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The confined Stokesian dynamics (CSD) algorithm recently reported equilibrium
properties but was missing hydrodynamic functions required for suspension stress and
non-equilibrium properties. In this first of a two-part series, we expand the CSD algorithm
to model the traceless part of the stress tensor. To obtain quantities needed to solve
the integral expressions for the stress, we developed a general method to solve Stokes’
equations in bispherical coordinates. We calculate the traceless stress tensor for arbitrary
particle-to-enclosure size ratio. We next compute rheology of a confined suspension by
implementing the stresslet hydrodynamic coefficients into CSD, yielding the deviatoric
part of the many-body hydrodynamic stresslet. We employed energy methods to relate this
stresslet to the high-frequency viscosity of the confined suspension, finding an increase
in viscous dissipation with crowding and confinement well beyond the unconfined value.
We show that confinement effects on viscosity are dominated by near-field interactions
between the particles that reside very near the cavity wall (rather than particle–wall
interactions). Surprisingly, this near-field effect is stronger than the viscosity of an
unconfined suspension, showing that entropic exclusion driven by the wall sets up many
lubrication interactions that then generate strong viscous dissipation. The limiting case of
a particle near a flat wall reveals a correction to prior literature. The theory presented in
this work can be expanded to study the Brownian contribution to the viscosity of confined
suspensions in and away from equilibrium. In part 2, we report the osmotic pressure, via
the trace of the stress tensor.
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1. Introduction

In both living and non-living suspensions, confinement of macromolecules within
a cavity limits the space that colloidal particles can explore, which is useful for
delivery or sequestering of macromolecules in therapeutics, chemical interactions or
coatings. Examples include membraneless organelles in biological cells, liposome-based
microreactor vesicles and particle-filled droplets that promote uniform deposition of ink
colour or 3D-printed polymeric materials. Recent work has shown that the interplay
between confinement and particle concentration impacts the equilibrium dynamics
of suspended colloidal particles. The origins of these effects are both entropic and
hydrodynamic. Entropically, confinement of a colloidal suspension restricts the spatial
arrangements within the cavity that particles can explore. However, low-entropy particle
layering near the wall counters this restriction by allowing more configurations in the bulk,
thus maximising the configurational states (Gonzalez, Aponte-Rivera & Zia 2021). This
spatially heterogeneous ordering, in turn, affects hydrodynamic interactions. Combined,
entropic restriction and particle–cavity hydrodynamic interactions were recently shown
to qualitatively change particle diffusion, making short-time self-diffusion anisotropic
and position-dependent. Size polydispersity produces additional entropic effects such
as demixing (Gonzalez et al. 2021; Savranskaia, Egli & Valet 2022). The fundamental
connection of diffusion to viscosity was recently used to show that confinement alters
equilibrium rheology of confined colloidal suspensions (Aponte-Rivera & Zia 2021).
However, away from equilibrium, various conditions can produce recirculating and other
flows in confined colloidal suspensions (Brangwynne et al. 2009; Shinar et al. 2011;
Saintillan, Shelley & Zidovska 2018) that are central to the growth and division of
biological cells, the spreading of industrial particle-laden droplets and the motion of
drug-delivery vesicles. Such flows of confined, hydrodynamically interacting Brownian
particles have been observed experimentally in release of pendant droplets and capillary
breakup (Li et al. 2019).

Computational modelling provides an important complement to experimental
measurement of particle dynamics and rheology in suspensions. A mature foundation
exists for the modelling of unconfined suspension rheology that recovers many seminal
results found in experimental measurements, thus validating the methods used to model
the microscopic physics in dynamic simulations. The combined approach of experiment,
theory and simulation has produced a deep understanding of the suspension mechanics
that affect rheology, where modelling gives particular insight into particle dynamics and
the relative roles of microscopic forces. However, far less is known about how confinement
affects non-equilibrium rheology.

Computational modelling is a key complement in the search for understanding of how
non-equilibrium viscosity, osmotic pressure and diffusion affect processes in non-living
(Farokhirad, Lee & Morris 2013; Palmer et al. 2020) and living confined systems
(Shinar et al. 2011), where visualisation and tracking of exact particle locations is
possible over periods of time inaccessible in experiments, and permits direct measurement
rheological properties. For example, Saintillan and coworkers showed via modelling of
polymer physics and hydrodynamics that active motion generated by chromatin produces
cooperative dynamics that regulate gene expression (Saintillan et al. 2018). Spakowitz and
coworkers integrated polymeric forces and confinement into their models to demonstrate
how epigenetic modifications are implicated in chromatin segregation, actually replicating
experimental observations (MacPherson, Beltran & Spakowitz 2018). As a final example,
Shelley and coworkers demonstrated that cell spanning recirculating flows enabled the
pronuclear complex proper positioning and orientation (Shinar et al. 2011). These huge
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Confined stresslet for suspensions in a spherical cavity: 1

strides show that computational modelling can unveil the colloidal biophysics that
underlies cellular behaviour. Although previous work has done remarkable progress to
consolidate computational modelling as a tool to interrogate phenomena at the mesoscale,
up to know there was not a computational model capable to capture the combined
effects of Brownian motion, confinement, hydrodynamics and crowding. To such end,
Zia and coworkers developed the confined Stokesian dynamics (CSD) algorithm to
study the microhydrodynamics of spherically confined suspensions of hard Brownian
spheres (Aponte-Rivera & Zia 2016; Aponte-Rivera, Su & Zia 2018; Aponte-Rivera &
Zia 2021; Gonzalez et al. 2021). In CSD, the coupling of cavity and particle surfaces
via hydrodynamic mobility tensors produces particle motion that recovers experimentally
observed entrainment of particles in recirculating flows in biological cells (Brangwynne
et al. 2009; Aponte-Rivera & Zia 2021) as well as anisotropic and spatially heterogeneous
diffusion (Aponte-Rivera & Zia 2016; Gonzalez et al. 2021). This algorithmic approach
can tease apart the separate contributions from hydrodynamic and entropic forces to
help explain biomolecular localisation and membraneless compartmentalisation in cells.
Rheology of the cytoplasm is also of interest; although confined two-point rheology can
obtain viscosity from particle displacements (diffusion) in such systems, the theory is
limited to equilibrium and cannot predict osmotic pressure or flow rheology. Although the
original Stokesian dynamics framework (Durlofsky, Brady & Bossis 1987; Bossis & Brady
1989; Sierou & Brady 2001; Banchio & Brady 2003) excels at modelling flowing colloidal
suspensions, the original CSD framework was restricted to equilibrium conditions because
the underlying theoretical framework did not yet include elements of the hydrodynamic
couplings between particle motion and stress essential to modelling flow. We tackle that
challenge in the present work.

Flow induces non-equilibrium stress in pure fluids and in suspensions. The stress is
a tensor, where off-diagonal elements pertain to deviatoric stress and diagonal elements
pertain to osmotic pressure. These quantities take on non-Newtonian character in colloidal
suspensions that are of interest as discussed previously. It is the objective of this study
to expand the CSD framework to model this behaviour. We utilise the basic approach of
Stokesian dynamics, leveraging the linearity of Stokes flow that connects particle motion
to suspension rheology, in particular a tensor known as the stresslet that relates suspension
stress and, in turn, to osmotic pressure and viscosity to suspension dynamics.

In this Part 1 of a two-part series, we report the hydrodynamic functions that define the
traceless stress tensor of confined colloidal suspensions of hydrodynamically interacting
spheres, including many-body hydrodynamics and lubrication interactions. The first step
in this effort is the development of the resistance and mobility functions that couple
particle motion to the hydrodynamic stresslet. We then develop averaging techniques and
algorithmic implementation into CSD. After we present the theoretical framework for the
traceless elements of the stresslet, we follow this with an application of these relations:
we implement them into the model and measure viscosity of a spherically confined
suspension. We do so by formulating an expression for the high-frequency viscosity of
a confined colloidal suspension using energy methods to relate the stresslet to particle
motion and flow, reflecting the fact that the viscosity of a suspension reflects the way
particle motion, particle interactions and the bulk motion of suspending fluid dissipate
energy. Measured via traditional bulk shear macrorheology, the viscosity is defined as the
proportionality constant between the suspension stress and the strain rate in the suspension.
Energy methods provide a powerful means to unify these two descriptions, by relating
the rate of mechanical energy dissipation to the suspension stress and the velocity of
the suspended particles. Similar approaches (Happel & Brenner 1981) for unconfined
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suspensions have been shown to accurately reproduce experimental measurements (Su,
Swan & Zia 2017), providing support for the energy-methods approach. However,
prior approaches, in both unconfined and confined suspensions, lacked the theoretical
expressions that produce higher-order hydrodynamic traction moments on particle surfaces
essential to predicting the confined suspension stress. To model concentrated suspensions,
we developed the theoretical expressions using microhydrodynamics methods that account
for many-body hydrodynamic interactions which, when inserted into our energy methods
model, predicts the high-frequency viscosity from the suspension stress for confined
suspensions from dilute to concentrated suspensions at different levels of crowding and
polydispersity.

We compare our results to those obtained recently via a confined generalised
Stokes–Einstein relation for two-point microrheology (Aponte-Rivera & Zia 2021) that
predicts the linear-response moduli of a confined suspension of hydrodynamically
interacting colloids using the correlated motion of two embedded tracer colloids.
Fundamentally, the two approaches, directly calculating the suspension stress and
extracting the viscosity from it vs measuring particle correlations and relating them to
viscosity via a Stokes–Einstein relation, both rely on the idea of energy dissipation.
However, the two approaches differ in the qualitative perturbation used: bulk flow
associated with shear vs particle displacements associated with forces. In unconfined
suspensions, these two approaches show the same qualitative trends for the equilibrium
viscosity over all time scales: dissipation (viscosity) that increases moderately with
increased packing at low concentration but increases sharply at high concentration (see the
summary in Zia 2018). The validity of Stokes–Einstein relations is formally well-defined
only for suspensions of freely mobile particles not close the jamming transition. This
cross-comparison of microrheology to shear rheology will be examined here for confined
suspensions, an essential step in robust modelling of confined suspensions and for building
a framework for understanding how confinement optimises behaviour of particle-laden
vesicles and understanding how physics regulates the function of biological cells.

The remainder of this article is organised as follows. In § 1 the model systems
describing two-body theory and concentrated suspensions are presented. The definitions
and nomenclature of the hydrodynamic mobility and resistance formulations utilised
throughout this work are given in § 2. Then, the two-body theory required to model the
hydrodynamic stress of confined suspensions is derived, first for axisymmetric flows in § 3
and then for transverse flows in § 4. In addition, in § 4 a generalised method to solve the
Stokes equations in bispherical coordinates is presented. These new theoretical results are
validated in § 5 by recovering prior work for confined suspensions. The formulation for
the many-body stress of a confined suspension according to the framework of the CSD
is introduced in § 6 alongside the definition of the high-frequency viscosity based on the
suspension stress. We conclude this work in Appendices A–L with a discussion about the
implications of the recent work to the study of confined suspensions.

2. Theoretical framework

2.1. Model systems
We model the dynamics of a suspension of hard colloidal spheres of varying sizes ai
suspended in a Newtonian solvent of density ρ and viscosity η, all enclosed in a hard
spherical cavity of size R. Here, i refers to particles of a given size. The motion of the
particles sets the surrounding fluid into motion, where the small size of the colloids
produces a vanishingly small Reynolds number Re = ρUa/η, where U is the characteristic
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Confined stresslet for suspensions in a spherical cavity: 1

particle velocity. As a result, fluid motion is governed by the Stokes equations, and
because the particles are freely mobile, their motions are coupled to each other and with
the enclosing cavity by many-body reflected hydrodynamic and lubrication interactions.
Accounting for Brownian motion, hydrodynamic interactions and other deterministic
forces in colloidal suspensions can be done analytically for a pair of particles, but requires
computational methods beyond the semi-dilute limit. Properly accounting for Stokesian
particle dynamics in such systems requires two challenges to addressed: first, representing
near-field hydrodynamic interactions near contact, which become divergent lubrication
forces; the second challenge is representing infinitely reflected fluid-mediated interactions
between many particles simultaneously, i.e. many-body hydrodynamic interactions. One
approach for addressing these challenges is the Stokesian dynamics algorithm (Durlofsky
et al. 1987; Bossis & Brady 1989; Sierou & Brady 2001; Banchio & Brady 2003),
developed for unconfined suspensions, which leverages the linearity of Stokes flow to
solve the near-field and many-body problems separately and then superimpose them for
a complete solution.

CSD expands that framework by incorporating a spherical enclosure, enabling
measurement of its effect on particle microstructure and hydrodynamic interactions for
monodisperse (Aponte-Rivera & Zia 2016; Aponte-Rivera et al. 2018) and polydisperse
(Gonzalez et al. 2021) suspensions. To do so, we expanded mobility functions derived from
Ladyzhenskaya’s integral equation (Ladyzhenskaya 1963) which we combined with Faxén
relations to represent the enclosure. These functions were superimposed with previously
developed near-field theory (Jeffery 1915; Stimson & Jeffery 1926; Dean & O’Neill 1963;
O’Neill 1964; Majumdar 1967; Cooley & O’neill 1968; O’Neill & Majumdar 1970a;
Jeffrey & Onishi 1984; Jeffrey 1992; Jones 2009). We used the resulting CSD model
to study equilibrium diffusion in concentrated confined monodisperse and polydisperse
suspensions (Aponte-Rivera et al. 2018; Gonzalez et al. 2021). This model was limited to
equilibrium conditions however, because some elements of the hydrodynamic functions
were not yet developed: the coupling between particle motion and the hydrodynamic
stresslet, the symmetric first moment of the hydrodynamic traction on particle surfaces. We
compute these new hydrodynamic functions in the present work. We get started by defining
coordinate reference frames that facilitate solving the near-field and many-body problems
for confined suspensions. Two coordinate systems are needed and are described here
because they will be used throughout subsequent sections to solve the Stokes equations
and relate these solutions to the rheology of confined suspensions.

For pair interactions (particle–particle or particle–cavity), the reference frame is
identical to an unbound pair (centred on a colloidal particle). Placing the origin at the
centre of a particle facilitates transformations between Cartesian, spherical, cylindrical
and bispherical coordinates needed to construct and solve the relevant equations of motion
and boundary conditions which requires going back and forth between coordinate systems.
To model just the pair-level hydrodynamic interactions between a colloid and the cavity,
the origin of a Cartesian and curvilinear coordinate systems (cylindrical, spherical and
bispherical) is located at the centre of the colloid, as shown in figure 1(a). Here, r denotes
the centre-to-centre vector between the cavity and the colloid with the origin at the colloid
centre. For pair theory, the geometry of the system is fully specified by the particle position
and the particle-to-cavity size ratio λc = a/R and r, equivalently called ‘confinement ratio’
throughout this article.

In contrast, many-body interactions require placement of the origin at the centre of the
confining cavity (figure 1b), as though it were itself the reference particle, which facilitates
the discretisation of the volume inside the cavity throughout which particles interact.
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Figure 1. Conceptual sketch of model systems (a) for a confined colloid in a spherical cavity with origin at
the centre of the colloid and (b) for a confined polydisperse suspension in a spherical cavity with origin at the
centre of the cavity, where the domain is discretised in concentric spherical bins of constant width.

The centre-to-centre vector between the cavity and any colloid is opposite in sign to
that used for particle–particle interactions. For monodisperse confined suspensions of N
particles, the composition of the system is fully specified by the particle-to-cavity size
ratio λc = a1/R and the volume fraction φ = λ3

cN. However, for a polydisperse confined
suspension with M different particle sizes a1 < a2 < · · · < aM , one must also specify
M − 1 particle size ratios λp(i) = ai/a1 and M − 1 volume compositions φi/φ, where
φ =∑M

i φi and φi = 4/3πa3
i ni and ni the number density of particles with radius ai. To

facilitate the analysis of the suspension dynamics, particles are tracked by the position of
their particle centres, r, and located in one of 100 concentric bins of constant width�r/R.
The edge of the outermost bin corresponds to the location of the centre of the smallest
particle when it is at contact with the cavity wall and each bin is identified by its radial
midpoint rm (between the innermost and outermost edges), see figure 1(b).

2.2. Mobility and resistance formulations
Viscosity, viscoelastic moduli, osmotic pressure and normal-stress differences are all
elements of the stress tensor. Thus, obtaining the stress tensor is one of the first steps
in characterising the complete rheology of a material. In a colloidal suspension, the stress
differs from that of the suspending fluid and of the material properties of the suspended
particles, as demonstrated by bulk rheological experiments (Mewis & Wagner 2011).
Batchelor (1970) showed that the average suspension stress can be obtained as an average
over the entire volume, solvent plus particles:

〈σ 〉 = −〈 p〉f I + 2η〈e〉 + 〈Σ〉PP. (2.1)

The angle brackets signify an average over the entire suspension 〈·〉, the fluid only 〈·〉f ,
or the particle phase only 〈·〉PP. The first term on the right-hand side gives the dynamic
pressure p averaged throughout the fluid phase; here, I is the identity tensor. In the second
term the strain rate e is averaged over the fluid and particles, for all configurational
arrangements. The stress contributed by the particle phase, 〈Σ〉PP, is averaged over
all particle configurations. Batchelor (1970) showed that the configuration average in
homogeneously deformed suspensions is equivalent to a volume average. Related to this
result, the particle-phase stress emerges from the interface with the fluid, producing a
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Confined stresslet for suspensions in a spherical cavity: 1

surface integral that depends on the configuration of the particles:

〈Σ〉PP = 1
V

N∑
i

∫
SP,i

[σ · n r − η(vn + nv)] dS. (2.2)

Here V is the total volume of the suspension, N is the total number of particles, SP,i is
the surface of particle i and n is a unit normal vector pointing outward from the particle
surface. We evaluate the fluid stress σ and velocity v at the particle surface. The first
term in (2.2) is the first moment of the surface traction t = σ · n exerted by the fluid on
a particle, which induces stress. The second term accounts for particle deformability that
can reduce stress. The first moment of the traction can be separated into its symmetric and
antisymmetric parts,∫

SP,i

σ · n r dS = 1
2

∫
Spart

[(σ · n r + r σ · n)+ (σ · n r − r σ · n)] dS. (2.3)

The antisymmetric part is the hydrodynamic torque tensor and exerts no dynamical
influence on the suspension stress for a suspension of hard spheres. The symmetric part
defines the hydrodynamic stresslet on particle surfaces:

1
V

N∑
i

∫
SP,i

[
1
2 (σ · nr + rσ · n)− η(vn + nv)

]
dS ≡ 1

V

N∑
i

SH
i ≡ ΣPP. (2.4)

The deformability term is zero for hard particles, but we retain it in the expression for the
stresslet because it is useful for imposing an infinitesimal deformation to solve the Stokes
equations for a straining flow, an essential step in developing the missing hydrodynamic
functions. This mathematical tool of imposing a perturbative flow to obtain hydrodynamic
functions has been used previously in similar stresslet calculations for an unbound pair of
hard spheres (Jeffrey 1992). The foregoing expression shows that calculation of the average
suspension stress and suspension rheology thus requires calculation of the hydrodynamic
stresslet in its general, configuration-dependent form and must capture the effect of
hydrodynamic interactions on the total fluid stress. In Appendix A, we provide a brief
recap of the moments of the surface traction that produce hydrodynamic force, torque
and stresslet; for an N-particle suspension, the method of multipole Taylor expansion of
Ladyzhenskaya’s integral equation (Ladyzhenskaya 1963) for flow velocity that relates
these couplings to fluid flow; and implementation of Faxèn formulae that relate particle
motion to these hydrodynamic traction moments through a grand mobility matrix (GMM),
M, and, in turn, a grand resistance matrix (GRM), R. These matrices are discussed next.

As outlined in Appendix A, the microhydrodynamics formalism provides a compact
expression of the linearity of Stokes flow of a suspension relating the surface traction
exerted by the fluid on particle surfaces to particle motion:⎛

⎜⎜⎜⎝
F H

LH

SH

...

⎞
⎟⎟⎟⎠ = −

⎛
⎜⎜⎜⎝

RFU RFΩ RFE . . .

RLU RLΩ RLE . . .

RSU RSΩ RSE . . .
...

...
...

. . .

⎞
⎟⎟⎟⎠ ·

⎛
⎜⎜⎝

U − U∞
Ω − ω∞
E − E∞

...

⎞
⎟⎟⎠ . (2.5)

Here, F H , LH and SH are vectors and tensors containing the hydrodynamic force, torque
and stresslet on the surfaces of each of the N particles in the suspension. Each is linear
in the boundary conditions, i.e. particle motion relative to the fluid: U − U∞, Ω − Ω∞,
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E − E∞, translation, rotation and straining motion, respectively. In the present case, there
is no imposed flow, thus U∞ = Ω∞ = 0 and E∞ = 0. The particles can also move owing
to Brownian motion and interparticle forces. Disregarding the origin of particle motion,
the GRM couples the traction moments to motion. More specifically, GRM contains
tensors that couple force to translation (RFU), rotation (RFΩ ), straining motion (RFE) and
an infinitude of higher-order couplings as indicated by the ellipses (see Appendix A).
Each of these block matrices within the GRM contains the geometrical transformation
for all N suspended particles that relate a particle motion to a surface traction moment.
A similar linearity relation defines how prescribed motion produces hydrodynamic traction
moments: ⎛

⎜⎜⎝
U
Ω
E
...

⎞
⎟⎟⎠ = −

⎛
⎜⎜⎜⎝

MUF MUL MUS . . .

MΩF MΩL MΩS . . .

MEF MEL MES . . .
...

...
...

. . .

⎞
⎟⎟⎟⎠ ·

⎛
⎜⎜⎜⎝

F H

LH

SH

...

⎞
⎟⎟⎟⎠ . (2.6)

The GRM R and the GMM M hold a reciprocal relationship

M =

⎛
⎜⎜⎜⎝

MUF MUL MUS . . .

MΩF MΩL MΩS . . .

MEF MEL MES . . .
...

...
...

. . .

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

RFU RFΩ RFE . . .

RLU RLΩ RLE . . .

RSU RSΩ RSE . . .
...

...
...

. . .

