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We generalize the one-dimensional population model of Anguige & Schmeiser [1]
reflecting the cell-to-cell adhesion and volume filling and classify the resulting
equation into the six types. Among these types, we fix one that yields a class of
advection-diffusion equations of forward-backward-forward type and prove the
existence of infinitely many global-in-time weak solutions to the initial-Dirichlet
boundary value problem when the maximum value of an initial population density
exceeds a certain threshold. Such solutions are extracted from the method of convex
integration by Müller & Šverák [12]; they exhibit fine-scale density mixtures over a
finite time interval, then become smooth and identical, and decay exponentially and
uniformly to zero as time approaches infinity. TE check: Please check the reference
citation in abstract.
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1. Introduction

The evolution process for spatial distribution of cells or animals in one-dimensional
homogeneous habitat can be modelled by quasilinear advection-diffusion equations
of the form,

ut = (ρ(u))xx, (1.1)
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where u = u(x, t) denotes the population density of a single species at position x
and time t, and the derivative σ(s) = ρ′(s) of a given flux function ρ(s) represents
the diffusivity of equation (1.1).

In zoological studies, as an improvement to the Δ-model by Taylor & Taylor [15]
for adhesive movement, Turchin [16] proposed equation (1.1), based on a random
walk approach [13], as a model of individual movement, which is not only reflecting
adhesion or repulsion between conspecific organisms but also avoiding some defects
in their model. In his model, the flux function ρ is given by

ρ(s) =
2k0

3ω
s3 − k0s

2 +
μ

2
s, (1.2)

where k0 > 0 is the maximum degree of gregariousness, ω > 0 is the critical den-
sity at which movement switches from adhesive to repulsive, and μ ∈ (0, 1] is the
motility rate. With this flux function ρ, he considered the initial-Dirichlet boundary
value problem ⎧⎨

⎩
ut = (ρ(u))xx in Ω × (0,∞),
u = u0 on Ω × {t = 0},
u(0, t) = u(L, t) = δ0 for t > 0,

(1.3)

where Ω = (0, L) ⊂ R is a favourable habitat of size L > 0, u0 = u0(x) is the initial
density of a single species, and δ0 � 0 is a constant for the Dirichlet (or absorbing)
boundary condition. Here, the constant δ0 reflects the intensity of hostility of the
surrounding habitat and/or the migration rate towards there. For example, when
δ0 = 0, animals touching the border ∂Ω = {0, L} are permanently lost to the pop-
ulation, either because they move away from the habitat Ω or because they are
killed by predators residing in the very hostile surrounding area. In this case, it is
expected that the total population eventually vanishes as time approaches infinity.

In mathematical biology, Anguige & Schmeiser [1] obtained equation (1.1), based
also on the random walk approach, as a model of cell motility which incorporates the
effects of cell-to-cell adhesion and volume filling. In their model, the flux function
ρ is given by

ρ(s) = αs3 − 2αs2 + s, (1.4)

where α ∈ [0, 1] is the adhesion constant. With this flux function ρ, they studied
the initial-Neumann boundary value problem⎧⎨

⎩
ut = (ρ(u))xx in Ω × (0,∞),
u = u0 on Ω × {t = 0},
ux(0, t) = ux(L, t) = 0 for t > 0,

(1.5)

where Ω = (0, 1) ⊂ R is a habitat of unit size. Here, the Neumann (or reflecting)
boundary condition should imply that the total population remains the same for
all time.

In both models of [1, 16], when the species in question are highly adhesive (that
is, k0ω > μ in (1.2) and α > 3

4 in (1.4), resp.), the diffusivity σ(s) = ρ′(s) admits a
nonempty open interval in which it is negative so that the equation ut = (ρ(u))xx

becomes backward parabolic for the population density values s = u lying in that
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interval. So when the range of the initial population density u0 overlaps with the
interval of backward regime, problems (1.3) and (1.5) may be ill-posed. This awk-
ward situation was regarded as a clue for the authors of [1, 16] to expect a certain
pattern formation in the population density u as time goes by. However, there have
not been any existence results on the highly adhesive random walk models since
the usual methods of parabolic theory are no longer applicable to this case.

Regardless of the expectation stated above, there has been scepticism on the ran-
dom walk models of adhesive population dynamics due to their limited practicality
and inability of displaying complicated behaviour such as sorting [5, 8]. Meanwhile,
many nonlocal adhesion models have been suggested and studied actively to reflect
various phenomena in population dynamics. For an overview, one may refer to the
review article [5].

Nonetheless, in this paper, we generalize the adhesion population model of
Anguige & Schmeiser [1] and classify the resulting equation into the six types.
Among such types, we fix one that yields a class of advection-diffusion equations of
forward-backward-forward type and prove the existence of infinitely many global-
in-time weak solutions to the initial-Dirichlet boundary value problem when the
maximum value of the initial population density u0 exceeds a certain threshold.
Although our solutions may not exhibit expected behaviour of adhesion such as
clustering and sorting, they capture some interesting phenomena: fine-scale density
mixtures between the high and low density regimes, smoothing after a finite time,
and smooth extinction of the species at an exponential rate due to the absorbing
boundary condition. On the other hand, in the same initial value problem under
the Neumann boundary condition, we expect to obtain global weak solutions show-
ing quite different behaviours from the Dirichlet case. This will be explored in the
subsequent paper as a sequel.

Plan of the paper: In the rest of this section, we derive a continuum model of
adhesion, which is a generalization of [1], and then justify the definition of a global
weak solution to the corresponding initial-Dirichlet boundary value problem. In § 2,
depending on the choice of a pair of adhesion and volume filling constants, we clas-
sify the resulting equation from continuum modelling into the six types. Then the
main result of the paper, theorem 3.2, is sophisticated in § 3 along with a strategy
to obtain solutions. As an independent section, in § 4, we formulate a differential
inclusion problem and present its special solvability result as theorem 4.2, which
serves as an essential ingredient for a proof of theorem 3.2 in § 5. Sections 6 and 7
carry out a long proof of theorem 4.2, which can be regarded as the core analysis
of the paper.

Notations: Hereafter, let L > 0 denote the size of a favourable habitat
Ω = (0, L) ⊂ R. For τ ∈ (0, ∞], we write

Ωτ := Ω × (0, τ) ⊂ R
2.

Let k, m, and n be positive integers, let 0 < a < 1, and let U ⊂ R
n be an open

set.

(i) We denote by Ck(U) the space of functions u : U → R whose partial
derivatives of order up to k exist and are continuous in U .
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(ii) Let Ck(Ū) be the space of functions u ∈ Ck(U) whose partial derivatives of
order up to k are uniformly continuous in every bounded subset of U .

(iii) Let n = 2; so U ⊂ R
2 = Rx × Rt. We define C2,1(U) to be the space of func-

tions u : U → R such that ux, uxx, and ut exist and are continuous in U . Also,
let C2,1(Ū) denote the space of functions u ∈ C2,1(U) such that ux, uxx, and
ut are uniformly continuous in every bounded subset of U .

