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Counting homomorphisms from surface
groups to finite groups
Michael R. Klug

Abstract. We prove a result that relates the number of homomorphisms from the fundamental group
of a compact nonorientable surface to a finite group G, where conjugacy classes of the boundary
components of the surface must map to prescribed conjugacy classes in G, to a sum over values of
irreducible characters of G weighted by Frobenius-Schur multipliers. The proof is structured so that
the corresponding results for closed and possibly orientable surfaces, as well as some generalizations,
are derived using the same methods. We then apply these results to the specific case of the symmetric
group.

1 Introduction

Given a closed nonorientable surface, a result of Frobenius and Schur [4] counts the
number of homomorphisms from the fundamental group of the surface to a finite
group G in terms of dimensions of the irreducible complex representations of G, the
Frobenius-Schur indicators of these representations, the order of G, and the nonori-
entable genus of the surface. Given a closed orientable surface, a result of Mednykh [7]
counts the number of homomorphisms from the fundamental group of the surface to
a finite group G in terms of the dimensions of the irreducible complex representations
of G, the order of G, and the genus of the surface. Given a compact oriented surface
with labeled boundary components, a finite group G, and a choice of conjugacy class
in G for each boundary component of the surface, Dijkgraaf and Witten [1] as well
as Freed and Quinn [2] gave formulas (in the context of mathematical physics) of
a formula for the number of homomorphisms from the fundamental group of the
surface to G, sending the conjugacy classes of the boundaries to the chosen conjugacy
classes in terms of the dimensions of the irreducible complex representations of G,
the values of the characters of these representations on the chosen conjugacy classes,
the order of G, the sizes of the conjugacy classes, and the genus of the surface. An
elementary character theoretic proof of this was supplied by Zagier [14]. In the case
where the genus of the surface is zero, the result was also known to Frobenius [3].

Theorem 3.1 is the missing case where the surface is compact and nonorientable
with labeled boundary components. In this paper, we supply simple character-
theoretic proofs of all of these results following the treatments given by Zagier [14]
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2 M. R. Klug

and Mulase and Yu (see section 4 of [8]). We then draw some topological and
combinatorial conclusions from these results. For a more extensive overview of the
history of these equations in the case of closed surfaces, see [12].

In Section 2, we discuss a framework for understanding all of these equations as
consequence of character-theoretic ideas. In Section 3, we make the connection to
2-dimensional topology, and in Section 4, we show how these equations can be used
to deduce some symmetric function identities, following Stanley [11].

2 Counting solutions to equations in groups

All of our representations are over C. Let r be positive integer, let Fr be the free group
on r letters, and γ ∈ Fr . Then for any finite group G, we have the class function fγ = fγ ,G
with

fγ(w) = ∣{(g1 , ..., gr) ∈ Gr ∶ γ(g1 , ..., gr) = w}∣,

where γ(g1 , ..., gr) is the image in G of the homomorphism from Fr → G, given by
sending the ith generator of Fr to g i . Since fγ is a class function, we have

fγ = ∑
χ

aγ
χ χ

for some coefficients aγ
χ ∈ C where the sum is over irreducible characters χ of G. Two

basic questions are as follows: When is fγ a character for all G (i.e., all of the aγ
χ are

nonnegative integers), and when is fγ a virtual character for all G (i.e., all of the aγ
χ are

integers)?
In general, we have

aχ =
1
∣G∣ ∑

(g1 , . . . , gr)∈G r
χ(γ(g1 , ..., gr)

since with respect to the inner product of class functions given by

⟨ f1 , f2⟩ =
1
∣G∣ ∑g∈G

f1(g) f2(g),

the characters χ form an orthonormal basis. Therefore,

aχ =
1
∣G∣ ∑g∈G

fγ(g)χ(g)

= 1
∣G∣ ∑g∈G

⎡⎢⎢⎢⎢⎣
∑

(g1 , . . . , gr)∈G r with γ(g1 , . . . , gr)=w
χ(g)
⎤⎥⎥⎥⎥⎦

= 1
∣G∣ ∑

(g1 , . . . , gr)∈G r
χ(γ(g1 , ..., gr)).

