the probability of the set B1

(
ε

n(n−1)/2 x
)⋃

B0

(
ε

n(n−1)/2 y
)

tends to zero faster than 1−u as u → 1, which yields that

liminf
u→1

P̃
(
C0(x)

⋂
C1(y)

)
1−u

≥ lim
u→1

P̃
(
A0 (x(1+ ε))

⋂
A1 (y(1+ ε))

)
1−u

=(1+ ε)−α/2
n∑

t=1

Lα/2
tt

nE(Lα/2)
∧ (1−Ltt)

α/2

nE((1−L)α/2)
, (25)

where the last step is derived in a similar way as for the upper bound. Combining
(24) and (25), together with taking ε → 0, we obtain that

lim
u→1

P̃
(
C0(x)

⋂
C1(y)

)
1−u

=
n∑

t=1

Lα/2
tt

nE(Lα/2)
∧ (1−Ltt)

α/2

nE((1−L)α/2)
.

The theorem follows from taking expectation on both sides of this limit rela-
tion, combined with interchanging the expectation and the limit, justified in the
Appendix. �

4.4. Proof of Proposition 1

Proof of Proposition 1. Since 1−
(∑n

j=1 X2,jX1,j

)2

∑n
j=1 X2

1,j
∑n

j=1 X2
2,j

> 0, we can write |Ct| as

|Ct| =

∣∣∣∣ X1,t∑n
j=1 X2

1,j
− X2,t

∑n
j=1 X1,jX2,j∑n

j=1 X2
1,j
∑n

j=1 X2
2,j

∣∣∣∣
1−

(∑n
j=1 X2,jX1,j

)2

∑n
j=1 X2

1,j
∑n

j=1 X2
2,j

≤
|X1,t |∑n
j=1 X2

1,j
+ |X2,t |max1≤j≤n |X2,j|

∑n
j=1 |X1,j|∑n

j=1 X2
1,j
∑n

j=1 X2
2,j

1−
(∑n

j=1 X2,jX1,j

)2

∑n
j=1 X2

1,j
∑n

j=1 X2
2,j

≤
|X1,t |∑n
j=1 X2

1,j
+
∑n

j=1 |X1,j|∑n
j=1 X2

1,j

1−
(∑n

j=1 X2,jX1,j

)2

∑n
j=1 X2

1,j
∑n

j=1 X2
2,j

.
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Since
∑n

j=1 X2
1,j ≥ n(

∑n
j=1 |X1,j|)2 > n

4 (
∑n

j=1 |X1,j| + |X1,t|)2, we get that, for any
0 < K < n

4 ,

|Ct|−2 > K
n∑

j=1

X2
1,j

⎛
⎜⎝1−

(∑n
j=1 X2,jX1,j

)2

∑n
j=1 X2

1,j

∑n
j=1 X2

2,j

⎞
⎟⎠

2

:= KC̃t.

Therefore, to prove E|Ct|α+ε < +∞, we only need to verify that EC̃−(α+ε)/2
t <

+∞.
By the Cauchy–Schwarz inequality, we get that

EC̃−(α+ε)/2
t ≤ E

⎛
⎝ n∑

j=1

X2
1,j

⎞
⎠

−α−ε

E

⎛
⎜⎝1−

(∑n
j=1 X2,jX1,j

)2

∑n
j=1 X2

1,j

∑n
j=1 X2

2,j

⎞
⎟⎠

−2(α+ε)

.

By Lemma 3.6 in Mikosch and de Vries (2013), Condition 1 implies that

E

(∑n
j=1 X2

1,j

)−α−ε

< +∞.