(iv) We denote by C2+a(Ω̄) the space of functions u ∈ C2(Ω̄) with

sup
x,y∈Ω, x �=y

|uxx(x) − uxx(y)|
|x− y|a <∞.

(v) Let 0 < T <∞. We define C2+a,1+ a
2 (Ω̄T ) to be the space of functions

u ∈ C2,1(Ω̄T ) whose quantities

sup
x,y∈Ω, x �=y, 0<t<T

|uxx(x, t) − uxx(y, t)|
|x− y|a ,

sup
x∈Ω, 0<s,t<T, s �=t

|uxx(x, s) − uxx(x, t)|
|s− t| a

2
,

sup
x,y∈Ω, x �=y, 0<t<T

|ut(x, t) − ut(y, t)|
|x− y|a , sup

x∈Ω, 0<s,t<T, s �=t

|ut(x, s) − ut(x, t)|
|s− t| a

2

are all finite.

(vi) We denote by M
m×n the space of m× n real matrices.

(vii) For a Lebesgue measurable set E ⊂ R
n, its n-dimensional measure is denoted

by |E| = |E|n with subscript n omitted if it is clear from the context.

(viii) We use W k,p(U) to denote the space of functions u ∈ Lp(U) whose weak
partial derivatives of order up to k exist in U and belong to Lp(U).

(ix) A sequence {U�}�∈N of disjoint open subsets of U is called a Vitali cover of
U if |U \ ∪�∈NU�| = 0; in this case, {U�}�∈N is said to cover U in the sense of
Vitali.

1.1. Continuum model

For any fixed n ∈ N with n � 2, let us consider a discrete distribution of
homogeneous cells residing on the endpoints of the 2n uniform subintervals

[0, hn], [hn, 2hn], [2hn, 3hn], . . . , [(2n − 1)hn, L]

of the spatial domain Ω̄ = [0, L], where hn := L/2n. Assume that Ncap ∈ N is
the maximum number of cells that can stay at each position xni := ihn (i =
0, 1, . . . , 2n). For i = 0, 1, . . . , 2n, let ũni(t) ∈ {0, 1, . . . , Ncap} denote the number
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of cells at position xni and time t � 0, and write

uni(t) :=
ũni(t)
Ncap

∈ [0, 1],

called the discrete cell density at position xni and time t � 0. We assume that the
dynamics of such cells is governed by the system of ordinary differential equations,

duni

dt
= T +

n(i−1)un(i−1) + T −
n(i+1)un(i+1) − (T +

ni + T −
ni )uni, (1.6)

where i = 2, 3, . . . , 2n − 2. Here, for i = 1, 2, . . . , 2n − 1, we denote by T ±
ni the

transitional probabilities per unit time of a one-step jump from ihn to (i± 1)hn

that are given by

T +
ni =

(1 − βun(i+1))(1 − αun(i−1))
h2

n

,

T −
ni =

(1 − αun(i+1))(1 − βun(i−1))
h2

n

, (1.7)

where α, β ∈ [0, 1] are the adhesion and volume filling constants, respectively. Note
here that only the maximal volume filling constant β = 1 is considered by Anguige &
Schmeiser [1]. We also write In := {ihn | i = 0, 1, . . . , 2n}, the nth discrete habitat;
then I2 ⊂ I3 ⊂ I4 ⊂ · · · .

Inserting (1.7) into (1.6), we obtain that for i = 2, 3, . . . , 2n − 2,

duni

dt
=

1
hn

(
Rn(i+1) −Rni

hn
−
Rni −Rn(i−1)

hn
+
Qn(i+1) −Qni

hn

−
Qni −Qn(i−1)

hn
+
Qni −Qn(i−1)

hn
−
Qn(i−1) −Qn(i−2)

hn

)
, (1.8)

where

Rnj := unj(1 − αβ + αβ(1 − un(j−1))(1 − un(j+1)))

for j = 1, 2, . . . , 2n − 1, and

Qnk := α(β − 1)unkun(k+1)

for k = 0, 1, . . . , 2n − 1.
To derive the continuum equation, assume that there exists a function

u = u(x, t) ∈ C2,1(Ω∞; [0, 1]) ∩ C(Ω̄∞; [0, 1]) such that

u(ihn, t) = uni(t)

for all n ∈ N, i = 0, 1, . . . , 2n, and t � 0.
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Now, fix any n ∈ N with n � 2. Then for j = 1, 2, . . . , 2n − 1, k = 0, 1, . . . ,
2n − 1, and t � 0, we have

Rnj(t) = u(jhn, t)(1 − αβ + αβ(1 − u((j − 1)hn, t))(1 − u((j + 1)hn, t))),

Qnk(t) = α(β − 1)u(khn, t)u((k + 1)hn, t).

In this regard, for t � 0, define

Rn(x, t) = u(x, t)(1 − αβ + αβ(1 − u(x− hn, t))(1 − u(x+ hn, t)))

for hn � x � L− hn and

Qn(x, t) = α(β − 1)u(x, t)u(x+ hn, t)

for 0 � x � L− hn; then

Rn ∈ C2,1((hn, L− hn) × (0,∞)) ∩ C([hn, L− hn] × [0,∞)),

Qn ∈ C2,1((0, L− hn) × (0,∞)) ∩ C([0, L− hn] × [0,∞)),

(Rn)xx(x, t) = uxx(x, t)(1 − αβ + αβ(1 − u(x− hn, t))(1 − u(x+ hn, t)))

− 2αβux(x, t)ux(x− hn, t)(1 − u(x+ hn, t))

− 2αβux(x, t)ux(x+ hn, t)(1 − u(x− hn, t))

− αβu(x, t)uxx(x− hn, t)(1 − u(x+ hn, t))

+ 2αβu(x, t)ux(x− hn, t)ux(x+ hn, t)

− αβu(x, t)uxx(x+ hn, t)(1 − u(x− hn, t)),

(Qn)xx(x, t) = α(β − 1)uxx(x, t)u(x+ hn, t) + 2α(β − 1)ux(x, t)ux(x+ hn, t)

+ α(β − 1)u(x, t)uxx(x+ hn, t).

