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NEARLY MORITA EQUIVALENCES AND
RIGID OBJECTS

BETHANY R. MARSH and YANN PALU

Abstract. If T and T ′ are two cluster-tilting objects of an acyclic cluster

category related by a mutation, their endomorphism algebras are nearly Morita

equivalent (Buan et al., Cluster-tilted algebras, Trans. Amer. Math. Soc. 359(1)

(2007), 323–332 (electronic)); that is, their module categories are equivalent “up

to a simple module”. This result has been generalized by Yang, using a result

of Plamondon, to any simple mutation of maximal rigid objects in a 2-Calabi–

Yau triangulated category. In this paper, we investigate the more general case

of any mutation of a (non-necessarily maximal) rigid object in a triangulated

category with a Serre functor. In that setup, the endomorphism algebras might

not be nearly Morita equivalent, and we obtain a weaker property that we call

pseudo-Morita equivalence. Inspired by Buan and Marsh (From triangulated

categories to module categories via localization II: calculus of fractions, J. Lond.

Math. Soc. (2) 86(1) (2012), 152–170; From triangulated categories to module

categories via localisation, Trans. Amer. Math. Soc. 365(6) (2013), 2845–2861),

we also describe our result in terms of localizations.

Introduction and main results

In this paper, our aim is to prove a weak form of nearly Morita equivalence

for mutations of (non-maximal) rigid objects in triangulated categories.

Before recalling the case of cluster-tilting objects (see [BMR07]), we first

give an example.

Let Q be a linear orientation of the Dynkin diagram of type A3.

The Auslander–Reiten quiver of the acyclic cluster category CQ, defined
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NEARLY MORITA EQUIVALENCES AND RIGID OBJECTS 65

in [BMR+06], is as follows:

The object T = T1 ⊕ T2 ⊕ T3 is cluster-tilting. Its mutation at T2 is the

cluster-tilting object T ′ = T1 ⊕ T ∗2 ⊕ T3. We write Γ for the cluster-tilted

algebra EndC(T )op, and Γ′ for EndC(T
′)op. Then, the two algebras Γ and Γ′

are related as follows.

On the one hand, the functor C(T,−) induces an equivalence of categories

C/(ΣT )'mod Γ, where mod Γ is the category of finitely generated left

modules, and the Auslander–Reiten quiver of mod Γ is thus

where S2 = C(T, ΣT ∗2 ) is the simple top of the projective indecomposable

C(T, T2).

On the other hand, the functor C(T ′,−) induces an equivalence of

categories C/(ΣT ′)'mod Γ′, and the Auslander–Reiten quiver of mod Γ′

is thus

where S∗2 = C(T ′, ΣT2) is the simple top of the projective indecomposable

C(T ′, T ∗2 ), where the two arrows starting at S∗2 are identified, and where

dots indicate zero relations.

The two Auslander–Reiten quivers are not isomorphic; therefore, Γ and

Γ′ are not Morita equivalent. However, they are not very far from being so:
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66 B. R. MARSH AND Y. PALU

the difference in the Auslander–Reiten quivers comes from the simples S2

and S∗2 .

The common Auslander–Reiten quiver of the categories mod Γ/(add S2)

and mod Γ/(add S∗2) is thus

This phenomenon, proved in [BMR07], has been called “nearly Morita

equivalence” by C. M. Ringel. Let us state the precise result.

Let Q be an acyclic quiver, and let T be a cluster-tilting object in

the cluster category CQ. Let T ′ = T/Tk ⊕ T ∗k be the mutation of T at an

indecomposable summand Tk; then, T ′ is also a cluster-tilting object. Let

Γ (respectively, Γ′) be the cluster-tilted algebra EndCQ(T )op (respectively,

EndCQ(T ′)op), and let Sk (respectively, S∗k) be the simple top of the

projective indecomposable Γ-module CQ(T, Tk) (respectively, the simple top

of the Γ′-module CQ(T ′, T ∗k )).

Then, by a result of [BMR07], the categories mod Γ/ add Sk and

mod Γ′/ add S∗k are equivalent. By [Yan12, Corollary 4.3], nearly Morita

equivalence, in the more general setup of simple, 2-periodic mutations of

rigid objects (or rigid, Krull–Schmidt subcategories) in any triangulated

category, follows from [Pla11, Proposition 2.7].

Our main aim in this paper is to prove an analogous result for any

mutation of (non-maximal) rigid objects. Before explaining our results, let

us have a look at an example that shows that one cannot expect these

mutations to induce a nearly Morita equivalence in general.

Let T = T1 ⊕ T2 ⊕ T3 be the rigid object of the acyclic cluster category

C = CA4 given by
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and let T ′ = T1 ⊕ T ∗2 ⊕ T3 be the rigid object obtained by mutating T

at the summand T2. This means that ΣT ∗2 is the cone of a minimal

right add T/T2-approximation of T2. In the example, there is a triangle

T ∗2 → T1→ T2→ ΣT ∗2 . Let Λ (respectively, Λ′) be the algebra EndC(T )op

(respectively, EndC(T
′)op). Using results in [BM12, BM13] (see also [KR07]),

we can easily compute the Auslander–Reiten quivers of mod Λ and mod Λ′:

The algebras Λ and Λ′ are not nearly Morita equivalent. On factoring out

by S2 (respectively, S∗2), we obtain the following Auslander–Reiten quivers:

However, these algebras are not very far from being nearly Morita equiv-

alent. Indeed, the Auslander–Reiten quivers differ by only one arrow. The

corresponding morphism can be characterized in mod Λ as being surjective

with kernel in the subcategory add S2.

Let C be an acyclic cluster category, and let T be a rigid object in

C. Let T ′ = T/Tk ⊕ T ∗k be the mutation of T at the summand Tk. Let Λ

(respectively, Λ′) be the algebra EndC(T )op (respectively, EndC(T
′)op), and

let Sk (respectively, S∗k) be the simple top of the projective indecomposable

Λ-module C(T, Tk) (respectively, the Λ′-module C(T ′, T ∗k )).

As suggested by the example above, let us consider the class R of

epimorphisms in mod Λ with kernels in add Sk, and the class R∗ of

monomorphisms in mod Λ′ with cokernels in add S∗k .

Theorem A. There is an equivalence of categories

(mod Λ)R ' (mod Λ′)R∗ .
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This result is not completely satisfactory since it does not resemble nearly

Morita equivalence. The following remark will help in restating the theorem

in a form that looks more like nearly Morita equivalence.

Let M ∈mod Λ. If there is a short exact sequence 0→ Sk→ L
f→M → 0,

the morphism f belongs to R. Therefore, the objects L and M become

isomorphic in the localization (mod Λ)R. This suggests that the objects

having non-split extensions with Sk can be removed from mod Λ without

changing the localization. We thus define E to be the full subcategory of

mod Λ whose objects M satisfy Ext1
Λ(M, Sk) = 0. Dually, let E ′ be the full

subcategory of mod Λ′ whose objects N satisfy Ext1
Λ′(S

∗
k , N) = 0.

It should be noted that E and E ′ are extension-closed in mod Λ (respec-

tively, mod Λ′) and are thus exact categories.

Theorem B. There is an equivalence of categories

(mod Λ)R ' E/ add Sk.

Dually, there is an equivalence of categories

(mod Λ′)R∗ ' E ′/ add S∗k .

Combining the two theorems gives the following.

Corollary. There is an equivalence of categories

E/ add Sk ' E ′/ add S∗k .

This resembles nearly Morita equivalence except that, unlike in the

cluster-tilting case, one has to restrict to an exact subcategory before killing

the simple.

Unfortunately, these statements do not specialize to a nearly Morita

equivalence in the cluster-tilting case: in the setup of [BMR07], we obtain a

weaker statement.

