
J. Appl. Probab. 60, 418–434 (2023)
doi:10.1017/jpr.2022.51

GENERALIZATIONS OF FOREST FIRES WITH IGNITION AT
THE ORIGIN

FRANCIS COMETS, Université de Paris
MIKHAIL MENSHIKOV,∗ Durham University
STANISLAV VOLKOV ,∗∗ Lund University

Abstract

We study generalizations of the forest fire model introduced in [4] and [10] by allowing
the rates at which the trees grow to depend on their location, introducing long-range
burning, as well as a continuous-space generalization of the model. We establish that in
all the models in consideration the expected time required to reach a site at distance x

from the origin is of order (log x)(log 2)−1+δ for any δ > 0.

Keywords: Forest fire model; long-range interactions; time-dependent percolation;
self-organized criticality

2020 Mathematics Subject Classification: Primary 60K35
Secondary 82C43; 92D25

1. Introduction

The purpose of this paper is to generalize the results for the version of the forest fire model
studied in [10]; see also [4] and [6]. In that model, one considers the following continuous-time
process on Z+ = {0, 1, 2, . . .}. Let ηx(t) ∈ {0, 1} be the state of site x ∈Z+ at time t ≥ 0. Site
x is declared vacant (resp. occupied) if ηx = 0 (resp. ηx = 1) The process evolves as follows:
vacant sites become occupied independently with rate 1; after they are occupied, they can be
‘burnt’ by a fire spread from a neighbour on the left, which makes them vacant again. There is
a constant (and the only) source of fire attached to site 0; so when site 0 becomes occupied, the
whole connected cluster of occupied sites which contains 0 is instantaneously burnt out.

Initially all the sites are vacant. We are interested in the dynamics of process {ηx(t)} as
t → ∞. For other relevant models of forest fires we refer the reader to [2], [3], and [5]; also,
some more recent results dealing with complete graphs can be found in [6] and for planar
lattices in [8]. See also [9] for the connection between the multiplicative coalescent with linear
deletion and forest fires.
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Generalizations of forest fires with ignition at the origin 419

In this paper we consider the following two generalizations.

(i) We allow the rates at which vacant site x becomes occupied to depend on x, though they
all must lie in a certain interval, and also consider a long-range mode (the terminology
is consistent with use in the percolation theory), where the fires can spread further than
just to the immediate neighbour of the ‘burning’ site.

Note that for each site x the sequence of burning times at x is a renewal process that
is measurable with respect to the filtration generated by the arrival processes at the sites
{0, 1, . . . , x}.

The results are presented in Theorem 1 below.

(ii) We also consider a continuous-space generalization of the process where we replace Z+
with R+; the main result here is our Theorem 2. We want to mention that in this case
we consider only a homogeneous version, as even then the arguments become quite
complicated.

We note that the bounds on the expected time to reach point x given by Theorems 1 and 2
are probably suboptimal; we expect them in reality to be of order log x (as was shown for a
simpler model in [10]) rather than some power of log x; however, we do not see how to prove
it in a general case.

The rest of the paper is organized as follows. In Section 2 we present the formal definition
of the processes we study. In Section 3 we formulate and prove our main theorem for model (i).
The strategy of the proof is roughly as follows. First we introduce an auxiliary ‘green’ process,
which is a version of the forest process without fires, and we study how far a potential fire
could reach, should it occur at the specific point of time. It turns out that it is much easier to
study this auxiliary process, and at the same time the ‘real’ fire process and the green process
coincide from time to time. This allows us to introduce an increasing sequence of locations
nk ↑ ∞, and using intricate coupling to get an upper bound of the expected time when the nk

are burned for the first time. Finally, in Section 4 we formulate and prove the theorem about
the continuous version of the model.

Throughout the paper we will use notation a(t) � b(t) if limt→∞ a(t)/b(t) = 1, and we
assume that all the processes are càdlàg, that is, at the time of the fire all points of the burning
cluster become vacant.

2. Formal definitions and the ‘green’ process

The probability space on which we define the processes is as follows. Given a deterministic
sequence {λx}x∈Z+ , for each x we have an independent Poisson process of rate λx, denoted
by Px(t), started at zero. The probability and expectations throughout the paper will be with
respect to the product measure generated by these processes; elementary outcomes will be
denoted by ω. Note that this definition will be slightly modified for model (ii).

The green process for the forest fire process

Consider the following modification of the forest fire process. Fix an x ∈ {1, 2, . . .}. Assume
that there are no fires at all, and wait for the first time when x is reachable from 0 (precisely
defined immediately after (1)). This will provide a trivial lower bound for the minimum time
necessary for the fire to reach this point.

More formally, let Px, x ∈Z+, be a collection of independent Poisson processes, such that
Px has rate λx. Define a {0, 1}Z+-valued continuous-time stochastic process SG as follows. The
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420 F. COMETS ET AL.

value SG(x, t) ∈ {0, 1} for x ∈Z+, t ≥ 0, is the state of site x at time t. We say that x is occupied
at time t (resp. vacant) whenever SG(x, t) = 1 (resp. SG(x, t) = 0). At time t = 0 all the states
are vacant, i.e. SG(x, 0) = 0 for all x ≥ 0.