⎞
⎟⎟⎟⎠

−1

= R−1, (2.7)

so generating either provides access to the other.
To extract motion along and transverse to the line of centres r̂ connecting interacting

particles, each tensor within the GRM can be projected through orthogonal bases,
r̂r̂ and I − r̂r̂ that set the direction of hydrodynamic coupling, each scaled by a
configuration-dependent scalar function that sets the decay of the coupling with separation
distance. We illustrate this result with the familiar couplings between translation and
rotation that induce hydrodynamic translation and rotational drag:

RFU
ij = 6πηa

[
XA(C)r̂ir̂j + YA(C) (δij − r̂ir̂j

)]
, (2.8)

RLU
ij =

(
RFΩ

ij

)T = 6πηa2
[
YB(C)εijkr̂k

]
, (2.9)

RLΩ
ij = 6πηa3

[
XC(C)r̂ir̂j + YC(C) (δij − r̂ir̂j

)]
. (2.10)

Here, the coefficients X(C) and Y(C) are scalar resistance functions that encode
the configuration-dependent coupling of motion along and transverse to the line
of centres r̂ = r/r between a particle and the cavity. The superscripts A, B and
C refer to the force/translation, torque/translation and torque/rotation couplings,
respectively. The variable C defines system configuration, including particle size
and particle-to-cavity size ratio. For a single confined particle, C = C(r, λc).
For concentrated monodisperse suspensions, C = C(r, λc, φ) (λp does not matter).
For concentrated polydisperse suspensions of K different particle sizes, C =
C(r, λc(1), λp(2), . . . , λp(K), φ, φi/φ, . . . , φK/φ), where λc(1) ≡ a1/R is the smallest
particle-to-cavity ratio, λp(i) ≡ ai/a1 > 1 is the particle-to-particle size ratio defined with
respect to the smallest particle, and φ/φi is the ith partial volume fraction. Here, the
dimensions of the resistance tensors are captured by the prefactors 6πηan which also
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Figure 2. Conceptual sketch of model straining, translational and rotational flows for (a) axisymmetric,
(b) transverse and (c) transverse-planar motions of a colloid inside a spherical cavity.

render the hydrodynamic functions dimensionless. Finally, δij is the Kronecker delta, and
εijk is the Levi-Civita or alternating tensor.

The goal of the present work is to obtain the total suspension stress via the hydrodynamic
stresslet; we thus focus specifically on those resistance tensors relating the stresslet to
particle motion. The relevant resistance tensors from the GRM are

RSU
ijk =

(
RFE

ijk

)T = 6πηa2
[
XG(C)

(
r̂ir̂j − 1

3δij

)
r̂k + YG(C) (r̂iδjk + r̂jδik − 2r̂ir̂jr̂k

)]
,

(2.11)

RSΩ
ijk =

(
RLE

ijk

)T = 6πηa3
[
YH(C) (r̂iεjkmr̂m + r̂jεikmr̂m

)]
, (2.12)

RSE
ijkl = 6πηa3

[
XM(C)3

2

(
r̂kr̂l − 1

3δkl

)
+ YM(C)1

2

(
r̂iδjlr̂k + r̂jδilr̂k + r̂iδjkr̂l + r̂jδikr̂l − 4r̂ir̂jr̂kr̂l

)
+ ZM(C)1

2

(
δikδjl + δjkδil − δijδkl + r̂ir̂jδkl + δijr̂kr̂l + r̂ir̂jr̂kr̂l − r̂iδjlr̂k − r̂jδilr̂k

− r̂iδjkr̂l − r̂jδikr̂l
)]
. (2.13)

The superscripts, G, H and M indicate the stresslet/translation, stresslet/rotation and
stresslet/straining coupling.

Each of the hydrodynamic functions (2.8)–(2.13) encodes the influence of the specific
flow associated with a given surface traction, each being chosen to reveal particle motion
and rheology of interest. The function XA (2.8) corresponds to the hydrodynamic force on
the colloid associated with axisymmetric translation along the line of centres. This line of
centres is shown for a particle inside a sphere in figure 2(a) as the z-axis. The function
YA plays the same role for translation transverse to the line of centres, where the axis is
chosen here for convenience to be along the x-axis in figure 2(b). We could equivalently
choose motion along the y-axis. The stresslet sought here can arise from uniaxial, shear
and planar-elongational flows, and the corresponding couplings of superscript G, H and
M each have longitudinal and transverse components XG, XM , YG, YH , YM and ZM . Here,
the Z coupling corresponds to transverse-planar straining motion, related to uniaxial, shear
and planar-elongational flow depicted in figures 2(a)–2(c).

The expressions (2.8)–(2.10) and (2.11)–(2.13) have been previously derived for unbound
dilute suspensions (Jeffrey & Onishi 1984; Jeffrey 1992) and that framework subsequently
leveraged to derive corresponding hydrodynamic functions for concentrated, unconfined
suspensions (Durlofsky et al. 1987; Ladd 1990; Sierou & Brady 2001). In these unconfined
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conditions, all entries shown in (2.7) for the GMM and GRM in are available. In contrast,
the corresponding pair-level functions for spherical confinement, which are necessary
for developing the confined, concentrated framework, are incomplete. Specifically, there
is no existing theory for hydrodynamic functions that represent the stresslet for any
flow, nor functions to represent straining flows, for a particle inside a spherical cavity.
These resistance tensors are essential both for the near-field interactions between pairs
and for many-body interactions; these are, in turn, required to calculate rheological
properties of crowded suspensions by means of the confined Stokesian algorithm. Earlier
models of the dynamics of a confined particle truncate the GRM, using only the forces
and torques produced from translational and rotational flows (2.8)–(2.10) (Jeffery 1915;
Stimson & Jeffery 1926; Dean & O’Neill 1963; O’Neill 1964; Majumdar 1967; Cooley &
O’neill 1968; O’Neill & Majumdar 1970a; Jones 2009), which is sufficient for modelling
equilibrium diffusion of a confined suspension (Aponte-Rivera & Zia 2016; Aponte-Rivera
et al. 2018). The strategy used in these earlier studies was to solve the Stokes equations for
a translating sphere and a rotating sphere, and then calculate the surface traction moments
F H and LH .

For a particle inside a spherical cavity, solution of Stokes’ equations for the pressure
and velocity fields follows solutions of Laplace’s equation with boundary conditions
on both surfaces (Appendix B). Jeffery (1912) developed a solution using bispherical
coordinates, elegantly describing a pair of spheres either internal or external to each
other (Appendix B). Jeffery’s approach underlies all subsequent bispherical-coordinates
solutions to Stokes equations for a pair of spheres (internal or external to each other)
(Jeffery 1915; Stimson & Jeffery 1926; Dean & O’Neill 1963; O’Neill 1964; Majumdar
1967; Cooley & O’neill 1968; O’Neill & Majumdar 1970a; Jones 2009). A brief overview
of the development of this body of solutions is as follows. Jeffery (1915) contributed
the methodology of solving Stokes’ equations in bispherical coordinates and with that
methodology, he contributed the flow and pressure due to axisymmetric rotation of
a pair of spheres and, from it, calculated the hydrodynamic torque. Next, Stimson &
Jeffery (1926) solved the problem of axisymmetric translation and the corresponding
hydrodynamic force on the sphere. In that work, they simplified the mathematics
substantially by representing the Stokes’ stream function in bispherical coordinates.

The problems of a sphere rotating and translating transverse to an enclosing cavity
were solved by O’Neill & Majumdar (1970a) using a method developed by Dean &
O’Neill (1963) for a sphere near a flat wall, which used a separation of variables method.
Examining the problem in cylindrical coordinates revealed that the θ component of the
velocity and pressure fields is independent of the two other coordinates (ρ, z) and that
those two coordinates can be equivalently described in any coordinate system of revolution
(e.g. cylindrical, spherical and bispherical coordinates, among others). Here Dean &
O’Neill (1963) proposed an ansatz in cylindrical coordinates {ρ, z, θ} where the angular
dependence of the pressure and velocity fields is independent of their spatial dependencies
in the radial and axial directions. After utilising this ansatz in the equation of motion, the
resultant second order differential equations were solved in bispherical coordinates as a
special case of the solution to Laplace’s equation reported by Jeffery, which is discussed
in detail in § 3.3. This separation of variables approach was applied to the problems of
a sphere translating and rotating transverse to the enclosing spherical cavity by O’Neill
& Majumdar (1970a). The authors reported expressions for the force and torque on the
colloid for both velocity fields. The methods based on bispherical coordinates also give
solutions to Stokes’ equations and the surface traction moments for two external spheres,
which preceded and are equivalent to the work based on twin multipole methods (Jeffrey
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Confined stresslet for suspensions in a spherical cavity: 1

& Onishi 1984; Kim & Karrila 1991; Jeffrey 1992; Jeffrey, Morris & Brady 1993). In
summary, this work produced the force and torque entries in the GRM for a particle in a
spherical cavity. In the present work, we utilise these methods to derive additional entries
in the GRM.

In the next section, we present the methods for obtaining solutions to Stokes’ equations
in bispherical coordinates for three mutually orthogonal straining flows (shown in figure 2)
for a spherical colloid inside a cavity. In addition, we present the new expressions derived
here for calculating the stresslet on the colloid, and the corresponding hydrodynamic
functions for translational, rotational and straining flows ((2.11), (2.12) and (2.13)).

3. Stresslet formulation: pair theory in confinement

In this section we present three primary results required to achieve our goal of completing
the confined GRM. We first present new solutions to Stokes’ equations for the three
straining flows inside a spherical cavity illustrated in figure 2. We developed a generalised
method for solving the Stokes equations in bispherical coordinates to obtain these
solutions, which is also shown here. We then combine the solutions of Stokes’ equations
obtained in this work together with previous solutions for translational and rotational
flows to deduce all hydrodynamic functions associated with the stresslet in the GRM
(2.11)–(2.13).

Here we describe the process we follow in the coming sections. In §§ 3.1 and 3.3 we
determine velocity and pressure in the fluid phase. We do this by solving the Stokes
equations that govern the fluid velocity and pressure point-wise throughout the suspension
in both the fluid phase and the particle phase:

∇p = η∇2v, (3.1a)

∇ · v = 0, (3.1b)

for each of the flows shown in figure 2. We then use the velocity and pressure to calculate
the fluid-phase stress σ = −pI + η(∇v + (∇v)T), which is, in turn, used to compute the
hydrodynamic stresslet exerted by the flow on an individual particle of radius a and surface
area Sa:

SH,TL =
∫

Sa

[
1
2 (σ · nr + rσ · n)− 1

3 r · σ · nI − η (nv + vn)
]

dS. (3.2)

The superscript TL indicates that the hydrodynamic stresslet SH in (2.4) has been made
traceless in (3.2). The trace is associated with the osmotic pressure, which we study
separately in the second part of this two-part series. After solving the Stokes equations and
obtaining the traceless stresslet, we combine it with the linearity expressions (A9), and the
definitions of RSU , RSΩ and RSE ((2.11), (2.12) and (2.13), respectively), to deduce new
hydrodynamic coefficients XG, YG, YH , XM , YM and ZM . This is the process framework.

We organise the process as follows. In § 3.1, we solve Stokes’ equations for the
axisymmetric flow sketched in figure 2(a). Then in § 3.2, we present the two stresslet
hydrodynamic functions, XG and XM , for axisymmetric flows, and we obtain XG̃. We show
that the latter is identical to XG, demonstrating the validity of our method. In § 3.3, we
present a generalised method to solve Stokes’ equations in bispherical coordinates and its
application to solve transverse planar straining flows. Last, in § 3.4, we present the stresslet
hydrodynamic functions that are related to transverse flows, i.e. YG, YH , YM and ZM , as
well as their symmetric counterparts YG̃ and YH̃ .
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3.1. Solution to the Stokes equations for the axisymmetric straining flow
Axisymmetric straining flow, also known as uniaxial straining flow, has axial symmetry
about the line of centres connecting the particle and the cavity (z-axis in figure 2a),
yielding a flow that is independent of the azimuthal angle θ , with strain rate E given
by

E = E

⎡
⎣−1

3 0 0
0 −1

3 0
0 0 2

3

⎤
⎦
(x,y,z)

. (3.3)

This flow produces boundary conditions on the surface of the colloid, Sa, and on the cavity,
Scav given by

v = E · r =
(
−1

3 xix − 1
3 yiy + 2

3 ziz

)
E =

(
−1

3ρiρ + 2
3 ziz

)
E at Sa, (3.4a)

v = 0 at Scav. (3.4b)

Here, i is a unit normal vector pointing in the direction of the subindex. In (3.4a), the
boundary conditions are given in both Cartesian and cylindrical coordinates. The former is
useful for algebra in index notation whereas the latter facilitates evaluation of the boundary
conditions on coordinate systems of revolution (cylindrical, spherical and bispherical
coordinates).

By symmetry, neither p nor v depend on θ ; hence, in cylindrical coordinates
{ρ, z, θ} (we remark that the traditionally defined cylindrical coordinates {ρ, θ, z∗} have
equivalences with bispherical coordinates {σ, ξ, θ} centred between the limiting points
±c, whereas the cylindrical coordinates {ρ, θ, z} mentioned previously are centred at the
particle centre. The axial coordinate transformation is z = z∗ − c coth(α) (see also (3.40));
this relationship makes the differential operators on z and z∗ equivalent ∂/∂z = ∂/∂z∗;
(3.5)–(3.9) reflect this connection) the Stokes equations simplify to

∂p
∂ρ

= η

(
∂2vρ

∂ρ2 + ∂2vρ

∂z2 + 1
ρ

∂vρ

∂ρ
− vρ

ρ2

)
, (3.5a)

∂p
∂z

= η

(
∂2vz

∂ρ2 + ∂2vz

∂z2 + 1
ρ

∂vz

∂ρ

)
, (3.5b)

1
ρ

∂

∂ρ

(
ρvρ

)+ ∂vz

∂z
= 0, (3.5c)

where vρ and vz are the velocity components in the ρ and z directions. Symmetry in
the azimuthal angular direction is also present in the flow resulting from translation of
the colloid along the z-axis, which was solved by Stimson & Jeffery (1926) utilising the
Stokes flow stream function Ψ . In this work, we adopt a similar approach to solve Stokes’
equations for axisymmetric straining motion.

Following this programme, in terms of Ψ , the velocity components are defined by

vρ = 1
ρ

∂Ψ

∂z
, vz = − 1

ρ

∂Ψ

∂ρ
, (3.6a,b)

which automatically satisfy continuity. Using Ψ , the equations of motion (3.5a,b) simplify
to

E4[Ψ ] = 0, (3.7)
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−ξ2

ξ3

ξ2

ξ3 < ξ2 < ξ1

z

+c

−c
z = 0

ξ1 → ∞

σ = +1

σ = −1

σ = +1

σ3 < 0

σ1 > 0

θ

Bispherical

coordinate system  

(ξ, σ, θ)

−∞ < ξ < +∞

−1 < σ < +1

0 < θ < 2π

σ2 = 0

(a) (b)

Figure 3. Sketch of the bispherical coordinate system (ξ, σ, θ) about a vertical z-axis such that the plane
of z = 0 splits the domain in half. The points z = ±c are the limiting points of the coordinate system. The
coordinate θ is the same azimuthal angle as in cylindrical or spherical coordinates, 0 < θ < 2π. The usefulness
of the coordinates (ξ, σ ) stems from the type of bodies of revolution that are formed by rotating about the
z-axis curves of either constant ξ or σ . The transformation circle related to ξ can be infinite or point-sized,
−∞ < ξ < +∞. Curves of constant ξ are half-circles: a value of ξ = ±∞ are points of zero radius located
at the limiting points ±c (see curve ξ1), whereas values ξ < +∞ (ξ > −∞) are half-circles centred in the
upper (lower) half of the z-axis (see curves ξ2, ξ3 and −ξ2), and values of ξ → 0 from either +∞ or −∞ limit
describe circles of infinite radius whose perimeter lays on the ±c planes. Thus, rotating curves of constant ξ
about the z-axis generates spheres. Two spheres resulting from ξ of different signs will be external to each other,
i.e. one centred above +c and another centred below −c. Relevant for this work is the scenario of two spheres
with the same ξ sign, where one sphere is inside the other. The coordinate σ ranges between −1 < σ < +1,
where σ = 0 at both limiting points ±c. Curves of constant σ are arcs of circles: values 0 < σ < 1 are greater
in length than semicircles (see curve σ1), a value σ = 0 is a circle centred between the limiting points ±c (see
curve σ2) and values −1 < σ < 0 form are less in length than semicircles (see curve σ3). Thus, rotating curves
with constant σ generate spindle toruses.

where the differential operator E4 is given by

E4[·] =
[
E2
]2

[·] =
[
ρ
∂

∂ρ

(
1
ρ

∂

∂ρ

)
+ ∂2

∂z2

]2

[·], (3.8)

and the boundary conditions (3.4) simplify to

∂Ψ

∂z
= −1

3
ρ2E and

∂Ψ

∂ρ
= −2

3
ρzE at Sa, (3.9a)

∂Ψ

∂z
= 0 and

∂Ψ

∂ρ
= 0 at Scav. (3.9b)

To find a solution to the operator E4 and evaluate the boundary conditions on the surfaces
of the particle and the cavity, we use the equivalence between coordinate systems of
revolution (see Appendix C), which allows one to easily transform between cylindrical
and bispherical coordinates.

A key advantage of using bispherical coordinates is that if the line of centres is aligned
with the z-axis of the cylindrical coordinate system (figure 3), one can simultaneously
locate two spheres of any relative size and separation (external or internal to each other)
with a single set of coordinates. This approach is indispensable for evaluation of boundary
conditions and equations of motion for a pair of off-centred spheres. The variable change
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between cylindrical and bispherical coordinates is

z = c sinh(ξ)
cosh(ξ)− σ

− c coth(α), ρ = c(1 − σ 2)1/2

cosh(ξ)− σ
, (3.10a,b)

whereas the azimuthal angle θ is the same in both coordinates and −∞ < ξ < +∞
and −1 < σ < +1, where ξ and σ are bispherical coordinates equivalent in spatial
representation to the cylindrical coordinates variables ρ and z. Here, c is a characteristic
scale given by the size and separation of the two spheres (refer to figure 3)

c = R
2

1
r/R

[(
1 − λ2

c

)2 − 2
(

1 + λ2
c

)
(r/R)2 + (r/R)4

]1/2

. (3.11)

Rotating curves of either constant ξ or constant σ forms bodies of revolution. For example,
a sphere is given by surfaces of constant ξ according to

z2 + ρ2 = c2csch2(ξ). (3.12)

In this work, ξ = α for the colloid and ξ = β for the cavity, such that

a = c csch(α), R = c csch(β). (3.13a,b)

Utilising these definitions, the operator E2 in bispherical coordinates is given by

E2[·] = cosh(ξ)− σ

c2

{
∂

∂ξ

[
(cosh(ξ)− σ)

∂

∂ξ

]

+
(

1 − σ 2
) ∂

∂σ

[
(cosh(ξ)− σ)

∂

∂σ

]}
[·]. (3.14)

Owing to the convenience of working in bispherical coordinates for two-sphere problems,
a solution to the operator E4 in bispherical coordinates was reported by Stimson & Jeffery
(1926), for the axisymmetric translation of a sphere along the z-axis. This canonical
solution is also valid for axisymmetric straining flow, since both flows possess the same
azimuthal symmetry. The expression for Ψ that satisfies (17) is given by

Ψ (σ, ξ) = (cosh(ξ)− σ)−3/2
∞∑

n=1

Un (ξ)Vn (σ ) , (3.15a)

where

Un (ξ) = c3E
{

An cosh
[
(n − 1

2 )ξ
]

+ Bn sinh
[
(n − 1

2 )ξ
]

+ Cn cosh
[
(n + 3

2)ξ
]}

+ Dn cosh
[
(n + 3

2)ξ
]}

(3.15b)

and

Vn (σ ) = Pn−1(σ )− Pn+1(σ ). (3.15c)

Here, Pn(σ ) are Legendre polynomials. Determination of the constants An, Bn, Cn and Dn
requires evaluation of the four boundary conditions on the particle and the cavity surfaces
(3.9). To this end, we use again the equivalence between coordinate systems of revolution
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Confined stresslet for suspensions in a spherical cavity: 1

(see Appendix C) and change the boundary conditions to bispherical coordinates {σ, ξ, θ}
to obtain

Ψ (σ, ξ) = −a3

3
E

[
sinh2(ξ)

cosh(ξ)− σ
− cosh(ξ)

]∣∣∣∣∣
ξ=α

and

∂Ψ

∂ξ
= a2E

[
sinh2(ξ)

cosh(ξ)− σ
− cosh(ξ)

]
c sinh2(ξ)(1 − σ 2)

(cosh(ξ)− σ)3

∣∣∣∣∣
ξ=α

at Sa,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.16a)

Ψ = 0|ξ=β and
∂Ψ

∂ξ
= 0
∣∣∣∣
ξ=β

at Scav. (3.16b)

Then, utilising Legendre polynomials generating functions such as

[cosh(ξ)− σ ]−1/2 =
√

2
∞∑

n=0

exp(−(n + 1/2)ξ)Pn(σ ), (3.17)

and considering the orthogonality of the Vn(σ ) functions lead to a set of equations that
are only a function of ξ , evaluated as ξ = α and ξ = β at the colloid and the cavity,
respectively, which can be manipulated to get closed expressions for the coefficients An,
Bn, Cn and Dn. Using this approach, we obtained the following explicit expressions:

An = 2
√

2n(n + 1)
[
(−4n3 + 3n + 1) exp(2α(n + 3)+ 2βn)

+ (4n3 − 7n + 3) exp(2(α(n + 2)+ β(n + 1)))

+ 2(2n2 + n − 1) exp(3α + 2β(n + 1))

+ (−4n2 + 2n + 2) exp(3α + 2β(n + 2))

+ (−4n2 − 6n + 4) exp(α + 2β(n + 1))

+ (4n2 − 2n − 2) exp(β + 2α(n + 3))+ (4n2 + 6n − 4) exp(β + 2α(n + 1))

+ (−8n2 − 4n + 2) exp(β + 2α(n + 2))

+ (−4n3 − 8n2 + n + 2) exp(2(α + αn + βn))

+ (4n3 + 8n2 − n − 2) exp(2(β + n(α + β)))

+ (−8n3 − 8n2 + 4n + 1) exp(2(n + 1)(α + β))

+ (8n3 + 8n2 − 1) exp(2α(n + 2)+ 2βn)

+ 4(n − 1) exp(3α + 3β + 4βn)− 4n exp(α + 3β + 4βn)

+2n(2n + 1) exp(α + 2β(n + 2))
]/[

3(exp(2α)− 1)(2n − 1)(2n + 1)

× ((−8n2 − 8n + 6) exp(2(n + 1)(α + β))

+ (2n + 1)2 exp(2α(n + 2)+ 2βn)+ (2n + 1)2 exp(4β + 2n(α + β))