Finally, we show that Condition 2 implies thatE

(
1−

(∑n
j=1 X2,jX1,j

)2

∑n
j=1 X2

1,j
∑n

j=1 X2
2,j

)−2(α+ε)

<

+∞. Since

E

⎛
⎜⎝1−

(∑n
j=1 X2,jX1,j

)2

∑n
j=1 X2

1,j

∑n
j=1 X2

2,j

⎞
⎟⎠

−2(α+ε)

=
∫ ∞

1
P

⎛
⎜⎝
(∑n

j=1 X2,jX1,j

)2

∑n
j=1 X2

1,j

∑n
j=1 X2

2,j

> 1− x− 1
2(α+ε)

⎞
⎟⎠dx,

Condition 2 implies that, for x > x−2(α+ε)
1 ,

P

⎛
⎜⎝
(∑n

j=1 X2,jX1,j

)2

∑n
j=1 X2

1,j

∑n
j=1 X2

2,j

> 1− x− 1
2(α+ε)

⎞
⎟⎠≤ c1x− γ1

2(α+ε) .

Since γ1 > 2α, by choosing ε sufficiently small such that γ1
2(α+ε)

> 1, we obtain

that E

(
1−

(∑n
j=1 X2,jX1,j

)2

∑n
j=1 X2

1,j
∑n

j=1 X2
2,j

)−2(α+ε)

< +∞. Proposition 1 thus follows.

As an example, we verify that if the regressors
(
X1,t,X2,t

)
follow a bivariate

normal distribution with correlation parameter |ρ| < 1, then the two sufficient
conditions hold. Condition 1(b) regarding the marginal distribution holds trivially.
We only check that Condition 2 holds.
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W.l.o.g., we assume that marginal normal distribution has both mean zero
and unit variance. Hotelling (1953) provides the density function of the sample

correlation coefficient Rn, where R2
n = (

∑n
t=1 X2,tX1,t)

2∑n
t=1 X2

1,t
∑n

t=1 X2
2,t

, as follows:

gn(r,ρ) =n−2√
2π

�(n−1)

�(n−1/2)
(1−ρ2)(n−1)/2(1− r2)(n−4)/2(1−ρr)−n−1/2×

F(1/2,1/2,n−1/2;(1+ρr)/2),

where F(.,.,.;.) is the Gaussian hypergeometric function. Condition 2 can be
rewritten as there exists x1 such that, for all x < x1,∫ x

0
gn(1− z,ρ)dz ≤c1xγ1 and

∫ x

0
gn(z−1,ρ)dz ≤ c1xγ1,

for some c1 > 0 and γ1 > 2α. This condition is met if gn(x−1,ρ) ≤ c1γ1xγ1−1 and
gn(1− x,ρ) ≤ c1γ1xγ1−1 for x sufficiently close to zero.

Notice that, as x → 0, gn(x−1,ρ) = O(x(n−4)/2) and gn(1−x,ρ) = O(x(n−4)/2).
Hence, the inequality holds for γ1 −1 < n−4

2 . Therefore, Condition 2 holds if n >

4α +2. �

5. CONCLUSION

In this paper, we study the tail dependence between OLS estimators for the
regression coefficients when the error terms in the regression are heavy-tailed.
We show the presence of tail dependence and provide an explicit formula relating
the level of tail dependence to the distribution of the regressors. We also show
that the FSS and the RSS are tail-dependent by providing an explicit formula for
calculating the level of tail dependence. Simulation studies confirm our theoretical
findings.

In practice, the error terms in a regression may possess heavy tails, for instance,
when regressing a heavy-tailed dependent variable, such as a financial variable,
on a set of thin-tailed independent variables. If, in addition, the number of
observations is low, then the OLS estimators for the regression coefficients can
be heavy-tailed and tail-dependent. That means if the estimator for one coefficient
deviates largely from its true value, the estimator for another coefficient may
also deviate from its true value substantially. A practitioner has to be cautious in
interpreting the significance of the results from such a regression.