At each arrival time of the Poisson process Px, the state x becomes 1, regardless of its
previous value. Formally,

SG(x, t) =
{

0 if Px(t) = 0,

1 if Px(t) ≥ 1.
(1)

Let r ≥ 1 (called the range of the process) be some positive integer; we say that x ∈ {1, 2, . . .} is
reachable from 0 at time t if there exists a positive integer n and a sequence of points in Z+ 0 =
x0 < x1 < x2 < · · · < xn = x such that xi − xi−1 ≤ r for i = 1, 2, . . . , n and also SG(xi, t) = 1
for i = 0, 1, 2, . . . , n − 1 (note that we do not require that SG(x, t) = 1). This defines the green
process. For the green process, we can define the quantity NG(t), which is the rightmost reach-
able vertex at time t; in particular, if NG(t) = n then SG(n − r, t) = 1 and SG(n − i, t) = 0 for
i = 0, 1, . . . , r − 1. For definiteness, if SG(0, t) = 0 let NG(t) = 0.

The time when point x becomes reachable for the first time is denoted by

τG
x = inf

{
t > 0 : NG(t) ≥ x

}
.

It is easy to see that NG(t) < ∞ a.s. and that NG(t) ↑ ∞ as t → ∞ a.s.
The forest fire process, denoted by SF(x, t), is easily defined on the same probability space

generated by the same processes Px(t), x = 0, 1, 2, . . . , as the green process, with the addi-
tional rule saying that whenever site 0 becomes occupied, all the sites that are reachable from
0 become vacant. We say that all these sites are burnt at this time (regardless of whether or
not they were previously occupied). Throughout the rest of the paper we let N(t) denote the
rightmost point burnt by the fire by time t.

The previously studied case (e.g. in [10]) when r = 1 is referred to as the ‘short’ range, as
opposed to the ‘long’ range when r can be greater than 1.

Remark 1. Suppose that λx ≡ 1 and r = 1 as in [10]. The process NG is then a time-
inhomogeneous pure jump Markov process on Z+ with unit jump rate and with a Geom(e−t)
jump distribution, so NG(t) e−t converges in law to an exponential variable, and

P
(
NG(t + dt) = NG(t) + k | history up to t

)=
{

1 − dt + o(dt), k = 0,

e−t(1 − e−t)k−1 dt + o(dt), k ≥ 1.

Indeed, for an individual site the probability of being occupied in time t is 1 − e−t, and thus
the longest stretch of such occupied sites has a geometric distribution. Since at time t we have
NG(t) = n, the site n + 1 must be vacant at time t. If it becomes occupied during time dt, which
occurs with probability dt, the process will immediately spread further to the right due to the
already occupied sites at n + 1, n + 2, . . . .

The usefulness of the green process will become clear from Proposition 1, introduced later.
At this point we outline our construction. The green and fire processes are naturally coupled:
they have the same ‘reach’ at a sequence of times tending to infinity. The green process is a
trivial upper bound for the other one, while it can be analysed somewhat explicitly. On the
other hand, the fire process has enough of a renewal structure to estimate how much slower
than the green process it can be.
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FIGURE 1. Continuous tree model on R+.

Now we rigorously introduce models (i) and (ii) studied in the current paper.

(i) Non-homogeneous, long-range process

Suppose that the rate at which site x becomes occupied depends on the site, and denote it
by λx. Throughout the paper we will assume uniform bounds on these rates:

c1 ≤ λx ≤ c2, x = 0, 1, 2 . . .

for some fixed constants c2 > c1 > 0. We will assume also that the process is long-range, that
is, when the fire hits point x it burns all vertices in [x, x + 1, . . . , x + r] for some fixed positive
integer r (‘range’).

In the original model studied in [10], one has λx = 1 for all x, and r = 1. The model where
all λx are the same will be referred to as the homogeneous model; when r = 1 we will say that
it is a short-range model.

(ii) Continuous tree model on R+
Suppose that ‘trees’ (or rather their centres) arrive on R+ as a Poisson process of rate 1.

Namely, the number of trees that appeared on [0, x], x > 0 by time t > 0 is given by a num-
ber of points of two-dimensional Poisson process in a rectangle [0, x] × [0, t]. Each tree is a
closed interval (one-dimensional circle) of a fixed radius 1. See Figure 1. There is a constant
source of fire attached to the origin, point 0. Whenever a tree covering the origin appears, it
immediately burns down together with the whole connected component of trees (overlapping
circles) containing point 0. For the continuous model, we can similarly define N(t) and NG(t),
as we did for the model on Z+.

Also, to avoid making the paper unnecessarily cumbersome, we restrict our attention to the
homogeneous version of model (ii), even though one can think of a more general setup.

Definition 1. Let τx, x ∈R+, be the time when point x is burnt by fire for the first time in the
forest fire model (either (i) or (ii)). Similarly, let τG

x be the first time when x is reachable by the
green process. More formally,

τx = inf{t : N(t) ≥ x},
τG

x = inf
{
t : NG(t) ≥ x

}
.