This has been observed before, for example, in Proposition 3.1 in [9]. However, in
special cases, such as x2

1 x2
2⋯x2

k ∈ Fk and [x1 , y1]⋯[xg , yg] ∈ F2g , the coefficients aγ
χ

have a much more explicit form that we now discuss (see [9] for additional results
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Counting homomorphisms from surface groups to finite groups 3

on computing aγ
χ for specific types of elements γ). As a word of warning, note that fγ

depends on “where γ is”; for example, fx1 depends on if x1 ∈ F1 or in F2.
Given a irreducible character χ of a finite group G, the Frobenius-Schur indicator

of χ is

ν(χ) = 1
∣G∣ ∑g∈G

χ(g2).

For all χ, ν(χ) ∈ {−1, 0, 1} with ν(χ) ≠ 0 if and only if there is a nonzero G-invariant
bilinear form on the representation with character χ, ν(χ) = 1 if and only if there exists
a symmetric such form, and ν(χ) = −1 if and only if there exists a skew-symmetric
such form [4]. At the root of our discussion is the following theorem of Frobenius [3]
(for the first equation) and Frobenius and Schur [4] (for the second equation):

Theorem 2.1 (Frobenius, Schur) Let G be a finite group and w ∈ G an element. Then

∣{(x , y) ∈ G ×G ∶ x yx−1 y−1 = w}∣ = ∑
χ
( ∣G∣

χ(1)) χ(w)

and

∣x ∈ G ∶ x2 = w}∣ = ∑
χ

ν(χ)χ(w)

where the sums are over the irreducible characters of G.

Equivalently, Theorem 2.1 says that for every irreducible character χ, we have

ax yx−1 y−1

χ = ∣G∣
χ(1)

for x yx−1 y−1 in a free group generated by x and y and

ax2

χ = ν(χ)

for x2 in the free group generated by x.
The following result (see [11] Exercise 7.69 (d)) shows how to obtain an expression

for aγ1⋯γm
χ in terms of aγ1

χ , ..., aγm
χ when the words γ1 , ..., γm contain disjoint letters.

Proposition Let G be a finite group and let f1 , ..., fm be class functions on G. Define
the class function F = F f1 , . . . , fm by

F(w) = ∑
u1⋯um=w

f1(u1)⋯ fm(um).

Let χ be an irreducible character of G. Then

⟨F , χ⟩ = ( ∣G∣
χ(1))

m−1

⟨ f1 , χ⟩⋯⟨ fm , χ⟩ .
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4 M. R. Klug

Using this, we note that

f[x1 , y1]⋯[xg , yg] = F f[x1 , y1] , . . . , f[x g , y g ]

and

fx2
1 x2

2⋯x2
k
= F fx2

1
, . . . , fx2

k
.

Thus, from Theorem 2.1 together with Proposition 1, we obtain the following formula
of Mednykh [7] for the first equation and Frobenius and Schur [4] for the second
equation – see also [8] where this phrasing is used:

Corollary (Mednykh, Frobenius, Schur) Let G be a finite group and w ∈ G an element.
For all integers g , k ≥ 0, we have

f[x1 , y1]⋯[xg , yg](w) = ∑
χ
( ∣G∣

χ(1))
2g−1

χ(w)

for [x1 , y1]⋯[xg , yg] in the free group of rank 2g with generators x1 , y1 , ..., xg , yg and

fx2
1 x2

2⋯x2
k
(w) = ∑

χ
ν(χ)k ( ∣G∣

χ(1))
k−1

χ(w)

for x2
1 x2

2⋯x2
k in the free group of rank k generated by x1 , ..., xk .

Remark 2.2 Note, for example, that setting w = 1 and g = 1 in Corollary 1, we see
that ∣G∣ divides

∣{(x , y) ∈ G ×G ∶ x yx−1 y−1 = 1}∣.
This is in fact a special case of a theorem of Solomon [10] that implies that for any
γ ∈ Fr with r > 1, ∣G∣ divides fγ ,G(1).