− 4 exp(3α + β + 4αn)− 4 exp(α + 3β + 4βn))
]
, (3.18a)
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Bn = −2
√

2n(n + 1)
[
(−4n3 + 3n + 1) exp(2α(n + 3)+ 2βn)

+ (4n3 − 7n + 3) exp(2(α(n + 2)+ β(n + 1)))

− 2(2n2 + n − 1) exp(3α + 2β(n + 1))+ (−4n2 + 2n + 2) exp(β + 2α(n + 3))

+ (−4n2 − 6n + 4) exp(β + 2α(n + 1))+ (4n2 − 2n − 2) exp(3α + 2β(n + 2))

+ (4n2 + 6n − 4) exp(α + 2β(n + 1))+ (8n2 + 4n − 2) exp(β + 2α(n + 2))

+ (−4n3 − 8n2 + n + 2) exp(2(α + αn + βn))

+ (4n3 + 8n2 − n − 2) exp(2(β + n(α + β)))

+ (−8n3 − 8n2 + 4n + 1) exp(2(n + 1)(α + β))

+ (8n3 + 8n2 − 1) exp(2α(n + 2)+ 2βn)

+ 4(n − 1) exp(3α + 3β + 4βn)− 4n exp(α + 3β + 4βn)

− 2n(2n + 1) exp(α + 2β(n + 2))
]/[

3(exp(2α)− 1)(2n − 1)(2n + 1)

× ((−8n2 − 8n + 6) exp(2(n + 1)(α + β))

+ (2n + 1)2 exp(2α(n + 2)+ 2βn)+ (2n + 1)2 exp(4β + 2n(α + β))

− 4 exp(3α + β + 4αn)− 4 exp(α + 3β + 4βn))
]
, (3.18b)

Cn = −2
√

2n(n + 1)
[
2(2n2 + n − 3) exp(β + 2α(n + 2))

− 2(2n2 + n − 3) exp(3α + 2β(n + 1))+ 2(2n2 + 5n + 2) exp(β + 2αn)

− 2(2n2 + 5n + 2) exp(α + 2βn)− 2(4n2 + 6n + 1) exp(β + 2α(n + 1))

+ (4n2 + 6n + 2) exp(3α + 2βn)

+ (−4n3 − 4n2 + 5n + 3) exp(2(α(n + 3)+ β(n + 1)))

+ (4n3 + 4n2 − 5n − 3) exp(2(n + 2)(α + β))

− (4n3 + 12n2 + 5n − 6) exp(2(n + 1)(α + β))

+ (8n3 + 16n2 + 4n − 3) exp(2(α(n + 2)+ β(n + 1)))

− (8n3 + 16n2 + 8n + 1) exp(2(α(n + 1)+ β(n + 2)))

+ (n + 2)(2n + 1)2 exp(4β + 2n(α + β))

+ 4(n + 1) exp(3α + 3β + 4βn)− 4(n + 2) exp(α + 3β + 4βn)

+ 2n(2n + 3) exp(α + 2β(n + 1))
]/[

3(exp(2α)− 1)(4n2 + 8n + 3)

× ((−8n2 − 8n + 6) exp(2(n + 1)(α + β))+ (2n + 1)2 exp(2α(n + 2)+ 2βn)

+ (2n + 1)2 exp(4β + 2n(α + β))

− 4 exp(3α + β + 4αn)− 4 exp(α + 3β + 4βn))
]
, (3.19a)
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Confined stresslet for suspensions in a spherical cavity: 1

Dn = 2
√

2n(n + 1)
[
2(2n2 + n − 3) exp(β + 2α(n + 2))

− 2(2n2 + n − 3) exp(3α + 2β(n + 1))+ 2(2n2 + 5n + 2) exp(β + 2αn)

− 2(2n2 + 5n + 2) exp(α + 2βn)− 2(4n2 + 6n + 1) exp(β + 2α(n + 1))

+ (4n2 + 6n + 2) exp(3α + 2βn)+ (−4n3 − 4n2 + 5n + 3) exp(2(n + 2)(α + β))

+ (4n3 + 4n2 − 5n − 3) exp(2(α(n + 3)+ β(n + 1)))

+ (4n3 + 12n2 + 5n − 6) exp(2(n + 1)(α + β))

− (8n3 + 16n2 + 4n − 3) exp(2(α(n + 2)+ β(n + 1)))

+ (8n3 + 16n2 + 8n + 1) exp(2(α(n + 1)+ β(n + 2)))

+ (n + 2)(2n + 1)2(− exp(4β + 2n(α + β)))− 4(n + 1) exp(3α + 3β + 4βn)

+ 4(n + 2) exp(α + 3β + 4βn)

+2n(2n + 3) exp(α + 2β(n + 1))
]/[

3(exp(2α)− 1)(2n + 1)(2n + 3)

× ((8n2 + 8n − 6) exp(2(n + 1)(α + β))+ (2n + 1)2(− exp(2α(n + 2)+ 2βn))

− (2n + 1)2 exp(4β + 2n(α + β))+ 4 exp(3α + β + 4αn)

+ 4 exp(α + 3β + 4βn))
]
. (3.19b)

Insertion of these coefficients into the appropriate expressions above gives the fluid
velocity and pressure outside a sphere immersed in an straining flow that is axisymmetric
to the line connecting that sphere to the centre of an enclosing sphere (the cavity).

3.2. Calculation of the stresslet and hydrodynamic functions for axisymmetric flows
We now calculate the traceless part of the hydrodynamic stresslet on the colloid induced
by the axisymmetric straining flow for which we just obtained the velocity and pressure.
We start by calculating the integrand of (3.2). First, σ and v are written in cylindrical
coordinates, (r, z, θ), with θ the azimuthal angle. The expression simplifies because σ
and v are independent of θ . It is further simplified by enforcing the boundary conditions
on the integrand (3.4). Next, n and r are written in spherical coordinates (r, θ1, θ),
where θ1 is the polar angle. Finally, all vectorial elements are transformed to Cartesian
coordinates to facilitate execution of inner and outer products, resulting in a 3 × 3 matrix
in Cartesian coordinates. The scalar coefficients of each element in the matrix now appear
as a combination of cylindrical and spherical coordinates. Finally, the elements and limits
of integration are expressed in spherical coordinates. The first integration is taken over the
azimuthal angle θ ∈ [0, 2π] to yield

SH = [ixix + iyiy
] ∫ π

0
πa3

[
−p
(

1
3

− cos2(θ1)

)
+ η

(
2
∂vρ

∂ρ
sin2(θ1)

+
(
∂vz

∂ρ
+ ∂vρ

∂z

)
cos(θ1) sin(θ1)− 2

vρ

a
sin(θ1)

)]
sin(θ1) dθ1
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− iziz

∫ π

0
2πa3

[
−p
(

1
3

− cos2(θ1)

)
− η

(
2
∂vz

∂z
cos2 θ1

+
(
∂vz

∂ρ
+ ∂vρ

∂z

)
cos(θ1) sin(θ1)+ vz

a
cos(θ1)

)]
sin(θ1) dθ1. (3.20)

Owing to the linearity of Stokes’ equations, only diagonal components are present in
(3.20), and these obtain the same algebraic relationship as the diagonal elements in the
rate of strain imposed, (3.3), i.e. the solution is linear in the boundary data. As expected,
by continuity, the trace term in the integrand of (3.20), x · σ · n, contributes only a pressure
component.

To make further progress, the velocity components are rewritten in terms of the stream
function (3.6a,b), followed by a three-step simplification procedure: first the partial
derivatives are transformed to spherical coordinates; next, we integrate by parts for terms
with partial derivatives in θ1; and third, we enforce the equations of motion (3.5a,b) to
eliminate the pressure term. All together leads to a compact integrand that is a function
solely of the stream function and its derivatives:

SH =
∫ π

0
πa3

{[
p
(

cos2(θ1)− 1
3

)
+ η

cos(θ1) sin(θ1)

r
E2 [Ψ ]

]
sin(θ1) dθ1

}

× [ixix + iyiy − 2iziz
]
. (3.21)

This integral is performed in bispherical coordinates utilising the stream function
expression from (3.15a–c), the definition of the operator E2 from (3.14), as well as other
coordinate-transformation related expressions in Appendix D, (D1)–(D4). All together
these operations yield the final expression for the axisymmetric stresslet,

SH = −6πηa2K1K2

(√
2

3
e−α sinh(α)

∞∑
n=1

(1 + 2n)
{[

n − e2α(n − 1)
]
(An + Bn)

+
[
(n + 2)− e2α(n + 1)

]
(Cn + Dn)

})(1
3

) [
ixix + iyiy − 2iziz

]
, (3.22)

where the constants K1 = a sinh(α) and K2 = E. The stresslet expressed by (3.22) is valid
for axisymmetric flows arising not only for straining flows but also for flow arising from
particle translation. The difference in the stresslet in each flow emerges from the boundary
conditions, which are encoded in their respective expressions of An, Bn, Cn and Dn, as
well as the values of the constants K1 and K2. For axisymmetric translation, K1 = 1 and
K2 = U and expressions for (An + Bn) and (Cn + Dn) are reported in Appendix E.

To retrieve the specific expressions of the coefficients XM and XG, we must consider the
tensor associated with each coefficient, given by (2.11) and (2.13), respectively. We do so,
obtaining

XM =
√

2
3

e−α sinh2(α)

∞∑
n=1

(1 + 2n)
{[

e2α(n − 1)− n
]
(An + Bn)

+
[
e2α(n + 1)− (n + 2)

]
(Cn + Dn)

}
, (3.23)
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Confined stresslet for suspensions in a spherical cavity: 1
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Figure 4. Comparison of hydrodynamic resistance functions for a colloid inside a cavity related to either
stresslet (open symbols) or to straining flows (filled symbols) for (a) axisymmetric and (b,c) transverse
motions.

and

XG =
√

2
3

e−α sinh(α)
∞∑

n=1

(1 + 2n)
{[

e2α(n − 1)− n
]
(An + Bn)

+
[
e2α(n + 1)− (n + 2)

]
(Cn + Dn)

}
. (3.24)

A basic validation for both the solution to Stokes’ equations for axisymmetric straining
and the stresslet expression for axisymmetric flows is to calculate the force on the
colloid produced by axisymmetric straining where, by symmetry of the GRM (§ 2.2), the
hydrodynamic coefficient XG̃ from RFE must be the same as XG from RSU (see (2.11)).
The hydrodynamic force on the colloid is given by

F H =
∫

Sa

σ · n dS. (3.25)

Utilising a similar strategy as the one taken to evaluate the stresslet, we obtain

F H = −6πηa2E

(√
2

3

)
sinh2(α)

∞∑
n=1

[(2n + 1) (An + Bn + Cn + Dn)] iz. (3.26)

As expected, the hydrodynamic force exerted by the fluid on a sphere placed in an
axisymmetric straining flow is very similar to the expression reported for the force on
a colloid undergoing axisymmetric translation (Stimson & Jeffery 1926; Jones 2009).
Considering the axisymmetric orthogonal tensor in (2.11) we obtain

XG̃ =
(√

2
3

)
sinh2(α)

∞∑
n=1

[(2n + 1) (An + Bn + Cn + Dn)]. (3.27)

As shown in figure 4, coefficients XG̃ and XG match perfectly over the entire cavity and for
all the levels of confinement reported here. This agreement validates our methodology for
solving the Stokes equations for axisymmetric straining flow § 3.1, and our methodology
to obtain the stresslet expression for axisymmetric flows, i.e. (3.22).

For general linear flows, we shall need the complete representation of the stresslet, which
requires additional hydrodynamic functions. To this end, next we obtain the functions YG,
YH , YM and ZM associated with transverse motions to the line of centres.
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3.3. General solution method to the Stokes equations in bispherical coordinates and the
explicit solution for transverse planar straining flow

At the beginning of this section we put forth a plan to solve the Stokes equations for three
flows, to present a new methodology for obtaining such solutions, and to deduce all the
hydrodynamic functions associated with the traceless stresslet. Having just obtained the
solution for one flow, here we simultaneously present our new generalised method and the
solution for the second flow.

We present now our general method for solving Stokes’ equations for a pair of spheres in
bispherical coordinates based on a method of separation of variables. The foundations of
the method were proposed by Dean & O’Neill (1963) in their solution of Stoke’s equations
for the problem of transverse rotation of a hard sphere near a flat wall. The same method
was later utilised by O’Neill & Majumdar (1970a) to obtain the relative translation and
rotation transverse to the line of centres between a pair of spheres. To avoid repetition we
briefly summarise the technique, emphasising the novel steps in our approach that make
it general for both axisymmetric and transverse flows for bodies described by bispherical
coordinates.

We start with the ansatz that separates the azimuthal angular dependence (θ ) from the
spatial dependence (ρ, z) on the velocity and pressure fields according to

p(ρ, θ, z) = η
Kbc

c
P(ρ, z)Pθ (θ), (3.28a)

v =
⎡
⎣vρvθ
vz

⎤
⎦ =

⎡
⎣KbcU(ρ, z)Uθ (θ)
KbcV(ρ, z)Vθ (θ)
KbcW(ρ, z)Wθ (θ)

⎤
⎦
(ρ,θ,z)

, (3.28b)

where Kbc is a constant with units of velocity (length/time) given by the boundary
conditions and the characteristic length c from bispherical coordinates ((3.11) and
figure 3). The premise of the ansatz is the amenability of homogeneous and linear partial
differential equations (Habberman 2004) to solution by the method of separation of
variables. The pressure satisfies Laplace, as does the homogeneous part of the velocity
field under the decomposition (Appendix B)

v = vp + vh, (3.29)

where vh is the homogeneous solution of (3.1a), i.e. it satisfies the Laplacian of a vector
field

∇2vh = 0. (3.30)

The particular solution vp is

vp = 1
2η

xp, (3.31)

and satisfies

∇p = η∇2vp. (3.32)

The method utilises the particular solution (3.31) and the boundary conditions in the
Stokes equations (3.1a) and (3.1b), first, to obtain the functionalities of all the θ -dependent
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Confined stresslet for suspensions in a spherical cavity: 1

functions Pθ ,Uθ ,Vθ , and Wθ , which are of the form

Pθ = Uθ = Wθ = γ (mθ), (3.33a)

Vθ = 2γ (mθ)′

m(m − 1)+ 2
, (3.33b)

Vθ = γ (mθ)′

m!
, (3.33c)

with m ∈ Z and, second, to pose the differential equation for P(ρ, z)

L2
m[P] = 0, (3.34)

where the operator L2
m is defined by

L2
m[·] =

(
∂2

∂ρ2 + 1
ρ

∂

∂ρ
− m2

ρ2 + ∂2

∂z2

)
[·]. (3.35)

By construction, both velocity profiles vh and vp hold the same angular dependence;
therefore, the Laplacian of vh (3.30) gives in cylindrical coordinates

r : 0 = KbcUθ

(
1
ρ

∂Uh

∂ρ
+ ∂2Uh

∂ρ2 − (m2 + 1)
Uh

ρ2 + 2m
Vh

ρ2 + ∂2Uh

∂z2

)
, (3.36a)

θ : 0 = KbcVθ

(
1
ρ

∂Vh

∂ρ
+ ∂2Vh

∂ρ2 − (m2 + 1)
Vh

ρ2 + 2m
Uh

ρ2 + ∂2Vh

∂z2

)
, (3.36b)

z : 0 = KbcWθ

(
1
ρ

∂Wh

∂ρ
+ ∂2Wh

∂ρ2 − m2 Wh

ρ2 + ∂2Wh

∂z2

)
. (3.36c)

It is convenient to define the variables

ψ = Uh + Vh, χ = Uh − Vh and ϕ = Wh, (3.37a–c)

where ψ and ϕ naturally arise by adding and subtracting (46a) and (46b). Altogether this
yields the set of partial differential equations governing the flow:

L2
|m−1|[ψ] = L2

m[ϕ] = L2
m[P] = L2

m+1[χ ] = 0, (3.38)

with respect to the same differential operator. The variables in (3.37a–c) define the velocity
and pressure profiles according to

p(ρ, z, θ) = η
Kbc

c
Pγ (mθ), (3.39a)

vρ = KbcU(ρ, z)Uθ = Kbc

2

[ r
c

P + (ψ + χ)
]
γ (mθ), (3.39b)

vθ = KbcV(ρ, z)Vθ = Kbc

2
[ψ − χ]

[
γ (mθ)′

m!

]
, (3.39c)

vz = KbcW(ρ, z)Wθ = Kbc

2

[
z∗

c
P + 2ϕ

]
γ (mθ). (3.39d)

The variable z∗ is defined as (the variable z∗ corresponds to the cylindrical coordinate
system that is centred between the limiting points of bispherical coordinates ±c, see
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figure 3, whereas the variable z corresponds to the cylindrical coordinate system that is
centred at the colloid)

z∗ = z + c cothα = c sinh(ξ)
cosh(ξ)− σ

. (3.40)

There are two clear advantages associated with this technique. The first advantage was
developed previously and demonstrated for flows induced by transverse translation and
rotational motion (Dean & O’Neill 1963; O’Neill 1964; Majumdar 1967; Cooley & O’neill
1968; O’Neill & Majumdar 1970a; Jones 2009): the problem of solving Stokes’ equations
is reduced to finding the solution of only one differential operator L2

m (3.35).
The second advantage is an outcome of this work: we show here that the technique is

general, beyond the two simple flows analysed previously. The method is applicable to all
the Stoke’s flow problems involving two spheres either external or internal to each other.
(In fact, this general solution to the Stokes equations is valid for all geometries that can be
described in bispherical coordinates, a particle near a flat wall, and even a single sphere
or a spindle.) The generality of the method emerges from its basis in the fundamental
properties of the Stokes equations, namely that the pressure is harmonic and, by linearity,
the velocity can be split into a particular and a homogeneous solution, where the earlier
is related to the pressure and once more the latter is also harmonic. Our recognition of
these facts inspired us to pursue a more abstract representation of the solution method
that recovers all previous solutions and produces the new solutions we present here. This
general solution was actually captured in (3.33)–(3.39), where the differences among flow
problems are encapsulated in the value of the constant m, the functional form of γ (mθ),
and the value of the constant Kbc. This is summarised as follows:

γ (mθ) = sin(mθ) m = 0 for axisymmetric rotation, (3.41a)

γ (mθ) = cos(mθ) m = 0 for axisymmetric translation and straining, (3.41b)

γ (mθ) = cos(mθ) m = 1 for transverse rotation, translation and straining, (3.41c)

γ (mθ) = cos(mθ) m = 2 for transverse planar straining, (3.41d)

and

Kbc = Ωc for rotation, (3.42a)

Kbc = U for translation and (3.42b)

Kbc = Ec for straining. (3.42c)

Finally, this method directly produces an explicit expression for the pressure (3.39a). This
is particularly advantageous for the solution of axisymmetric translation and straining
through this method, which is intractable using the previous method based on the
stream function § 3.1. We exploit this advantage to calculate the near-field hydrodynamic
functions required for the osmotic pressure, which we report in a separate work.

The general solution to the operator L2
m can be obtained from the solution to Laplace’s

equation to a scalar field f (ξ, σ, θ) in bispherical coordinates reported by Jeffery (1912).
He employed a method of separation of variables similar to that explained above with
the azimuthal and spatial dependencies split according to f (ξ, σ, θ) = f̄ (ξ, σ ) cos(mθ).
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Confined stresslet for suspensions in a spherical cavity: 1

Following this programme, we can rewrite the Laplacian in bispherical coordinates as

∇2f (ξ, σ, θ) = cos(kθ)L2
m
[
f̄ (ξ, σ )

]
. (3.43)

This strategy yields a solution of the form

f (ξ, σ, θ) = cos(kθ)
√

cosh(ξ)− σ

∞∑
n=k

{
g+

n exp((n + 1/2)ξ)+ g−
n exp(−(n + 1/2)ξ)

}
Pm

n (σ ),

(3.44)
where g+

n and g−
n are constants that depend on the boundary conditions, and Pm

n (σ ) are the
associated Legendre polynomials defined by (some authors (Habberman 2004) define the
associated Legendre polynomials as the negative of the definition of (3.45), thus care must
be taken while utilising recursive relations or definitions related to the Pm

n (σ ) functions)

Pm
n (σ ) = (1 − σ 2)m/2

dmPn(σ )

dσm . (3.45)

From c the general solution to the operator L2
m is easily inferred:

f̄ (ξ, σ ) =
√

cosh(ξ)− σ

∞∑
n=m

{
g+

n exp((n + 1/2)ξ)+ g−
n exp(−(n + 1/2)ξ)

}
Pm

n (σ ).

(3.46)

In the following, we use the generalised separation of variables method to solve the Stokes
equations for transverse planar flow, where the boundary conditions are given by

v = E · x = (ρ cos(θ)ix − ρ sin(θ)iy
)

E = (ρ cos(2θ)iρ − ρ sin(2θ)iθ
)

E at Sa,

(3.47a)

v = 0 at Scav, (3.47b)

which reflect the strain rate E characteristic of planar elongation (see figure 2c)

E = E

⎡
⎣1 0 0

0 −1 0
0 0 0

⎤
⎦
(x,y,z)

. (3.48)

Utilising the ansatz of (3.28) alongside the boundary conditions of (3.47) yields a solution
to Stokes’ equations of the form

p(ρ, z, θ) = ηEP cos(2θ), (3.49a)

vρ = EcUUθ = Ec
2

[ρ
c

P + (ψ + χ)
]

cos(2θ), (3.49b)

vθ = EcVVθ = Ec
2

[(ψ − χ)] [− sin(2θ)] , (3.49c)

vz = EcWWθ = Ec
2

[
z∗

c
P + 2ϕ

]
cos(2θ), (3.49d)

where the functions P, ψ , χ and ϕ satisfy the differential operator L2
m according to

L2
1[ϕ] = L2

2[ψ] = L2
2[P] = L2

3[χ ] = 0, (3.50)
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with solutions given by

ψ(σ, ξ) =
√

cosh(ξ)− σ

∞∑
n=1

{
d+

n exp((n + 1/2)ξ)+ d−
n exp(−(n + 1/2)ξ)

}
P1

n(σ ),

(3.51a)

P(σ, ξ) =
√

cosh(ξ)− σ

∞∑
n=2

{
b+

n exp((n + 1/2)ξ)+ b−
n exp(−(n + 1/2)ξ)

}
P2

n(σ ),

(3.51b)

ϕ(σ, ξ) =
√

cosh(ξ)− σ

∞∑
n=2

{
a+

n exp((n + 1/2)ξ)+ a−
n exp(−(n + 1/2)ξ)

}
P2

n(σ ),

(3.51c)

χ(σ, ξ) =
√

cosh(ξ)− σ

∞∑
n=3

{
f +
n exp((n + 1/2)ξ)+ f −

n exp(−(n + 1/2)ξ)
}

P3
n(σ ).