The following statement applies to both models (i) and (ii).

Proposition 1. Let τx and τG
x be as defined above. Then there is a coupling between the green

process and the forest fire process such that the following hold.

• The original forest fire process is always behind or equal to the green process, i.e. τx ≥
τG

x for all ω.

• Nevertheless, every time the fire process burns a point never burnt before, its ‘spread’
coincides with that of the green process (see Figure 2): namely, for almost all ω there is
an infinite increasing sequence of times ti → ∞, i = 1, 2, . . . , such that N(ti) = NG(ti).
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FIGURE 2. τx for the forest fire and green processes.

Proof. The first part of the statement follows immediately from the construction of the two
processes on the same probability space. To show the second part, introduce the increasing
sequence of stopping times σi and locations ui such that σ0 = u0 = 0; σi > σi−1 is the first time
the fire burns a point never burnt before, and ui is the rightmost point burnt by the fire at time
σi. It is not hard to see that all σi < ∞ and ui < ∞ a.s.

Then, at times σi, the forest fire process coincides with the ‘green’ process, since at the
infinitesimal moment before that, all the vertices to the right of ui−1 are in the same state for
both processes. �

3. Non-homogeneous and long-range processes

The main result of this section is the following theorem.

Theorem 1. Assume that the forest fire process is the one described by model (i) for some r,
c1, and c2. Fix any κ > (log 2)−1 = 1.442695 . . . . Then, for all large enough x,

Eτx ≤ (log x)κ .

Observe that this result does not depend on values c1, c2, r. The proof of the above statement
will follow from Sections 3.2.2 and 3.3.

Remark 2. By comparing τx+1 with τx, it is not difficult to see that

Eτx+1 ≤ (2 + o(1)) Eτx,

and hence to get by induction that Eτx < ∞ for all x ≥ 1. See the proof of Theorem 1.

Remark 3. Using Propositions 1 and 4 (or Propositions 1 and 2 in the homogeneous case),
which come later in the paper, it is easy to obtain that there is a sufficiently small constant
C > 0 such that P(τx ≥ C log x) ≥ P(τG

x ≥ C log x) → 1 as x → ∞, and hence τx must be at
least of order log x.

Remark 4. We conjecture that the correct power of the log in the statement of Theorem 1
should in fact be 1, as in [10], thus matching the lower bound. See also Corollary 1.
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Generalizations of forest fires with ignition at the origin 423

Recall that the ‘green process’ is the modified version of the forest fire process in which
there are no fires at all, and that NG(t) is the size of the connected cluster of occupied vertices
including the origin for the green process. We start with a special case.

3.1. Short range non-homogeneous process

This is the special case of the process when r = 1, which we can study without reference
to the green process, using Lemma 3 in [4] about the invariance of the distribution of τx with
respect to permutation of the rates λ1, . . . , λx.

It turns out that larger λ correspond to smaller τx, hence τx is stochastically bounded below
and above by τ̃x/c2 and τ̃x/c1 respectively, where τ̃x is the distribution found in [10]. In
particular, Eτx = O(log x).

To see why this is true, note that by basic coupling, the fire process with rates
λ1, . . . , λx−1, c2 hits point x before τx. Now the permutation invariance result of
[4, Lemma 3] states that the former has the same law as the hitting time of x by the fire process
with rates c2, λ1, . . . , λx−1. Iterating the argument, we prove our claim.

Remark 5. It is straightforward that for the green process in this case we have

P
(
NG(t) ≥ n

)= (
1 − e−λ1t)(1 − e−λ2t) · · · (1 − e−λnt).

3.2. Long-range green process

Define Bi = Bi(t) as the event that node i is vacant at time t. Then Bi are independent and
P(Bi) = e−λit. Moreover,

{
NG(t) < n

}=
n−r⋃
i=0

(Bi+1 ∩ Bi+2 ∩ · · · ∩ Bi+r), (2)

that is, there is a vacant interval of length r somewhere on [0, n]. From equation (2) we have

P
(
NG(t) < n

)≤
n−r∑
i=0

P

(
r⋂

m=1

Bi+m

)
=

n−r∑
i=0

e−(λi+1+···+λi+r)t =: fn(t). (3)

3.2.1. The homogeneous case. Without loss of generality assume that λx = λ = 1. The next
statement shows that the first time at which NG(t) ≥ n is of order T := log n/r, where r is the
range of the process.

Proposition 2. For every ε > 0 we have

P
(
NG((1 − ε)T) > n

)= o(1),

P
(
NG((1 + ε)T) < n

)= o(1),

as n → ∞.