We now mention a few more character-theoretic results that we use in the sequel
(for a proof, see, for example, chapter 3 of [5]).

Proposition Let χ be an irreducible character of a finite group G. Let Z(CG) be the
center of the group algebra. Then the map

ωχ ∶ Z(CG) → C

X = ∑
g∈G

Xg ⋅ g ↦
∑g∈G Xg χ(g)

χ(1)

is an algebra homomorphism.

Proposition Let C1 , ..., Cn be not necessarily distinct conjugacy classes in a finite
group G and let χ be an irreducible character of G. Then

χ(1)n−1 ∑
(c1 , . . . ,cn)∈C1×⋯×Cn

χ(c1⋯cn) = ∣C1∣⋯∣Cn ∣χ(C1)⋯χ(Cn),

where χ(C i) denotes the value of χ on an element of C i .

https://doi.org/10.4153/S0008439524000420 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439524000420


Counting homomorphisms from surface groups to finite groups 5

Proof Let C+i be

C+i = ∑
g∈C i

g

and note that C+i is in the center Z(CG). Then, by applying the algebra homomor-
phism ωχ from Proposition 2 to the product C+1 ⋯C+n , we obtain

χ(1)−1 ∑
(c1 , . . . ,cn)∈C1×⋯×Cn

χ(c1⋯cn) = ωχ(C+1 ⋯C+n )

= ωχ(C+1 )⋯ωχ(C+n )
= χ(1)−n ∣C1∣⋯∣Cn ∣χ(C1)⋯χ(Cn),

as desired. ∎

We are now prepared to prove the following result that we need in the next section.
The statement of the result is much more natural from a topological perspective,
which we discuss in the next section.

Theorem 2.3 Let γ ∈ Fr , G be a finite group, and C1 , ..., Cn be not necessarily distinct
conjugacy classes of G. Then

∣{(g1 , ..., gr , c1 , ..., cn) ∈ Gr × C1×⋯× Cn ∶ γ(g1 , ..., gn)c1⋯cn = 1}∣
= ∣C1∣⋯∣Cn ∣∑

χ
aγ

χ ⋅ χ(1)
1−n χ(C1)⋯χ(Cn).

Proof

∣{(g1 , ..., gr , c1 , ..., cn) ∈ Gr × C1×⋯× Cn ∶ γ(g1 , ..., gn)c1⋯cn = 1}∣
= ∑
(c1 , . . . ,cn)∈C1×⋯×Cn

fγ((c1⋯cn)−1)

= ∑
(c1 , . . . ,cn)∈C1×⋯×Cn

aγ
χ ⋅ χ((c1⋯cn)−1))

= ∑
χ

aγ
χ ∑
(c1 , . . . ,cn)∈C1×⋯×Cn

χ(c1⋯cn)

= ∣C1∣⋯∣Cn ∣∑
χ

aγ
χ ⋅ χ(1)

1−n χ(C1)⋯χ(Cn),

where the removal of the inverse in the third equation is justified by resumming over
the complex conjugates of the characters and recalling that χ(g−1) = χ(g). ∎

Thus, if we have a more explicit formula for aγ
χ , we obtain a more explicit formula

for the expression in the left-hand side of Theorem 2.3. We now do exactly that.

3 Relationship with 2-dimensional topology

In this section, we demonstrate how the following result is proven and how it relates
to topology:
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6 M. R. Klug

Theorem 3.1 Let C1 , ..., Cn be a collection of not necessarily distinct conjugacy classes
in a finite group G. Then

∣{(g1 , ..., gk , c1 , ..., cn) ∈ Gk × C1×⋯× Cn ∶ a2
1⋯a2

k c1⋯cn = 1}∣

= ∣G∣k−1∣C1∣⋯∣Cn ∣∑
χ

ν(χ)k χ(C1)⋯χ(Cn)
χ(1)n+k−2 ,

where the sum is over the characters of the irreducible complex representations of G and
where ν(χ) denotes the Frobenius-Schur indicator of χ.