The proofs of Theorems A and B are in Section 3.1 (but note that

the proofs appear in reverse order to the above). In fact, we prove more

general results than those mentioned above. First, we only assume the

triangulated category C to be Krull–Schmidt, with a Serre functor. Second,

we allow mutations at non-indecomposable summands. Our results hold, in

particular, in any triangulated category in the following list (whose items

overlap):
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• Hom-finite generalized higher cluster categories (see [Ami09, Guo11]);

• stable categories of maximal Cohen–Macaulay modules over an odd

dimensional isolated hypersurface singularity (see [BIKR08]);

• cluster tubes (see [BKL08, BMV10]. . . );

• (higher) cluster categories of type A∞ (see [HJ12, HJ13]);

• the triangulated orbit categories listed in [Ami07];

• stable categories constructed from preprojective algebras in [GLS,

GLS11]. . . .

§1. Setup and notation

We fix a field k, and a Krull–Schmidt, k-linear, Hom-finite, triangulated

category C, with suspension functor Σ. An object X in C is called rigid if

Ext1
C(X, X) = 0, where we write Ext1

C(X, Y ) for C(X, ΣY ). We write X⊥ for

the right Hom-perp of X; that is, the subcategory of C on objects Y such

that C(X, Y ) = 0. It should be noted that this notation differs from that used

in [BM13], which we often cite; here, the Hom-perpendicular categories play

a key role, so we use a different notation.

Let T ∈ C be a basic rigid object. Let R be a direct summand of T , and

write T = T ⊕R. Let T ′ be the object obtained from T by replacing R by the

negative shift R∗ of the cone of a minimal right add T -approximation of R.

We have a triangle R∗→B→R→ ΣR∗, with B ∈ add T , B→R a minimal

right add T -approximation, and T ′ = T ⊕R∗. By [BMR+06, Lemma 6.7],

ΣR∗ ∈ T⊥. We assume that T ′ is rigid. More precisely, we assume that

R∗ is rigid and that R∗ belongs to ⊥ΣT . By [IY08, Proposition 2.6(1)]

and [BMR+06, Lemma 6.5], R and R∗ are basic and have the same number

of indecomposable direct summands. We keep these assumptions throughout

the paper.

Remark. We note that, if C is 2-Calabi–Yau, then T ′ is automatically

rigid (see [BMR+06, Section 6]). However, WuZhong Yang kindly warned

us that this is not true in general: Example 2.20 in [YZZ15] shows that R∗

might not be rigid. Moreover, even when R∗ is rigid, it might not belong

to ⊥ΣT . An example illustrating this latter phenomenon can be found in

[YZ15, Example 2.15]. In that example, C is the 3-cluster category of type

A3, which contains a cluster-tilting object T . If R is any indecomposable

summand of T , the (left) mutation of T at R gives an indecomposable rigid

object R∗ which belongs to Σ−1T
⊥

, but not to ⊥ΣT .
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In some statements, we assume additionally that C has a Serre functor.

We also need some more notation. If X is an object in C, we write (X) for

the ideal of morphisms factoring through the additive subcategory addX

generated by X. All modules considered are left modules.

We denote by C(T ) the full subcategory of C whose objects are the cones of

morphisms T1→ T0, where T0, T1 ∈ add T , and by C(T ) the full subcategory

of C whose objects are the cones of morphisms T1→ T0, where T0 ∈ add T

and T1 ∈ add T .

More generally, for any two full subcategories A and B of C, we use the

notation A ∗ B for the full subcategory whose objects X are extensions of

an object in B by an object in A (i.e., X appears in a triangle A→X →
B→ ΣA with A ∈ A and B ∈ B). It follows from the octahedral axiom that

the operation ∗ is associative. By abuse of notation, if A, B are objects in

C, we write A ∗B for addA ∗ addB.

Thus, one could also define C(T ) and C(T ) by C(T ) = T ∗ ΣT and C(T ) =

T ∗ ΣT .

Remark. Our results hold in the more general setup of rigid subcat-

egories. We replace add T by a rigid subcategory T , with the following

additional assumptions: T is contravariantly finite, T is functorially finite,

and T ′ is covariantly finite. This requires changing the functors of the form

C(T,−), taking values in the category mod EndC(T )op, into functors of

the form C(?,−)|T , taking values in mod T , and replacing all references

to [BM13] by references to [Bel13].

§2. Pseudo-Morita equivalence

2.1 Adjunctions

The methods used in this subsection are inspired by [Bel13, BM13,

BM12], and much resemble results in [Nak13, Section 3]. Indeed, [Nak13,

Corollary 3.8] applied to the twin cotorsion pair (ΣT , T
⊥

), (ΣT ′, T ′⊥)

(where we use the notation from Section 2.2) gives the existence of a right

adjoint to the fully faithful functor C(T )/(ΣT ′)−→ C/(ΣT ′) from which it

is possible to deduce our Proposition 2.5. For the convenience of the reader,

we nonetheless include a complete proof.
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The subcategory C(T ) is known to be contravariantly finite, by [BM13,

Lemmas 3.3 and 3.6]. An analogous proof gives Lemma 2.2 below. We first

need a definition.

Definition 2.1. Let S be the set of morphisms X
f−→ Y in C such that

for any triangle Z→X
f→ Y

g→ ΣZ we have Z ∈ T⊥ and g ∈ (T⊥).

Lemma 2.2.

(a) Let X ′
s→X be a morphism in S with X ′ ∈ C(T ). Then, s is a right

C(T )-approximation of X.

(b) Each object X in C has a right C(T )-approximation R0X
ηX
→X lying in

S.

(c) The category C(T ) is a contravariantly finite subcategory of C.

Proof. Suppose that X ′
s→X is a morphism in S with X ′ ∈ C(T ). Thus,

we may complete s to a triangle:

X ′
s→X

g→ ΣZ→ ΣX ′,

where g factors through T⊥, and ΣZ lies in (ΣT )⊥.

Let X ′′
u→X be a morphism in C. Assume that X ′′ lies in C(T ), so

that there is a triangle U0
p→X ′′→ ΣU1→ ΣU0, with U0 ∈ add T and U1 ∈

add T . Since g factors through T⊥, and U0 ∈ add T , we have gup= 0, and

therefore have the following commutative diagram whose rows are triangles:

Moreover, ΣZ lies in (ΣT )⊥, and ΣU1 is in add ΣT , so the composition

gu= vη is zero. Thus, there is a morphism u′ such that u= su′. Part (a) is

shown.

For part (b), let X ∈ C. Let TX0 →X be a minimal right add T -

approximation of X. Complete it to a triangle Y → TX0 →X → ΣY . Let

T
Y
1 → Y be a minimal right add T -approximation of Y . Applying the
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octahedral axiom, we obtain the following diagram:

Applying the functors C(T,−) and C(T ,−) to the triangles above shows

that ΣY ∈ T⊥ and Z ∈ T⊥. It should be noted that R0X ∈ C(T ). Then, by

part (a), ηX is a right C(T )-approximation of X, and part (b) is shown. Part

(c) follows immediately from part (b).

The following remark is stated as a lemma since it is used several times

in the paper.

Lemma 2.3. Let X
f−→ Y be a morphism in C with X ∈ C(T ), and

assume that f factors through T
⊥

in C. Then, f factors through T
⊥ ∩ C(T ).

Proof. Let T 0
u−→X be a minimal right T -approximation of X in C.

Complete the morphism u to a triangle T 0
u→X

v→ Z→ ΣT 0 in C. As shown

in [BMR+06] (apply the functor C(T ,−) to the triangle above), the cone

Z belongs to T
⊥

. Moreover, the composition fu vanishes since f factors

through T
⊥

, and it follows that the morphism f factors through v. It remains

to be checked that the object Z lies in C(T ). The triangle above shows that

Z ∈ C(T ) ∗ add ΣT , and we have

C(T ) ∗ add ΣT = (add T ∗ add ΣT ) ∗ add ΣT

= add T ∗ (add ΣT ∗ add ΣT )

= add T ∗ add ΣT ,

where the last equality holds since ΣT is rigid.