Let pn = pn(t) := P
(
NG(t) ≥ n

)
, that is, the probability that on the set of vertices

{1, 2 . . . , n} there are no ‘holes’ of length of at least r, and site 0 is occupied. Observe that
pn satisfies the following recursion:

pn =
r∑

k=1

(1 − α)αk−1pn−k, n > r,

p1 = p2 = · · · = pr−1 = 1 − e−t,
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where α = αt := e−t. Indeed, in order to reach n > r, one must have an occupied vertex
somewhere between 1 and r; the probability that the first such vertex is exactly at k is

e−t · e−t · . . . · e−t︸ ︷︷ ︸
k − 1 times

· (1 − e−t),

and then we need to reach n from k. Therefore the asymptotic behaviour of pn will depend on
the largest solution of the characteristic equation

ξ r −
r−1∑
k=0

(1 − α) α(r−1)−k ξ k = 0. (4)

In particular, when r = 2 we get ξ1,2 = (1 − α ± √
D)/2, where D = 1 + 2α − 3α2, resulting in

pn = 1

2

[(
1 + 1 + α√

D

)
·
(

1 − α + √
D

2

)n

+
(

1 − 1 + α√
D

)
·
(

1 − α − √
D

2

)n]
,

where n = 1, 2, . . . .
While we cannot solve (4) explicitly except for r = 2 and r = 3, we can still find the critical

value of t for a given n, i.e. T . Indeed, from (3) we have

P
(
NG(T(1 + ε)) < n

)≤ ne−rT(1+ε) = n−ε → 0,

and at the same time, since the unions of the events below are independent,

P
(
NG(t) > n

)≤ P((Bc
1 ∪ · · · ∪ Bc

r) ∩ (Bc
r+1 . . . Bc

r+r) ∩ · · · ∩ (Bc
Mr+1 . . . Bc

Mr+r))

=
M∏

k=0

P((Bkr+1Bkr+2 . . . Bkr+r)c)

= (1 − e−rt)�n/r�

≤ (1 − e−rt)n/r−1,

where M = �n/r� − 1 and �x� denotes the integer part of x ∈R. Consequently

P
(
NG(T(1 − ε)) > n

)≤ (1 − e−rT(1−ε))n/r−1 =
(

1 − 1

n1−ε

)n/r−1

≤ 2 e−nε/r → 0.

Thus Proposition 2 is proved.

3.2.2. The non-homogeneous case. Here we no longer assume that the λx are the same for all
x, as we did in Section 3.2.1.

The following statement is trivial and its proof is thus omitted.

Proposition 3. The function fn(t) defined in (3) satisfies the following properties.

• For a fixed n, fn(t) is monotonically decreasing with range from n − r + 1 to 0 as t goes
from 0 to +∞.

• For a fixed t, fn(t) is monotonically increasing in n and moreover fn(t) − fn−1(t) ≤ e−rc1t.
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Let us split the sum in fn(t) into r ‘almost’ equal parts according to the value of the remainder
when i is divided by r. Namely, for j = 0, 1, . . . , r − 1 let

fn,j(t) =
�(n−j−r)/r�∑

k=0

e−(λrk+j+1+λrk+j+2+···+λrk+j+r)t,

and therefore
fn(t) = fn,0(t) + fn,1(t) + · · · + fn,r−1(t).

First we show that
1 − e−fn(t)/r ≤ P

(
NG(t) < n

)≤ fn(t).

Indeed, the upper bound follows from (3). To show the lower bound, note that at least one
of fn,j(t), j = 0, 1, . . . , r − 1, must be larger than fn(t)/r; without loss of generality, assume
fn,0(t) ≥ fn(t)/r. Then we have

P
(
NG(t) ≥ n

)= P

(
n−r⋂
i=0

(Bi+1Bi+2 . . . Bi+r)c

)

≤ P

(�n/r�−1⋂
k=0

(Brk+1Brk+2 . . . Brk+r)c

)

indep.=
�n/r�−1∏

k=0

P((Brk+1Brk+2 . . . Brk+r)c)

=
�n/r�−1∏

k=0

(1 − e−(λrk+1+···+λrk+r)t)

≤ exp

(
−

�n/r�−1∑
k=0

e−(λrk+1+···+λrk+r)t

)

= e−fn,0(t)

≤ e−fn(t)/r,

hence P
(
NG(t) < n

)≥ 1 − e−fn(t)/r.
Let t∗ = t∗(n, α) be such that fn(t∗) = α ∈ (0, 1); its existence and uniqueness follow from

Proposition 3 and the fact that fn(·) is strictly decreasing on [0, ∞) and continuous. Now set
α = 1/2 and define T̃ = t∗(n, 1/2); later we will establish that T̃ = O(log n): see (5). Then

0 < 1 − e−1/(2r) ≤ P
(
NG(T̃) < n

)≤ 1

2
.

Proposition 4. Fix a small ε > 0. Then, for any c ∈ (0, c1/c2) and all large n,

P
(
NG(T̃ − εT̃

)≥ n) ≤ e−ncε
,

P
(
NG(T̃ + εT̃

)
< n) ≤ n−cε.