Next, fix any x0 ∈ (∪n�2In) \ {0, L} ⊂ Ω and t0 > 0. Let n0 denote the smallest
positive integer with x0 ∈ In0 ; then

x0 = i0hn0

for some odd integer i0 ∈ {1, 3, . . . , 2n0 − 1}. Choose any integer n > n0. Then

x0 = i0nhn,

where i0n := 2n−n0i0 ∈ {2, 4, . . . , 2n − 2}. From (1.8) and the mean value theorem,
we have

ut(x0, t0) = ut(i0nhn, t0) =
duni0n

dt
(t0)

= (Rn)xx(x1n, t0) + (Qn)xx(x2n, t0) + (Qn)xx(x3n, t0)
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for some x1n, x2n ∈ ((i0n − 1)hn, (i0n + 1)hn) = (x0 − hn, x0 + hn) and x3n ∈
((i0n − 2)hn, i0nhn) = (x0 − 2hn, x0). Thus,

ut(x0, t0) = uxx(x1n, t0)(1 − αβ + αβ(1 − u(x1n − hn, t0))(1 − u(x1n + hn, t0)))

− 2αβux(x1n, t0)ux(x1n − hn, t0)(1 − u(x1n + hn, t0))

− 2αβux(x1n, t0)ux(x1n + hn, t0)(1 − u(x1n − hn, t0))

− αβu(x1n, t0)uxx(x1n − hn, t0)(1 − u(x1n + hn, t0))

+ 2αβu(x1n, t0)ux(x1n − hn, t0)ux(x1n + hn, t0)

− αβu(x1n, t0)uxx(x1n + hn, t0)(1 − u(x1n − hn, t0))

+ α(β − 1)uxx(x2n, t0)u(x2n + hn, t0)

+ 2α(β − 1)ux(x2n, t0)ux(x2n + hn, t0)

+ α(β − 1)u(x2n, t0)uxx(x2n + hn, t0)

+ α(β − 1)uxx(x3n, t0)u(x3n + hn, t0)

+ 2α(β − 1)ux(x3n, t0)ux(x3n + hn, t0)

+ α(β − 1)u(x3n, t0)uxx(x3n + hn, t0)

−→ uxx(x0, t0)(3αβu2(x0, t0) − 4αu(x0, t0) + 1)

+ u2
x(x0, t0)(6αβu(x0, t0) − 4α)

as n→ ∞; that is,

ut = (σ(u)ux)x at (x, t) = (x0, t0),

where σ(s) = σαβ(s) := 3αβs2 − 4αs+ 1 (s ∈ R). By continuity, we conclude that

ut = (σ(u)ux)x = (ρ(u))xx in Ω∞, (1.9)

where ρ(s) = ραβ(s) := αβs3 − 2αs2 + s (s ∈ R). For later use, let us denote

Zσ = Zσ,αβ := {s ∈ [0, 1] |σ(s) = 0},
Zρ = Zρ,αβ := {s ∈ (0, 1] | ρ(s) = 0}.

In this paper, we study equation (1.9), coupled with the initial condition,

u = u0 on Ω × {t = 0} (1.10)

and the Dirichlet boundary condition,

u = 0 on ∂Ω × (0,∞), (1.11)

where u0 ∈ L∞(Ω; [0, 1]) is a given initial population density.
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1.2. Global weak solutions

To derive a natural definition of a weak solution to problem (1.9)–(1.11), let
u0 ∈ C2(Ω̄; [0, 1]) be such that

u0(0) = u0(L) = 0, 4α(u′0(0))2 = u′′0(0), and 4α(u′0(L))2 = u′′0(L).

Assume that u ∈ C2,1(Ω̄∞; [0, 1]) is a global classical solution to problem
(1.9)–(1.11). Fix any T > 0, and choose a test function ϕ ∈ C∞(Ω̄ × [0, T ]) such
that

ϕ = 0 on (∂Ω × [0, T ]) ∪ (Ω × {t = T}).

Then from the integration by parts,

0 =
∫ T

0

∫ L

0

(ut − (ρ(u))xx)ϕdxdt

= −
∫ L

0

u0(x)ϕ(x, 0) dx−
∫ T

0

∫ L

0

(uϕt + ρ(u)ϕxx) dxdt.

Conversely, assume that u ∈ C2,1(Ω̄∞; [0, 1]) is a function satisfying that

∫ T

0

∫ L

0

(uϕt + ρ(u)ϕxx) dxdt+
∫ L

0

u0(x)ϕ(x, 0) dx = 0

for each T > 0 and each ϕ ∈ C∞(Ω̄ × [0, T ]) with

ϕ = 0 on (∂Ω × [0, T ]) ∪ (Ω × {t = T}).

We will check below that u is a global classical solution to problem (1.9)–(1.11)
provided that

u �∈ Zρ on ∂Ω × (0,∞). (1.12)

To show that (1.9) holds, fix any ϕ ∈ C∞
c (Ω∞). Choose a T = Tϕ > 0 so large

that spt(ϕ) ⊂⊂ Ω × (0, T ). Then from the integration by parts,

0 =
∫ T

0

∫ L

0

(uϕt + ρ(u)ϕxx) dxdt+
∫ L

0

u0(x)ϕ(x, 0) dx

=
∫ T

0

∫ L

0

(−ut + (ρ(u))xx)ϕdxdt =
∫ ∞

0

∫ L

0

(−ut + (ρ(u))xx)ϕdxdt.

Thus, (1.9) is satisfied.
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Next, to check that (1.10) holds, fix any ψ ∈ C∞
c (Ω). Choose a function ω ∈

C∞(R) such that

ω = 1 on (−∞, 0] and ω = 0 on [2,∞),

and define ϕ(x, t) = ψ(x)ω(t) for (x, t) ∈ Ω̄∞. Then with T = 2, it follows from
(1.9) that

0 =
∫ 2

0

∫ L

0

(uϕt + ρ(u)ϕxx) dxdt+
∫ L

0

u0(x)ϕ(x, 0) dx

=
∫ L

0

(u(x, 2)ϕ(x, 2) − u(x, 0)ϕ(x, 0)) dx−
∫ 2

0

∫ L

0

utϕdxdt

+
∫ 2

0

(ρ(u(L, t))ϕx(L, t) − ρ(u(0, t))ϕx(0, t)) dt

−
∫ 2

0

((ρ(u))x(L, t)ϕ(L, t) − (ρ(u))x(0, t)ϕ(0, t)) dt

+
∫ 2

0

∫ L

0

(ρ(u))xxϕdxdt+
∫ L

0

u0(x)ϕ(x, 0) dx

=
∫ L

0

(u0(x) − u(x, 0))ψ(x) dx.

Thus, (1.10) is true.
Finally, to see that (1.11) holds, fix any ω ∈ C∞

c ((0, ∞)). Let T = Tω > 0 be
chosen so large that spt(ω) ⊂⊂ (0, T ). Choose two functions ψ0, ψ1 ∈ C∞(R) such
that

ψ0(x) =

⎧⎪⎨
⎪⎩
x for x � 1

4
L

0 for x � 3
4
L

and ψ1(x) =

⎧⎪⎨
⎪⎩

0 for x � 1
4
L

−x+ L for x � 3
4
L.