The following lemma, which is used in the proof of Proposition 2.5, is a

particular case of [ML98, IV.1 Theorem 2(ii)].
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Lemma 2.4. Let B be a category, and let A be a full subcategory

of B. Suppose that, for any B ∈ B, there is an object G0B ∈ A and a

morphism G0B
ηB−→B such that for all A

f−→B with A ∈ A, the morphism

f lifts uniquely through ηB. Then, the inclusion A⊆ B has a right adjoint

G : B →A such that, for all B ∈ B, GB =G0B.

The functor G of the previous lemma is defined on arrows as follows. For

any B
b−→B′ in B, Gb is the unique lift through ηB′ of the composition bηB:

The following proposition is inspired by [Bel13].

Proposition 2.5. The inclusion of C(T ) into C induces a fully faithful

functor C(T )/(T
⊥ ∩ C(T ))

I−→ C/T⊥. Moreover, the functor I admits an

additive right adjoint R, such that, for all X in C, RX =R0X, in the

notation of Lemma 2.2.

Proof. The inclusion of C(T ) in C induces a full functor:

We first check that the functor I is faithful. This amounts to proving that

if a morphism in C(T ) factors through T
⊥

in C, then it already factors

through T
⊥

in C(T ). This follows from Lemma 2.3. In what follows, we

identify C(T )/(T
⊥ ∩ C(T )) with the image of C(T ) in C/(T⊥).

Next, we prove the existence of a right adjoint. For this, we use the

particular case of [ML98, IV-1 Theorem 2(ii)], stated in Lemma 2.4.

Let X ∈ C. Consider the morphism R0X
ηX−→X constructed in

Lemma 2.2. We claim that QηX is universal from I to X, in the sense

of MacLane; that is, any morphism in C/(T⊥) from an object in C(T ) to
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X factors uniquely through QηX in C/(T⊥). Since ηX is a right C(T )-

approximation of X in C, its image QηX is a right C(T )/(T
⊥ ∩ C(T ))-

approximation of X in C/(T⊥), so that we only have to prove uniqueness.

Let Y ∈ C(T ), and let Y
u−→R0X be a morphism in C such that

Q(ηXu) = 0. Since the kernel of Q is the ideal (T
⊥

) of C, this means that

the composition ηXu factors through T
⊥

. Since its source belongs to C(T ),

Lemma 2.3 shows that ηXu factors through T
⊥ ∩ C(T ). Let Y ′ ∈ T⊥ ∩ C(T )

be such that the square

commutes. Since ηX is a right C(T )-approximation, there exists a morphism

Y ′
c−→R0X with b= ηXc. We have ηX(u− ca) = 0, so that the morphism

u− ca factors through α. By construction, Z ∈ T⊥; therefore, we have u ∈
(T
⊥

), which proves uniqueness.

Finally, we note that the functor R is additive since it is the right adjoint

of the additive functor I.

If the category admits a Serre functor S, then a dual version of

Proposition 2.5 will be of interest to us. We first note that applying to

ST ′ the construction dual to that of R0 gives, for any X ∈ C, a triangle

Z
α−→X

εX−→ L0X −→ ΣZ, where L0X belongs to add Σ−1ST ∗ add ST ′, εX
is a minimal left add Σ−1ST ∗ add ST ′-approximation, α factors through
⊥(ST ′) = (T ′)⊥, and ΣZ belongs to T

⊥
.

Proposition 2.6. Assume that the category C has a Serre functor S,

and let C(T ′) be the full subcategory add Σ−1ST ∗ add ST ′ of C. Then, the

inclusion of C(T ′) into C induces a fully faithful functor C(T ′)/(T⊥)
J−→

C/(T⊥). Moreover, the functor J admits an additive left adjoint L, such

that LX = L0X for all X ∈ C.

The only reason why we assume the existence of a Serre functor here is

that it converts a left perpendicular subcategory into a right perpendicular

subcategory. This allows us to view both categories in Propositions 2.5

and 2.6 as subcategories of the same category C/(T⊥).
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2.2 Main result

Our aim in this section is to prove that if C has a Serre functor then the

categories C(T )/(ΣT ′) and C(T )/(T ) are equivalent (Theorem 2.9). This is

then used in the next section in order to compare the module categories

over the endomorphism algebras of T and T ′.

We need the following key lemma, which is often used throughout the

paper.

Lemma 2.7. We have:

(a) C(T ) = T ∗ ΣT = T ∗ ΣT ′;

(b) C(T ) ∩ T⊥ = add ΣT ′;

(c) if C has a Serre functor S, then (Σ−1ST ∗ ST ′) ∩ T⊥ = add Σ−1ST .

Proof. (a) The exchange triangle shows that T ∈ T ∗ ΣT ′. We thus have

T ∗ ΣT ⊆ (T ∗ ΣT ′) ∗ ΣT

= T ∗ (ΣT ′ ∗ ΣT )

= T ∗ ΣT ′.

The reverse inclusion is obtained by applying this inclusion to ΣT ′ (instead

of T ) in the opposite category.

(b) This immediately follows from (a).

(c) This also follows from (a):

(Σ−1ST ∗ ST ′) ∩ T⊥ = (Σ−1ST ∗ ST ) ∩ ⊥ST (by (a))

= Σ−1ST.

Assume that C has a Serre functor S. Recall that we write C(T ) (respec-

tively, C(T ′)) for the full subcategory T ∗ ΣT (respectively, Σ−1ST ∗ ST ′) of

C. By Propositions 2.5, 2.6 and Lemma 2.7, we have a pair of adjoint functors

(G, H), where G= LI and H =RJ . Since I, J, L and R are additive, so are

G and H.
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Remark 2.8. We write τ for the Auslander–Reiten translation τ =

SΣ−1 (see [RvdB02, Section I.2]). Then, by Lemma 2.7, we have that

C(T ′) = τC(T ).

Theorem 2.9. Assume that C has a Serre functor S. Then the functors

G and H are quasi-inverse equivalences of categories. In particular, the

categories C(T )/(ΣT ′) and C(T )/(T ) are equivalent.

Proof. The construction would be simplified if we had that, if X belongs

to T ∗ ΣT , then the left add Σ−1ST ∗ add ST ′-approximation X
εX−→ L0X of

X (see Proposition 2.6 and the paragraph before it) is also a minimal right

T ∗ ΣT -approximation of L0X. However, this cannot be expected to hold in

general (take X to be ΣT ′, for instance).

We can modify this approach in the following way. First, since the functors

G and H are additive, we may assume that X is indecomposable. This helps

in proving that X is a summand of R0L0X. Second, we add to X a minimal

right add(ΣT ′)-approximation ΣT ′0 of L0X. This is needed in order to get a

right approximation of L0X, while being harmless since the objects X and

X ⊕ ΣT ′0 are isomorphic in C(T )/(ΣT ′).

Therefore, take an indecomposable object X ∈ T ∗ ΣT , and assume that

X does not belong to add ΣT ′ (otherwise, X would be isomorphic to

0 in C(T )/(ΣT ′)). Consider the triangle Z
α−→X

εX−→ L0X
β−→ ΣZ in C,

constructed in the paragraph before Proposition 2.6, where α ∈ ((T ′)⊥) and

ΣZ ∈ T⊥. Let ΣT ′0
p−→ L0X be a minimal right add ΣT ′-approximation of

L0X in C. We claim thatX ⊕ ΣT ′0
[εXp]−→ L0X is a right T ∗ ΣT -approximation

of L0X in C. Let X ′
f−→ L0X be a morphism in C, with X ′ ∈ T ∗ ΣT .