APPENDIX

Interchanging the Expectation and the Limit
We show that we may interchange the expectation and the limit in (17). The proof follows
similar steps as in the proof of Breiman’s lemma (see Breiman, 1965).
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In particular, we will show that

lim
u→1

P

(
β̂1 −β1 > Qu

(
β̂1 −β1

)
,β̂2 −β2 > Qu

(
β̂2 −β2

))
1−u

= E

⎛
⎝ lim

u→1

P̃

(
β̂1 −β1 > Qu

(
β̂1 −β1

)
,β̂2 −β2 > Qu

(
β̂2 −β2

))
1−u

⎞
⎠

Recall that η = (η1, . . . ,ηn)′, define C = (C1, . . . ,Cn)′, and let ||.|| denote the euclidean
norm. We have

P

(
β̂1 −β1 > Qu

(
β̂1 −β1

)
,β̂2 −β2 > Qu

(
β̂2 −β2

))
1−u

= E

⎛
⎝ P̃

(
β̂1 −β1 >Qu(β̂1 −β1),β̂2 −β2 > Qu(β̂2 −β2)

)
I{||C||α+ε ≥1/(1−u)}

1−u

⎞
⎠

+E

⎛
⎝ P̃

(
β̂1 −β1 > Qu(β̂1 −β1),β̂2 −β2 > Qu(β̂2 −β2)

)
I{||C||α+ε <1/(1−u)}

1−u

⎞
⎠

:= Iu
1 + Iu

2 .

We first handle Iu
1 . Note that the conditional probability P̃(· · ·) is bounded by 1. Therefore,

as u → 1,

Iu
1 ≤ E

(||C||α+ε
I{||C||α+ε ≥ 1/(1−u)})→ 0,

because E|C|α+ε < ∞ implies that E||C||α+ε < ∞ for sufficiently small ε.
To deal with the second term, Iu

2 , we will find an integrable function dominating its
integrand such that we can apply the dominated convergence theorem. First, by applying
the Cauchy–Schwarz inequality to C′η = β̂1 −β1, we obtain

P̃

(
β̂1 −β1 > Qu

(
β̂1 −β1

)
,β̂2 −β2 > Qu

(
β̂2 −β2

))
1−u

≤
P̃

(
||C||||η|| > Qu

(
β̂1 −β1

))
1−u

.

(26)

Since ||η|| possesses a tail index α (see, e.g., Lemma 3.4 in Mikosch and de Vries (2013)),

Lemma 3 implies that P
(
||η|| > Qu

(
β̂1 −β1

))
= O(1 − u) as u → 1. Therefore, there

exists K > 0 such that for u close enough to 1,

P̃

(
||C||||η|| > Qu

(
β̂1 −β1

))
1−u

≤ K
P̃

(
||C||||η|| > Qu

(
β̂1 −β1

))
P

(
||η|| > Qu

(
β̂1 −β1

)) . (27)

Note that on the event {||C||α+ε < 1/(1−u)}, we have Qu

(
β̂1 −β1

)
/||C|| → ∞ as u → 1.

Therefore, by Potter’s bounds for regularly varying functions (Potter, 1942), we have that

https://doi.org/10.1017/S0266466621000311 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466621000311


300 JOCHEM OORSCHOT AND CHEN ZHOU

on the event {||C||α+ε < 1/(1−u)}, for any δ > 0, as u is close enough to 1,

P̃

(
||C||||η|| > Qu

(
β̂1 −β1

))
P

(
||η|| > Qu

(
β̂1 −β1

)) ≤ (1+ δ)||C||α max
(
||C||δ,||C||−δ

)
. (28)

We obtain by combining (26)–(28) that, as u is close enough to 1,

P̃

(
β̂1 −β1 > Qu

(
β̂1 −β1

)
,β̂2 −β2 > Qu

(
β̂2 −β2

))
1−u

≤ K(1+ δ)||C||α max
(
||C||δ,||C||−δ

)
.

Hence, by choosing δ sufficiently small, we have that the integrand in Iu
2 is bounded by the

integrable function K(1 + δ)||C||α max
(
||C||δ,||C||−δ

)
. The statement for interchanging

the limit and the expectation follows from applying the dominated convergence theorem.
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