For i = 0, 1, define ϕi(x, t) = ψi(x)ω(t) for (x, t) ∈ Ω̄∞. Then we have from (1.9)
that for i = 0, 1,

0 =
∫ L

0

(u(x, T )ϕi(x, T ) − u(x, 0)ϕi(x, 0)) dx−
∫ T

0

∫ L

0

utϕi dxdt

+
∫ T

0

(ρ(u(L, t))(ϕi)x(L, t) − ρ(u(0, t))(ϕi)x(0, t)) dt

−
∫ T

0

((ρ(u))x(L, t)ϕi(L, t) − (ρ(u))x(0, t)ϕi(0, t)) dt

+
∫ T

0

∫ L

0

(ρ(u))xxϕi dxdt+
∫ L

0

u0(x)ϕi(x, 0) dx

= −
∫ T

0

ρ(u(iL, t))ω(t) dt = −
∫ ∞

0

ρ(u(iL, t))ω(t) dt;
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that is, ρ(u(x, t)) = 0 for all (x, t) ∈ ∂Ω × (0, ∞). Thus, (1.11) follows from (1.12)
and the definition of ρ(s).

Summarizing the previous discussion, we have the following.

Proposition 1.1. Let u0 ∈ C2(Ω̄; [0, 1]) satisfy the compatibility conditions,

u0(0) = u0(L) = 0, 4α(u′0(0))2 = u′′0(0), and 4α(u′0(L))2 = u′′0(L).

Assume that u ∈ C2,1(Ω̄∞; [0, 1]) is such that

u �∈ Zρ on ∂Ω × (0,∞).

Then u is a global classical solution to problem (1.9)–(1.11) if and only if∫ T

0

∫ L

0

(uϕt + ρ(u)ϕxx) dxdt+
∫ L

0

u0(x)ϕ(x, 0) dx = 0

for each T > 0 and each ϕ ∈ C∞(Ω̄ × [0, T ]) with

ϕ = 0 on (∂Ω × [0, T ]) ∪ (Ω × {t = T}).

Motivated by this observation, we fix the definition of a global weak solution to
problem (1.9)–(1.11) as follows.

Definition 1.2. Let u0 ∈ L∞(Ω; [0, 1]) and u ∈ L∞(Ω∞; [0, 1]).

(i) Assume Zρ = ∅. Then we say that u is a global weak solution to problem
(1.9)–(1.11) provided that for each T > 0 and each ϕ ∈ C∞(Ω̄ × [0, T ]) with

ϕ = 0 on (∂Ω × [0, T ]) ∪ (Ω × {t = T}),

one has∫ T

0

∫ L

0

(uϕt + ρ(u)ϕxx) dxdt+
∫ L

0

u0(x)ϕ(x, 0) dx = 0. (1.13)

(ii) Assume Zρ �= ∅ so that |Zρ| ∈ {1, 2}. Then we say that u is a global weak
solution to (1.9)–(1.11) provided that for each T > 0 and each ϕ ∈ C∞(Ω̄ ×
[0, T ]) with

ϕ = 0 on (∂Ω × [0, T ]) ∪ (Ω × {t = T}),
(1.13) holds and that there exists a number 0 < δ < L

2 with minZρ − δ > 0
such that for each sz ∈ Zρ,

u �∈ [sz − δ, sz + δ] a.e. in ((0, δ) ∪ (L− δ, L)) × (0,∞).

Although

{(α, β) ∈ [0, 1]2 |Zρ = Zραβ
�= ∅} �= ∅,

the adhesion-volume filling pairs (α, β) ∈ [0, 1]2 that we mainly consider in this
paper satisfy that Zρ = Zραβ

= ∅ (see § 3). Thus, we only have to keep in mind
definition 1.2(i) even if definition 1.2(ii) is included for the sake of completeness.
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2. Classification of equation

In this section, we classify the types of equation (1.9) as follows. To do so, for any
fixed adhesion-volume filling pair (α, β) ∈ [0, 1]2, let us write

I+
αβ := {s ∈ [0, 1] |σ(s) > 0} and I−αβ := {s ∈ [0, 1] |σ(s) < 0}.

Case β = 1: In this case,

σ(s) = 3αs2 − 4αs+ 1 = 3α
(
s− 2

3

)2

+ 1 − 4
3
α.

(a) If 0 � α < 3
4 , then σ(s) � 1 − 4

3α > 0 for all s ∈ [0, 1]; hence, equation (1.9)
is forward parabolic on [0, 1]. We may call this case as (F).

(b) If α = 3
4 , then σ(s) > 1 − 4

3α = 0 for all s ∈ [0, 1] \ { 2
3} and σ( 2

3 ) = 1 − 4
3

α = 0; that is, equation (1.9) is forward parabolic on [0, 1] \ { 2
3} and

degenerate at s = 2
3 . We refer to this case as (FDF).

(c) If 3
4 < α < 1, then

σ(s)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

> 0 for s ∈
[
0,

2α−
√

4α2 − 3α
3α

)
∪
(

2α+
√

4α2 − 3α
3α

, 1

]
= I+

α1,

< 0 for s ∈
(

2α−
√

4α2 − 3α
3α

,
2α+

√
4α2 − 3α
3α

)
= I−α1,

= 0 for s =
2α±

√
4α2 − 3α
3α

;

that is, equation (1.9) is forward parabolic on I+
α1, backward parabolic on I−α1,

and degenerate at s = 2α±√
4α2−3α
3α . We refer to this case as (FDBDF).

(d) If α = 1, then

σ(s)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

> 0 for s ∈
[
0,

1
3

)
= I+

11,

< 0 for s ∈
(

1
3
, 1
)

= I−11,

= 0 for s ∈
{1

3
, 1
}
;

that is, equation (1.9) is forward parabolic on I+
11, backward parabolic on I−11,

and degenerate at s = 1
3 , 1. We refer to this case as (FDBD).

Case 2
3 < β < 1: In this case,

σ(s) = 3αβs2 − 4αs+ 1 = 3αβ
(
s− 2

3β

)2

+ 1 − 4α
3β
.
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(a) If 0 � α < 3
4β, then σ(s) � 1 − 4α

3β > 0 for all s ∈ [0, 1]; hence, equation (1.9)
is forward parabolic on [0, 1]. We refer to this case as (F).

(b) If α = 3
4β, then σ(s) > 1 − 4α

3β = 0 for all s ∈ [0, 1] \ { 2
3β } and σ( 2

3β ) = 1 −
4α
3β = 0; that is, equation (1.9) is forward parabolic on [0, 1] \ { 2

3β } and
degenerate at s = 2

3β . We refer to this case as (FDF).

(c) If 3
4β < α < 1

4−3β , then

σ(s)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

> 0 for s ∈ [0,
2α−

√
4α2 − 3αβ
3αβ

) ∪
(

2α+
√

4α2 − 3αβ
3αβ

, 1

]
= I+

αβ ,

< 0 for s ∈
(

2α−
√

4α2 − 3αβ
3αβ

,
2α+

√
4α2 − 3αβ
3αβ

)
= I−αβ ,

= 0 for s =
2α±

√
4α2 − 3αβ
3αβ

;

that is, equation (1.9) is forward parabolic on I+
αβ , backward parabolic on

I−αβ , and degenerate at s = 2α±
√

4α2−3αβ

3αβ . We refer to this case as (FDBDF).