By assumption, there is a triangle T ′1
a−→ T 0

b−→X ′
c−→ ΣT ′1 in C, with

T ′1 ∈ add T ′ and T 0 ∈ add T . Since T 0 is in add T , and ΣZ is in T
⊥

, the

composition βfb vanishes, and f induces a morphism of triangles:
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Since α factors through (T ′)⊥, we have (−Σα)g = 0, and there exists

ΣT ′1
u−→ L0X such that g = βu. This implies β(f − uc) = 0, so that there

exists X ′
v−→X such that f = uc+ εXv. The composition uc is in the

ideal (ΣT ′), and thus factors through p; that is, there exists w making

the following square commute:

We thus have f = [εX p][vw], and therefore the morphism [εX p] is a right

T ∗ ΣT -approximation of L0X in C.
Since also R0L0X

ηL0X−→ L0X is a right T ∗ ΣT -approximation of L0X in

C, we can write R0L0X as a direct sum X ′ ⊕X ′′, and ηL0X = [η′ 0] :X ′ ⊕
X ′′→ L0X, where X ′

η′−→ L0X is a minimal right T ∗ ΣT -approximation.

Moreover, we have X ′′ ∈ add ΣT ′, since in the triangle Z ′→X ′ ⊕X ′′→
L0X → given by Lemma 2.2, Z ′ belongs to T

⊥
, and X ′′ is a summand of

Z ′. Thus, X ′′ belongs to ∈ T⊥ ∩ C(T ), which is add ΣT ′ by Lemma 2.7.

Now, X ′ is a summand of the approximation X ⊕ ΣT ′0. Moreover, X ′

contains X as a summand. Otherwise, we would have R0L0X ∈ add ΣT ′,

which implies L0X ∈ T
⊥ ∩ C(T ′) = add Σ−1ST ′ (by applying the functor

C(T ,−) to the triangle Z ′→R0L0X → L0X →), which dually implies X ∈
add ΣT ′ (note that we assumed X /∈ add ΣT ′).

As a consequence, given a lift

the image ϕX of ϕ̃X in C(T )/(ΣT ′), which is independent of the choice

of ϕ̃X by Proposition 2.5, is an isomorphism (and εX is a minimal right

C(T )-approximation of L0X in C/(ΣT ′)).
Let us check that we have defined a natural isomorphism ϕ : 1→HG.
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Let X
f−→ Y be a morphism in C(T ). By construction, there is a diagram

in C

where we write η for ηL0Y , and where the inner two triangles and the inner

two squares commute. We thus have η(HGf ◦ ϕ̃X − ϕ̃Y ◦ f) = 0, andHGf ◦
ϕ̃X − ϕ̃Y ◦ f factors through Z→R0L0Y in the triangle Z→R0L0Y

η→
L0Y →, where Z ∈ T⊥. This shows thatHGf ◦ ϕ̃X − ϕ̃Y ◦ f factors through

T
⊥

. Since X lies in C(T ), we can apply Lemma 2.3. The morphism HGf ◦
ϕ̃X − ϕ̃Y ◦ f factors through T

⊥ ∩ C(T ), which is add ΣT ′ by Lemma 2.7.

As a consequence, ϕ is a natural transformation.

By duality, there is a natural isomorphism GH → 1, and the functors G

and H are quasi-inverse equivalences of categories.

2.3 A module-theoretic interpretation

In this section, we assume that C has a Serre functor S. In this case,

the assumptions of functorial finiteness (see Section 1) are automatically

satisfied for all rigid objects (but have to be added in the case of rigid

subcategories). We write D for the duality functor Homk(−, k). Recall that

T ∈ C is a basic rigid object, and R is a direct summand of T , with T =

T ⊕R. We write T = T1 ⊕ · · · ⊕ Tn and R= Tn+1 ⊕ · · · ⊕ Tm, where the Ti
are indecomposable. Recall also that ΣR∗ is the cone of a minimal right

add T -approximation of R. We have T ′ = T ⊕R∗ = T ′1 ⊕ · · · ⊕ T ′m, where

T ′i = Ti if i6 n. Define Λ (respectively, Λ′) to be the endomorphism algebra

EndC(T )op (respectively, EndC(T
′)op).

Let Sj be the simple top of the indecomposable projective Λ-module

C(T, Tj), and let S′j be the simple socle of the indecomposable injective Λ′-

module DC(ΣT ′j , ΣT ′). We consider the exact categories E and E ′ defined

as follows. The category E (respectively, E ′) is the full subcategory of
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mod Λ (respectively, mod Λ′), whose objects M (respectively, N) satisfy

Ext1
Λ(M, Sj) = 0 (respectively, Ext1

Λ′(S
′
j , N) = 0) for all j > n.

Remark 2.10. For each indecomposable summand Ri of R, let R∗i →
U i→Ri→ ΣR∗i be a triangle in C, with U i→Ri a minimal right T -

approximation. Then (as in [BMR+06]), the object R∗i is indecomposable.

Moreover, ⊕iU i→⊕iRi is a minimal right T -approximation of R. As a

consequence, R∗ is isomorphic to ⊕iR∗i . This shows that the basic objects

R and R∗ have the same number of indecomposable summands.

We can now restate Theorem 2.9 in module-theoretic terms.

Theorem 2.11. Suppose that C has a Serre functor. Then, there is an

equivalence of categories

E/ add C(T, ΣR∗)' E ′/ addDC(R, ΣT ′).

The proof is given later in this section. We note that, if C is 2-Calabi–

Yau, then the modules DC(R, ΣT ′) and C(T ′, ΣR) are isomorphic. We also

note that although the statement of the equivalence does not need a Serre

functor, the existence is needed in the proof, in order to apply Theorem 2.9.

In order to prove Theorem 2.11, we need the following two lemmas.

Lemma 2.12. The functor C(T,−) induces a fully faithful functor

C(T )/(ΣT )−→mod Λ.

Its essential image is E.

Proof. Let X
f−→ Y be a morphism in C factoring through T⊥. Recall

that C(T ) = T ∗ ΣT . Assume that X belongs to C(T ), and let V 1→ V0→
X → ΣV 1 be a triangle in C with V0 ∈ add T and V 1 ∈ add T . Since f factors

through T⊥, the composition V0→X → Y vanishes, and f factors through

ΣV 1. This implies that the first part of the lemma (the fullness of C(T,−)

follows from [IY08, Proposition 6.2] (see also [BM13, Lemma 4.3])).

For any M in mod Λ, let X ∈ C(T ) be such that X has no summands

in add ΣT , and C(T, X)'M . Let Uβ → Uα→X → ΣUβ be a triangle with

Uα, Uβ ∈ add T and Uα→X right-minimal. Then, C(T, Uβ)→C(T, Uα)→
C(T, X)→ 0 is a minimal projective presentation of C(T, X), and the

dimension of Ext1
Λ(M, Sj) is the multiplicity of Pj in C(T, Uβ).

Dually, we obtain the following.

https://doi.org/10.1017/nmj.2016.27 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2016.27


80 B. R. MARSH AND Y. PALU

Lemma 2.13. The functor DC(−, ΣT ′) induces a fully faithful functor

C(T )/(T )−→mod Λ′.

Its essential image is E ′.

Proof. The proof is dual to that of Lemma 2.12. We use the description

C(T ) = T ∗ ΣT ′ from Lemma 2.7, and note that any triangle U ′1→ U0→
X → ΣU ′1, where U ′1 belongs to add T ′, and U0 belongs to add T , gives

rise to an injective co-presentation 0→DC(X, ΣT ′)→DC(ΣU ′1, ΣT ′)→
DC(ΣU0, ΣT

′).

Proof of Theorem 2.11. By Lemma 2.12, the functor C(T,−) induces an

equivalence of categories from C(T )/(ΣT ) to E . Since C(T )/(ΣT ′) is isomor-

phic to
(
C(T )/(ΣT )

)
/(ΣR∗), the functor C(T,−) induces an equivalence

of categories from C(T )/ add ΣT ′ to E/ add C(T, ΣR∗). Dually, one can use

Lemma 2.13 to notice that the functor DC(−, ΣT ′) induces an equivalence

of categories from (T ∗ T ′)/ add T to E ′/ addDC(R, ΣT ′). The statement

now follows from Theorem 2.9.

There are two particular cases of Theorem 2.11 that are worth noting.

They are weak forms of nearly Morita equivalences that we call pseudo-

Morita equivalences. They occur in the case where R is indecomposable,

that is m= n+ 1, and we make this assumption for the rest of the section.