Proof. Indeed, since

(n − r + 1) e−rc2T̃ =
n−r∑
i=0

e−rc2T̃ ≤
n−r∑
i=0

e−(λi+···+λi+r)T̃ ≡ 1

2
≤

n−r∑
i=0

e−rc1T̃ = (n − r + 1) e−rc1 T̃ ,
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by summing up the left-hand side, the right-hand side, and 1/2 of the above chain of
inequalities, we immediately get

(2n − 2r + 2)1/c2 ≤ erT̃ ≤ (2n − 2r + 2)1/c1 . (5)

Consequently

fn(T̃ + εT̃) =
n−r∑
i=0

e−(λi+1+···+λi+r)T̃

e(λi+1+···+λi+r)εT̃
≤

n−r∑
i=0

e−(λi+1+···+λi+r)T̃

erT̃·c1ε
≤ 1

2 (2n − 2r + 2)c1ε/c2
.

By the same token,

fn(T̃ − εT̃) =
n−r∑
i=0

e−(λi+1+···+λi+r)T̃ × e(λi+1+···+λi+r)εT̃

≥
n−r∑
i=0

e−(λi+1+···+λi+r)T̃ × erT̃·c1ε

≥ 1

2
(2n − 2r + 2)c1ε/c2 .

As a result,

P
(
NG(T̃ − εT̃) < n

)≥ 1 − e−r−1 fn(T̃−εT̃) ≥ 1 − exp

(
− (2n − 2r + 2)c1ε/c2

4r

)
and

P
(
NG(T̃ + εT̃) < n

)≤ fn(T̃ + εT̃) ≤ 1

2 (2n − 2r + 2)c1ε/c2
,

which yields the statement of the theorem, since c1ε/c2 > cε. �

Corollary 1. There exists C1 > 0 such that

lim inf
x→∞

τx

log x
≤ C1 a.s. (6)

Proof. From Proposition 4 we get that for some non-random C1 > 0

P
(
τG

n ≥ C1 log n
)≤ n−cε for all large n.

By choosing a sequence nj = jA, j = 1, 2, . . . for some large A > 0 such that Acε > 1, by the
Borel–Cantelli lemma a.s. for all large enough j, we have

τG
nj

≤ C1 log(jA).

Using monotonicity of τG
x in x, and the fact that for each x there is a j such that

(1 − o(1)) x ≤ jA ≤ x < (j + 1)A ≤ (1 + o(1)) x,

we conclude that
τG

x ≤ (C1 + o(1)) log x

a.s. for all large x. As a result, by the second part of Proposition 1, which equivalently stated
means that τx = τG

x for infinitely many x, we obtain (6). �
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3.3. Coupling of the forest fire and green processes

Fix γ ∈ (1, 2), and let us define the increasing sequence of times γ k, k = 1, 2, . . . . Let

nk = min{n ∈Z+ : fn(γ k) ≥ 1/2},
Tk = t∗(nk, 1/2).

Proposition 5. Let nk and Tk be as defined above. Then the following holds.

• nk = exp{r c̃k γ k} for some c̃k ∈ [c1 − o(1), c2 + o(1)].

• Fix any positive δ. Then γ k ∈ [Tk − δ, Tk] provided k is large enough.

Proof. The first part of the statement follows immediately from the definition of f . To show
the second part, note that from Proposition 3 we have

fnk−1(γ k) <
1

2
= fnk (Tk) ≤ fnk (γ k) =⇒ γ k ≤ Tk.

On the other hand, for any small positive δ,

fnk (Tk − δ) ≥ fnk (Tk)erc1δ = erc1δ

2
,

so from Proposition 3 we have

fnk−1(Tk − δ) = fnk (Tk − δ) − [fnk (Tk − δ) − fnk−1(Tk − δ)]

≥ erc1δ

2
− e−rc1(Tk−δ)

≥ 1

2
+ rc1δ

2
− e−rc1(Tk−δ).

For k large enough, γ k is also large, and so is Tk ≥ γ k, which yields that e−rc1(Tk−δ) is very
small, yielding that the right-hand side of the above expression is larger than 1/2, so

fnk−1(Tk − δ) >
1

2
> fnk−1(γ k) =⇒ Tk − δ < γ k.

by monotonicity of fnk−1(·). Consequently γ k ∈ [Tk − δ, Tk] for all large k. �

Corollary 2. For any ε > 0,

P
(
NG((1 − ε) γ k) ≥ nk

)→ 0,

P
(
NG((1 + ε) γ k) < nk

)→ 0,
(7)

as k → ∞.

Proof. The proof immediately follows from Propositions 4 and 5. �

Now we are ready to present the proof of our main result.

Proof of Theorem 1. Fix k ≥ 1 and define the new blue process SB, which takes values in
{0, 1}Z+ , as follows. Let τ

(1)
nk be the first time when the fire process reaches nk. Up to this
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time SB completely coincides with the fire process SF. However, at this hitting time, we set
SB
(
x, τ

(1)
nk

)= 0 for all x (not just those reachable from 0). After this, the blue process evolves
again exactly like the fire process on the same probability space using the same collection of
the Poisson process Px (see the beginning of the paper), until the next time when nk is burnt, at
which point the blue process restarts again with zeros everywhere. Thus SB(x, t) is a renewal
process with the renewal times τ

(i)
nk , i = 1, 2, . . . , where τ

(i)
nk are the consecutive times when

the fire process reaches nk. Moreover, the blue process and the fire process are trivially coupled
such that

SB(x, t) = SF(x, t) for t < τ
(1)
nk and all x,

SB(x, t) = SF(x, t) for all t and x ≤ nk,

SB(x, t) ≤ SF(x, t) for all t and x > nk.