(3.51d)

To obtain the values of the 8n coefficients a+
n , a−

n , b+
n , b−

n , d+
n , d−

n , f +
n and f −

n , we utilised
the boundary conditions and enforced continuity. Rewriting the boundary conditions
(3.47) in terms of the functions P, ψ , χ and ϕ gives

P = −2c
z∗ ϕ, χ = ρ

z∗ϕ, ψ = 2ρ
c

+ ρ

z∗ϕ, at Sa, (3.52a)

P = −2c
z∗ ϕ, χ = ρ

z∗ϕ, ψ = ρ

z∗ϕ, at Scav, (3.52b)

and the same strategy for the equation of continuity (3.1b) yields

(
3 + ρ

∂

∂ρ
+ z∗ ∂

∂z

)
P +

(
c
∂

∂ρ
− c
ρ

)
ψ +

(
c
∂

∂ρ
+ 3

c
ρ

)
χ + 2c

∂ϕ

∂z
= 0. (3.53)

Utilising the definitions of P, ψ , χ and ϕ (3.51a–d) in the boundary conditions given in
3.52 alongside recurrence formulas of the associated Legendre polynomials gives a set of
equations that describes the coefficients b−

n , d+
n , d−

n , f +
n and f −

n as a function of instances
of the coefficients a+

n and a−
n :

sinh(ξ)
[
b+

n exp((n + 1/2)ξ)+ b−
n exp(−(n + 1/2)ξ)

]
= −2 cosh(ξ)

[
a+

n exp((n + 1/2)ξ)+ a−
n exp(−(n + 1/2)ξ)

]
+ 2

[
a+

n−1 exp((n − 1/2)ξ)+ a−
n−1 exp(−(n − 1/2)ξ)

] ( n − 2
2n − 1

)

+ 2
[
a+

n+1 exp((n + 3/2)ξ)+ a−
n+1 exp(−(n + 3/2)ξ)

] ( n + 3
2n + 3

)
, with ξ ∈ (α, β),

(3.54)
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Confined stresslet for suspensions in a spherical cavity: 1

sinh(ξ)
[
f +
n exp((n + 1/2)ξ)+ f −

n exp(−(n + 1/2)ξ)
]

= + [a+
n−1 exp((n − 1/2)ξ)+ a−

n−1 exp(−(n − 1/2)ξ)
] ( 1

2n − 1

)

− [a+
n+1 exp((n + 3/2)ξ)+ a−

n+1 exp(−(n + 3/2)ξ)
] ( 1

2n + 3

)
with ξ ∈ (α, β),

(3.55)

sinh(α)
[
d+

n exp((n + 1/2)α)+ d−
n exp(−(n + 1/2)α)

]
= 2

√
2 sinh(α) exp(−(n + 1/2)α)

− [a+
n−1 exp((n − 1/2)α)+ a−

n−1 exp(−(n − 1/2)α)
] (n − 2)(n − 1)

2n − 1

+ [a+
n+1 exp((n + 3/2)α)+ a−

n+1 exp(−(n + 3/2)α)
] (n + 2)(n + 3)

2n + 3
, (3.56a)

sinh(β)
[
d+

n exp((n + 1/2)β)+ d−
n exp(−(n + 1/2)β)

]
= − [a+

n−1 exp((n − 1/2)β)+ a−
n−1 exp(−(n − 1/2)β)

] (n − 2)(n − 1)
2n − 1

+ [a+
n+1 exp((n + 3/2)β)+ a−

n+1 exp(−(n + 3/2)β)
] (n + 2)(n + 3)

2n + 3
. (3.56b)

This strategy also gives two extra equations from the equation of continuity

∓2(n − 2)a±
n−1 ± 2(2n + 1)a±

n ∓ 2(n + 3)a±
n+1 − (n − 2)b±

n−1 + 5b±
n + (n + 3)b±

n+1

− d±
n−1 + 2d±

n − d±
n+1 + (n − 2)(n − 3)f ±

n−1 − 2(n − 2)(n + 3)f ±
n

+ (n + 3)(n + 4)f ±
n+1 = 0, (3.57)

where each equation follows either the upper or the lower signs. Together (3.54)–(3.57)
form a set of 8n equations to get the 8n coefficients a+

n , a−
n , b+

n , b−
n , d+

n , d−
n , f +

n and f −
n ,

confirming that the problem is fully specified. Utilising the definitions of the coefficients
b−

n , d+
n , d−

n , f +
n and f −

n in terms of a+
n and a−

n in (3.57) generate a set of recursive relations
for the coefficients a+

n and a−
n given by

M++
nn−1a+

n−1 + M++
nn a+

n + M++
nn+1a+

n+1 + M+−
nn−1a−

n−1 + M+−
nn a−

n + M+−
nn+1a−

n+1 = L+
n ,

(3.58a)

M−+
nn−1a+

n−1 + M−+
nn a+

n + M−+
nn+1a+

n+1 + M−−
nn−1a−

n−1 + M−−
nn a−

n + M−−
nn+1a−

n+1 = L−
n ,

(3.58b)

where n ∈ Z
+. The expressions for the M-coefficients are reported in Appendix F, whereas

the coefficients L+
n and L−

n are

L+
n = 4

√
2
[

1
exp((2n − 1)α)− exp((2n − 1)β)

+ 1
exp((2n + 3)α)− exp((2n + 3)β)

− 2
exp((2n + 1)α)− exp((2n + 1)β)

]
, (3.59a)
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E. Gonzalez and R.N. Zia

L−
n = 4

√
2
[

exp((2n + 3)β)
exp((2n + 3)β)− exp((2n + 3)α)

+ exp(α + 2nβ)
exp(α + 2nβ)− exp(β + 2nα)

+ 2
exp(β + 2nβ)

exp(α + 2nα)− exp(β + 2nβ)

]
, (3.59b)

L−
n = 4

√
2
[

1
1 − exp((2n + 3)(α − β))

+ 1
1 − exp((2n − 1)(α − β))

− 2
1

1 − exp((2n + 1)(α − β))

]
, (3.59c)

and derive from the first term on the right-hand side of the boundary condition for ϕ
in (3.52a). Thus, solving 3.58 gives access to coefficients a+

n and a−
n which can then be

used in (3.54)–(3.56) to get the coefficients b+
n , b−

n , d+
n , d−

n , f +
n and f −

n .
In this work, we also obtained the solution to Stokes’ equations for the transverse

straining flow associated with a simple shear flow, and the details of the Stokes equations
solution following the method of separation of variables is given in Appendix G. We
have thus completed solution of the Stokes flow problem for fluid velocity and pressure.
Next we apply the results to compute the stresslet from which we will deduce additional
hydrodynamic functions.

3.4. Calculation of the traceless stresslet for transverse-planar flows
In this section, we outline the methodology to obtain the hydrodynamic stresslet on
the colloid for the transverse-planar straining flow. A similar procedure applies to
obtain the stresslet for transverse flows involving translation, rotation or straining motion
(Appendix H).

The general strategy to calculate the hydrodynamic stresslet exerted on the colloid by the
fluid (3.2) starts by posing the surface of integration, Sa, in spherical coordinates centred at
the colloid (r, θ1, θ), and then writing the integrand considering the velocity and pressure
profiles (3.49) according to the separation of variables ansatz in cylindrical coordinates
(ρ, z, θ), but projected to Cartesian coordinates. Then, the traceless stresslet expression
is simplified by applying the boundary conditions at the colloid and doing an integration
over the azimuthal angle θ ∈ (0, 2π) to yield

SH,TL =
{

π

2
ηa
[∫ π

0
a2 sin(θ1) dθ1

{
−P sin2(θ1)+ 2c

∂U
∂ρ

sin2(θ1)

+ c
(
∂W
∂ρ

+ ∂U
∂z

)
cos(θ1) sin(θ1)+ c

(
∂V
∂ρ

+ 2U
ρ

− V
ρ

)
sin2(θ1)

+ c
(

2W
ρ

+ ∂V
∂z

)
cos(θ1) sin(θ1)

}]
− 8

3
πηa3

}
E
[
ixix − iyiy

]
. (3.60)

To make progress towards the evaluation of the integral in (3.60), first, redundant terms
are eliminated with the use of the equation of continuity written in terms of the variables
U, V and W, according to

c
(

U
ρ

+ ∂U
∂ρ

− 2V
ρ

+ ∂W
∂z

)
= 0, (3.61)

and, second, the equivalence between coordinate systems of revolution (see Appendix C)
is utilised by executing a variable change from cylindrical coordinates (ρ, z, θ) to spherical
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Confined stresslet for suspensions in a spherical cavity: 1

coordinates (r, θ1, θ), where terms that have partial derivatives with respect to θ1 are
eliminated upon integration. Altogether these steps give the expression for the integral
as

π

2
ηa
∫ π

0
a2 sin(θ1) dθ1

[
−P sin2(θ1)+ sin(θ1)c

(
∂U
∂r

+ ∂V
∂r

+ U
r

+ V
r

)]
(3.62a)

= π

4
ηa
∫ π

0
a2 sin2(θ1) dθ1

[
sin(θ1)r

∂P
∂r

+ 2c
r
∂ρψ

∂r

]
(3.62b)

= −π

4
ηa3

∫ +1

−1
dσ

[
sinh3(α)(1 − σ 2)

(cosh(α)− σ)3

(
∂P
∂ξ

)

+ 2
sinh3(α)(1 − σ 2)1/2

(cosh(α)− σ)

∂

∂ξ

ψ

(cosh(ξ)− σ)

]
. (3.62c)

Here, progression from the first to the second expression relies on use of the definitions
of U and V (3.49). The entire integral is transformed to bispherical coordinates (σ, ξ, θ )
to arrive at (3.62c). One could evaluate (3.62c) numerically, but instead one can generate
an analytical solution by utilising the definitions of the functions P and Ψ , the recurrence
relations of the associated Legendre polynomials, and the orthogonality of P2

n(σ ) for the
integration in σ :

∫ +1

−1
P2

m(σ )P
2
n(σ ) dσ = 2(n + 2)(n + 1)n(n − 1)

2n + 1
δmn. (3.63)

The final expression for the traceless stresslet is given by

SH,TL = −6πηa3E
[

1
45

√
2 sinh(α)

∞∑
n=2

{
n(n + 1)

[(
3(n + 2)(n − 1)b+

n + 5d+
n
)

− 2 exp(−(1 + 2n)α)
(
(n + 2)(n − 1)b−

n + 5d−
n
)]}+ 4

9

] [
ixix − iyiy

]
. (3.64)

The hydrodynamic coefficient ZM is inferred from this expression by recalling the tensorial
representation given in (2.13), giving

ZM = 4
9

+ 1
45

√
2 sinh(α)

∞∑
n=2

{
n(n + 1)

[(
3(n + 2)(n − 1)b+

n + 5d+
n
)

− 2 exp(−(1 + 2n)α)
(
(n + 2)(n − 1)b−

n + 5d−
n
)]}

. (3.65)

A similar procedure followed to generate the stresslet from transverse translation, rotation
and straining; the associated equations are provided in Appendix H. These transverse flows
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share the same functional form for the stresslet:

SH,TL = −6πηa2
{

K0 + 1

45
√

2
sinh2(α)

×
∞∑

n=0

[−2
{
n(n + 1)

[
(4(2n + 1)− 7 coth(α)) b+

n + 10a+
n
]

+ 5 [2n + 1 − coth(α)] d+
n
}+ {n(n + 1)

{
[2(2n + 1)− coth(α)] b−

n + 10a−
n
}

+ 5 [2n + 1 − coth(α)] d−
n
}

exp(−(2n + 1)α)
]

K1

}
K2
[
ixiz − izix

]
. (3.66)

Here the value of the constants K0, K1 and K2 encode the flow-appropriate expression and
units:

K0 = 0 K1 = 1 K2 = U for transverse translation,
K0 = 0 K1 = sinh(α) K2 = aΩ for transverse rotation and

K0 = 2
9

K1 = sinh(α) K2 = aE for transverse straining.

⎫⎪⎬
⎪⎭ (3.67)

In (3.66), the constants a+
n , a−

n , b+
n , b−

n , d+
n and d−

n are different for each flow profile, with
values set by the boundary conditions specific to each problem. The expressions for the
coefficients for translation and rotation can be found in the work of O’Neill & Majumdar
(1970a), with corrections by Jones (2009). We derived in the present work the functional
forms for the constants for transverse straining, associated with simple shear motion. We
report these results in Appendix G.

The expressions for the hydrodynamic coefficients YG, YH and YM related to transverse
flows are obtained by mapping the stresslet expression (3.66) in terms of the resistance
formulation with the tensorial representation given in (2.11), (2.12) and (2.13) for
transverse translation, rotation and straining, respectively. Doing so yields

YG = 1

45
√

2
sinh2(α)

∞∑
n=0

[−2
{
n(n + 1)

[
(4(2n + 1)− 7 coth(α)) b+

n + 10a+
n
]

+ 5 [2n + 1 − coth(α)] d+
n
}+ {n(n + 1)

{
[2(2n + 1)− coth(α)] b−

n + 10a−
n
}

+ 5 [2n + 1 − coth(α)] d−
n
}

exp(−(2n + 1)α)
]
, (3.68)

YH = 1

45
√

2
sinh3(α)

∞∑
n=0

[−2
{
n(n + 1)

[
(4(2n + 1)− 7 coth(α)) b+

n + 10a+
n
]

+ 5 [2n + 1 − coth(α)] d+
n
}+ {n(n + 1)

{
[2(2n + 1)− coth(α)] b−

n + 10a−
n
}

+ 5 [2n + 1 − coth(α)] d−
n
}

exp(−(2n + 1)α)
]
, (3.69)

and

YM = 2
9

+ 1

45
√

2
sinh3(α)

∞∑
n=0

[−2
{
n(n + 1)

[
(4(2n + 1)− 7 coth(α)) b+

n + 10a+
n
]

+ 5 [2n + 1 − coth(α)] d+
n
}+ {n(n + 1)

{
[2(2n + 1)− coth(α)] b−

n + 10a−
n
}

+ 5 [2n + 1 − coth(α)] d−
n
}

exp(−(2n + 1)α)
]
. (3.70)
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Confined stresslet for suspensions in a spherical cavity: 1

A simple way to verify the solutions to Stokes’ equations for transverse straining
(Appendix G) and the stresslet expression for transverse flows (3.66) is to appeal to the
symmetry of the resistance matrix (§ 2.2). Using this approach, we leverage the fact that the
expressions for the hydrodynamic coefficients YG̃ and YH̃ come from transverse straining
motion that corresponds to the force and torque on the colloid, respectively. To do so,
we first compute the hydrodynamic force and torque resulting from transverse straining
motion:

F H = −6πηa2 sinh2(α)
−1

3
√

2

∞∑
n=0

[
n(n + 1)b+

n + d+
n
]

E ı̂x, (3.71)

and

LH = −6πηa3 sinh3(α)

(
−√

2
9

) ∞∑
n=0

{
2
[
n(n + 1)

(
2a+

n + b+
n coth(α)

)
− (2n + 1 − coth(α)) d+

n
]− [n(n + 1)

(
2a−

n + b−
n coth(α)

)
− (2n + 1 − coth(α)) d−

n
]

exp(−(2n + 1)α)
}

E ı̂y. (3.72)

These expressions have the same functional form as those reported by O’Neill &
Majumdar (1970a), but the specific values of the constants a+

n , a−
n , b+

n , b−
n , d+

n and d−
n

(derived in Appendix H) are set by the boundary conditions of the transverse straining
flow. The coefficients YG̃ and YH̃ , are deduced directly from the expressions for F H and
LH given the coupling tensors RFE and RLE, which are projected transverse to the line of
centres between the colloid and the cavity, r̂:

YG̃ = − sinh2(α)
1

3
√

2

∞∑
n=0

[
n(n + 1)b+

n + d+
n
]
, (3.73)

and

YH̃ = − sinh3(α)

√
2

9

∞∑
n=0

{
2
[
n(n + 1)

(
2a+

n + b+
n coth(α)

)− (2n + 1 − coth(α)) d+
n
]

− [
n(n + 1)

(
2a−

n + b−
n coth(α)

)− (2n + 1 − coth(α)) d−
n
]

exp(−(2n + 1)α)
}
.

(3.74)

Verification of our generalised approach is shown in figures 4(b) and 4(c) by the equality
of the coefficients YG = YG̃ and YH = YH̃ over all positions r/R in the cavity, and for
several values of confinement λc.

Finally, the agreement of the hydrodynamic functions complies with the symmetry of
the GRM, which is the fundamental validity test for the correctness of the stresslet-related
functions reported here, because the symmetry emerges from the minimum dissipation
theorem.

Next, we further stress-test the method by recovering previously reported hydrodynamic
functions from lubrication theory and far-field expressions for a particle in a spherical
cavity, as well as for the problem of a particle near a flat wall.
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4. Validation of pair theory in confinement: comparison with prior theory

In this section, we validate the theory developed in § 3. We first demonstrate that our theory
recovers prior piece-wise solutions for the near-contact and far-field limits of particle
interactions. We test the limit of the confined theory, and for a particle near a flat wall,
we developed new expressions for the stresslet and recovering the prior incomplete set of
hydrodynamic functions.

4.1. Validation via lubrication theory
The lubrication theory for a particle inside a spherical cavity (one sphere internal to
another) is equivalent to that of a pair of unbound spheres (two spheres external to
each other), where a variable change inverts the curvature of the bigger sphere from
convex (external spheres) to concave (an internal sphere). This equivalence was utilised by
O’Neill & Majumdar (1970b) to obtain the lubrication theory for transverse translation and
rotation for a pair of spheres internal and external to each other. In fact, the hydrodynamic
coefficients from lubrication theory are only a function of the separation between the
surfaces in close approach and the size ratio of the spheres.

We utilise the lubrication equations for the stresslet of a pair of external spheres reported
in Jeffrey (1992) to generate those for a particle inside a spherical cavity. To do so, we
transform the variables that describe the surface-to-surface distance and the size ratio of
the spheres. We start with ξ , the surface-to-surface separation between the two external
spheres (following notation from Jeffrey 1992, pp. 17 and 18),

ξ = 2λc

λc − 1
ε, (4.1)

where ε is the surface-to-surface separation between a sphere and the cavity wall,
normalised by the colloid radius a:

ε = R − a − r
a

= 1 − λc − r/R
λc

. (4.2)

The particle size ratio λwith respect to the smallest sphere (following notation from Jeffrey
1992, p. 17) is transformed as

λ = − 1
λc
, (4.3)

where the negative sign accounts for the fact that when one sphere resides inside the other,
they must both lie along either the positive or the negative z-axis. In contrast, two external
spheres must reside on opposite axes (see figure 3).

Following this programme, the lubrication equations describing the stresslet
hydrodynamic functions for a particle inside a cavity are

XG = 2
3

[
3

2(λc − 1)2ε
+ 3

(
λ2

c − 12λc − 4
)

log [ε]
10(λc − 1)3

+
(−5λ4

c + 181λ3
c + 453λ2

c + 566λc + 65
)
ε log [ε]

70(λc − 1)4

]
+ O(1), (4.4)
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Figure 5. Comparison of the resistance hydrodynamic functions obtained in this work (solid lines) with
lubrication theory (hollow circles) for a colloid inside a cavity in close proximity to the cavity wall. Shaded
regions are a guide to the eye to emphasise the zones where both solutions match.

XM = 10
9

[
3

5(λc − 1)2ε
+ 3

(
λ2

c − 17λc − 9
)

log [ε]
25(λc − 1)3

+
(−5λ4

c + 272λ3
c + 831λ2

c + 1322λc + 415
)
ε log [ε]

175(λc − 1)4

]
+ O(1), (4.5)

YG = 2
3

[(
4λ2

c + λc + 7
)

log [ε]
10(λc − 1)3

−
(
32λ4

c + 179λ3
c + 532λ2

c + 356λc + 221
)
ε log [ε]

250(λc − 1)4

]

+ O(1), (4.6)

YH = 4
3

[
(2λc + 1) log [ε]

10(λc − 1)2
−
(
16λ3

c + 61λ2
c + 180λc − 2

)
ε log [ε]

250(λc − 1)3

]
+ O(1), (4.7)

YM = 10
9

[
6
(
λ2

c + λc + 4
)

log [ε]
25(λc − 1)3

− 6
(
8λ4

c + 67λ3
c + 294λ2

c + 394λc + 197
)
ε log [ε]

625(λc − 1)4

]

+ O(1), (4.8)

ZM = 10
9

[
3
(
λ2

c + 1
)
ε log [ε]

5(λc − 1)4

]
+ O(1). (4.9)

Here, O(1) constants are a function of the confinement ratio λc and are obtained by
matching the first derivative of lubrication equations to that of the complete solution.
We compare the lubrication theory to the full solution in figure 5. As expected, the
lubrication theory equations (4.4)–(4.9) have the same functional form as the full-solution
hydrodynamic functions developed in §§ 3.2 and 3.4 ((3.23), (3.24), (3.65), (3.68), (3.69)
and (3.70)) when the particle is close to the wall. The agreement holds for several levels
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Figure 6. Comparison of the resistance hydrodynamic functions obtained in this work (solid lines) with the
far-field resistance matrix (hollow circles) for a colloid inside a cavity.

of confinement, over the narrow region where lubrication effects dominate. This test
validates our complete solutions over the near-contact part of the domain. As expected,
lubrication theory does not predict the hydrodynamic functions away from contact; to
validate our solutions in region far from contact, we next compare our work with the
far-field approximation.

4.2. Validation via far-field approximation
The far-field approximation is a methodology developed in the framework of the Stokesian
dynamics algorithm (Durlofsky et al. 1987) that allows the calculation of a GRM that
captures many-body hydrodynamic interactions between particles and with the wall
(Aponte-Rivera et al. 2018). This methodology is accurate for surface-to-surface distances
between particles or between particles and the cavity wall large compared with colloid
size. The elements of the far-field GMM for a spherically confined particle were reported
by Zia and coworkers (Aponte-Rivera & Zia 2016; Gonzalez et al. 2021) and its inversion
yields the far-field approximation to the many-body GRM.