It should be noted that R= Tm and R∗ = T ′m.

Let Qm be the Λ-module C(T, ΣR∗) = C(T, ΣT ′m) appearing in The-

orem 2.11. Similarly, we have the Λ′-modules Q′m =DC(R, ΣT ′) =

DC(Tm, ΣT ′). Then, we have the following.

Lemma 2.14. Suppose that R is indecomposable. Let e be the idempotent

for Λ corresponding to Tm. Then, we have the isomorphism

Qm ' Λ/Λ(1− e)Λ.

Furthermore, Qm is a simple object of E. Dually, let e′ be the idempotent

for Λ′ corresponding to ΣT ′m. Then, we have the isomorphism

Q′m ' Λ′/Λ(1− e′)Λ′.

Furthermore, Q′m is an indecomposable Λ′-module and a simple object of E ′.

https://doi.org/10.1017/nmj.2016.27 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2016.27


NEARLY MORITA EQUIVALENCES AND RIGID OBJECTS 81

Proof. The long exact sequences associated with the exchange triangle

T ′m→ Um→ Tm→ ΣT ′m of Remark 2.10 show that the functor C(−, ΣT ′m)

vanishes on add(T ), and that the Λ-module C(Tm, ΣT ′m) is isomorphic to the

module C/(add T )(Tm, Tm). We thus have an isomorphism of Λ-modules:

Λ

Λ(1− e)Λ
' C(T, T )

(T )
' C

(add T )
(Tm, Tm)' C(Tm, ΣT ′m)'Qm.

Similarly, using the exchange triangle as above, we obtain an isomorphism

between the Λ′-modules DC(Tm, ΣT ′) and DC/(add ΣT )(ΣT ′, ΣT ′), the

latter being isomorphic to Q′m.

Since Qm is projective over Λ/Λ(1− e)Λ, we have

Ext1
Λ(Qm, Sm)' Ext1

Λ/Λ(1−e)Λ(Qm, Sm) = 0,

and therefore Qm lies in E . If N is a non-trivial submodule of Qm lying in

E , then N is also a Λ/Λ(1− e)Λ-module satisfying Ext1
Λ(1−e)Λ(N, Sm) =

0. Since Sm is the only simple Λ(1− e)Λ-module, N is projective over

Λ(1− e)Λ, so it must equal Qm. It follows that Qm is a simple object of the

exact category E . Since E is closed under direct summands, it now follows

that Qm is an indecomposable Λ-module. The proofs of the duals of these

last two statements are similar.

Corollary 2.15. Suppose that C satisfies the assumptions in Section 1

and that it has a Serre functor. Suppose further that R is indecomposable.

Then, there is an equivalence of categories

E/ addQm ' E ′/ addQ′m.

Proof. This follows from Theorem 2.11 and Lemma 2.14.

Corollary 2.16. Suppose that the assumptions in Corollary 2.15 hold,

and, in addition, that the Gabriel quiver of Λ has no loop at the vertex

corresponding to R. Then, there is an equivalence of categories

E/ add Sm ' E ′/ add S′m.

Proof. This is a particular case of Corollary 2.15. Indeed, by [IY08,

Proposition 2.6(1)], R∗ is also indecomposable and has no loop. This implies

that Qm and Q′m are isomorphic to Sm and S′m, respectively.
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§3. Localization

3.1 Notation and statement of main results

We continue with the assumptions and notation from Section 1. We do not

assume here that C has a Serre functor, except in Corollary 3.5. Moreover,

contrary to [BM13], we do not make any skeletal smallness assumption.

This is because all of the localizations that we consider are shown to be

equivalent to a subquotient of C. Therefore, no set-theoretic difficulties arise,

and the localizations we consider are all categories without passing to a

higher universe.

Recall that, by [KR07, BM13], the functor C(T,−) induces an equivalence

of categories from C(T )/ΣT to mod Λ. In particular, it is dense and full when

restricted to C(T ).

Definition 3.1. Let B be the full subcategory of mod Λ given by

the (essential) image of T
⊥

under C(T,−). Let SB,0 be the class of all

epimorphisms f ∈mod Λ whose kernel belongs to B. Dually, we let B′ be

the full subcategory of mod Λ′ given by the (essential) image of ⊥ΣT under

DC(−, ΣT ′), and set S0,B′ to be the class of all monomorphisms g ∈mod Λ′

whose cokernel belongs to B′.

Let F be the composition of the fully faithful functor C(T )/ΣT →

C(T )/ΣT →mod Λ and the localization functor mod Λ
LSB,0−→ (mod Λ)SB,0 .

Then, since C(T, ΣR∗) belongs to B, we have that F (ΣR∗)' 0 in

(mod Λ)SB,0 . Hence, F induces a functor F as in the following diagram:

(3.1)

Our main aim in this section is to show that the following holds.

Theorem 3.2. The functor F : C(T )/(ΣT ′)−→ (mod Λ)SB,0 is an

equivalence of categories. Dually, there is an equivalence C(T )/(T )−→
(mod Λ′)S0,B′ .

This has two key corollaries, which we state below, after a lemma needed

in the proof of the first one.
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Lemma 3.3. For any object M ∈ B, there exists X ∈ C(T ) ∩ T⊥ such

that C(T, X)'M .

Proof. For any object M ∈ B, there exists an object Y ∈ T⊥ such that

C(T, Y )'M . By [BM13, Lemma 3.3], there is a triangle Z→X → Y
ε→

ΣZ in C, where X ∈ C(T ), Z ∈ T⊥ and ε ∈ (T⊥). Then, we have C(T, X)'
C(T, Y )'M , which can be seen by applying the functor C(T,−) to the

triangle above. Moreover, X belongs to T
⊥

, since both Z and Y belong

to T
⊥

.

Corollary 3.4. There is an equivalence of categories

(mod Λ)SB,0 ' E/ add C(T, ΣR∗),

and, dually, an equivalence of categories

(mod Λ′)S0,B′ ' E
′/ addDC(R, ΣT ′).

Proof. For the first statement, combine Theorem 3.2 with Lemma 2.12,

and for the second statement, combine Theorem 3.2 with Lemma 2.13.

Proof of Theorem B. We set C to be an acyclic cluster category, and set

T to be a rigid object in C. We consider the case m= n+ 1 and R= Tm is

indecomposable. As in the proofs of Corollaries 2.15 and 2.16, C(T, ΣR∗)'
Qm ' Sm in this case. In particular, there are no loops in the quiver of

EndC(T ) at the vertex corresponding to Sm.

By Lemma 3.3, we have B = C(T, T⊥) = C(T, C(T ) ∩ T⊥). For j =

1, . . . , n+ 1, let Pj = C(T, Tj) be the jth indecomposable projective

in mod Λ. Then, an object X in C(T ) lies in T
⊥

if and only if

HomΛ(Pj , C(T, X)) = 0 for j = 1, 2, . . . , n, which holds if and only if

C(T, X) lies in add(Sm). It follows that B = add(Sm) in this case, and hence

SB,0 coincides with the class R of morphisms considered in the introduction.

We see that the first statement in Theorem B follows from the first statement

in Corollary 3.4. The second statement in Theorem B follows from the

second statement in Corollary 3.4.

Corollary 3.5. If the category C admits a Serre functor, then there is

an equivalence of categories

(mod Λ)SB,0 ' (mod Λ′)S0,B′ .
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Proof. Combine Theorem 3.2 with Theorem 2.9.

Proof of Theorem A. Since an acyclic cluster category has a Serre

functor, Theorem A follows from Corollary 3.5 and the observations in the

proof of Theorem B above.

We also use Theorem 3.2 to show that the categories CS and CS̃ are

isomorphic (Theorem 3.19). We also remark that Lemma 3.8 may be of

independent interest.