Let Sg be a closed orientable surface of genus g and let Nk be a closed nonorientable
surface of nonorientable genus k. Let G be a finite group. Noting that

π1(Sg) = ⟨a1 , b1 , ..., ag , bg ∣[a1 , b1]⋯[ag , bg]⟩

and

π1(Nk) = ⟨a1 , ..., ak ∣a2
1⋯a2

k⟩ ,
we have

∣Hom(π1(Sg), G)∣ = ∣{(g1 , ..., g2g) ∈ G2g ∶ [g1 , g2]⋯[g2g−1 , g2g] = 1}∣
and

∣Hom(π1(Nk), G)∣ = ∣{(g1 , ..., gk) ∈ Gk ∶ g2
1⋯g2

k = 1}∣.
Thus, we can rewrite the formula of Mednykh in Corollary 1 with w = 1 as

∣G∣1−2g ∣Hom(π1(Sg), G)∣ = ∑
χ

χ(1)2−2g ,

and similarly, we can rewrite the formula of Frobenius and Schur in Corollary 1 with
w = 1 as

∣G∣1−k ∣Hom(π1(Nk), G)∣ = ∑
χ
(ν(χ)χ(1))k .

Let Sg ,n denote the compact surface of genus g with n boundary components
labeled from 1 to n. Further, fix an orientation on Sg ,n which thus induces an
orientation on all of the boundary components of Sg ,n . Let C1 , ..., Cn be a choice of n
not necessarily distinct conjugacy classes in G. Let

Hom(C1 , . . . ,Cn)(π1(Sg ,n), G)
denote the set of homomorphisms from π1(Sg ,n) to G such that the conjugacy class
given by the ith boundary component using the given orientation is sent to the
conjugacy class C i for 1 ≤ i ≤ n. Noting that

π1(Sg ,n) = ⟨a1 , b1 , ..., ag , bg , c1 , ..., cn ∣[a1 , b1]⋯[ag , bg]c1⋯cn⟩ ,
we have that

∣Hom(C1 , . . . ,Cn)(π1(Sg ,n), G)∣ = ∣{(g1 , ..., g2g , c1 , ..., cn) ∈ G2g × C1 ×⋯× Cn

∶ [g1 , g2]⋯[g2g−1 , g2g]c1⋯cn = 1}∣.
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Counting homomorphisms from surface groups to finite groups 7

Frobenius [3] proved for g = 0, and Dijkgraaf and Witten [1] as well as Freed and
Quinn [2] proved in general that for n ≥ 1 that

∣G∣1−2g ∣Hom(C1 , . . . ,Cn)(π1(Sg ,n), G)∣ = ∣C1∣⋯∣Cn ∣∑
χ

χ(C1)⋯χ(Cn)
χ(1)n+2g−2 ,(3.1)

where here χ(C i) denotes the value of χ on any element in C i . Note that by setting
n = 0, this gives exactly Mednykh’s formula in Corollary 1.

We now demonstrate the use of Theorem 2.3 by giving a short proof of this formula.
For another elementary proof, see [14].

Proof (of Equation 3.1) Let γ = [x1 , y1]⋯[xg , yg] in the free group F2g generated
by x1 , y1 , ..., xg , yg . By Corollary 1, we have

aγ
χ = (

∣G∣
χ(1))

2g−1

for all irreducible representations χ of G. Therefore, by Theorem 2.3 together with the
observation that

aγ
χ = aγ

χ

for all χ, the result follows. ∎

This formula shows that the ordering of the conjugacy classes as (C1 , ..., Cn) does
not affect ∣Hom(C1 , . . . ,Cn)(π1(Sg ,n), G)∣. This also follows directly without the use of
the formula, as noted in [14], since by using the identity

c i c i+1 = (c i+1)(c−1
i+1c i c i+1),

we have a bijection between the set

{(g1 , ..., g2g , c1 , ..., cn) ∈ G2g × C1 ×⋯× Cn ∶ [g1 , g2]⋯[g2g−1 , g2g]c1⋯cn = 1}