Let ρi (resp. ρF
i ), i = 1, 2, . . . , be the rightmost point burnt by the blue process (resp. the fire

process) at time τ
(i)
nk . Define the inter-arrival times �

(i)
nk = τ

(i)
nk − τ

(i−1)
nk , i = 2, 3, . . . , with the

convention that �
(1)
nk = τ

(1)
nk = τnk . From the definition of the blue process, it follows that the

random variables ξi =
(
�

(i)
nk , ρi

)
, i = 2, 3, . . . are i.i.d.

By construction ρ1 = ρF
1 , that is, the rightmost burnt point is the same for the fire and

the blue processes when the fire process reaches nk for the first time; however, this does not
necessarily hold for the times τ

(i)
nk , i ≥ 2. At the same time we can claim the following.

Lemma 1. We have

• ρi ≤ ρF
i for all i,

• on the event ρi ≤ ρi−1 we have ρF
i = ρi.

Proof of lemma. The first part of the lemma trivially follows from the fact that SB(x, t) ≤
SF(x, t) for all x and t. To show the second statement, note that at time s = τ

(i−1)
nk we have

SF(x, τ (i−1)
nk

)= SB(x, τ (i−1)
nk

)= 0 for x = 0, 1, . . . , ρi−1.

Until time τ
(i)
nk , the fire and the blue processes coincide on [0, ρi−1]. Since ρi ≤ ρi−1,

SB(x, τ (i)
nk

− 0
)= 0 for x = ρi, ρi − 1, . . . , ρi − (r − 1),

where SB(x, t − 0) denotes the state of x in the infinitesimal moment just before time t.
However, since the blue and the fire process coincide on [0, ρi−1], this also means that

SF(x, τ (i)
nk

− 0
)= 0 for x = ρi, ρi − 1, . . . , ρi − (r − 1),

and thus the fire cannot reach any point beyond ρi. �

Now fix an ε > 0 so small that

γ (1 + ε) < 2 (1 − ε). (8)
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For each j = 1, 2, . . . , let SG
j denote a version of the green process which is reset everywhere to

zero at time τ
(j−1)
nk , i.e. we have SG

j

(
x, τ

(j−1)
nk

)= 0 for all x ∈Z+, with the convention τ
(0)
nk ≡ 0;

thus SG
j ≡ SG

1 . Define

Ek,j =
{
for the green process SG

j there exists a subinterval of (0, nk+1]

of length r that has no Poisson arrivals during the time
[
0, �(j)

nk
+ �(j+1)

nk

]}
as well as αk = P(Ek,j); note that this probability does not depend on j since �

(j)
nk are i.i.d.

Lemma 2. We have αk → 0 as k → ∞.

Proof of lemma. Recall τG
x from Definition 1 and apply Corollary 2. We have shown that

P
(|τG

nk
− γ k| > εγ k)→ 0 as k → ∞ (9)

and

P
(
τnk < γ k(1 − ε)

)≤ P
(
τG

nk
< γ k(1 − ε)

)= o(1), (10)

where o(1) → 0 as k → ∞. From (8), (9), and (10) it follows that

P(Ek,j) ≤ P
(
Ek,j ∩

{
�(j)

nk
+ �(j+1)

nk
> 2(1 − ε)γ k})+ 2 P(τnk < (1 − ε)γ k)

≤ P
(
τG

nk+1
> 2(1 − ε)γ k)+ o(1) ≤ P

(
τG

nk+1
> γ (1 + ε)γ k)+ o(1)

= P
(
τG

nk+1
> (1 + ε)γ k+1)+ o(1) ≤ o(1) + o(1),

where o(1) → 0 as k → ∞. �

Corollary 3. For j = 1, 2, . . . we have{
ρF

j+1 ≥ ρF
j and ρF

j+1 < nk+1
}⊆ Ek,j.

Proof. The result follows from the construction of SG
j and SF which are both functionals of

the collection of the Poisson processes Px, x ∈Z+; in particular,

SF(x, t) ≥ SG
j (x, t)

for t ∈ [τ (j)
nk , τ

(j+1)
nk

]
and x ∈ [ρF

j , nk+1
]
. �

One of the fires that burns nk will eventually burn nk+1 as well, so we can write

τnk+1 = �(1)
nk

+ �(2)
nk

1{ρF
1 <nk+1} + �(3)

nk
1{ρF

1 <nk+1,ρ
F
2 <nk+1} + · · · = �(1)

nk
+

∞∑
i=1

�(i+1)
nk

1Ai ,

where

Ai = A(k)
i =

i⋂
j=1

{
ρF

j < nk+1
}

is a decreasing sequence of events. In other words, Ai corresponds to the event that during the
first i fires at point nk, point nk+1 has not yet been burnt. Since �

(i)
nk , i = 1, 2, . . . , are i.i.d.,
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�
(1)
nk ≡ τnk , and �

(i+1)
nk is independent of Ai for each i:

E(τnk+1 ) =Eτnk ·
[

1 +
∞∑

i=1

P(Ai)

]
. (11)

Our task now is to estimate P(Ai) where i ≥ 1. Let y = (y0, y1, . . . , yi) be a sequence
of positive numbers of length i + 1 with the convention that y0 ≡ +∞. We say that yj,
j = 1, 2, . . . , i − 1, is a weak local minimum if

Hj(y) = {yj ≤ min(yj−1, yj+1)}.
For each such sequence y there exists a non-negative integer ν = ν(y) ≥ 0, which is a

lower bound on the number of local minima, and the increasing sequence of indices s(y) =
(s1(y), s2(y), . . . , s(y)ν(y)) with the property

• s1(y) = inf{j ≥ 1 : Hj(y) occurs} is the index of the first weak local minimum in the
sequence y;

• sm+1(y) is the index of the first local minimum in the sequence y with index at least
sm(y) + 3;

• sν(y) + 3 > i − 1, or there is no local minimum with index greater than or equal to
sν(y) + 3.

Set ν(y) = 0 if no weak local minima exist in y. (To illustrate this concept, consider the exam-
ple where y = (∞, 3, 2, 4, 1, 3, 2, 5), then ν = 2 and (s1, s2) = (2, 6). Note that the number of
local minima here is 3 > ν, since the middle local minimum is too close to the first one.)

Now let
y = (+∞, ρ1, . . . , ρi), σ = s(y),

where ρ1, ρ2, . . . are defined at the beginning of the proof of the theorem, and observe that
the second condition in the definition of sm(y) ensures that σm+1 ≥ σm + 3, so the triples
(σm − 1, σm, σm + 1) are non-overlapping for distinct ms, implying, in turn, that the triples
(ρσm−1, ρσm , ρσm+1) are independent for distinct ms. As a result,

P(σm+1 = σm + 3 | σ1, . . . , σm < i − 3) ≥ P(ρσm+3 ≤ min(ρσm+2, ρσm+4)) ≥ 1

3
,

due to the symmetry between ρσm+2, ρσm+3, ρσm+4. Since the ρi are i.i.d., we therefore
conclude that ν(y) is stochastically larger than a Binomial (�(i + 1)/3�, 1/3) random variable.

By Lemma 1 ρF
j+1 ≥ ρj+1 and moreover on the event Hj(ρ), we have ρF

j = ρj since ρj ≤ ρj−1.

Since also
(
ρF

j =)ρj ≤ ρj+1
(≤ ρF

j+1

)
on Hj(ρ), by Lemma 1 and Corollary 3,

P
(
ρF

j+1 < nk+1, Hj
)≤ P

(
ρF

j ≤ ρF
j+1 < nk+1, Hj

)≤ P(Ek,j, Hj) ≤ P(Ek,j) ≤ αk → 0.

By the law of iterated expectations,

P(Ai, ν(y) = m) =
∫

y : ν(y)=m
P(Ai | (ρ)i = y) dP(ρ = y) ≤ sup

y : ν(y)=m
P(Ai | (ρ)i = y),

https://doi.org/10.1017/jpr.2022.51 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2022.51


Generalizations of forest fires with ignition at the origin 431

where (ρ)i := (+∞, ρ1, ρ2, . . . , ρi), and the supremum is taken over all sequences y of length
i + 1 with y0 = +∞ and all other elements being positive. However, when ν(y) = m, for any
realization of s(y) = (σ1, . . . , σm) we have

P(Ai | (ρ)i = y) = P

(
i⋂

j=1

{
ρF

i < nk+1
} | (ρ)i = y

)

≤ P

(
m⋂

l=1

[{
ρF

σl+1 < nk+1
}∩ Hσl (ρ)

] | (ρ)i = y

)
≤ αm

k (12)

due to the independence of the triples {ρl−1, ρl, ρl+1} for different l ∈ s(y). Consequently

P(Ai) = P

(
Ai ∩

( ∞⋃
m=0

{ν(y) = m}
))

=
∞∑

m=0

P(Ai, ν(y) = m)

≤ P(ν(y) = 0) +
�i/10�+1∑

m=1

P(Ai, ν(y) = m) +
∞∑

m=�i/10�+2

P(Ai, ν(y) = m)

by (12)≤ P(ν(y) = 0) + αk P

(
1 ≤ ν(y) ≤ i

10
+ 1

)
+

∞∑
m=�i/10�+2

αm
k

≤ P(ν(y) = 0) + αk 2e−c4i + α
1+i/10
k

1 − αk
, (13)

since

P

(
ν(y) ≤ i

10
+ 1

)
≤ P

(
Binomial

(⌊
i + 1

3

⌋
,

1

3

)
≤ i

10
+ 1

)
≤ 2 e−c4i

for some c4 > 0, by the large deviation theory (see e.g. [7]). Finally, observe that on i ≥ 2