3.2 Proof of Theorem 3.2

We show the first statement of the theorem. The second statement

follows from a dual argument. In order to prove that F is full and dense,

it is enough to prove that F is full and dense. The functor F is easily

seen to be dense (Proposition 3.13). Showing that it is full requires a bit

more work (Lemmas 3.8 and 3.9), and in order to do so we describe, in

Lemma 3.11, the category (mod Λ)SB,0
as a localization of C. We then

show that the functor HomΛ(U,−) induces a functor (mod Λ)SB,0 −→mod Λ

(Lemma 3.15). Composing F with this induced functor and applying results

from [BM13] then gives us the faithfulness of F (Proposition 3.16).

Lemma 3.6. The full subcategory B of mod Λ is closed under taking

images and submodules.

Proof. Let M
u→N be a morphism in mod Λ. Then, there are objects

X, Y ∈ C(T ) such that C(T, X)'M and C(T, Y )'N , and a morphism f :

X → Y such that C(T, f)' u. We complete f to a triangle:

Z
g→X

f→ Y
h→ ΣZ.

If M lies in B and u is an epimorphism, then, by Lemma 3.3, we may

take X in T
⊥

, and, by [BM13, Lemma 2.5], h factors through T⊥. If N lies

in B and u is a monomorphism, then, by Lemma 3.3, we may take Y in T
⊥

,

and, by [BM13, Lemma 2.5], f factors through T⊥.

In either case, the result follows from applying the functor C(T ,−) to this

triangle.

Proposition 3.7. The functor F is dense.

Proof. For any module M ∈mod Λ, let X be an object in C(T ) such

that C(T, X)'M . In Lemma 2.2, we constructed a triangle Z −→R0X
ηX−→

X
g−→ ΣZ, with R0X ∈ C(T ), Z ∈ T⊥ and g ∈ (T⊥). We claim that the
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morphism ηX is inverted in (mod Λ)SB,0 . There is an exact sequence in

mod Λ:

C(T, Z)→C(T, R0X)→C(T, X)
0→C(T, ΣZ).

Therefore, the morphism C(T, ηX) is surjective, and C(T, Z) surjects onto

its kernel. Since B is closed under images (Lemma 3.6), we may conclude

that C(T, ηX) belongs to SB,0, and the claim is shown. This shows that

M ' FR0X in (mod Λ)SB,0 , and we are done.

Lemma 3.8. Let Z
u−→X

v−→ Y
ε−→ ΣZ be a triangle in C with X, Y ∈

C(T ) and ε ∈ (T⊥). Then, Z belongs to C(T ).

Proof. Let TZ
f−→ Z be a minimal right add T -approximation. Complete

it to a triangle U → TZ
f→ Z

δ→ ΣU . We note that, since f is an approxima-

tion and T is rigid, we have ΣU ∈ T⊥, as can be seen by applying the functor

C(T,−) to the triangle above, in a manner similar to that of [BMR+06,

Lemma 6.3]. (A more general version of this assertion can be found in [Jør09,

Lemma 2.1].)

Since Y belongs to C(T ), there is a triangle T Y1 → T Y0
a→ Y

η→ ΣT Y1 . By

assumption, the composition εa vanishes, so that there is a morphism T Y0
b→

X such that a= vb. We thus have a morphism of triangles

which we complete to a nine diagram

https://doi.org/10.1017/nmj.2016.27 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2016.27


86 B. R. MARSH AND Y. PALU

Since ΣU ∈ T⊥, the morphism T Y1 → ΣU vanishes, and the top triangle

splits. Thus, U is a summand of V , and it is enough to prove that V belongs

to add T . Since X ∈ C(T ), this amounts to proving that the morphism TZ ⊕
T Y0 →X is an add T -approximation. Let us thus prove the latter statement.

Let W
g−→X be a morphism in C with W ∈ add T . (The morphisms are

illustrated in the diagram below.) Then, the composition ηvg is zero, so

that there is a morphism W
c−→ T Y0 with vg = ac. This implies vg = vbc, and

there is a morphism W
d−→ Z such that g − bc= ud. Now, f is an add T -

approximation, so that there is a morphism W
e−→ TZ satisfying d= fe.

The last two equalities give g = ufe+ bc= [uf b][ec], and we have shown

that [uf b] is an add T -approximation.

The following diagram shows the morphisms g, b, c, d and e.

Lemma 3.9. Let Z
f−→X be a morphism in C with Z ∈ C(T ). Then,

C(T, f) factors through B if and only if f factors through T
⊥

.

Proof. If f belongs to the ideal (T
⊥

), then C(T, f) factors through B
by the definition of B. Let us prove the converse. Since Z ∈ C(T ), there

is a triangle T1→ T0
g→ Z→ ΣT1 in C with T0, T1 ∈ add T . Assume that

C(T, f) belongs to (B). Then, there exists U ∈ T⊥, and there exist maps

C(T, Z)
b−→ C(T, U) and C(T, U)

a−→ C(T, X) such that C(T, f) = a ◦ b.
We would like to lift a and b to morphisms in the category C. This cannot

be done in general, since the functor C(T,−) is not full. Fortunately, it is full

when restricted to C(T ). We thus use [BM13, Lemma 3.3] in order to replace

the object U by an object U ′ whose image under C(T,−) is isomorphic to

that of U , but with the additional property that U ′ is in C(T ). Let us
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therefore apply [BM13, Lemma 3.3] so as to get triangles YU → U ′→ U
ε→

ΣYU and YX →X ′
u→X

η→ ΣYX in C, where U ′, X ′ belong to C(T ), where

YU , YX belong to T⊥, and where the morphisms ε and η factor through T⊥.

Since U is in T
⊥

and YU is in T⊥, U ′ is in T
⊥

as well.

The modules C(T, U) and C(T, U ′) are isomorphic, and C(T, u) is

an isomorphism, so that there are morphisms C(T, Z)
b′−→ C(T, U ′) and

C(T, U ′) a′−→ C(T, X ′) satisfying C(T, u) ◦ a′ ◦ b′ = C(T, f). Now, the objects

Z, U ′ and X ′ all belong to C(T ), so that there exist morphisms α, β in C
with C(T, α) = a′ and C(T, β) = b′. We thus have the following diagram in C:

where the square f − uαβ commutes up to a summand in T⊥. Since T0 ∈
add T , the composition (f − uαβ)g vanishes, and f − uαβ factors through

ΣT1. This shows that f factors through U ′ ⊕ ΣT1, which belongs to T
⊥

, and

we are done.

Definition 3.10. Let S̃ be the class of morphisms X
s−→ Y in C such

that, for any triangle Z
f−→X

s−→ Y
g−→ ΣZ, we have f ∈ (T

⊥
) and g ∈

(T⊥). It should be noted that this is a weaker property than that defining S
(where instead of the property f ∈ (T

⊥
) we had Z ∈ T⊥). Therefore, S ⊆ S̃.

Let C
LS̃−→ CS̃ be the localization functor with respect to the class S̃.

Lemma 3.11. There is a commutative diagram

where G′ is an equivalence of categories.
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Proof. It is proved in [BM13] that the functor C(T,−) : C →mod Λ is a

localization functor for the class ST of morphisms X
f−→ Y such that, when

completed to a triangle Z
g−→X

f−→ Y
h−→ ΣZ, we have g, h ∈ (T⊥). Since

this class is contained in the class S̃, it is enough to prove C(T, S̃) = SB,0. Let

s be in S̃. There is a triangle Z
g−→X

s−→ Y
h−→ ΣZ in C with g ∈ (T

⊥
) and

h ∈ (T⊥). Applying the functor C(T,−) gives an exact sequence in mod Λ:

C(T, Z)−→ C(T, X)−→ C(T, Y )
0−→ C(T, ΣZ),

where C(T, g) : C(T, Z)→C(T, X) factors through some B ∈ B. Thus,

C(T, s) is an epimorphism, and its kernel is isomorphic to a quotient of a

submodule of B (see Remark 3.12 below). By Lemma 3.6, the subcategory

B is stable under taking images and submodules, so that C(T, s) belongs to

SB,0.