(d) If α = 1
4−3β , then

σ(s)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

> 0 for s ∈
[
0,

1
4α− 1

)
= I+

αβ ,

< 0 for s ∈
(

1
4α− 1

, 1
)

= I−αβ ,

= 0 for s ∈
{ 1

4α− 1
, 1
}
;

that is, equation (1.9) is forward parabolic on I+
αβ , backward parabolic on

I−αβ , and degenerate at s = 1
4α−1 , 1. We refer to this case as (FDBD).

(e) If 1
4−3β < α � 1, then

σ(s)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

> 0 for s ∈
[
0,

2α−
√

4α2 − 3αβ
3αβ

)
= I+

αβ ,

< 0 for s ∈
(

2α−
√

4α2 − 3αβ
3αβ

, 1

]
= I−αβ ,

= 0 for s =
2α−

√
4α2 − 3αβ
3αβ

;

that is, equation (1.9) is forward parabolic on I+
αβ , backward parabolic on

I−αβ , and degenerate at s = 2α−
√

4α2−3αβ

3αβ . We refer to this case as (FDB).
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Case β = 2
3 : In this case,

σ(s) = 2αs2 − 4αs+ 1 = 2α(s− 1)2 + 1 − 2α.

(a) If 0 � α < 1
2 , then σ(s) � 1 − 2α > 0 for all s ∈ [0, 1]; hence, equation (1.9)

is forward parabolic on [0, 1]. We refer to this case as (F).

(b) If α = 1
2 , then σ(s) > 1 − 2α = 0 for all s ∈ [0, 1) and σ(1) = 0; that is,

equation (1.9) is forward parabolic on [0, 1) and degenerate at s = 1. We
refer to this case as (FD).

(c) If 1
2 < α � 1, then

σ(s)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

> 0 for s ∈
[
0,

2α−
√

4α2 − 2α
2α

)
= I+

α
2
3

,

< 0 for s ∈
(

2α−
√

4α2 − 2α
2α

, 1

]
= I−

α
2
3

,

= 0 for s =
2α−

√
4α2 − 2α
2α

;

that is, equation (1.9) is forward parabolic on I+
α 2

3
, backward parabolic on

I−
α 2

3
, and degenerate at s = 2α−√

4α2−2α
2α . We refer to this case as (FDB).

Case 0 < β < 2
3 : In this case,

σ(s) = 3αβs2 − 4αs+ 1 = 3αβ
(
s− 2

3β

)2

+ 1 − 4α
3β
.

(a) If 0 � α < 1
4−3β , then σ(s) � 3αβ − 4α+ 1 > 0 for all s ∈ [0, 1]; hence,

equation (1.9) is forward parabolic on [0, 1]. We refer to this case as (F).

(b) If α = 1
4−3β , then σ(s) > 3αβ − 4α+ 1 = 0 for all s ∈ [0, 1) and σ(1) = 0;

that is, equation (1.9) is forward parabolic on [0, 1) and degenerate at s = 1.
We refer to this case as (FD).

(c) If 1
4−3β < α � 1, then

σ(s)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

> 0 for s ∈
[
0,

2α−
√

4α2 − 3αβ
3αβ

)
= I+

αβ ,

< 0 for s ∈
(

2α−
√

4α2 − 3αβ
3αβ

, 1

]
= I−αβ ,

= 0 for s =
2α−

√
4α2 − 3αβ
3αβ

;
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that is, equation (1.9) is forward parabolic on I+
αβ , backward parabolic on

I−αβ , and degenerate at s = 2α−
√

4α2−3αβ

3αβ . We refer to this case as (FDB).

Case β = 0: In this case,

σ(s) = −4αs+ 1.

(a) If 0 � α < 1
4 , then σ(s) � −4α+ 1 > 0 for all s ∈ [0, 1]; hence, equation (1.9)

is forward parabolic on [0, 1]. We refer to this case as (F).

(b) If α = 1
4 , then σ(s) > −4α+ 1 = 0 for all s ∈ [0, 1) and σ(1) = 0; that is,

equation (1.9) is forward parabolic on [0, 1) and degenerate at s = 1. We
refer to this case as (FD).

(c) If 1
4 < α � 1, then

σ(s)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

> 0 for s ∈
[
0,

1
4α

)
= I+

α0,

< 0 for s ∈
(

1
4α
, 1
]

= I−α0,

= 0 for s =
1
4α

;

that is, equation (1.9) is forward parabolic on I+
αβ , backward parabolic on

I−αβ , and degenerate at s = 1
4α . We refer to this case as (FDB).

In short, we can summarize the classification of equation (1.9) as in Fig. 1.

Figure 1. Classification of equation (1.9).
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3. Main result

From this section, we mainly study problem (1.9)–(1.11) of type (FDBDF); that is,
the initial-Dirichlet boundary value problem in one space dimension,

⎧⎪⎨
⎪⎩
ut = (σ(u)ux)x = (ρ(u))xx in Ω∞,
u = u0 on Ω × {t = 0},
u = 0 on ∂Ω × (0,∞),

(3.1)

where u0 : Ω → [0, 1] is a given initial population density, u(x, t) ∈ [0, 1] represents
the population density at a space-time point (x, t) ∈ Ω∞, the diffusivity σ : R → R

is given by

σ(s) = 3αβs2 − 4αs+ 1 (s ∈ R)

for some constants 2
3 < β � 1 and 3

4β < α < 1
4−3β , and

ρ(s) = αβs3 − 2αs2 + s (s ∈ R).

Letting

s±0 =
2α±

√
4α2 − 3αβ
3αβ

,

we observe that 0 < s−0 < s+0 < 1 and that

σ(s)

⎧⎨
⎩
> 0 for s ∈ I+

αβ = [0, s−0 ) ∪ (s+0 , 1],
< 0 for s ∈ I−αβ = (s−0 , s

+
0 ),

= 0 for s ∈ Zσ = {s+0 , s−0 }.
(3.2)

We check below that

ρ(s) > 0 ∀ s ∈ (0, 1]; (3.3)

hence, our global weak solutions to problem (3.1) should be as in definition 1.2(i).
Note from 2

3 < β � 1 that

3β2 − 4β + 1 = (3β − 1)(β − 1) � 0

so that

α <
1

4 − 3β
� β;

thus, α2 − αβ = α(α− β) < 0. This implies that the equation ρ(s) = s(αβs2 −
2αs+ 1) = 0 has precisely one zero s = 0 in R; hence, inequality (3.3) holds.
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Figure 2. Two possible graphs of r = ρ(s) (0 � s � 1).

Let

r∗ = min{ρ(s−0 ), ρ(1)};
then from (3.2) and (3.3), we have

r∗ > ρ(s+0 ) > 0.