We compare the coefficients for the far-field confined hydrodynamic stresslet via the
far-field approximation with our complete many-body solution ((3.23), (3.24), (3.65),
(3.68), (3.69) and (3.70)) in figure 6 for several confinement ratios λc. Agreement is
excellent for particles located two or more radii from the cavity wall. As expected, the
hydrodynamic coefficients from off-diagonal resistance matrices (XG, YG and YH) tend
to zero at the centre of the cavity owing to spherical symmetry, whereas the diagonal
elements (XM , YM and ZM) tend to a single-like particle value (∼O(1)).

We conclude that our theoretical model accurately captures the hydrodynamic
coefficients for finite particle-to-cavity size ratios. The final limiting regime to test is that
of an infinitely large cavity.
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Figure 7. Comparison of the stresslet resistance hydrodynamic functions obtained in this work (solid line) in
the limit of a large cavity with solutions for a colloid near a flat wall (circles).

4.3. Validation via the solution of a particle near a flat wall
Here we demonstrate that our model correctly predicts the behaviour of a particle near a
flat wall. The model system of a particle in a spherical cavity approaches that of a particle
near a flat wall when the cavity becomes large, R/a → ∞. This limiting behaviour is
easily captured in bispherical coordinates (our coordinate system of choice), where the
body of revolution at constant ξ goes from a point to a sphere to a plane as ξ varies from
infinity to zero. Therefore, with the theory developed in this work, we can approximate the
behaviour of a particle near a flat wall in the limit of very weak confinement, here chosen
as λc = 10−7. To facilitate the comparison between our model system and the geometry for
a particle near a flat wall, in this section, the position of the confined particle is described
with respect to its distance from the wall (h/a) rather than the centre-to-centre distance
(x/R) (see figure 7).

To the best of the authors’ knowledge, there are only a few exact expressions for
the stresslet hydrodynamic functions XG,flat wall, YG,flat wall, YH,flat wall and YM,flat wall

(Cichocki & Jones 1998; Swan 2010), although Goldman, Cox and Brenner much earlier
reported the hydrodynamic drag and torque on a sphere in shear flow near a wall (Goldman,
Cox & Brenner 1967). We considered differences in notation and scaling while comparing
our theory to these prior results for a particle near a flat wall; the detailed equivalences are
reported in Appendix I. Our results are compared with previous approaches in figure 7.

We start the analysis with figure 7(a), the hydrodynamic coefficient coupling
axisymmetric translation to the stresslet, XG, for which there are results from the method of
Stokes eigenfunction expansions and lubrication theory (Cichocki & Jones 1998). We find
excellent agreement between our solution (red solid line) and the eigenfunction solution
(orange diamonds). Very close to contact, our theory gives excellent prediction of the
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divergent growth predicted by lubrication theory (blue star). The eigenfunction solution
of Cichocki and Jones deviates slightly from ours close to contact because Cichocki and
Jones published only the first 32 terms of the infinite sum. In contrast, close to the wall
our complete solution matches the lubrication equation indistinguishably.

Next, in figures 7(b) and 7(c), we plot the hydrodynamic coefficients YG,flat wall

and YH,flat wall coupling the stresslet to transverse translation and rotation, respectively.
We show complete solutions from both methods (the Stokes eigenfunction expansions
(Cichocki & Jones 1998) and the separation of variables (Swan 2010) in black circles),
as well as lubrication theory (Cichocki & Jones 1998) and far-field approximations (Swan
2010) (green diamonds). These complete solutions for a particle near a flat wall all agree
with each other and agree with our results: they all exhibit similar divergence near contact,
matching lubrication theory. The functions also tend to zero as the distance between the
flat wall and the particle increases, in agreement with the far-field approximation.

In figures 7(d)–7( f ) we consider couplings for straining flows. The coupling YM,flat wall

(related to shear strain rate) is special in that it is actually the only hydrodynamic function
for a particle near a flat wall relating the stresslet to a straining flow for which there is
a prior complete solution. In figure 7(d), the black filled circles are an incorrect solution
obtained by Swan (2010), who actually generated two separate solutions, one for near
contact via a complete solution by separation of variables and a far-field solution. Whereas
the Swan’s complete solution (filled black circles) recovers divergence near the wall, it
disagrees with the far-field solution presented in their same work (green diamonds). The
error in Swan’s theory was in the expression for the stresslet integral, after the integrand
is expressed in bispherical coordinates. In this work, we obtained a complete solution
by the method outlined in § 3.4 (red curve), for confinement λc = 10−7. Our complete
solution shows excellent agreement with Swan’s far-field approximation yet also predicts
the correct divergence near the wall, providing a complete solution accurate over the entire
domain.

In figures 7(e) and 7( f ) we plot our complete solutions for the coefficients XM,flat wall

and ZM,flat wall. These predict the correct behaviour over the entire domain, recovering the
far-field solutions away from the wall divergence near contact.

In this article we have reported the theoretical relations and plots of the flat-wall results
predicted by our work. Since our theory recovers and expands prior theory for a particle
near a flat wall, it will be useful to make the information available in tabulated form. Thus,
our complete solutions of the coefficients Yflat wall, XM,flat wall and ZM,flat wall for a particle
near a flat wall are reported in figure 7, alongside tabular data for the complete set of
stresslet hydrodynamic functions for a flat wall (table 1 in Appendix J).

In a final validation, we compare our theory to the calculation reported by Goldman
et al. (1967) of the force and torque on a colloid located near a flat wall while embedded
in a simple shear flow (symbols in figure 8). To recover the force and torque using our
approach requires the input of the hydrodynamic functions YG,flat wall and YH,flat wall,
respectively, as well as other previously reported hydrodynamic functions (see (I3a)
and (I3b) in Appendix I). The large-cavity approximation applied to the hydrodynamic
functions derived in the present work produce the force and torque on a colloid embedded
in a simple shear flow (solid lines) and show excellent agreement with the solution of
Goldman, Cox and Brenner.

In summary, we validated the stresslet hydrodynamic functions derived in this work
by comparison with the three limiting behaviours presented in this section (lubrication
theory, far-field approximation and a particle near a flat wall). We also demonstrated
recovery of the symmetry relations dictated by the GRM shown in §§ 3.2 and 3.4. In the
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Figure 8. Comparison of the force and torque on a colloid embedded in a simple shear flow (inset), calculated
with theory developed for a particle near a flat wall (Goldman et al. 1967) (filled symbols) and with the theory
developed in this work for a particle inside a spherical cavity with a large radius (open symbols and line).

next section these hydrodynamic functions will be implemented into the CSD algorithm
(Aponte-Rivera et al. 2018; Gonzalez et al. 2021) to generate the many-body contribution
to the suspension stress, which gives access to rheological data such as the high-frequency
viscosity.

5. Stresslet and viscosity formulation: many-body theory and simulation in
confinement

5.1. Many-body stresslet
The CSD algorithm captures the hydrodynamic coupling of particles with each other
and with the cavity wall to model the dynamics and rheology of spherically confined
concentrated colloidal suspensions (Aponte-Rivera & Zia 2016; Aponte-Rivera et al. 2018;
Gonzalez et al. 2021). These hydrodynamic interactions are represented via the grand
resistance tensor R, as discussed in § 2.2, and depend only on system geometry, including
particle and confinement shape and size, as well as the relative separations between
objects. Analytical expressions can fully capture such interactions for any separation only
for very simple systems. In suspensions in which many-body interactions matter and for
which computational approaches are required, the challenge of handling both singular
near-contact lubrication interactions and far-field many-body couplings requires special
methods. The Stokesian dynamics algorithm solves the two problems separately and then
combines them into a full solution by superposition (Bossis & Brady 1984; Durlofsky
et al. 1987; Aponte-Rivera et al. 2018; Gonzalez et al. 2021). As a result, the total
resistance tensor is built up by superimposing a many-body far-field resistance tensor
Rff and a pair-wise near-field resistance tensor Rnf . Detailed explanations of the method
for building the grand resistance tensor R as well as Rff and Rnf are well-established
and can be found elsewhere (Aponte-Rivera & Zia 2016; Aponte-Rivera et al. 2018). The
resulting GRM can be used to produce particle motion as well as to relate the motion

999 A38-35

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

91
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.917


E. Gonzalez and R.N. Zia

and surface tractions to rheological quantities (cf. (A9)). Here we focus on obtaining the
rheology from the stresslet.

Non-deformable particles embedded in a flow develop hydrodynamic surface tractions
as they resist deforming with the fluid streamlines. This stresslet gives rise to suspension
stress (Batchelor 1970). The stresslet developed on the surface of particles that are free of
imposed forces and torques but are embedded in a linear flow is

SH = −RSU · (U − u∞)− RSΩ · (Ω − ω∞)+ RSE : E∞ + SB + SP,dis. (5.1)

Note that Brownian motion produce disturbance flows and interparticle forces entrain
particles to produce dissipative interactions, both inducing hydrodynamic stresslets on
particle surfaces, SB and SP,dis (Chu & Zia 2016, 2017; Huang & Zia 2021). We
recall that the hydrodynamic stresslet comprises several parts (Huang & Zia 2021): a
component arising directly from externally imposed flow acting on no-slip surfaces, plus
a contribution due to Brownian disturbance flows and dissipative particle interactions,
SH ≡ SH,ext + SB + SP,dis.

In Stokesian dynamics simulations, the ‘purely hydrodynamic’ part SH,ext is calculated
in two parts, by decomposing the GRM into far- and near-field parts to give a near-field
stresslet Snf and a many-body far-field contribution Sff :

SH,ext = −RSU
nf · (U − u∞)− RSΩ

nf · (Ω − ω∞)+ RSE
nf : E∞ + Sff . (5.2)

The theory developed in the present work (§§ 3.2, 3.4 and 4.1) provides the near-field
particle–cavity interactions that were previously missing from the literature. These new
functions ((3.23), (3.24), (3.65), (3.68), (3.69) and (3.70)) now complete the near-field
resistance tensors in (5.2), allowing us to compute the full hydrodynamic stresslet in
a confined suspension. The purely hydrodynamic stresslet SH,ext (5.2) can be used to
calculate the high-frequency viscosity, described next.

5.2. High-frequency viscosity for spherically confined suspensions
Consider a quiescent incompressible Newtonian fluid of viscosity η1 enclosed by a no-slip
spherical cavity of volume Vc. That fluid can dissipate energy E (1) viscously under a weak
perturbation as given by

E (1) =
∫

Vc

∇ ·
(
σ (1) · v(1)

)
dV = 2η1E(1) : E(1)Vc, (5.3)

where v(1) = E(1) · r at the enclosure.
Defining the viscosity as the rheological quantity that relates stress σ to strain rate E,

then the constitutive equation of a generalised incompressible Newtonian fluid of viscosity
η is given by

σ = −pI + 2ηE. (5.4)

Now, instead suppose that the fluid is a colloidal suspension with bulk viscosity η2 (also
Newtonian for weak flow), which is enclosed in the same spherical cavity where the same
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rate of strain E(1) is imposed and maintained at the enclosure. Then it follows that

E (2)
E (1) = η2

η1
. (5.5)

Here E (2) is given by

E (2) =
∫

Vc

∇ ·
(
σ (2) · v(2)

)
dV, (5.6)

where
v(2) = E(1) · r, (5.7a)

at the cavity and
v(2) = U (i) + Ω(i) × r(i), (5.7b)

on each sphere centred at r(i). Utilising the divergence theorem, (5.6) can be written as

E (2) =
∫

Sc

ñ · σ (2) · v(1) dS +
N∑
i

∫
Si

ñ · σ (2) · v(2) dS

=
∫

Sc+
∑

Si

ñ · σ (2) · v(1) dS +
N∑
i

∫
Si

ñ · σ (2) ·
(
v(2) − v(1)

)
dS, (5.8)

where N is the total number of suspended particles and the normal vectors ñ are directed
outwards from the cavity into the fluid, and is antiparallel to the unit-surface normal
pointing outwards from a particle. We utilise the Lorentz reciprocal theorem to simplify
the first integral and rearrange terms to obtain

Epart = E (2) − E (1) =
N∑
i

[
−
∫

Si

n · σ (1) · v(2) dS −
∫

Si

n · σ (2) ·
(
v(2) − v(1)

)
dS
]
,

(5.9)

where Epart is the extra dissipation arising from the presence of the particles, and n is
directed outwards from a particle into the fluid. Utilising the divergence theorem, the
first integrand vanishes because there are no body forces imposed on the pure solvent
nor is there a rate of strain inside the particles. To evaluate the second set of integrals,
we recognise that particles are undergoing solid-body motion (5.7b) and that the velocity
profile of the fluid v(1) evaluated at the centre of the particles, r(i), is to leading order a
linear flow:

v(1)(r(i)) ≈ U (1)(r(i))+ Ω(1)(r(i))× r(i) + E(1) · r(i), (5.10)

where U1(r(i) and Ω1(r(i) are the translational and rotational velocities of particles
embedded in a flow of the same strength as ‘case 1’, a fluid-only filled cavity, at the
positions where the particles under evaluation are located. This motion is augmented by
disturbance flows due to the presence of the particles, the last term in (5.10).

Insertion of the surface velocity into (5.9) yields

Epart =
N∑
i

[(
U (1) − U (i)

)
· F H,i +

(
Ω(1) − Ω(i)

)
· LH,i + E(1) : SH,i

]
, (5.11)

where F H,i, LH,i and SH,i are the hydrodynamic force, torque and stresslet on particle i.
For a suspension of freely mobile particles, inserting (5.11) into (5.5) gives (eliminating
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the label ‘1’ on solvent viscosity for simplicity):

η2

η
= 1 +

N∑
i

E : SH,i

2ηVcE : E
. (5.12)

This result is general for any given imposed strain rate and the resulting stresslet induced
on the confined particles. One need only select the flow conditions to determine the
corresponding viscosity.

We now use this result to stress-test the model and also to deduce the contribution
to the high-frequency viscosity η′∞ from the confined particles, beyond that due to
the no-slip cavity (the extra dissipation due to the presence of the particles) isolating
the purely hydrodynamic contribution from that due to Brownian motion. That is, the
purely hydrodynamic part of η2, denoted η′∞, is obtained from (5.12) because of the
hydrodynamic stresslet.

The hydrodynamic stresslet on the surface of particle i in a spherically confined
suspension needed in (5.12) is given by

SH,i(C, r) = −6πηa3
[

3
2 XM,i(C)dX(r̂)+ 1

2 YM,i(C)dY(r̂)+ 1
2 ZM,i(C)dZ(r̂)

]
: E, (5.13)

where C = (φ, λc, ri), the fourth-order tensors dX, dY and dZ are defined as in (2.13), and
the hydrodynamic functions XM,i, YM,i and ZM,i reflect the many-body coupling between
particles and the enclosure. Considering η2 = η′∞ and combining (5.12) and (5.13) yields
an expression for the high-frequency viscosity of a suspension confined in a spherical
cavity

η′∞
η

= 1 + 5
2
φ

[
9
50

(
〈XM〉 + 2〈YM〉 + 2〈ZM〉

)]
, (5.14)

where

〈XM〉 = 1
Nconf

1
N

Nconf∑
j

N∑
i

XM,(i,j), (5.15a)

〈YM〉 = 1
Nconf

1
N

Nconf∑
j

N∑
i

YM,(i,j), (5.15b)

〈ZM〉 = 1
Nconf

1
N

Nconf∑
j

N∑
i

ZM,(i,j). (5.15c)

In these equations, 〈·〉 denotes an ensemble average over Nconf particle configurations in
the confined domain. The effect of crowding is embedded both the confinement ratio
and the volume fraction. The latter, φ, appears explicitly in (5.14) and implicitly in the
hydrodynamic functions. The volume-fraction-dependent values of the hydrodynamic
functions were obtained via our statistical sampling algorithm, which is explained in
Appendix K.

To ascertain the effect of confinement on the high-frequency viscosity (5.14), we
compare its value at a range of volume fractions and cavity sizes with that of an
unconfined suspension at the same volume fractions in figure 9. Any increase in η′∞
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Figure 9. High-frequency viscosity for confined colloidal suspensions (5.14) as a function of volume fraction
compared with the η′∞ values of an unconfined suspension.

reflects the increase in viscous dissipation generated by having more solid surfaces
over which the fluid streamlines must bend. Comparing the red curve for λc = 0.10
with the black curve for an unconfined suspension reveals that a confined suspension
can be equally as dissipative as an unconfined suspension at a lower volume fraction.
A representative particle in the suspension ‘sees’ only other particles in the unbound
domain, but when confined, it sees the cavity as well. One might thus expect that adding
more and more particles to a confined suspension at a given confinement ratio (increasing
the volume fraction), the particle contribution will dominate over that of the cavity,
driving the viscosity towards the unbound value at the same volume fraction. However,
we find the opposite: as volume fraction increases at fixed confinement ratio (moving
along a curve), the viscosity moves farther and farther away from the unconfined value.
Tighter confinement increases this effect even further, as shown by the increase in η′∞
as confinement increases at a fixed value of volume fraction. This strongly suggests that
direct hydrodynamic interactions with the cavity have a dominant effect on the viscosity.

To understand the root of the increment in dissipation with confinement in crowded
suspensions, we will eliminate from the η′∞ expression the trivial contributions from the
pure solvent and the Einstein (single-particle) contribution, and focus only on that due to
hydrodynamic interactions given by

2
5

(
η′∞
η

− 1
)

1
φ

= 9
50

(
〈XM〉 + 2〈YM〉 + 2〈ZM〉

)
. (5.16)

This quantity approaches unity for small φ and as λc → 0, recovering the Einstein
contribution (as shown in Appendix L, figure 15).

As expected, the particle–particle contribution in an unbound suspension increases
with volume fraction, and the added particle–cavity contribution drives viscosity up over
all volume fractions. We split this total combined contribution into its far-field and a
near-field components, as suggested by (5.2). The far-field contribution is initially higher
at lower volume fractions, but barely grows with increased crowding. In contrast, the
near-field contribution vanishes at low volume fraction but grows markedly with increased
volume fraction. This behaviour reveals that near-field interactions drive the pronounced
increase in dissipation with increased crowding (and could arise from particle–particle
or particle–cavity interactions). Although we expect the same trends in an unconfined
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Figure 10. Evaluation of various contributions to η′∞ (5.16), comparing unconfined with confined colloidal
suspension at λc = 0.2 as a function of volume fraction. The confined data are split into the far-field and
near-field contributions, and the near-field contribution is further split into particle–cavity vs particle–particle
interactions.

suspension, the increment in near-field particle dissipation outweighs the total unconfined
value. This behaviour can be understood by recognising that, even at equal volume
fraction, the entropic restriction of the cavity demands more configurations with closely
spaced particles, which drive stronger hydrodynamic interactions. We next test this
idea that confinement-driven changes in particle–particle interactions drive increased
dissipation.

We examine the detailed effect of confinement on near-field interactions by splitting
it into the particle–particle and particle–cavity contributions. The near-field contribution
is dominated by two-body interactions and, for confined suspensions, emerges both from
particle–particle and particle–cavity interactions. These two contributions are each plotted
in figure 10. The particle–particle interactions contribute the most to the near-field; indeed,
nearly 60 % of the viscosity comes from particles located less than two radii away from the
wall, regardless of volume fraction, simply because particles always locate preferentially
near the wall to increase configurational entropy in the bulk of the suspension. Nearly
70 % of particles can be found in that location (see Appendix L, figure 16). In comparison,
particle–cavity near-field interactions contribute less at all volume fractions. Notably, the
growth of particle–cavity interactions with increased volume fraction is weak, because the
annular volume near the wall is finite and fixed. Occupancy of this annulus saturates. One
can observe the direct contribution of confinement, the interaction between the cavity and
particles, graphically, as the distance between the open crossed orange squares and the
open green squares, which has the same value as the open red squares with Xs.

Individual pairs of particle–cavity interactions are actually two- to four-fold stronger
than the interactions between a pair of particles (Appendix L, figure 16), but the latter are
far more numerous. As such, strong particle–cavity near-field interactions are stronger but
still contribute less than the particle–particle near-field interactions.

Figure 9 shows that tighter confinement increases viscous dissipation. Now, a
renormalisation of the volume fraction on the horizontal axis with the random close
packing volume fraction (Man et al. 2005) collapses all the viscosity data into a single
curve (figure 11), a normalisation routine in the evaluation of colloidal suspension
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Figure 11. High-frequency viscosity for confined colloidal suspensions as a function of volume fraction
normalised by the random close packing volume fraction, φrcp, of the different confinement levels (Man et al.
2005). The values of an unconfined suspension are also normalised and showed for reference.

rheological data (Solomon & Boger 1998). Physically, the master curve suggests that the
divergence of the viscosity with respect to volume fraction depends on the proximity of the
given suspension to φrcp. Shown here for the first time in spherically confined suspensions,
our results agree with past results for unbound suspensions in both experiments (D’Haene
1992; Man et al. 2005; Shewan & Stokes 2014) and simulations (Mewis & Wagner 2011;
Roquier 2016).

In summary, by deriving and analysing the confined stresslet, we have shown that
confinement increases viscous dissipation over all volume fractions, more so as packing
increases, by gathering particles near the wall and, in so doing, promoting particle–particle
near-field interactions. We find that the vast majority of particles can be found within two
radii of the cavity wall and interactions between them (not with the wall) provide nearly
60 % of the viscous dissipation beyond the solvent and Einstein correction. Near-field
interactions between particles dominate this effect, more important than the far field and
also exceeding the total unconfined viscosity.

5.3. Effect of variable particle size
We examined the interrelated effects of confinement, packing fraction and size
bidispersity, building on our previous work (Gonzalez et al. 2021). We studied here
bidisperse suspensions at moderate volume fractions (φ ∈ [0.35, 0.50]), varying the
mixture from the limit of all large particles to the limit of all small particles, as shown
in figure 12. In the range φ ∈ [0.35, 0.45] (figure 12a), the viscosity of bidisperse
suspensions decreases smoothly between the two monodisperse limits. But this changes
for suspensions close to maximum packing. (The geometrical restriction for the maximum
volume fraction that particles can attain inside the cavity is the maximum random
close packing, which is a function of the confinement ratio, λc.) For confinement ratio
λc = 0.2, where maximum packing is φmax ∼ 0.53 (Man et al. 2005), the viscosity
drops markedly when the composition changes from monodisperse large to bidisperse
composition. Indeed, even a slight degree of bidispersity fluidises the suspension, as shown
in figure 12(b).