P(ν(y) = 0) = P(ρ1 > ρ2 > . . . > ρi) ≤ 1

i! ,

due to the symmetry of all permutations of [1, 2, . . . , i].
Trivially P(A1) ≤ 1, so by (13)

∞∑
i=1

P(Ai) ≤ 1 +
∞∑

i=2

[
1

i! + αk

(
2e−c4i + α

i/10
k

1 − αk

)]
= e − 1 + o(1),

https://doi.org/10.1017/jpr.2022.51 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2022.51


432 F. COMETS ET AL.

where o(1) → 0 as k → ∞, since αk → 0. Therefore (11) gives

E(τnk+1 ) =Eτnk ·
[

1 +
∞∑

i=1

P(Ai)

]
≤ (e + o(1)) ·Eτnk ,

yielding that for any fixed δ > 0

E(τnk ) ≤ (e + δ)k

for all sufficiently large k.
For each x > 0 one can find a unique k such that nk−1 < x ≤ nk, and by Proposition 5,

k = logγ

(
log x

rc̃k

)
+ O(1) = logγ (log x) + O(1),

whence

Eτx ≤Eτnk ≤ (log x)logγ (e+2δ),

where the power can be made arbitrarily close to (log 2)−1 = 1.442695 . . . by choosing γ ↑ 2
and δ ↓ 0. This proves Theorem 1. �

4. Continuous tree model on R+
We want to get some estimates for the ‘green’ process in the case of the continuous space

model, i.e. the one where by time t ≥ 0 we have a Poisson point process on R+ (the set of
occupied sites) in space–time with intensity dx ⊗ dt, and each point is the centre of a circle of
radius 1.

We say that two sites x and y of the Poisson process are connected if |x − y| ≤ 1. We assume
that 0 is always occupied. With these definitions we can also define the cluster of occupied sites
containing zero, which will be the subset of points of the Poisson process x1 = x1(t), x2 = x2(t),
. . . , xn(t) = xn(t)(t) such that

x1 ≤ 1, x2 − x1 ≤ 1, . . . , xn − xn−1 ≤ 1, xn+1 − xn > 1,

where n = n(t) is the number of sites in the cluster. Let NF(t) = xn(t)(t) be the location of the
rightmost site in the cluster, and let τF

x , x > 0, be the smallest positive time for which x ≤ NF(t);
thus {

τF
x > t

}= {
NF(t) < x

}
.

We will find the estimate for NG(t) and τG
x . Similar results can be found in the literature; see

e.g. Proposition 5.2 in [1].

Proposition 6. For the green process in the continuous model on R+, we have

P
(
NG(log x) ≥ x

)= o(1),

P
(
NG(log x + 3 log log x

)≤ x) = o(1).
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Proof. Let W1 = x1, Wi = xi − xi−1, i ≥ 2. Then Wi are i.i.d. exponentially distributed ran-
dom variables with rate t. We can compute the Laplace transform of NG(t) as follows:

E
[
e−λNG(t)]=E

[
e−λ

∑n(t)
i=1 Wi

]
=

∞∑
m=0

E
[
e−λ

∑m
i=1 Wi1{n(t)=m}

]

=
∞∑

m=0

E

[
m∏

i=1

e−λWi 1{Wi≤1} × 1{Wm+1>1}

]

=
∞∑

m=0

E
[
e−λw1 1{w1≤1}

]m × P[w1 > 1]

=
∞∑

m=0

[
t

t + λ
(1 − e−λ−t)

]m

× e−t

= (λ + t)e−t

λ + te−λ−t
.

Using the Taylor expansion at λ = 0, we get the first moments of NG(t):

ENG(t) = et − 1 − t

t
, Var

(
NG(t)

)= e2t − 1 − 2tet

t2
= (et − 1 − t)2 + 2(et − 1 − t − t2/2)

t2
.

It is easy to check that

lim
t→∞ E exp

(
− λNG(t)

ENG(t)

)
= 1

1 + λ

for Re λ > −1, so
te−tNG(t) −→ Exponential mean 1, in law.

Consequently, as t → ∞,

P
(
NG(t) > et)= P

(
te−tNG(t) > t

)= o(1),

P
(
NG(t) < et/t2

)= P
(
te−tNG(t) < 1/t

)= o(1).

This in turn implies
P
(
NG(log x) > x

)= o(1)

and

P
(
NG(log x + 3 log log x) < x

)≤ P

(
NG(log x + 3 log log x) <

x log3 x

(log x + 3 log log x)2

)
,

which converges to zero, implying the statement of the proposition. �

The following statement can be proved following verbatim the lines of the proof in
Section 3.3 with xk = γ k, since the estimate (7) is ensured by Proposition 6.

Theorem 2. For the continuous model of forest fires on R+, for any δ > 0,

Eτx ≤ (log x)(log 2)−1+δ

for all x large enough.
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