For each r ∈ [ρ(s+0 ), r∗], let s+(r) ∈ [s+0 , 1] and s−(r) ∈ (0, s−0 ] denote the unique
numbers with

ρ(s±(r)) = r.

Let us write

s±1 := s±(ρ(s+0 )) and s±2 := s±(r∗);

then

0 < s−1 < s−2 � s−0 < s+0 = s+1 < s+2 � 1,

and

s−2 = s−0 or s+2 = 1

(see Fig. 2).
Initial population density: We assume that the initial population density u0

to problem (3.1) fulfils the regularity condition,

u0 ∈ C2+a(Ω̄; [0, 1]) for some 0 < a < 1

and the compatibility conditions,

u0(0) = u0(L) = 0, 4α(u′0(0))2 = u′′0(0), and 4α(u′0(L))2 = u′′0(L).

We write

M0 := max
Ω̄

u0 ∈ [0, 1].
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From the classical parabolic theory, we can handle the following case that the
maximum value M0 of the initial population density u0 is strictly less than the
infimum s−0 of the backward regime (s−0 , s

+
0 ).

Theorem 3.1 Case M0 < s−0 : smooth extinction. Assume M0 < s−0 . Then there
exists a unique global classical solution u ∈ C2,1(Ω̄∞; [0, 1]) to problem (3.1) such
that

u ∈ C2+a,1+ a
2 (Ω̄T ; [0, 1])

for all T > 0 and that 0 � u � M0 in Ω∞. Moreover, it follows that

0 � u(x, t) � max
Ω̄

u(·, s)

for all x ∈ Ω and 0 � s � t and that there exist two constants C � 0 and γ > 0,
depending only on M0, L, α, and β, such that

‖u(·, t)‖L∞(Ω) � Ce−γt

for all t � 0.

Proof. Let M1 = M0+s−
0

2 . By elementary calculus, we can choose a function ρ� ∈
C3(R) such that

ρ�=ρ on (−∞,M1] and (ρ�)′ � c0 in R,

for some constant c0 > 0. Then from [11, Theorem 12.14], the modified problem,⎧⎪⎨
⎪⎩
u�

t = (ρ�(u�))xx in Ω∞,
u�=u0 on Ω × {t = 0},
u�=0 on ∂Ω × (0,∞),

admits a unique global classical solution u� ∈ C2,1(Ω̄∞; [0, 1]) with

u�∈C2+a,1+ a
2 (Ω̄T ; [0, 1]) ∀ T > 0.

Also, it follows from [10, Theorem 1.1] that

0 � u�(x, t) � ‖u�(·, s)‖L∞(Ω) for all x ∈ Ω̄ and t � s � 0

and that

‖u�(·, t)‖L∞(Ω) � Ce−γt for all t � 0,

for some constants C � 0 and γ > 0, depending only on M0, L, α, and β. In par-
ticular, 0 � u� � M0 < M1 in Ω∞; thus, from the choice of ρ�, we see that u := u�

is a global classical solution to problem (3.1).
Suppose ũ ∈ C2,1(Ω̄∞; [0, 1]) is a unique global classical solution to problem (3.1)

such that

ũ ∈ C2+a,1+ a
2 (Ω̄T ; [0, 1])

for all T > 0 and that 0 � ũ � M0 in Ω∞. Then from the choice of ρ�, ũ is also
a global classical solution to the modified problem above. By uniqueness of the
modified problem, we have ũ = u� = u in Ω∞. �
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As the main result of the paper, we present the following theorem on the case that
the maximum value M0 of the initial population density u0 exceeds the threshold
s−1 . A proof of this theorem is given in § 5.

Theorem 3.2 Case M0 > s−1 : density mixtures and smooth extinction. Assume
M0 > s−1 . Let r1 ∈ [ρ(s+0 ), r∗) be any number such that

s−(r1) < M0,

and let r2 ∈ (r1, r∗]. Then there exist a function u� ∈ C2,1(Ω̄∞; [0, 1]) with

u�∈C2+a,1+ a
2 (Ω̄T ; [0, 1]) ∀ T > 0,

a nonempty bounded open set Q ⊂ Ω∞ with

Q̄ ⊂ Ω × [0,∞) and Q̄ ∩ (Ω × {0}) �= ∅,

and infinitely many global weak solutions u ∈ L∞(Ω∞; [0, 1]) to problem (3.1)
satisfying the following:

(a) Smoothing in finite time:

u = u� in Ω∞ \ Q̄;

(b) Density mixtures:

u ∈ [s−(r1), s−(r2)] ∪ [s+(r1), s+(r2)] a.e. in Q;

(c) Fine-scale oscillations: for any nonempty open set O ⊂ Q,

ess osc
O

u := ess sup
O

u− ess inf
O

u � s+(r1) − s−(r2) > 0;

(d) Nonincreasing total population:∫
Ω

u(x, t) dx =
∫

Ω

u�(x, t) dx ∀ t � 0,

and the function t →
∫
Ω
u�(x, t) dx is nonincreasing on [0, ∞);

(e) Maximum principle:

0 � u�(x, t) � ‖u�(·, s)‖L∞(Ω) � 1 ∀ x ∈ Ω̄, ∀ t � s � 0;

(f) Exponential and smooth extinction: there exists two constants C > 0 and γ >
0 such that

‖u�(·, t)‖L∞(Ω) � Ce−γt ∀ t � 0.

Since Q �= ∅ is a bounded subset of Ω∞, it follows from (a) that the solutions u
are smooth and identical on Ω̄ × [t∗, ∞), where

0 < t∗ := sup
(x,t)∈Q

t <∞.

So properties (e) and (f) are valid for the solutions u when t � t∗. Since Q̄ ⊂
Ω × [0, ∞), observe from (a) that the solutions u are smooth and identical near the
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cylindrical boundary ∂Ω × [0, ∞); thus, u = 0 pointwise on ∂Ω × [0, ∞). From (b),
(c), and Q̄ ∩ (Ω × {0}) �= ∅, the solutions u experience immediate fine-scale density
mixtures in Q between low density regime [s−(r1), s−(r2)] and high density regime
[s+(r1), s+(r2)]. Observe also from (d), (e), and (f) that the total population in Ω
decreases exponentially in time:

0 �
∫

Ω

u(x, t) dx =
∫

Ω

u�(x, t) dx � CLe−γt ∀ t � 0.

Instead of the initial-Dirichlet boundary value problem (3.1), one may consider the
Cauchy problem with the diffusivity σ : R → R as in (3.1) and initial population
density u0 ∈ C2+a

c (R; [0, 1]). In this case, it is essential to study first the existence
and properties of a global classical solution to the modified Cauchy problem as
in (5.3) with Ω replaced by R. On the other hand, in a biological viewpoint, it is
also interesting to consider in problem (3.1) a Dirac delta distribution as the initial
population density u0. This may be regarded as the case of describing population
dynamics of a species, concentrated initially at a single point. Likewise, one then
needs to establish first the existence and properties of a global classical solution
to the modified (initial-boundary value or Cauchy) problem under the initial Dirac
delta distribution u0.