999 A38-41

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

91
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.917


E. Gonzalez and R.N. Zia

% of small particles

η
∞′ /
η

% of small particles

φ = 0.35
φ = 0.40
φ = 0.45

φ = 0.50
φ = 0.51
φ = 0.5310

(a) (b)

8

6

4

2
100806040200

40

30

20

10

100806040200

Figure 12. High-frequency viscosity of bidisperse suspension with size ratio λp = 2 and confinement of the
largest particle of λc2 = 0.2 as a function of the percentage volume of small particles for several levels of
crowding: (a) φ = 0.35, 0.40 and 0.45 and (b) φ = 0.50, 0.51 and 0.53.
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Figure 13. High-frequency viscosity η′∞ (5.14) for confined suspensions predicted in silico from the
suspension stresslet (empty circles) and from two-point microrheology (empty squares) for (a) λc = 0.10 and
for (b) λc = 0.15. The η′∞ from two-point microrheology (c) follows the same qualitative trend as that predicted
from the suspension stresslet: η′∞ increases with both confinement and crowding.

We confirm the validity of the high-frequency viscosity of confined suspensions
predicted via stresslet measurements (5.14) by a comparison with the same quantity
measured via two-point microrheology (Aponte-Rivera & Zia 2021), an independent
alternative measurement of η′∞. We show this comparison in figures 13(a) and 13(b) for
two values of confinement. Both data follow the same qualitative trends: η′∞ increases
with tighter confinement (figure 13c) and increased packing fraction (figure 13a,b). The
quantitative difference between the two measurements of η′∞ stems from the difference in
perturbation utilised to access the rheological response: the former is based on changes in
the stress field generated by fluid motion (Stresslet) whereas the latter is based changes
in particle configuration generated by forces (Stokeslet) (Zia 2018). This quantitative
difference between the two measurements is also present in the η′∞ data for unconfined
suspensions (Appendix L, figure 17). For confined suspensions, the two approaches are
complementary: the two-point microrheology approach is more readily accessible through
experiments whereas the stresslet approach can be expanded with little effort to predict the
viscosity of confined suspensions out of equilibrium.

6. Discussion

We have presented a complete theoretical and computational framework for modelling the
colloidal hydrodynamics and rheology of a spherically confined, polydisperse suspension
under conditions ranging from near to far from equilibrium. The primary advances
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of this work are the derivation of novel theoretical relations essential to expressing
the hydrodynamic stresslet; a general method for solving the Stokes equations for any
particulate system in Stokes flow that can be described via bispherical coordinates; and
an analytical expression for the high-frequency viscosity for a confined polydisperse
suspension. We have added to the literature the six hydrodynamic coefficients required
to describe the stresslet (XG, XM , YG, YH , YM and ZM). We explored the dynamics and
rheology of a confined suspension under a range of linear-response flow conditions and
exploited the power of CSD simulations to identify the exact mechanisms that drive up
viscosity in crowded, confined suspensions. An additional advancement presented here is
the complete formulation for the stresslet on the surface of a colloid near a flat wall.

Validation testing produced new insights. In particular, while validating lubrication
theory, far-field behaviour and the limiting condition of a particle near a flat wall, we
discovered a mismatch with previous reports of the hydrodynamic coefficient YM,flat wall.
Investigation revealed an error in that previous calculation that we correct in the present
work. We further expanded the theory for flat-wall pair interactions, generating the far-field
expressions for the functions YM,flat wall

ff , XM,flat wall
ff and ZM,flat wall

ff . These results show that
in the limit of a large cavity, our work provides the complete formulation for the stresslet
of a colloid near a flat wall.

The results have been used to compute rheology of a confined suspension by
implementing the stresslet hydrodynamic coefficients into the CSD algorithm, yielding
the deviatoric part of the many-body hydrodynamic stresslet. We have employed energy
methods to relate this hydrodynamic stresslet to the high-frequency viscosity of the
confined suspension. In validating this result, we have shown good agreement with
two-point microrheology. Both methods predict an increase in viscous dissipation with
crowding and confinement far beyond the unconfined value. A new result in the present
work is the finding that the confinement effect on viscosity is driven by near-field
interactions between the vast majority of particles that reside very near the cavity wall
(rather than particle–wall interactions). Surprisingly, this near-field effect is stronger even
than the total viscosity of an unconfined suspension at the same volume fraction. This
shows that entropic exclusion driven by the wall sets up many lubrication interactions that
then generate strong viscous dissipation.

The results have implications for a broad range of confined Brownian suspensions,
especially where behaviour is approximated by an unconfined model. As an example, using
cell-free systems to understand diffusion and kinetics in biological cells may under-predict
viscosity and over-predict diffusivity, owing to the coupling of crowding and confinement
not replicated in the in vitro set-up. Changes in crowding and viscosity are tightly coupled
to growth rate in bacterial cells as well as to transcription rates in E. coli. These rates
are recovered in vitro only with addition of passive crowders not found in vivo (Sokolova
et al. 2013). The higher packing fraction increases bulk viscosity; our model explains why
a lower packing fraction in confinement can obtain faster processes in vivo.

The theory presented in this work and the formulation of the many-body stresslet via
the CSD algorithm can be expanded to study the Brownian contribution to the viscosity
of confined suspensions at equilibrium, as well as non-equilibrium viscosity of confined
suspensions. The natural next step in this work is to use the diagonal elements of the
stresslet to obtain the osmotic pressure.
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Appendix A. Many-body hydrodynamic interactions: mobility and resistance
formulations

The study of many-body hydrodynamics interactions starts with the approach developed
by Ladyzhenskaya (1963) to describe the velocity disturbance arising from the interactions
between many particles. Now, the general idea is that the perturbation to the fluid can
happen at a locus of several points (i.e. all the points on the surface of a single particle or
many particles), and involves solving the Stokes equations subject to arbitrary forcing f :

−∇xp + η∇2
x v = −f , (A1a)

∇x · v = 0. (A1b)

In the most general case of particles immersed in an imposed far-field flow of velocity v∞
and pressure p∞, Ladyzhenskaya proposed that the resulting flow is computed as the force
acting on the fluid at surfaces Sy (e.g. particle surfaces and other physical boundaries),
which is propagated by the Green’s functions. When all such surface perturbations are
accounted for (integrating over all interfaces), this gives (Ladyzhenskaya 1963)

u′(x) = u(x)− u∞(x) = −
M∑

i=1

Ni∑
j=1

∫
Sy(i,j)

f (y) · G(x, y) dS, (A2)

written here for a suspension of particles with i = 1, 2, . . . ,M different sizes each with
Ni number of particles. The forcing f can be an impulse, a delta distribution at a single
point, or a surface distribution, e.g. y is the locus of points on the surface of a suspended
particle (or set of particles, or confining boundary). We recognise this force density as the
traction t on particle surfaces, which is, of course, related to fluid motion by the Cauchy
relation: f (y) = n(y) · σ (x, y), where n is the unit surface normal pointing out of the
surface into the fluid, and σ is the stress tensor in the fluid. However, the stress depends on
both v and p and thus Ladyzhenskaya’s integral relations are integro-differential equations
implicit in the desired quantities v and p. One approach to dealing with this challenge is the
use of iterative methods in numerical techniques (Weinbaum, Ganatos & Yan 1990; Kim
& Karrila 1991). However, these methods become intractable when interacting surfaces
become close and grid points or mesh size requirements diverge.

One way to sidestep these difficulties is to recognise that unless one is interested in the
details of the fluid motion (and we are not), one can obtain the solutions only at particle
surfaces via the use of Taylor expansions of the integrands that can be truncated to produce
approximate but highly accurate solutions for v and p (Weinbaum et al. 1990). This
approach was set forth by Bossis & Brady (1984) in the Stokesian dynamics algorithm by
Taylor expanding the Green’s function G(x, y) with respect to the particle centre y = ri,j

999 A38-44

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

91
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0001-5812-1217
https://orcid.org/0000-0001-5812-1217
https://orcid.org/0000-0002-2763-9811
https://orcid.org/0000-0002-2763-9811
https://doi.org/10.1017/jfm.2024.917


Confined stresslet for suspensions in a spherical cavity: 1

(Durlofsky et al. 1987). This produced a multipole expansion:

u′(x) = u(x)− u∞(x) = −
M∑

i=1

Ni∑
j=1

[(
1 + a2

i
6

∇2
y

)
G(x, y) · F H

i,j + 1
2
∇y × G(x, y) · LH

i,j

+
(

1 + a2
i

10
∇2

y

)
K(x, y) : SH

i,j + · · ·
]∣∣∣∣∣

y=ri,j

, (A3)

where F H
i,j, LH

i,j and SH
i,j are the hydrodynamic force, torque and stresslet, respectively,

which are defined according to

F H
i,j =

∫
Sai

[
σ (x, y) · n(y)

]∣∣
y=ri,j

dSy, (A4)

LH
i,j =

∫
Sai

[
(y − ri)× σ (x, y) · n(y)

]∣∣
y=ri,j

dSy, (A5)

and

SH
i,j =

∫
Sai

[
1
2 ((y − ri)σ · n + σ · n(y − ri))− 1

3(y − ri) · σ · nI
]∣∣∣

y=ri,j
dSy. (A6)

The hydrodynamic torque LH
i,j and stresslet SH

i,j are the antisymmetric and symmetric
elements of the first moment of the traction, and K(x, y) = ∇yG(x, y)+ (∇yG(x, y))T.
In (A3), the quadrupole (a2

i /6)∇2
y and octupole (a2

i /10)∇2
y contributions multiplying F H

i,j

and SH
i,j come from the finite size of the particles.

The physical interpretation of (A3) is that if the point x is far away from the surface of
the j-particle of size ai, then the velocity disturbance u′(x) that the particle generates can
be approximated as that coming from a point force F H

i,j, torque LH
i,j and SH

i,j located at the
centre of the particle y = ri,j plus corrections due to its finite size (quadrupole and octupole
terms), and the way this force moments propagate in the medium is captured by the Green’s
function of the system where the particles interact. Therefore, the multipole expansion
approximation is valid when the field point x is far from the source point y = ri,j, but
the accuracy of the method can be improved by considering more force moments in the
expansion (i.e. more elements in the Taylor series).

The disturbance velocity from (A3) is related to the translation U i,j and rotation Ω i,j of
a particle via Faxén formulae:

U i,j − u∞ (x) =
−F H

i,j

6πηai
+
(

1 + a2
i

6
∇2

x

)
u′(x)

∣∣∣∣∣
x=ri,j

, (A7a)

Ω i,j − ω∞ (x) =
−LH

i,j

8πηa3
i

+ 1
2
∇2

x u′(x)
∣∣∣∣
x=ri,j

, (A7b)

−E∞ =
−SH

i,j

20
3

πηa3
i

+
(

1 + a2
i

10
∇2

x

)
E′(x)

∣∣∣∣∣
x=ri,j

, (A7c)

where E′(x) = 1
2 {∇xu′(x)− [∇xu′(x)]T}. In (A7), the velocity disturbance u′(x) felt by

a particle at field point x is generated by the remaining particles in the suspension.
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Equation (A7) thus give a linear relation between particle relative motion and
hydrodynamic traction moments, expressed compactly as⎛

⎜⎜⎝
U − u∞
Ω − ω∞
−E∞
...

⎞
⎟⎟⎠ = −

⎛
⎜⎜⎜⎝

MUF MUL MUS · · ·
MΩF MΩL MΩS · · ·
MEF MEL MES · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎠ ·

⎛
⎜⎜⎜⎝

F H

LH

SH

...

⎞
⎟⎟⎟⎠ , (A8)

where the coupling tensor is the GMM M. The far-field GRM comprises submatrices that
describe couplings between each of the velocity derivatives and traction moments, which
are superimposable owing to the linearity of Stokes flow.

Inversion of this matrix automatically couples all N particles to one another M−1, and
captures an infinitude of reflected interactions between them to give a true many-body
hydrodynamic interaction matrix (Durlofsky et al. 1987; Ichiki & Brady 2001):

M−1 =

⎛
⎜⎜⎜⎝

MUF MUL MUS · · ·
MΩF MΩL MΩS · · ·
MEF MEL MES · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎠

−1

=

⎛
⎜⎜⎜⎝

RFU RFΩ RFE . . .

RLU RLΩ RLE . . .

RSU RSΩ RSE . . .
...

...
...

. . .

⎞
⎟⎟⎟⎠ = R. (A9)

Here, R is the GRM that holds tensors R coupling surface traction moments to motion.

Appendix B. Solutions based on Laplace’s equation

As part of our work, we solve the Stokes equations for the flow around a pair of spheres
using bispherical coordinates, but the foundations of the solution method in spherical
coordinates are described here as well, given that is the most frequently used method.
Laplace’s equation appears throughout both procedures as the homogeneous part of the
fluid velocity field and the fluid pressure. This basic method is outlined here.

A key feature of Stokes flow is that the pressure is harmonic:

∇2
x p = 0, (B1)

that is, the pressure always obeys Laplace’s equation. To solve the equation of motion
(3.1a) here, the linearity of Stokes’ equations allows one to write the velocity v as a linear
superposition of a homogeneous vh and a particular solution vp, such that (Kim & Karrila
1991)

v = vh + vp, (B2)

where vh is also a solution to Laplace’s equation

∇2
x vh = 0, (B3)

and vp is a solution to (3.1a) in the absence of body forces and is given by

vp = 1
2η

xp. (B4)

Equations (B1)–(B4) imply that is possible to solve Stokes’ equations by finding solutions
to Laplace’s equation to either vector or scalar fields. Unsurprisingly, the two main
methods to solve the Stokes equations for a pair of spheres (either external or internal to
each other) derive from solutions to Laplace’s equations in either spherical or bispherical
coordinates.
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Figure 14. Sketch of the spherical coordinates showing the bodies of revolution for constant (a) radius that is
a sphere and (b) polar angle that is a cone.

Appendix C. Curvilinear coordinate systems of revolution

In this appendix, we give a brief introduction to the concept of coordinate systems
of revolution, which are group curvilinear coordinate systems (spherical, bispherical,
paraboidal, etc.) that can be transformed to and from cylindrical coordinates by a set
of simple transformation rules. This concept is used heavily in this work in § 3 while
generating solutions to the Stokes equations for a sphere inside a spherical cavity
embedded in linear flows (translation, rotation or straining) and obtaining the expressions
for the hydrodynamic traction moments (force, torque or stresslet). Basically, we change
between different curvilinear coordinate systems depending on which one facilitates the
calculations at hand; for example, posing governing equations is easier in cylindrical
coordinates because the math is simpler, calculating the traction moments on the colloid
is easier in spherical coordinates because a single sphere is effortlessly described in
those coordinates, and finding the solution to Stokes’ equations is easier in bispherical
coordinates because the boundary conditions on both spheres can be naturally evaluated
on that coordinate system. A thorough explanation can be found elsewhere (Happel &
Brenner 1981).

Given a cylindrical coordinate system {ρ, z, θ}, a coordinate system of revolution
{q1, q2, θ} is defined such that bodies of revolution are formed by rotating about the z-axis
curves of constant either q1 or q2. As an example, for the spherical coordinate system
{r, θ1, θ}, a curve of constant q1 = r leads to a sphere and a curve of constant q2 = θ1 leads
to a cone, see figure 14. The curves of constant q1 and q2 intersect each other orthogonally
in meridian planes (i.e. a plane of constant θ ). Curves of constant q1 or q2 are termed
generators since they generate the bodies of revolution.

We can convert mathematical expressions from many orthogonal curvilinear coordinate
systems into circular cylindrical coordinates and vice versa as long as they satisfy the
following properties:

z = z(q1, q2) r = r(q1, q2), (C1a)

∂r
∂q1

∂r
∂q2

+ ∂z
∂q1

∂z
∂q2

= 0 orthogonality condition, (C1b)

∂z
∂q1

∂r
∂q2

− ∂z
∂q2

∂r
∂q1

> 0 right handedness. (C1c)

Here we focus on the relations that transform derivatives, unit vectors and vector
components between orthogonal curvilinear coordinate systems {q1, q2, θ} and the
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E. Gonzalez and R.N. Zia

cylindrical coordinate system {ρ, z, θ}. Such relations for derivatives are given by

∂

∂r
=

2∑
k=1

h2
k
∂r
∂qk

∂

∂qk
,

∂

∂z
=

2∑
k=1

h2
k
∂z
∂qk

∂

∂qk
, (C2a)

∂qk

∂r
= h2

k
∂r
∂qk

,
∂qk

∂z
= h2

k
∂z
∂qk

, (C2b)

∂

∂qk
= ∂r
∂qk

∂

∂r
+ ∂z
∂qk

∂

∂z
, (C2c)

for unit vectors are given by

îk = hk

(
îr
∂r
∂qk

+ îz
∂z
∂qk

)
, with k ∈ [1, 2], (C3a)

îr =
2∑

k=1

îk
∂r
∂qk

, îz =
2∑

k=1

îk
∂z
∂qk

, (C3b)

and for vector components we say that

u = ur îr + uz îz + uθ îθ = u1 î1 + u2 î2 + uθ îθ , (C4)

then the transformations are given by

uk = hk

(
ur
∂r
∂qk

+ uz
∂z
∂qk

)
, with k ∈ [1, 2], (C5a)

ur =
2∑

k=1

ukhk
∂r
∂qk

, uz =
2∑

k=1

ukhk
∂z
∂qk

. (C5b)

Here, hk is a scale factor that determines how the coordinate qk changes along lines
of constant qk, and hk functionalities are reported for common coordinate systems of
revolution elsewhere (Happel & Brenner 1981).

As an example, using the derivative relations for spherical coordinates (q1 = r, q2 = θ1)

with (here the z coordinate is centred at the centre of the colloid or sphere)

h1 = 1, h2 = 1
r
, (C6a)

ρ = r sin θ1, z = r cos θ1, (C6b)

and for bispherical coordinates (q1 = σ, q2 = ξ) with (here, the z coordinate is centred
between the limiting points ±c of bispherical coordinates and is equivalent to what is
referred in the main text as z∗; see figure 3)

h1 = h2 = cosh ξ − σ

c
, (C7a)

ρ = c(1 − σ 2)1/2

cosh ξ − σ
, z = c sinh ξ

cosh ξ − σ
, (C7b)
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Confined stresslet for suspensions in a spherical cavity: 1

we can get a representation of the differential operator E2[·] (3.8) in both coordinate
systems:

E2[·] = ∂2

∂r2 + sin θ1

r2
∂

∂θ1

(
1

sin θ1

∂

∂θ1

)
, (C8a)

E2[·] =
(

cosh ξ − σ

c2

){
∂

∂ξ

[
(cosh ξ − σ)

∂

∂ξ

]
+ (1 − σ 2)

∂

∂σ

[
(cosh ξ − σ)

∂

∂σ

]}
.

(C8b)

This equivalence allows us to assert that the solution to the differential operators E2[·] (3.8)
and L2

m[·] (3.35) can be found in any coordinate system of revolution, albeit both operators
where initially posed in cylindrical coordinates. Furthermore, this means that the stream
function Ψ , which is a solution to equation E4[Ψ ] = 0, describes axisymmetric motion on
the plane {ρ, z}, on the plane {r, θ1}, on the plane {ξ, σ } or, going a step even further, on
any plane {q1, q2}.

Appendix D. Relations for transformations between curvilinear coordinate systems
of revolution

Here we give relations for transformations between curvilinear coordinate systems of
revolution. Spherical (r, θ1, θ) centred at the colloid to bispherical (ξ, σ, θ)

(i) Partial derivative in r evaluated at the colloid’s surface

∂

∂r
= −(cosh(ξ)− σ)

c
∂

∂ξ
at Sa. (D1)

(ii) Surface integral over the sphere of radius r

∫ π

0
r2 sin(θ1) dθ1 =

∫ +1

−1

c2

(cosh(ξ)− σ)2
dσ. (D2)

(iii) Relation for cos(θ1)

cos(θ1) = sinh2(ξ)

cosh(ξ)− σ
− cosh(α). (D3)

(iv) Relation for sin(θ1)

sin(θ) = (1 − σ 2)1/2

cosh(ξ)− σ
. (D4)
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Appendix E. Expressions from axisymmetric translation for the evaluation of X G

and X G̃ coefficients

Here we give expressions from axisymmetric translation for the evaluation of XG and XG̃

coefficients:

An + Bn = 2
√

2n(n+1)eα+β[(2n+1)eα(2n+3)+(1−2n)eα+2αn+(2n−1)eβ+2βn−(2n+1)eβ(2n+3)]
(2n−1)(2n+1)[(−8n2−8n+6)e2(n+1)(α+β)+(2n+1)2e2α(n+2)+2βn+(2n+1)2e4β+2n(α+β)−4e3α+β+4αn−4eα+3β+4βn],

(E1)

Cn + Dn = 2
√

2n(n+1)
[
(2n+1)eβ+2αn−(2n+1)eα+2βn−(2n+3)eβ+2α(n+1)+(2n+3)eα+2β(n+1)]

(2n+1)(2n+3)[(−8n2−8n+6)e2(n+1)(α+β)+(2n+1)2e2α(n+2)+2βn+(2n+1)2e4β+2n(α+β)−4e3α+β+4αn−4eα+3β+4βn],

(E2)

An + Bn + Cn + Dn

=
[
2
√

2n(n + 1)((1 − 4n2) exp(α + 2βn)+ (4n2 − 1) exp(β + 2αn)

+ (4n2 + 8n + 3) exp(β + 2α(n + 2))− (4n2 + 8n + 3) exp(α + 2β(n + 2))

+ (−8n2 − 8n + 6) exp(β + 2α(n + 1))+ (8n2 + 8n − 6) exp(α + 2β(n + 1)))
]/

×
[
(2n − 1)(2n + 1)(2n + 3)((−8n2 − 8n + 6) exp(2(n + 1)(α + β))

+ (2n + 1)2 exp(2α(n + 2)+ 2βn)+ (2n + 1)2 exp(4β + 2n(α + β))

− 4 exp(3α + β + 4αn)− 4 exp(α + 3β + 4βn))
]
. (E3)

Appendix F. Recursive relations for the evaluation of the coefficients a+
n and a−

n
pertaining to transverse planar straining flow

Here we give recursive relations for the evaluation of the coefficients a+
n and a−

n pertaining
to transverse planar straining flow:

M++
nn−1 = −4(n − 2)

[
(1 − 2n) exp(2n(α + β)+ 4β)+ (1 − 2n) exp(2α(n + 2)+ 2βn)

− 2 exp(4αn + α + β)+ 2 exp(4αn + α + 3β)

+ 2 exp(2(αn + α + βn))− 2 exp(α + 4βn + β)

+ 2 exp(3α + 4βn + β)+ 2 exp(2(n(α + β)+ β))