Conversely, let 0→B −→M
f−→N → 0 be a short exact sequence in

mod Λ, with B ∈ B. There is a morphism X
s−→ Y in C, with X, Y ∈ C(T )

such that C(T, s)' f . Complete it to a triangle Z
u−→X

s−→ Y
v−→ ΣZ in

C. Then, v ∈ (T⊥) since f is an epimorphism, and C(T, u) factors through

B since su= 0. Lemma 3.8 shows that Z lies in C(T ), and we can apply

Lemma 3.9 to conclude that u factors through T
⊥

.

Remark 3.12. Let L
g−→M

f−→N be exact in an abelian category.

Assume that the morphism g factors as u ◦ v through some object B. Then,

the kernel of f is isomorphic to a quotient of a subobject of B.

Proof. Let K
i→M be a kernel for f . Since the sequence is exact, there

is an epimorphism L
g′−→K such that ig′ = g. The morphism v factors as in

the following diagram:

The composition fujp= fg vanishes, so that fuj = 0, and there is some

B′
q−→K so that iq = uj. It remains to show that q is an epimorphism.
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Since i is a monomorphism, the equalities iqp= ujp= g = ig′ imply qp= g′.

Since the morphism g′ is an epimorphism, q is an epimorphism also.

Proposition 3.13. The functor F is full.

Proof. Let X ∈ C(T ). Then, there is a triangle T 1
β−→ T0

α−→X
γ−→ ΣT 1

in C. Consider a hook diagram

in mod Λ, with U, V ∈ C(T ) and C(T, s) ∈ SB,0. Let us prove that the mor-

phism C(T, f) lifts through the morphism C(T, s). The proof of Lemma 3.11

shows that s belongs to S̃. We thus have a triangle W
g−→ U

s−→ V
h−→ ΣU

in C with g ∈ (T
⊥

) and h ∈ (T⊥). The composition hfα vanishes, so that f

induces a morphism of triangles

The morphism g factors through T
⊥

, so that the composition ga is zero,

giving the existence of a morphism b such that hb= v. The equalities

hf = vγ = hbγ imply the existence of a morphism c such that f = bγ + sc.

Therefore, C(T, s) ◦ C(T, c) = C(T, f). We can conclude by induction on the

number of hooks in a morphism from C(T, X) to C(T, Y ).

We write U for C(T, T ). Define Λ to be the endomorphism algebra of U

in mod Λ. Then, Λ' EndC(T ).

Lemma 3.14. The diagram

commutes up to a natural isomorphism.
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Proof. For any X ∈ C(T ), define a map ϕX : C(T , X)−→HomΛ (C(T, T ),

C(T, X)) by ϕX(α) = C(T, α). Then, ϕX is Λ-linear, since C(T,−) is a

covariant functor, and it is an isomorphism, since C(T,−) : C(T )/(ΣT )→
mod Λ is fully faithful. The transformation ϕ is easily seen to be natural. Let

X
f−→ Y be a morphism in C. Write f∗ for the image of f under the functor

HomΛ(U,−) ◦ C(T,−). We have to check that ϕY ◦ C(T , f) = f∗ ◦ ϕX . The

left-hand side of this equality sends a morphism T
α−→X to the map

sending u ∈ C(T, T ) to (f ◦ α) ◦ u, while the right-hand side sends α to

u 7→ f ◦ (α ◦ u).

Lemma 3.15. The functor HomΛ(U,−) induces a functor

(mod Λ)SB,0 −→mod Λ.

Proof. Suppose that the morphism f = C(T, s) lies in SB,0. Then, s

belongs to S̃ by Lemma 3.11. In particular, s is part of a triangle (r, s, t)

with r, t ∈ (T
⊥

), so that C(T , s) is an isomorphism (as proved in [BM13,

Lemma 2.5]). Hence, by Lemma 3.14, HomΛ(U, f) is an isomorphism.

Proposition 3.16. The functor F is faithful.

Proof. Assume that Fu= Fv for some u, v :X → Y in C(T ). Then,

Lemmas 3.14 and 3.15 imply C(T , u) = C(T , v), and [BM13, Lemma 2.3]

implies u− v ∈ (T
⊥

). Since X belongs to C(T ) = T ∗ ΣT ′, there is a triangle

Tα
w→X → ΣT ′β →, with Tα ∈ add T and T ′β ∈ add T ′. The composition

(u− v)w vanishes, so that u− v ∈ (ΣT ′), and the functor F is faithful.

Proof of Theorem 3.2. By Proposition 3.7, F is dense, and by Proposi-

tion 3.13, F is full. Hence, F is also full and dense. By Proposition 3.16, F

is faithful, and Theorem 3.2 follows.

3.3 More localizations

In this section, we prove, under the assumptions as in Section 1, that the

localizations CS and CS̃ are isomorphic. We note that this result does not

seem to follow easily from Lemma 3.11, as one would expect by analogy

with [BM13, Section 4].

Lemma 3.17. The full subcategory C(T ) of C is stable under taking direct

summands.

Proof. Let X, X ′ ∈ C be so that X ⊕X ′ belongs to C(T ). Let U0→X,

V0→X ′ be minimal right add T -approximations. Then, U0 ⊕ V0→X ⊕X ′
is a minimal right add T -approximation. When completing it to a triangle
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W → U0 ⊕ V0→X ⊕X ′→, we thus have W ∈ add T . The nine lemma gives

a commutative diagram whose rows and columns are triangles in C:

We want to show that the triangle in the second row splits, which would

then imply that U1 and V1, being summands of W , belong to add T . The

composition Σ−1X ′→ V1→ ΣU1 is zero, so that the morphism V1→ ΣU1

factors through V1→ V0. However, there are no non-zero morphisms from

V0 to ΣU1, since V0 ∈ add T , and ΣU1 is the cone of the right add T -

approximation U0→X.

Lemma 3.18. Let X and Y be objects in C(T ), and let X
s−→ Y be a

morphism in S̃. Then, there exist U ∈ add T , and morphisms ΣU
c−→ Y ,

Y
a−→ ΣU and Y

d−→X in C such that

(1) the morphism X ⊕ ΣU
[s c]−→ Y is in S;

(2) the image in CS of the morphism Y
[da]−→X ⊕ ΣU is inverse to [s c].

In particular, all morphisms in C(T ) that belong to S̃ are inverted by the

localization functor LS : C → CS .

Proof. Let X
s→ Y be a morphism in S̃, with X and Y in C(T ). Complete

it to a triangle X
s→ Y

v→ ΣZ
u→ ΣX. We first show how to define the object

U and the morphisms a, c, d. By assumption, the morphisms v and u factor

through T⊥ and (ΣT )⊥, respectively. There is a triangle U → U
α→ Y

a→
ΣU , with U ∈ add T and U ∈ add T . Since v is in (T⊥), the composition

vα vanishes, and there is a morphism b as in the diagram below, such
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that v = ba.

The composition ub also vanishes since u factors through (ΣT )⊥. Therefore,

there is a morphism c such that b= vc. Moreover, there is a morphism d

such that 1Y = sd+ ca. Indeed, we have the equalities vca= ba= v, so that

1Y − ca factors through s. Hence, the morphism [s c] :X ⊕ ΣU → Y is a

retraction.

Applying the octahedral axiom to the composition

X
[10]−→X ⊕ ΣU

[s c]−→ Y

yields the following commutative diagram whose rows and columns are

triangles in C.

Since [s c] is a retraction, the triangle in the lower row splits, and the

morphism Σ−1Y → Z ′ is zero. Let p be a morphism from T to Z. Since s ∈ S̃,

g factors through T
⊥

, so gp= 0 and therefore p factors through f . Since

kf = 0, f factors through h, and therefore p factors through h. Applying

the functor C(T ,−) to the triangle U → Z→ Z ′→ ΣU gives Z ′ ∈ T⊥. We

have thus constructed a triangle

Z ′→X ⊕ ΣU
[s c]−→ Y

0→ ΣZ ′

in C, where Z ′ belongs to T
⊥

. This implies (1).

https://doi.org/10.1017/nmj.2016.27 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2016.27


NEARLY MORITA EQUIVALENCES AND RIGID OBJECTS 93

We now check (2). We have [s c][da] = 1Y in C. Since [s c] lies in S by (1),

it is invertible in CS , and (2) follows.