and the respective set

{(g1 , ..., g2g , c1 , ..., cn) ∈ G2g × C1 ×⋯C i+1 × C i ×⋯× Cn

∶ [g1 , g2]⋯[g2g−1 , g2g]c1⋯c i+1c i⋯cn = 1}

given by interchanging the order of the conjugacy classes C i and C i+1. Thus, as far
as the number ∣Hom(C1 , . . . ,Cn)(π1(Sg ,n), G)∣ is concerned, we only need to know
(C1 , ..., Cn) as a multiset.

Let Nk ,n be the compact nonorientable surface of nonorientable genus k with n
boundary components labeled with the numbers 1 through n. Let

Hom(C1 , . . . ,Cn)(π1(Nk ,n), G)

denote the set of homomorphisms from π1(Nn ,k) to G such that the conjugacy class
given by the ith boundary component using the given orientation is sent to the
conjugacy class C i for 1 ≤ i ≤ n. Noting that

π1(Nn ,k) = ⟨a1 , ..., ak , c1 , ..., cn ∣a2
1⋯a2

k c1⋯cn⟩ ,
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8 M. R. Klug

we have that

∣Hom(C1 , . . . ,Cn)(π1(Sg ,n), G)∣ = ∣{(g1 , ..., gk , c1 , ..., cn) ∈ Gk × C1 ×⋯× Cn

∶ a2
1⋯a2

k c1⋯cn = 1}∣,
Just as above in the orientable case, we see (with or without the help of Theorem 3.1)
that this does not depend on the number of these homomorphisms and does not
depend on the given ordering of the conjugacy classes C1 , ..., Cn .

Thus, Theorem 3.1 can be restated as

∣G∣1−k ∣Hom(C1 , . . . ,Cn)(π1(Nk), G)∣ = ∣C1∣⋯∣Cn ∣∑
χ

ν(χ)k χ(C1)⋯χ(Cn)
χ(1)n+k−2 .

The proof of Theorem 3.1 is analogous the above proof in the orientable case.

Proof (of Theorem 3.1) Let γ = x2
1 x2

2⋯x2
k in the free group F2g generated by

x1 , x2 , ..., xk . By Corollary 1, we have

aγ
χ = ν(χ)k ( ∣G∣

χ(1))
k−1

for all irreducible representations χ of G. Therefore, by Theorem 2.3 together with the
observation that ν(χ) = ν(χ) and thus

aγ
χ = aγ

χ

for all χ, the result follows. ∎

Note that, by setting n = 0, this again gives Frobenius and Schur’s result in Corol-
lary 1 (though this is not another proof of that result, just an observation).

Note that π1(Sg ,n) and π1(Nk ,n) are both free groups with

π1(Sg ,n) = F2g+n−1

and

π1(Nk ,n) = Fk+n−1 .

Note that for any finite group G, we have

∣Hom(Fm , G)∣ = ∣G∣m .

Using this fact and summing over the possible tuples of conjugacy classes in Equation
(3.1) and Theorem 3.1, we obtain the following:

Corollary Let G be a finite group and let g , n, k be positive integers. Then

∣G∣n = ∑
(C1 , . . . ,Cn)

∣C1∣⋯∣Cn ∣∑
χ

χ(C1)⋯χ(Cn)
χ(1)n+2g−2

and

∣G∣n = ∑
(C1 , . . . ,Cn)

∣C1∣⋯∣Cn ∣∑
χ

ν(χ)k χ(C1)⋯χ(Cn)
χ(1)n+k−2 ,
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Counting homomorphisms from surface groups to finite groups 9

where the first sums are over all ordered n-tuples of conjugacy classes in G and the second
sums are over all irreducible complex characters of G.

Then, taking the limit as g →∞ and k →∞, and noting that any bilinear form on
a 1-dimensional space is automotically symmetric and therefore 1-dimensional repre-
sentations never have Frobenius-Schur indicator equal to -1, we have the following:

Corollary Let G be a finite group and let n be a positive integer.