Approach by differential inclusion: Let us take a moment here to explain
our approach to prove theorem 3.2. To solve the equation in (3.1), we formally put
vx = u in Ω∞ for some function v : Ω∞ → R; so we consider the equation,

vt = (ρ(vx))x in Ω∞.

To solve the previous equation in the sense of distributions in Ω∞, we may try
to find a vector function z = (v, w) ∈W 1,∞(Ω∞; R1+1) with vx ∈ L∞(Ω∞; [0, 1])
such that

wx = v and wt = ρ(vx) a.e. in Ω∞. (3.4)

If there is such a function z = (v, w), we take u = vx ∈ L∞(Ω∞; [0, 1]); then from
the integration by parts, for each ϕ ∈ C∞

c (Ω∞),

∫ ∞

0

∫ L

0

(uϕt + ρ(u)ϕxx) dxdt =
∫ Tϕ

0

∫ L

0

(vxϕt + ρ(vx)ϕxx) dxdt

=
∫ Tϕ

0

∫ L

0

(−vϕtx + wtϕxx) dxdt

=
∫ Tϕ

0

∫ L

0

(−vϕtx + wxϕxt) dxdt = 0,

where Tϕ := sup(x,t)∈spt(ϕ) t+ 1. Hence, u is a global weak solution of the equation
in (3.1) in the sense of distributions in Ω∞.
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On the other hand, for each b ∈ R, define

Σ(b) = Σρ(b) =
{(

s c
b ρ(s)

)
∈ M

2×2
∣∣∣ 0 � s � 1, c ∈ R

}
;

then system (3.4) is equivalent to the inhomogeneous partial differential inclusion,

∇z =
(
vx vt

wx wt

)
∈ Σ(v) a.e. inΩ∞,

where ∇ = (∂x, ∂t) is the space-time gradient operator. In this regard, utilizing
the method of convex integration by Müller & Šverák [12], we aim at solving this
inclusion for certain sets K(b) ⊂ Σ(b) (b ∈ R) in a generic setup (section 4) while
reflecting the initial and Dirichlet boundary conditions in (3.1).

After the successful understanding of homogeneous partial differential inclusions
in the study of crystal microstructures by Ball & James [2] and Chipot & Kinder-
lehrer [6], the methods of convex integration in differential inclusions have been
extensively applied to many important problems; see, e.g., elliptic systems [12], the
Euler equations and Onsager’s conjecture [7, 9], the porous media equation [3],
active scalar equations [14], and the Muskat problem [4].

4. Generic problem

In this section that is independent of the previous sections, we develop a generic
inclusion problem that can be applied to the main problem (3.1) as a special case.
Since the core analysis part is essentially the same for both the Dirichlet problem
and Neumann problem, we take the generic approach instead of studying the convex
integration in a special setup to avoid repetition when we deal with the Neumann
problem in a subsequent paper.

4.1. Two-wall inclusions

As a setup, we fix some generic notations and introduce a two-wall partial
differential inclusion of inhomogeneous type.

4.1.1. Related sets. Let r1 < r2, and let ω1, ω2 ∈ C([r1, r2]) be any two functions
such that

max
[r1,r2]

ω1 < min
[r1,r2]

ω2.

For each b ∈ R, define the matrix sets

K+(b) = K+
ω2

(b) =
{(

ω2(r) c
b r

)
∈ M

2×2
∣∣∣ r ∈ [r1, r2], c ∈ R

}
,

K−(b) = K−
ω1

(b) =
{(

ω1(r) c
b r

)
∈ M

2×2
∣∣∣ r ∈ [r1, r2], c ∈ R

}
,

U(b) = Uω1,ω2(b) =
{(

s c
b r

)
∈ M

2×2
∣∣∣ r ∈ (r1, r2), ω1(r) < s < ω2(r), c ∈ R

}
,
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and K(b) = Kω1,ω2(b) = K+(b) ∪K−(b). Let

K+ = K+
ω2

= {(ω2(r), r) | r ∈ [r1, r2]},
K− = K−

ω1
= {(ω1(r), r) | r ∈ [r1, r2]},

and K = Kω1,ω2 = K+ ∪K−. Also, let

U = {(s, r) | r ∈ (r1, r2), ω1(r) < s < ω2(r)}.

4.1.2. Two-wall inclusions. Let

Ωt2
t1 = Ω × (t1, t2) = (0, L) × (t1, t2) ⊂ R

2,

where t1 < t2 are any two fixed real numbers, and let Q ⊂ Ωt2
t1 be a nonempty open

set. Consider the inhomogeneous partial differential inclusion,

∇z ∈ K(v) in Q, (4.1)

where z = (v, w) : Q→ R
2. Regarding this, we fix some terminologies.

Definition 4.1. Let z = (v, w) ∈W 1,∞(Q; R2). Then the function z is called a
solution of inclusion (4.1) if

∇z ∈ K(v) a.e. in Q,

a subsolution of (4.1) if

∇z ∈ K(v) ∪ U(v) a.e. in Q,

and a strict subsolution of (4.1) if

∇z ∈ U(v) a.e. in Q,

respectively.

Observe that if z = (v, w) ∈W 1,∞(Q; R2) is a solution of (4.1), then

(vx, wt) ∈ K = K+∪K− a.e. in Q;

that is, (vx, wt) lies either in the ‘right wall’ K+ or in the ‘left wall’ K− almost
everywhere in Q(see Fig. 3).

4.2. Special solutions to generic problem

Continuing the previous setup, we present an important existence result on
inclusion (4.1) that will serve as the main ingredient for proving theorem 3.2.
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Figure 3. The right wall K+ and left wall K−.

Assume that z� = (v�, w�) ∈ C1(Ω̄t2
t1 ; R

2) is a function such that in Q,

w�
x = v�, r1 < w�

t < r2, and ω1(w�
t ) < v�

x < ω2(w�
t ). (4.2)

From the definition of U(b) (b ∈ R),

∇z�=
(
v�

x v�
t

w�
x w�

t

)
∈ U(v�) in Q;

that is, z� is a strict subsolution of inclusion (4.1). In particular, we have

(v�
x, w

�
t ) ∈ U in Q. (4.3)

Assume further that

(v�
x, w

�
t )(Q) ∩ {(s, r) ∈ U | dist((s, t), ∂U) < δ} �= ∅ (4.4)

for all sufficiently small δ > 0.
We are now ready to state the main result of this section whose proof is given in

§ 6.