+ (4n − 6) exp(2(n + 1)(α + β))
]/ [

(exp(2α)− 1)(exp(2β)− 1)(2n − 1)

× (exp(α + 2βn)− exp(2αn + β))(exp(2αn + α)− exp(2βn + β))
]
, (F1a)

M++
nn = 2

{[
exp(2αn + α)csch(α)((2n2 + 5n + 3) exp(2αn + α + β)

− (2n2 + 5n + 3) exp(2(α + βn))+ (n − 2n2) exp(2αn + 3α + β)

+ n(2n − 1) exp(2β(n + 2)))

+ exp(2βn + β)csch(β)(−(2n2 + 5n + 3) exp(2(αn + β))

+ (2n2 + 5n + 3) exp(α + 2βn + β)+ (n − 2n2) exp(α + 2βn + 3β)

+ n(2n − 1) exp(2α(n + 2)))+ (2n + 1)2
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Confined stresslet for suspensions in a spherical cavity: 1

× (−(− exp(4αn + 3α + β)− exp(α + 4βn + 3β)

+exp(2n(α + β)+ 4β)+ exp(2α(n + 2)+ 2βn)))
]/

[
(2n + 1)(exp(α(2n + 3))

− exp(β(2n + 3)))(exp(2αn + β)− exp(α + 2βn))
]

− [
5 exp(2αn + α) coth(α)

]/ [
exp(2αn + α)− exp(2βn + β)

]
+ [5 exp(2βn + β) coth(β)

]/ [
exp(2αn + α)− exp(2βn + β)

] }
, (F1b)

M++
nn+1 = [2(n + 3)((2n + 3) coth(α)(− (exp(4α(n + 1))− exp(2αn + 3α+ 2βn +β)))

− (2n + 3) coth(β)(exp(4β(n + 1))− exp(2αn +α+ 2βn + 3β))

+ (exp(α(2n + 3))− exp(β(2n + 3)))((2n + 3)(−(exp(2αn + α)

− exp(2βn + β)))+ (2n + 5 exp(2α(n + 1))csch(α)

− (2n + 5) exp(2β(n + 1))csch(β)))
]/ [

(2n + 3)(exp(α(2n + 3))

− exp(β(2n + 3))) (exp(2αn + α)− exp(2βn + β))
]
, (F1c)

M+−
nn−1 = − [4(n − 2)(exp(2α)− exp(2β))((2n − 1) exp(2αn + α)

+ (3 − 2n) exp(α(2n − 1))+ (2n − 3) exp(β(2n − 1))

+ (1 − 2n) exp(2βn + β))
]/ [

(exp(2α)− 1)(exp(2β)− 1)(2n − 1)

× (exp(α(2n − 1))− exp(β(2n − 1)))(exp(2αn + α)− exp(2βn + β))
]
,

(F1d)

M+−
nn = 2

(
−
[
2(exp(2α)− exp(2β))(−(2n2 + 5n + 3) exp(2αn + β)

+ (2n2 + 5n + 3) exp(α + 2βn)+ (n − 2n2) exp(α + 2β(n + 2))

+ n(2n − 1) exp(2α(n + 2)+ β))
]/ [

(exp(2α)− 1)(exp(2β)− 1)(2n + 1)

× (exp(α(2n + 3))− exp(β(2n + 3)))(exp(α + 2βn)− exp(2αn + β))
]

+ [5 coth(β)]
/ [

exp(2αn + α)− exp(2βn + β)
]

− [5 coth(α)]
/ [

exp(2αn + α)− exp(2βn + β)
] )
, (F1e)

M+−
nn+1 = [4(n + 3)(exp(2β)− exp(2α))((2n + 3)(− exp(2αn + α))

+ (2n + 5) exp(α(2n + 3))+ (2n + 3) exp(2βn + β)

− (2n + 5) exp(β(2n + 3))
]/ [

(exp(2α)− 1)(exp(2β)− 1)(2n + 3)

× (exp(α(2n + 3))− exp(β(2n + 3)))(exp(2αn + α)− exp(2βn + β))
]
,

(F1f )

M−+
nn−1 = 2(n − 2)

{[
2(2n − 3)(exp(2α)− exp(2β)) exp((2n + 1)(α + β))

]/
× [(exp(2α)− 1)(exp(2β)− 1)(2n − 1)(exp(2βn + β)− exp(2αn + α))

]
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+ [
coth(α) exp(2n(α + β))

]/ [
exp(α + 2βn)− exp(2αn + β)

]
+ [coth(β) exp(2n(α + β))

]/ [
exp(2αn + β)− exp(α + 2βn)

]}
, (F1g)

M−+
nn = [

2(n + 3)(n + 4)(exp(2α)− exp(2β)) exp((2n + 3)(α + β))
]/

× [(exp(2α)− 1)(exp(2β)− 1)(2n + 1)(exp(α(2n + 3))− exp(β(2n + 3)))
]

+ [
2(n − 3)(n − 2)(exp(2α)− exp(2β)) exp(2n(α + β))

]/
× [(exp(2α)− 1)(exp(2β)− 1)(2n + 1)(exp(α + 2βn)− exp(2αn + β))

]
+ [

10 coth(α) exp((2n + 1)(α + β))
]/ [

exp(2αn + α)− exp(2βn + β)
]

− [
10 coth(β) exp((2n + 1)(α + β))

]/ [
exp(2αn + α)− exp(2βn + β)

]
+ [

(n − 1)n csch(α) exp(2α(n + 1)+ β(2n + 3))
]/

× [(2n + 1)(exp(β(2n + 3))− exp(α(2n + 3)))
]

+ [
2(n − 2)(n + 2) csch(α) exp(2αn + α + 2βn)

]/
× [(2n + 1)(exp(2αn + β)− exp(α + 2βn))

]
+ [

(n + 1)(n + 2) csch(α) exp(2αn + α + 2βn)
]/

× [(2n + 1)(exp(2αn + β)− exp(α + 2βn))
]

+ [
2(n − 1)(n + 3) csch(α) exp(2α(n + 1)+ β(2n + 3))

]/
× [(2n + 1)(exp(β(2n + 3))− exp(α(2n + 3)))

]
+ [

(n − 1)n csch(β) exp(α(2n + 3)+ 2β(n + 1))
]/

× [(2n + 1)(exp(α(2n + 3))− exp(β(2n + 3)))
]

+ [
2(n − 2)(n + 2) csch(β) exp(2n(α + β)+ β)

]/
× [(2n + 1)(exp(α + 2βn)− exp(2αn + β))

]
+ [

(n + 1)(n + 2) csch(β) exp(2n(α + β)+ β)
]/

× [(2n + 1)(exp(α + 2βn)− exp(2αn + β))
]

+ [
2(n − 1)(n + 3) csch(β) exp(α(2n + 3)+ 2β(n + 1))

]/
× [(2n + 1)(exp(α(2n + 3))− exp(β(2n + 3)))

]
, (F1h)

M−+
nn+1 = 2(n + 3)

{[
2(2n + 5)(exp(2α)− exp(2β)) exp((2n + 1)(α + β))

]/
× [(exp(2α)− 1)(exp(2β)− 1)(2n + 3)(exp(2αn + α)− exp(2βn + β))

]
+ [

coth(α) exp((2n + 3)(α + β))
]/ [

exp(α(2n + 3))− exp(β(2n + 3))
]

− [coth(β) exp((2n + 3)(α + β))
]/ [

exp(α(2n + 3))− exp(β(2n + 3))
]}
,

(F1i)

M−−
nn−1 = [4(n − 2)((4n − 6) exp(2(n + 1)(α + β))+ 2 exp(4αn + α + 3β)

− 2 exp(4αn + 3α + 3β)+ 2 exp(3α + 4βn + β)− 2 exp(3α + 4βn + 3β)

+ 2 exp(2(α(n + 2)+ β(n + 1)))+ 2 exp(2(α(n + 1)+ β(n + 2)))
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Confined stresslet for suspensions in a spherical cavity: 1

+ (1 − 2n) exp(2n(α + β)+ 4β)+ (1 − 2n) exp(2α(n + 2)+ 2βn))
]/

× [(exp(2α)− 1)(exp(2β)− 1)(2n − 1)(exp(α + 2βn)

− exp(2αn + β))(exp(2αn + α)− exp(2βn + β))
]
, (F1j)

M−−
nn = −[2(−csch(α) exp(2βn)(−(2n2 + 5n + 3) exp(2αn + α + 4β)

+ (2n2 + 5n + 3) exp(2α + 2βn + 3β)+ n(2n − 1) exp(α(2n + 3))

+ (n − 2n2) exp(β(2n + 3)))+ exp(2αn) csch(β)(−(2n2 + 5n + 3)

× exp(2αn + 3α + 2β)+ (2n2 + 5n + 3) exp(4α + 2βn + β)

+ n(2n − 1) exp(α(2n + 3))+ (n − 2n2) exp(β(2n + 3)))

+ (2n + 1)2(−(− exp(4αn + 3α + β)− exp(α + 4βn + 3β)

+ exp(2n(α + β)+ 4β)

+ exp(2α(n + 2)+ 2βn))))
]/ [

(2n + 1)(exp(α(2n + 3))

− exp(β(2n + 3)))(exp(2αn + β)− exp(α + 2βn))
]

+ [
10 coth(α) exp(2βn + β)

]/ [
exp(2αn + α)− exp(2βn + β)

]
− [

10 exp(2αn + α) coth(β)
]/ [

exp(2αn + α)− exp(2βn + β)
]
, (F1k)

M−−
nn+1 = [2(n + 3)(−4(2n + 5) exp((2n + 3)(α + β))+ 4 exp(2αn + 3α + 2βn + β)

+ 4 exp(2αn + α + β(2n + 3))+ (4n + 6) exp(2αn + 5α + 2βn + β)

+ (4n + 6) exp(2αn + α + 2βn + 5β)− 4 exp(4α(n + 1))

+ 4 exp(4αn + 6α)− 4 exp(4β(n + 1))

+ 4 exp(4βn + 6β))
]/ [

(exp(2α)− 1)(exp(2β)− 1)(2n + 3)

× (exp(α(2n + 3))− exp(β(2n + 3)))(exp(2αn + α)− exp(2βn + β))
]
.

(F1l)

Appendix G. Solution to Stokes equation for transverse straining flow

In this appendix, we apply the method of separation of variables described in § 3.3 to solve
the Stokes equations for transverse straining motion (figure 2b) for the system of a colloid
inside a spherical cavity. The strain rate E is given by

E = E

⎡
⎣ 0 0 1

0 0 0
1 0 0

⎤
⎦
(x,y,z)

, (G1)

which produces a simple shear flow with boundary conditions at the colloid Sa and the
cavity surface Sc according to

v = E · r =
(
ρ cos(θ)îz + zîx

)
E

=
(

z cos(θ)îρ − z sin(θ)îθ + ρ cos(θ)îz

)
E at Sa, (G2a)

v = 0 at Sc. (G2b)
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Here, the angular θ and spatial ρ, z dependence are separated functionally, suggesting that
a separation of variables would work. Thus, utilising the ansatz from (3.28), the definitions
for the variables ψ , χ and ϕ from (3.37a–c) and the above boundary conditions, the
proposed general solution method presented in (3.39), (3.41) and (3.42) gives

m = 1, γ (θ) = cos(θ) and Kbc = Ec, (G3a–c)

and the velocity v and pressure profiles p can be represented by

p = ηEP cos(θ), (G4a)

vρ = EcUUθ = Ec
2

[ρ
c

P + (ψ + χ)
]

cos(θ), (G4b)

vθ = EcVVθ = Ec
2

[ψ − χ] (− sin(θ)), (G4c)

vz = EcWWθ = Ec
2

[
z∗

c
P + 2ϕ

]
cos(θ), (G4d)

where z∗ is given by (3.40) and corresponds to the axial coordinate of a cylindrical system
{ρ, θ, z∗} that is centred between the limiting points of the bispherical coordinate system
±c (refer to figure 3). The variables P, ψ , χ and ϕ satisfy the differential equation given
by the operator L2

m (3.46) according to

L2
0[ψ] = L2

1[P] = L2
1[ϕ] = L2

2[χ ] = 0. (G5)

Following this programme, the solutions are

ψ(σ, ξ) =
√

cosh(ξ)− σ

∞∑
n=0

{
d+

n exp((n + 1/2)ξ)+ d−
n exp(−(n + 1/2)ξ)

}
P0

n(σ ),

(G6a)

P(σ, ξ) =
√

cosh(ξ)− σ

∞∑
n=1

{
b+

n exp((n + 1/2)ξ)+ b−
n exp(−(n + 1/2)ξ)

}
P1

n(σ ),

(G6b)

ϕ(σ, ξ) =
√

cosh(ξ)− σ

∞∑
n=1

{
a+

n exp((n + 1/2)ξ)+ a−
n exp(−(n + 1/2)ξ)

}
P1

n(σ ),

(G6c)

χ(σ, ξ) =
√

cosh(ξ)− σ

∞∑
n=2

{
f +
n exp((n + 1/2)ξ)+ f −

n exp(−(n + 1/2)ξ)
}

P2
n(σ ).

(G6d)

Here the coefficients a+
n , a−

n , b+
n , b−

n , d+
n , d−

n , f +
n and f −

n depend solely on the boundary
conditions and the equation of continuity. To obtain equations for the coefficients, we first
rewrite the boundary conditions and the equation of continuity in terms of the variables P,
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Confined stresslet for suspensions in a spherical cavity: 1

ψ , χ and ϕ, which gives

P = 2
(
ρ

z∗ − c
z∗ϕ
)
, χ = − ρ2

cz∗ + ρ

z∗ϕ, ψ = 2(z∗ − d1)

c
− ρ2

cz∗ + ρ

z∗ϕ, at Sa,

(G7a)

P = −2
c
z∗ϕ, χ = ρ

z∗ϕ, ψ = ρ

z∗ϕ, at Scav, (G7b)

and (
3 + ρ

∂

∂ρ
+ z∗ ∂

∂z

)
P + c

∂ψ

∂ρ
+ c

(
2
ρ

+ ∂

∂ρ

)
χ + 2c

∂ϕ

∂z
= 0. (G8)

The coefficients a+
n , a−

n , b+
n , b−

n , d+
n , d−

n , f +
n and f −

n are determined based on the boundary
conditions, thus they have to be a function of ξ = α and ξ = β for conditions evaluated
at the colloid or the cavity, respectively. This is accomplished by utilising in both the
boundary conditions (G7) and the equation of continuity (G8) the solutions for P, ψ ,
χ and ϕ (G6), the associated Legendre polynomial generating functions (3.17) and the
orthogonality of the associated Legendre polynomial to eliminate the dependence on σ ,
which yields

b+
n exp(−β(n + 1/2))+ b−

n exp(β(n + 1/2))

= csch(β)
[

2(n − 1)
(
a−

n−1 exp(−β(n − 1/2))+ a+
n−1 exp(β(n − 1/2))

) ( 1
2n − 1

)

+ 2(n + 2)
(
a−

n+1 exp(−β(n + 3/2))+ a+
n+1 exp(β(n + 3/2))

) ( 1
2n + 3

)

− 2 cosh(β)
(
a−

n exp(−β(n + 1/2))+ a+
n exp(β(n + 1/2))

)]
, (G9a)

b−
n exp(−α(n + 1/2))+ b+

n exp(α(n + 1/2))

= csch(α)
[

2(n − 1)
(
a−

n−1 exp(−α(n − 1/2))+ a+
n−1 exp(α(n − 1/2))

) ( 1
2n − 1

)

+ 2(n + 2)
(
a−

n+1 exp(−α(n + 3/2))+ a+
n+1 exp(α(n + 3/2))

) ( 1
2n + 3

)

− 2 cosh(α)
(
a−

n exp(−α(n + 1/2))+ a+
n exp(α(n + 1/2))

)
+

√
2
(

exp(−α(n − 1/2))
2n − 1

− exp(−α(n + 3/2))
2n + 3

)]
, (G9b)

d−
n exp(−β(n + 1/2))+ d+

n exp(β(n + 1/2))

= csch(β)
[
(n + 1)(n + 2)

(
a−

n+1 exp(−β(n + 3/2))

+ a+
n+1 exp(β(n + 3/2))

) ( 1
2n + 3

)
− (n − 1)n

(
a−

n−1 exp(−β(n − 1/2))

+ a+
n−1 exp(β(n − 1/2))

) ( 1
2n − 1

)]
, (G9c)
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E. Gonzalez and R.N. Zia

d−
n exp(−α(n + 1/2))+ d+

n exp(α(n + 1/2))

= csch(α)
[
(n + 1)(n + 2)

(
a−

n+1 exp(−α(n + 3/2))

+ a+
n+1 exp(α(n + 3/2))

) ( 1
2n + 3

)

− (n − 1)n
(
a−

n−1 exp(−α(n − 1/2))+ a+
n−1 exp(α(n − 1/2))

) ( 1
2n − 1

)

− 1

2
√

2

(
exp(−α(n − 1/2))

2n − 1
− exp(−α(n + 3/2))

2n + 3

)

+ 1√
2
(3(2n + 1) sinh(α) exp(−α(n + 1/2)))− 2

√
2 cosh(α) exp(−α(n + 1/2))

]
,

(G9d)

f −
n exp(−β(n + 1/2))+ f +

n exp(β(n + 1/2))

= csch(β)
[(

a−
n−1 exp(−β(n − 1/2))+ a+

n−1 exp(β(n − 1/2))
) ( 1

2n − 1

)

− (
a−

n+1 exp(−β(n + 3/2))+ a+
n+1 exp(β(n + 3/2))

) ( 1
2n + 3

)]
, (G9e)

f −
n exp(−α(n + 1/2))+ f +

n exp(α(n + 1/2))

= csch(α)
[(

a−
n−1 exp(−α(n − 1/2))+ a+

n−1 exp(α(n − 1/2))
) ( 1

2n − 1

)

− (a−
n+1 exp(−α(n + 3/2))+ a+

n+1 exp(α(n + 3/2))
) ( 1

2n + 3

)

−
√

2
(

exp(−α(n − 1/2))
2n − 1

− exp(−α(n + 3/2))
2n + 3

)]
, (G9f )

from the boundary conditions, and

∓2(n − 1)a±
n−1 ± 2(2n + 1)a±

n ∓ 2(n + 2)a±
n+1 + (1 − n)b±

n−1 + 5b±
n + (n + 2)b±

n+1

− d±
n−1 + 2d±

n − d±
n+1 + (n − 2)(n − 1)f ±

n−1 − 2(n − 1)(n + 2)f ±
n

+ (n + 2)(n + 3)f ±
n+1 = 0 (G10)

from continuity, where the upper signs correspond to the + coefficients and the lower
signs to the − coefficients. Altogether, we have a closed system with 8n equations for 8n
unknowns. Given that the coefficients b+

n , b−
n , d+

n , d−
n , f +

n and f −
n are written as a function

of instances of a+
n and a−

n on the above equations, we can generate recursive relations for
the coefficients a+

n and a−
n by plugging (G9) on (G10). Altogether this yields

M++
nn−1a+

n−1 + M++
nn a+

n + M++
nn+1a+

n+1 + M+−
nn−1a−

n−1 + M+−
nn a−

n + M+−
nn+1a−

n+1 = K+
n ,

(G11a)

M−+
nn−1a+

n−1 + M−+
nn a+

n + M−+
nn+1a+

n+1 + M−−
nn−1a−

n−1 + M−−
nn a−

n + M−−
nn+1a−

n+1 = K−
n ,

(G11b)
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Confined stresslet for suspensions in a spherical cavity: 1

where n ∈ Z
+. The coefficients K+

n and K−
n are

K+
n = −

[√
2(coth(α)− 1)((2n − 1)(4n2 + 1)(2n + 3) exp(2(β + α(n + 2)+ βn))

− (2n − 1)(4n2 + 1)(2n + 3) exp(α + 5β + 4βn)

+ (2n + 1)(8n2 − 2n + 1)(2n + 3) exp(2α(n + 3)+ 2βn)

− (2n + 1)(8n2 − 2n + 1)(2n + 3) exp(3α + 3β + 4βn)

− 2n(12n2 + 1)(2n + 3) exp(5α + β + 4αn)

+ 2n(12n2 + 1)(2n + 3) exp(2(α(n + 1)+ β(n + 2)))

− 2(n − 1)(2n − 1)(2n + 1)(2n + 3) exp(2(n + 2)(α + β))

+ 2(n − 1)(2n − 1)(2n + 1)(2n + 3) exp(7α + β + 4αn)

− 2(n − 1)(2n − 1)(2n + 1)(2n + 3) exp(2(β + α(n + 3)+ βn))

+ 2(n − 1)(2n − 1)(2n + 1)(2n + 3) exp(3α + 5β + 4βn)

− 2(n + 2)(2n − 1)(2n + 1)(2n + 3) exp(α + β + 4αn)

+ 2(n + 2)(2n − 1)(2n + 1)(2n + 3) exp(2(α + αn + βn))

− 2(n + 2)(2n − 1)(2n + 1)(2n + 3) exp(α + β + 4βn)

+ 2(n + 2)(2n − 1)(2n + 1)(2n + 3) exp(2(β + n(α + β)))

− (2n − 1)(4n(n + 2)+ 5)(2n + 3) exp(2(n + 1)(α + β))

+ (2n − 1)(4n(n + 2)+ 5)(2n + 3) exp(3α + β + 4βn)

+ 2(n + 1)(2n − 1)(12n(n + 2)+ 13) exp(3α + β + 4αn)

− 2(n + 1)(2n − 1)(12n(n + 2)+ 13) exp(2α(n + 2)+ 2βn)

+ (2n − 1)(2n + 1)(2n(4n + 9)+ 11) exp(α + 3β + 4βn)

− (2n − 1)(2n + 1)(2n(4n + 9)+ 11) exp(4β + 2n(α + β)))
]/

× [(2n − 1)(2n + 1)(2n + 3)(exp(α(2n + 3))− exp(β(2n + 3)))

× (exp(β + 2αn)− exp(α + 2βn))(exp(β + 2βn)− exp(α + 2αn))
]
, (G12a)

K−
n = −

[√
2(coth(α)− 1) exp(2βn)((2n − 1)(8n2 + 6n + 3)(2n + 3)

× exp(2α(n + 2)+ β(2n + 3))

+ (2n + 1)(8n2 − 2n + 1)(2n + 3) exp(5α + 2β + 4αn)

− 2(n(2n(4n2 + 2n − 7)+ 3)+ 9) exp(2α(n + 1)+ β(2n + 5))