∣G∣n = ∑
(C1 , . . . ,Cn)

∣C1∣⋯∣Cn ∣ ∑
χ with χ(1)=1

χ(C1)⋯χ(Cn)

= ∑
(C1 , . . . ,Cn)

∣C1∣⋯∣Cn ∣ ∑
χ with χ(1)=1 and ν(χ)=1

χ(C1)⋯χ(Cn),

where the first sums are over all ordered n-tuples of conjugacy classes (C1 , ..., Cn) in
G and the second sums are over all irreducible complex characters of G that satisfy the
specified conditions.

As remarked in [14] in the orientable case, Equation (3.1) and Theorem 3.1 have
a topological interpretation. In the orientable case, fill in each of the n boundary
components of Sg ,n with disks and let p i denote the points at the center of these disks
and denote the resulting closed surface by Sg ,n . Let G have a faithful action on some
set F. Then each element of Hom(C1 , . . . ,Cn)(π1(Sg ,n), G) gives rise to a (not necessarily
connected) branched covering of Sg ,n with Galois group G and ramification points p i .
Conversely, each such branched covering comes from Hom(C1 , . . . ,Cn)(π1(Sg ,n), G). So
Equation (3.1) gives a method for computing the number of such branched coverings.
The construction extends analogously to branched covers of nonorientable surfaces,
and Theorem 3.1 then supplies the relevant counting formula.

As a closing remark for this section, we mention another family of words γ where
there is a nice formula for aγ

χ for all G and χ. Let

[x1 , ..., xm] = x1⋯xm x−1
1 ⋯x−1

m

(these are sometimes referred to as generalized commutators). Then a formula of Leitz
[6] (see also [13]) says that

aγ
χ =
∣G∣m−1

χ(1)m−εm
,

where

εm =
⎧⎪⎪⎨⎪⎪⎩

1 if m is even
2 if m is odd.

Using this together with Proposition 1, a formula for the fγ follows where γ is a product
of generalized commutators just as in Theorem 1 (and this generalizes the formula
for products of commutators in Theorem 1). Similarly, applying Theorem 2.3 with
these words, we obtain a result generalizing Equation (3.1) (although with no apparent
topological interpretation).
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10 M. R. Klug

In a similar vein but generalizing the case of the elements x2
1 x2

2⋯x2
k , we can

consider words of the form γ = xn in a free group of rank one generated by x. In this
case, the class function fγ counts the number of nth roots that each element in G has.
Therefore, in this case, we have

aγ
γ = νn(χ),

where νn is the gereralized Frobenius-Schur indicator given by

νn(χ) =
1
∣G∣ ∑g∈G

χ(gn)

(see, for example, Chapter 4 of [5]). In general, νn ∈ Z so fγ is a virtual character. From
Proposition 1, taking γ = xn1

1 xn2
2 ⋯xnm

m in a free group of rank m generated by x1 , ..., xm
with n1 , ..., nm ∈ Z (note that, in general, fγ = fγ−1 ), we have

a χ
γ = (

∣G∣
χ(1))

m−1

νn1(χ)⋯νnm(χ).

We could also involve conjugacy classes by applying Theorem 2.3. Similarly, we could
take products of generalized commutators and powers of elements and do this again,
obtaining a common generalization of all of the results.

4 Some symmetric function identities

In this section, we apply some of the identities from the previous sections to the
symmetric group and use an isomorphism between the set of class functions on the
symmetric group with a certain space of symmetric functions in order to obtain a
few identities among symmetric functions. Let Sn be the symmetric group on an n
element set. The relevant definitions and background come from [11]. Let Λ be the
ring of symmetric functions over the complex numbers and let Λn be the subspace of
Λ spanned by symmetric functions of degree n so that Λ has a grading

Λ = ⊕
n≥0

Λn .