Finally, we check the last part of the statement. Let π :X ⊕ ΣU →X be

the first projection. Extending π to a triangle in C, we have

ΣU →X ⊕ ΣU
π→X

0→ Σ2U.

Since ΣU ∈ T⊥, and the zero map factors through T⊥, we see that

π ∈ S. Furthermore, sπ = [s 0] :X ⊕ ΣU → Y , so sπ − [s c] = [0,−c] factors

through ΣU , where ΣU lies in ΣT ′. Morphisms of the form A⊕ V
[1 0]
−→A,

with V ∈ T⊥, lie in S. Hence, as in [BM13, Lemma 3.5], LS(s)LS(π) =

LS([s c]). Since π, [s c] both lie in S, their images under LS are invertible in

CS , and it follows that the image LS(s) is also invertible in CS , as required.

For a morphism f that is part of a triangle Z
g→X

f→ Y
h→ ΣZ, recall

that f belongs to the collection S if and only if Z belongs to T
⊥

, and h

factors through T⊥, and that f belongs to S̃ if and only if g factors through

T
⊥

, and h factors through T⊥.

Theorem 3.19. There is an isomorphism of categories

CS ' CS̃ .

Proof. As proved in Lemma 3.11, the categories CS̃ and (mod Λ)SB,0
are equivalent. By Theorem 3.2, the category (mod Λ)SB,0 is equivalent to

C(T )/(ΣT ′).

It is easy to check that any morphism of the form X ⊕ U
[1 0]
−→X, with

U ∈ T⊥, lies in S. Hence, arguing as in [BM13, Lemma 3.5], if u, v are any

morphisms in C such that v factors through T
⊥

, then LS(u) = LS(u+ v).

It follows that LS induces a functor from C(T )/(add ΣT ′) to CS , which we

also denote by LS . Since S̃ contains S, the same argument applies to LS̃ .

Furthermore, by the universal property of localization, the left-hand side of

the diagram
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commutes, where the functor CS →CS̃ is the identity on objects. The right-

hand triangle commutes by Lemma 3.11 and (3.1). It is thus enough to show

that the functor LS : C(T )/(ΣT ′)→CS is an equivalence of categories.

The functor LS is dense by Lemma 2.2.

We next check that LS is full. Let X, Y be objects of C(T ), and let s :X →
Y be a morphism in S. By part (2) of Lemma 3.18, sd= 1Y − ca, where ca

factors through T
⊥

. Arguing as above, we have that LS(s)LS(d) = LS(1Y ),

so LS(d) = LS(s)−1. It follows that LS (on C(T )/(add ΣT ′)) is full.

It thus remains to prove that LS is faithful. Via the use of the functor

C(T ,−) and of the category mod Λ, this follows from results in [BM13].

Recall that we write Λ for the endomorphism algebra of T in C. The functor

C(T ,−) from C(T )/(ΣT ′) to mod Λ inverts all morphisms in S, as proved

in [BM13, Lemma 2.4]. By the universal property of localizations, there is

a (unique) functor CS
F ′−→mod Λ such that C(T ,−) = F ′LS . Assume that

the image under LS of a morphism f in C(T ) is zero. Then, F ′LS(f) = 0,

so that C(T , f) is zero in mod Λ. By [BM13, Lemma 2.3], this implies that

f factors through T
⊥

. Since X is in C(T ), this implies, by Lemma 2.3, that

f factors through C(T ) ∩ T⊥, which is add ΣT ′ by Lemma 2.7. Therefore, f

is zero in C(T )/(ΣT ′), and the functor LS is faithful.

Remark 3.20. The reader might wonder why our proof makes a detour

through the category mod Λ. One might think of a more direct proof as

follows. Since we have an inclusion S ⊆ S̃, it is enough to prove that every

morphism in S̃ is inverted in CS . This should easily follow from Lemma 3.18.

Let X
f−→ Y be a morphism in S̃. Then, there is a commutative diagram

where R0X, R0Y are in C(T ), and ηX , ηY are in S. It thus only remains to

be checked that the morphism f ′ can be chosen in S̃. If so, Lemma 3.18

would imply that f ′ is inverted by LS . Since ηX and ηY are in S, f would

also be inverted by LS . The problem here is that even though it is easily

checked that S̃ is stable under composition, S̃ does not seem to satisfy the

two-out-of-three property.
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Figure 1.

The AR quiver of Db(mod A9)/τ3[1]; Example 4.1.

§4. Examples

4.1 Mutating a cluster-tilting object at a loop

We consider the triangulated orbit category Db(mod A9)/τ3[1]

(see [Kel05]). Its Auslander–Reiten (AR) quiver is depicted in Figure 1.

Copies of a fundamental domain are indicated by dashed lines. Let T be the

direct sum a⊕ b⊕ c. Then, T is a cluster-tilting object with a loop at c.

Let T ′ be the cluster-tilting object obtained by mutating T at c.

Since there is a triangle s→ b⊕ b→ c→, we have T ′ = a⊕ b⊕ s. The

indecomposable objects lying in C(T ) are encircled (recall that C(T ) =

T ∗ ΣT = T ∗ ΣT ′). The objects a, b, c (respectively, n, q, r) belong to C(T )

since they are in add T (respectively add ΣT ′). The remaining encircled

objects are in C(T ) since there are triangles a→ c→ d→, b→ c→ e→,

a→ b→ g→, a→ c→ h→, a⊕ a→ c→ i→, a⊕ b→ c→ j→, b→ c→ l

and a⊕ b→ c→m→. The other four indecomposable objects are not

in C(T ) since s is the shift of c, and there are triangles c→ c→ f →,

a⊕ c→ c→ k→ and b⊕ c→ c→ p→.

By Theorem 2.9, the categories C(T )/(ΣT ′) and τC(T )/(τT ) are equiva-

lent. These two categories are illustrated in Figure 2.

4.2 Mutating a rigid object at a loop

In the same category Db(mod A9)/τ3[1] as in the previous example, we

now consider the rigid object T = a⊕ c. There is a triangle n→ a⊕ a→ c→
(see Figure 3), so that we can choose T ′ to be a⊕ n. Indecomposable objects
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Figure 2.

The categories C(T )/(ΣT ′) and τC(T )/(τT ); Example 4.1.

Figure 3.

The AR quiver of Db(mod A9)/τ3[1]; Example 4.2.

in C(T ) are encircled. The shift of T ′ is i⊕ q. Deleting either vertices labeled

a and c, or vertices labeled i and q, in the encircled part of the AR quiver

yields isomorphic quivers, as depicted in Figure 4.

4.3 Mutating at a non-indecomposable summand

In this example, we consider the triangulated orbit category

Db(mod A5)/τ−2[1] (see [Kel05]). It was shown in [BMR+06] that this

category is a Krull–Schmidt, Hom-finite category with a Serre functor, and

its AR quiver is depicted in Figure 5. As for the previous examples, we have

not drawn the arrows. The two subquivers inside the dotted boxes have to

be identified so as to match the two copies of a, b, c and d. We choose rigid

objects T = a⊕ b⊕ c⊕ d and T ′ = a⊕ b⊕ c′ ⊕ d′. Indecomposable objects
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Figure 4.

The categories C(T )/(ΣT ′) and C(T )/(T ); Example 4.2.

Figure 5.

The AR quiver of Db(mod A5)/τ−2[1]; Example 4.3.

in C(T ) are encircled. The indecomposable objects labeled e, f, g, h are the

shifts of a, b, c′, d′, respectively. As predicted by Theorem 2.9, one obtains

isomorphic quivers by deleting either vertices a, b, c, d or vertices e, f, g, h.
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