+ (2n − 1)(4n2 + 1)(2n + 3) exp(α(4n + 5))+ 4(2n + 3) exp(3α + 4β(n + 1))

+ 2(n + 2)(2n − 1)(2n + 1)(2n + 3) exp(α + 4β + 4αn)

− (2n + 1)(4n(n + 1)− 1)(2n + 3) exp(β + 2α(n + 3)+ 2βn)

− (2n − 1)(4n(n + 2)+ 5)(2n + 3) exp(3α + 4β + 4αn)

− (2n − 1)(2n(4n + 5)+ 5)(2n + 3) exp(2α(n + 1)+ β(2n + 3))
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E. Gonzalez and R.N. Zia

+ (8n − 4) exp(α + 4β(n + 1))

+ (2n − 1)(2n + 1)(4n(n + 1)− 1) exp(5β + 2n(α + β))

− (2n − 1)(2n + 1)(2n(4n + 9)+ 11) exp(3α + 2β + 4αn)

+ 2(2n − 1)(n(4n(n + 4)+ 19)+ 4) exp(β + 2α(n + 2)+ 2βn)

− 2(n − 1)(2n − 1)(2n + 1)(2n + 3) exp(α(4n + 7)))
]/

× [(2n − 1)(2n + 1)(2n + 3)(exp(α(2n + 3))− exp(β(2n + 3)))

× (exp(β + 2αn)− exp(α + 2βn))(exp(β + 2βn)− exp(α + 2αn))
]
, (G12b)

and pertain to the non-homogeneous terms coming from the boundary conditions, and the
expressions of the coefficients M are the same as those reported by Jones (2009) and are
rewritten here for convenience:

M++
nn−1 =

[
2(2n2 − 5n + 3) csch(α)

]/ [
exp(α)(2n − 1)(exp(−((2n + 1)(α − β)))− 1)

]
+
[
2(2n2 − 5n + 3) csch(β)

]/ [
exp(β)(2n − 1)(exp((2n + 1)(α − β))− 1)

]
+ [

2(n − 1) coth(α) exp(β + 2αn)
]/ [

exp(β + 2αn)− exp(α + 2βn)
]

+ [
2(n − 1) coth(β) exp(α + 2βn)

]/ [
exp(α + 2βn)− exp(β + 2αn)

]
− 2n + 2, (G13a)

M++
nn =

[
2 csch(α) exp(−β − 2α(n + 1))((n − 2n2) exp(3α + β + 2αn)

+ (2n2 + 5n + 3) exp(α + β + 2αn)− (2n2 + 5n + 3) exp(2(α + βn))

+ n(2n − 1) exp(2β(n + 2)))
]/ [

(2n + 1)(exp(−((2n + 3)(α − β)))− 1)

× (exp(α − β − 2αn + 2βn)− 1)
]

+
[
2 csch(β) exp(−α − 2β(n + 1))((n − 2n2) exp(α + 3β + 2βn)

− (2n2 + 5n + 3) exp(2(β + αn))+ (2n2 + 5n + 3) exp(α + β + 2βn)

+ n(2n − 1) exp(2α(n + 2)))
]/ [

(2n + 1)(exp((2n − 1)(α − β))− 1)

× (exp((2n + 3)(α − β))− 1)
]

− [
10 coth(α) exp(α + 2αn)

]/ [
exp(α + 2αn)− exp(β + 2βn)

]
× [

10 coth(β) exp(β + 2βn)
]/ [

exp(α + 2αn)− exp(β + 2βn)
]+ 4n + 2,

(G13b)

M++
nn+1 = −

[
2 exp(α)(2n2 + 9n + 10) csch(α)

]/
[
(2n + 3)(exp(−((2n + 1)(α − β)))− 1)

]
−
[
2 exp(β)(2n2 + 9n + 10) csch(β)

]/ [
(2n + 3)(exp((2n + 1)(α − β))− 1)

]
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Confined stresslet for suspensions in a spherical cavity: 1

− [
2(n + 2) coth(α) exp(α(2n + 3))

]/ [
exp(α(2n + 3))− exp(β(2n + 3))

]
− [

2(n + 2) coth(β) exp(β(2n + 3))
]/ [

exp(β(2n + 3))− exp(α(2n + 3))
]

− 2(n + 2), (G13c)

M+−
nn−1 = −

[
2 exp(α)(2n2 − 5n + 3) csch(α)

]/
[
(2n − 1)(exp(α + 2αn)− exp(β + 2βn))

]
+
[
2 exp(β)(2n2 − 5n + 3) csch(β)

]/
[
(2n − 1)(exp(α + 2αn)− exp(β + 2βn))

]
+ [2(n − 1) coth(α)]

/ [
exp(α(2n − 1))− exp(β(2n − 1))

]
− [2(n − 1) coth(β)]

/ [
exp(α(2n − 1))− exp(β(2n − 1))

]
, (G13d)

M+−
nn = −

[
2 csch(α)(−(2n2 + 5n + 3) exp(α + β + 2αn)

+ (2n2 + 5n + 3) exp(2(α + βn))+ (n − 2n2) exp(2β(n + 2))

+ n(2n − 1) exp(3α + β + 2αn))
]/ [

(2n + 1) exp(β(2n + 3))

× (exp((2n + 3)(α − β))− 1)(exp(β + 2αn)− exp(α + 2βn))
]

−
[
2 csch(β)((2n2 + 5n + 3) exp(2(β + αn))

− (2n2 + 5n + 3) exp(α + β + 2βn)+ (n − 2n2) exp(2α(n + 2))

+ n(2n − 1) exp(α + 3β + 2βn))
]/ [

(2n + 1)(exp(α(2n + 3))

− exp(β(2n + 3)))(exp(β + 2αn)− exp(α + 2βn))
]

− [10 coth(α)]
/ [

exp(α + 2αn)− exp(β + 2βn)
]

+ [10 coth(β)]
/ [

exp(α + 2αn)− exp(β + 2βn)
]
, (G13e)

M+−
nn+1 =

[
2(2n2 + 9n + 10) csch(α)

]/
[
exp(α)(2n + 3)(exp(α + 2αn)− exp(β + 2βn))

]
+
[
2(2n2 + 9n + 10) csch(β)

]/
[
exp(β)(2n + 3)(exp(β + 2βn)− exp(α + 2αn))

]
− [2(n + 2) coth(α)]

/ [
exp(α(2n + 3))− exp(β(2n + 3))

]
+ [2(n + 2) coth(β)]

/ [
exp(α(2n + 3))− exp(β(2n + 3))

]
, (G13f )

M−+
nn−1 = −

[
2(2n2 − 5n + 3) csch(α) exp(β + 2n(α + β))

]/ [
(2n − 1)(exp(β + 2βn)

− exp(α + 2αn))
]+

[
2(2n2 − 5n + 3) csch(β)

× exp(α + 2αn + 2βn)
]/ [

(2n − 1)(exp(β + 2βn)− exp(α + 2αn))
]
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+ [
2(n − 1) coth(α) exp(2n(α + β))

]/ [
exp(α + 2βn)− exp(β + 2αn)

]
+ [

2(n − 1) coth(β) exp(2n(α + β))
]/ [

exp(β + 2αn)− exp(α + 2βn)
]
,

(G14a)

M−+
nn = −

[
2 csch(α) exp(2n(α + β)− β)((2n2 + 5n + 3) exp(α + 4β + 2αn)

− (2n2 + 5n + 3) exp(2α + 3β + 2βn)+ (n − 2n2) exp(α(2n + 3))

+ n(2n − 1) exp(β(2n + 3)))
]/ [

(2n + 1)(exp(α(2n − 1))

− exp(β(2n − 1)))(exp(α(2n + 3))− exp(β(2n + 3)))
]

+
[
2 csch(β) exp(−α + 2αn + 2βn)((2n2 + 5n + 3)

× exp(3α + 2β + 2αn)− (2n2 + 5n + 3) exp(4α + β + 2βn)

+ (n − 2n2) exp(α(2n + 3))+ n(2n − 1) exp(β(2n + 3)))
]/

× [(2n + 1)(exp(α(2n − 1))− exp(β(2n − 1)))

× (exp(α(2n + 3))− exp(β(2n + 3)))
]

+ [
10 coth(α) exp((2n + 1)(α + β))

]/ [
exp(α + 2αn)− exp(β + 2βn)

]
+ [

10 coth(β) exp((2n + 1)(α + β))
]/ [

exp(β + 2βn)− exp(α + 2αn)
]
,

(G14b)

M−+
nn+1 =

[
2(2n2 + 9n + 10) csch(α) exp(β + 2α(n + 1)+ 2βn)

]/
× [(2n + 3)(exp(β + 2βn)− exp(α + 2αn))

]
+
[
2(2n2 + 9n + 10) csch(β) exp(α + 2αn + 2β(n + 1))

]/
× [(2n + 3)(exp(α + 2αn)− exp(β + 2βn))

]
+ [

2(n + 2) coth(α) exp((2n + 3)(α + β))
]/

[
exp(α(2n + 3))− exp(β(2n + 3))

]
+ [

2(n + 2) coth(β) exp((2n + 3)(α + β))
]/

[
exp(β(2n + 3))− exp(α(2n + 3))

]
, (G14c)

M−−
nn−1 =

[
2(2n2 − 5n + 3) csch(α) exp(α + β + 2βn)

]/ [
(2n − 1)(exp(α + 2αn)

− exp(β + 2βn))
]+

[
2(2n2 − 5n + 3) csch(β) exp(α + β + 2αn)

]/
[(2n − 1)

× (exp(β + 2βn)− exp(α + 2αn))
]

+ [
2(n − 1) coth(α) exp(α + 2βn)

]/ [
exp(α + 2βn)− exp(β + 2αn)

]
+ [

2(n − 1) coth(β) exp(β + 2αn)
]/ [

exp(β + 2αn)− exp(α + 2βn)
]

+ 2(n − 1), (G14d)
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Confined stresslet for suspensions in a spherical cavity: 1

M−−
nn =

[
2 csch(α) exp(2βn)(−(2n2 + 5n + 3) exp(α + 4β + 2αn)

+ (2n2 + 5n + 3) exp(2α + 3β + 2βn)+ (n − 2n2) exp(β(2n + 3))

+ n(2n − 1) exp(α(2n + 3)))
]/ [

(2n + 1)(exp(α(2n + 3))

− exp(β(2n + 3)))(exp(β + 2αn)− exp(α + 2βn))
]

+
[
2 csch(β) exp(2αn)((2n2 + 5n + 3) exp(3α + 2β + 2αn)

− (2n2 + 5n + 3) exp(4α + β + 2βn)+ (n − 2n2) exp(α(2n + 3))

+ n(2n − 1) exp(β(2n + 3)))
]/ [

(2n + 1)(exp(α(2n + 3))− exp(β(2n + 3)))

× (exp(β + 2αn)− exp(α + 2βn))
]

+ [
10 coth(α) exp(β + 2βn)

]/ [
exp(α + 2αn)− exp(β + 2βn)

]
− [

10 coth(β) exp(α + 2αn)
]/ [

exp(α + 2αn)− exp(β + 2βn)
]− 4n − 2,

(G14e)

M−−
nn+1 =

[
2(2n2 + 9n + 10) csch(α) exp(−α + β + 2βn)

]/ [
(2n + 3)(exp(β + 2βn)

− exp(α + 2αn))
]+

[
2(2n2 + 9n + 10) csch(β)

× exp(α − β + 2αn)
]/ [

(2n + 3)(exp(α + 2αn)− exp(β + 2βn))
]

− [
2(n + 2) coth(α) exp(β(2n + 3))

]/ [
exp(β(2n + 3))− exp(α(2n + 3))

]
− [

2(n + 2) coth(β) exp(α(2n + 3))
]/ [

exp(α(2n + 3))− exp(β(2n + 3))
]

+ 2(n + 2). (G14f )

Thus, solving (G11) give access to coefficients a+
n and a−

n which can then be used in (G9)
to obtain the coefficients b+

n , b−
n , d+

n , d−
n , f +

n and f −
n for transverse straining flow.

Appendix H. Derivation of the Stresslet expression for transverse flows (translation,
rotation and straining)

In this appendix, we outline the procedure to obtain an analytical expression for the
Stresslet on the colloid induced from transverse flows (translation, rotation, and straining
as shown in figure 2). The solution strategy is the same than that outlined in the main text
for transverse-planar straining.

The first step to obtain the hydrodynamic stresslet on the colloid is to express the
stresslet’s integral (3.2) in terms of variables and functions that are readily available and
easy to evaluate. To this end, the surface of integration over the colloid surface, Sa, is posed
in spherical coordinates centred at the colloid (r, θ1, θ ), and the integrand is simplified by
first utilising the velocity and pressure profiles from the definitions of the separation of
variables method written in cylindrical coordinates but projected in Cartesian coordinates,
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and second by carrying out an integration in θ ∈ (0, 2π) to finally obtain

SH = πηaKbc

2

∫ π

0

{
−2

c
cos(θ1) sin(θ1)P + 1

ρ

[
cos(θ1) sin(θ1) (U − V)+ cos2(θ1)W

]

+ ∂U
∂z

+ cos2(θ1)
∂V
∂z

+ cos(θ1) sin(θ1)

(
2
∂W
∂z

+ 2
∂U
∂ρ

+ ∂V
∂ρ

)

+ ∂W
∂ρ

}
a2 sin(θ1) dθ1

[
îx îz + îz îx

]
. (H1)

Here Kbc is the constant with units of velocity given by (3.42), which takes different
values depending on the flow problem (translational, rotational and transversal flow). The
integrand in the above equation has a trivial contribution coming from terms that match
the continuity equation for transverse problems

∂U
∂ρ

+ U
ρ

− V
ρ

+ ∂W
∂z

= 0, (H2)

upon eliminating those terms, the partial derivatives are transformed to spherical
coordinates according to

∂

∂z
= cos(θ1)

∂

∂r1
− sin(θ1)

r1

∂

∂θ1
(H3a)

∂

∂ρ
= sin(θ1)

∂

∂r1
+ cos(θ1)

r1

∂

∂θ1
, (H3b)

and terms with partial derivatives in θ1 are eliminated by integrating them, and all together
gives the expression for the integral as

SH = πηaKbc

2c

[
Kint +

∫ π

0

{
− 2 cos(θ1) sin(θ1)P

+ c
∂

∂r
[cos(θ1) (U − V)+ sin(θ1)W]

}
a2 sin(θ1) dθ1

] [
îx îz + îz îx

]
. (H4)

Here Kint is a constant of integration that has the values

Kint = 0 translation and rotation, (H5a)

Kint = −8
3 straining. (H5b)

Evaluation of the above integral either analytically or numerically is facilitated by
transforming it into bispherical coordinates. The first step is using the definitions of U,
V and W given in (G4), which facilitates the use of the functions P, ϕ, χ and φ given in
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(G6), such procedure yields

πηaKbc

2c

∫ π

0

{
−2 cos(θ1) sin(θ1)P + c

∂

∂r
[cos(θ1) (U − V)+ sin(θ1)W]

}
a2 sin(θ1) dθ1

(H6a)

= πηaKbc

2c

∫ π

0

{
− 2 cos(θ1) sin(θ1)P

+ c
2
∂

∂r

[
cos(θ1)

(ρ
c

P + 2ψ
)

+ sin(θ1)
( z

c
P + 2ϕ

)]}
a2 sin(θ1) dθ1 (H6b)

= − πηaKbc

2c

∫ + 1

− 1

c2 dσ

(cosh(α)− σ)2
[

2
( c

a

)2
[

sinh(α)
cosh(α)− σ − coth(α)

]

×
[
(1 − σ 2)1/2

cosh(α)− σ
]

P + 1
2

( c
a

)
(cosh(α)− σ)

∂

∂ξ

{[
sinh(α)

cosh(α)− σ
− coth(α)

]

×
[

sinh(ξ)
cosh(ξ)− σ

P + 2ψ
]

+
[
(1 − σ 2)1/2

cosh(α)− σ

] [
sinh(ξ)

cosh(ξ)− σ
P + 2ϕ

]}]
. (H6c)

A full transformation to bispherical coordinates was done in (H6c). The above integral can
be evaluated numerically; however, we can generate an analytical solution by utilising the
definitions of the functions P, ψ and φ from (G6), recurrence relations of the associated
Legendre polynomials, and for the integration in σ the integral reflecting the orthogonality
of P1

n(σ ) ∫ +1

−1
P1

m(σ )P
1
n(σ ) dσ = 2n(n + 1)

2n + 1
. (H7)

The final expression for the stresslet is given by

S = −6πηa2

{
K0 + 1

45
√

2
sinh2(α)

∞∑
n=0

[−2
{
n(n + 1)

[
(4(2n + 1)− 7 coth(α)) b+

n + 10a+
n
]

+ 5 [2n + 1 − coth(α)] d+
n
}+ {n(n + 1)

{
[2(2n + 1)− coth(α)] b−

n + 10a−
n
}

+ 5 [2n + 1 − coth(α)] d−
n
}

exp(−(2n + 1)α)
]

K1

}
K2

[
îx îz − îz îx

]
. (H8)

Here the value of the constants K0, K1 and K2 give the correct expression and units for
each flow:

K0 = 0 K1 = 1 K2 = U for transverse translation,
K0 = 0 K1 = a sinh(α) K2 = Ω for transverse rotation and

K0 = a
2
9

K1 = a sinh(α) K2 = E for transverse straining.

⎫⎪⎬
⎪⎭ (H9)

The constants a+
n , a−

n , b+
n , b−

n , d+
n and d−

n to evaluate the stresslet expression are given in
Appendix G for transverse straining, whereas those for transverse translation and rotation
were reported elsewhere (O’Neill & Majumdar 1970a; Jones 2009).
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Appendix I. Equivalences between hydrodynamic coefficients for a particle near a flat
wall and those of a particle in spherical confinement

Here we report the arithmetic equivalences utilised to compare the stresslet-related
hydrodynamic coefficients developed in this work with those for a particle near a flat wall
reported previously in the literature. From the method of Stokes eigenfunction expansions
(Cichocki & Jones 1998) there are complete solutions for the coefficients XG, YG and YH ,
and the equivalences with the coefficients reported in this work are as follows:

XG,flat wall
Se = −XG for R → ∞, (I1a)

YG,flat wall
Se = −2YG for R → ∞, (I1b)

YH,flat wall
Se = 3/2YH for R → ∞. (I1c)

From the method of separation of variables (Swan 2010) there are coefficients for all the
transversal couplings YG, YH and YM , and the equivalences with the coefficients reported
in this work are

YG,flat wall
sov = YG for R → ∞, (I2a)

YH,flat wall
sov = −YH for R → ∞, (I2b)

YM,flat wall
sov = YM for R → ∞. (I2c)

In the study of a sphere in a shear flow (Goldman et al. 1967), the force and torque on the
colloid may be compared to the coefficients in this work according to

Fflat wall
x = YA +

[
λc

1 − r/R

] (
2/3YB − YG

)
, (I3a)

Lflat wall
y = 2

λc
(1 − r/R) YB + YC + 3/2YH. (I3b)

Appendix J. Tabular data of hydrodynamic functions for a particle near a flat wall

Table 1 presents data of hydrodynamic functions for a particle near a flat wall calculated
with expressions from the present work with confinement λc = 10–7.

Appendix K. Stochastic sampling to obtain η′∞/η and the hydrodynamic coefficients
X M,i, Y M,i and ZM,i

From the linearity of the Stokes equations, we can write the hydrodynamic stresslet SH,i

of the i-particle that is freely mobile and embedded in a straining flow E as

SH,i = RSE,i : E. (K1)

In the framework of the CSD algorithm (Aponte-Rivera et al. 2018; Gonzalez et al. 2021),
the tensor RSE,i is not calculated explicitly, but both SH,i and E are readily available.
Thus, a way to access RSE,i is by utilising a random tensor E with mean and covariance
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given by

Ē = 0, EE = �{2,2}, (K2a,b)

where the fourth-order tensor �{2,2} is given by

�
{2,2}
mjkl = 1

2

(
δmkδjl + δmlδjk − 2

3δmkδjl

)
, (K3)

and �{2,2} works as the fourth-rank identity tensor, i.e.

E = �{2,2} : E = E : �{2,2}. (K4)

Therefore, multiplying (K1) by above definition of E on both sides and averaging over
many random realisations yields

SH,iE = RSE,i : EE = RSE,i. (K5)

This resultant RSE,i tensor is decomposed according to (5.13) into three orthogonal tensors,
where the projections are the hydrodynamic coefficients XM,i, YM,i and ZM,i, which can
be obtained according to

XM,i = 3
2 r̂(i)m r̂(i)j r̂(i)k r̂(i)l RSE,i

m,j,k,l, (K6a)

YM,i = r̂(i)m r̂(i)l δjkRSE,i
m,j,k,l − 2

3 XM,i, (K6b)

ZM,i =
δmlδjkRSE,i

m,j,k,l − XM,i

2
− YM,i, (K6c)

where the unit vector r̂(i) = r(i)/r(i) points in the same direction as r(i), which locates the
centre of the i-particle with starting point at the centre of the cavity. These hydrodynamic
coefficients XM,i, YM,i and ZM,i alongside the strain rate definition E from (K2a,b)
simplify the tensorial products in the definition of η′∞/η (5.12) as follows:

E : RSE,i : E
E : E

= XM,i + 2YM,i + 2ZM,i

5
. (K7)

The same procedure is applied simultaneously to all particles in the suspension and
is repeated over many independent configurations to give the final expression for
the high-frequency viscosity (5.14) in terms of the ensemble-averaged hydrodynamic
coefficients 〈XM,i〉, 〈YM,i〉 and 〈ZM,i〉 (5.15).

Appendix L. Supplemental figures

Here we present supplemental figures 15–17 cited in the main text.
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Figure 15. Particle hydrodynamic contribution to η′∞ (5.16) for confined colloidal suspensions as a function
of volume fraction compared with the values of an unconfined suspension.
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Figure 16. (a) Analysis of the near-field particle–particle contribution to 2
5 (η

′∞/η − 1)1/φ for λc = 0.2,
showing the percentage of the total value that comes from particles located less than two radii away from
the wall as well as the percentage of the particles located at that same distance. (b) Ratio of the particle–cavity
to the particle–particle contributions per two-body interaction to 2

5 (η
′∞/η − 1)1/φ for λc = 0.2
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Figure 17. High-frequency viscosity η′∞ for unconfined suspensions predicted in silico from the suspension
stresslet (empty circles) and from two-point microrheology (empty squares) as a function of volume fraction.
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