Given a partition λ of n, denoted λ ⊢ n, let pλ and sλ be the associated power and
Schur symmetric functions. Let χλ be the irreducible character of Sn coming from
the Specht module Sλ . Let Hλ denote the product of the hook lengths of the Young
tableau associated to λ. Given an element w ∈ Sn , let ρ(w) denote the partition of n
given by cycle type of w. Let Rn denote the set of class functions on Sn . Then we have
a vector space isomorphism

ch ∶ Rn → Λn

f ↦ 1
n! ∑w∈Sn

f (w)pρ(w),

and this has the property that ch(χλ) = sλ .
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Counting homomorphisms from surface groups to finite groups 11

Given γ ∈ Fr , then we have the class function fγ and

ch( fγ) =
1

n! ∑
u1 , . . . ,ur∈Sn

pγ(ρ(u1 , . . . ,ur)) ,

and using the expansion

fγ = ∑
λ⊢n

aγ
χλ χλ ,

we also have

ch( fγ) = ∑
λ⊢n

aγ
χλ sλ .

Therefore, we have shown the following:

Theorem 4.1 Given γ ∈ Fr ,

1
n! ∑

u1 , . . . ,ur∈Sn

pγ(ρ(u1 , . . . ,ur)) = ∑
λ⊢n

aγ
χλ sλ

This is a generalization of exercise 7.68 (c) in [11]. Taking the examples of
x2

1 x2
2⋯x2

k ∈ Fk and [x1 , y1]⋯[xg , yg] ∈ F2g and applying the hook length formula,
which says that

χλ(1) = n!
Hλ

,

together with the fact that all of the Frobenius-Schur indicators for the symmetric
group are 1, we have the following:

Corollary For integers n, k, g ≥ 1, we have

1
n! ∑

u1 , . . . ,uk∈Sn

pρ(u2
1 u2

2⋯u2
k)
= ∑

λ⊢n
Hk−1

λ sλ

and
1

n! ∑
u1 ,v1 , . . . ,ug ,vg∈Sn

pρ([u1 ,v1]⋯[ug ,vg]) = ∑
λ⊢n

H2g−1
λ sλ .

Let 1q denote the vector that is q ones followed by zeroes. Recalling that

pρ(w)(1q) = qκ(w) ,

where κ(w) is the number of cycles in w, and that

sλ(1q) = H−1
λ ∏

t∈λ
(q + c(t)),

where c(t) denotes the content of λ at t, then by specializing to 1q , we obtain the
following:
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Corollary For integers n, k, g ≥ 1, we have
1

n! ∑
u1 , . . . ,uk∈Sn

qκ(u2
1 u2

2⋯u2
k) = ∑

λ⊢n
Hk−2

λ ∏
t∈λ
(q + c(t))

and
1

n! ∑
u1 ,v1 , . . . ,ug ,vg∈Sn

qκ([u1 ,v1]⋯[ug ,vg]) = ∑
λ⊢n

H2g−2
λ ∏

t∈λ
(q + c(t)).

The first of these is a generalization of exercise 7.68 (e) of [11]. More such identities
can be obtained by applying the same ideas to the identities mentioned at the end of
the last section.

As a final remark, fix a word γ = x2
1 x2

2⋯x2
k ∈ Fk or [x1 , y1]⋯[xg , yg] ∈ F2g and

consider the sequence fγ ,Sn (here, we have made the group explicitly a part of the
notation) as n varies. The exponential generating function for this sequence in the case
where γ = x2

1 x2
2⋯x2

k ∈ Fk is, by Corollary 1 together with the hook length formula,

∑
n≥0
∑
λ⊢n
( n!

Hλ
)

k−2
xn ,

which in the specific case of k = 2 has the particularly nice form

∏
i≥1
(1 − x i)−1(4.1)

(see [11] exercise 5.12). Similarly for γ = [x1 , y1]⋯[xg , yg] ∈ F2g , we have the exponen-
tial generating function

∑
n≥0
∑
λ⊢n
( n!

Hλ
)

2g−2
xn ,

which for g = 1 again gives the product in Equation (4.1).
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