Theorem 4.2. Let ε > 0. Then there exists a function z = (v, w) ∈W 1,∞(Ωt2
t1 ; R

2)
satisfying the following:

(i) z is a solution of inclusion (4.1),

(ii) z = z� on Ω̄t2
t1 \Q,

(iii) ∇z = ∇z� a.e. on Ωt2
t1 ∩ ∂Q,

(iv) ‖z − z�‖
L∞(Ω

t2
t1

;R2)
< ε,

(v) ‖vt − v�
t ‖L∞(Ω

t2
t1

)
< ε,
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(vi) for any nonempty open set O ⊂ Q,

ess osc
O

vx � d0,

where d0 := min[r1,r2] ω2 − max[r1,r2] ω1 > 0.

5. Application of theorem 4.2: proof of main result

In this section, we turn back to § 3 and prove the main result of the paper,
theorem 3.2, by applying theorem 4.2. For the reader’s convenience, we underline
the arguments in theorem 3.2 that are proved along the way.

To start the proof, assume

M0 > s−1 ,

and fix any two numbers r1 < r2 in [ρ(s+0 ), r∗] such that

s−(r1) < M0. (5.1)

In order to fit into the setup in § 4, for r1 � r � r2, define

ω1(r) = s−(r) and ω2(r) = s+(r);

then ω1, ω2 ∈ C([r1, r2]), and

max
[r1,r2]

ω1 = s−(r2) < s+(r1) = min
[r1,r2]

ω2.

Next, using elementary calculus, we can choose a function ρ� ∈ C3(R) such that⎧⎨
⎩
ρ�=ρ on (−∞, s−(r1)] ∪ [s+(r2),∞),
(ρ�)′ > 0 on [s−(r1), s+(r2)],
ρ�<ρ on (s−(r1), s−(r2)], and ρ�>ρ on [s+(r1), s+(r2)).

(5.2)

Define σ� = (ρ�)′ ∈ C2(R); then ∃c0 > 0 such that σ� � c0 in R. Now, from
[11, Theorem 12.14] and [10, Theorem 1.1], the modified problem,⎧⎪⎨

⎪⎩
u�

t = (σ�(u�)u�
x)x = (ρ�(u�))xx in Ω∞,

u�=u0 on Ω × {t = 0},
u�=0 on ∂Ω × (0,∞),

(5.3)

possesses a unique global solution u� ∈ C2,1(Ω̄∞; [0, 1]) with u� ∈ C2+a,1+ a
2 (Ω̄T ;

[0, 1]) for each T > 0 such that

0 � u�(x, t) � ‖u�(·, s)‖L∞(Ω) for all x ∈ Ω̄ and t � s � 0 (5.4)

and that

‖u�(·, t)‖L∞(Ω) � Ce−γt for all t � 0, (5.5)

for some constants C > 0 and γ > 0, depending only on M0, L, σ�, and (σ�)′. Thus,
(e) and (f) in theorem 3.2 are satisfied. Note also from (5.2) and (5.3) that for each
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t � 0,

d
dt

∫
Ω

u�(x, t) dx =
∫

Ω

u�
t (x, t) dx = σ�(u�(L, t))u�

x(L, t) − σ�(u�(0, t))u�
x(0, t)

= u�
x(L, t) − u�

x(0, t) � 0

as u�(x, t) � 0 for 0 < x < L. So the second of (d) in theorem 3.2 holds.
We define

v�(x, t) =
∫ x

0

u�(y, t) dy +
∫ t

0

u�
x(0, s) ds ∀ (x, t) ∈ Ω̄∞; (5.6)

then from (5.3) and the choice of ρ�, v� ∈ C3,1(Ω̄∞) satisfies that for all (x, t) ∈ Ω∞,

v�
t (x, t) =

∫ x

0

u�
t (y, t) dy + u�

x(0, t) =
∫ x

0

(σ�(u�)u�
x)x(y, t) dy + u�

x(0, t)

= σ�(u�(x, t))u�
x(x, t) − σ�(u�(0, t))u�

x(0, t) + u�
x(0, t)

= σ�(v�
x(x, t))v�

xx(x, t) = (ρ�(v�
x))x(x, t).

Hence, v� is a global solution to the problem,

⎧⎪⎨
⎪⎩
v�

t = (ρ�(v�
x))x in Ω∞,

v�=v0 on Ω × {t = 0},
v�

x = 0 on ∂Ω × (0,∞),
(5.7)

where

v0(x) :=
∫ x

0

u0(y) dy ∀ x ∈ Ω̄.

In turn, we define

w�(x, t) =
∫ t

0

ρ�(v�
x(x, s)) ds+

∫ x

0

v0(y) dy ∀ (x, t) ∈ Ω̄∞;

then from (5.6) and (5.7),

{
w�

x = v�

w�
t = ρ�(v�

x)
in Ω∞, (5.8)

v�
x = u� ∈ C2,1(Ω̄∞; [0, 1]), and z� := (v�, w�) ∈ (C3,1 × C4,2)(Ω̄∞).
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Define

Q = {(x, t) ∈ Ω∞ | s−(r1) < v�
x(x, t) < s+(r2)}.

Fix a number T0 > 0 so large that Ce−γT0 < s−(r1). Then from (5.4) and (5.5),

v�
x(x, t) = u�(x, t) < s−(r1) ∀ (x, t) ∈ Ω × [T0,∞);

thus,

Q ⊂ ΩT0
0 = Ω × (0, T0).

Since u0(0) = u0(L) = 0 and M0 > s−(r1), we can take a point x0 ∈ Ω such that

s−(r1) < v�
x(x0, 0) = u0(x0) < s+(r2).

Then by continuity, we can take an r0 ∈ (0, T0) with r0 < min{x0, L− x0} so small
that

s−(r1) < v�
x(x, t) < s+(r2) ∀ (x, t) ∈ (Ω × [0,∞)) ∩Br0(x0, 0);

thus, Ω∞ ∩Br0(x0, 0) ⊂ Q �= ∅ so that

(x0 − r0, x0 + r0) × {0} ⊂ Q̄ ∩ (Ω × {0}) �= ∅.

Note here that Q is a nonempty bounded open subset of Ω∞. Observe also that

Q̄ ⊂ Ω × [0,∞)

as Q̄ is compact and v�
x(0, t) = v�

x(L, t) = 0 for all t � 0.
Following the notations in § 4, note from the choice of ρ�, the definition of Q,

(5.1), (5.7), and (5.8) that (4.2) holds in Q and (4.4) holds for all sufficiently small
δ > 0. Thus, for any fixed ε > 0, we can apply theorem 4.2 (with t1 = 0 and t2 = T0

in the current case) to obtain a function z = zε ∈W 1,∞(ΩT0
0 ; R2) satisfying the

following, where z = (v, w):

(i) z is a solution of inclusion (4.1);

(ii) z = z� on Ω̄T0
0 \Q;

(iii) ∇z = ∇z� a.e. on ΩT0
0 ∩ ∂Q;

(iv) ‖z − z�‖
L∞(Ω

T0
0 ;R2)

< ε;

(v) ‖vt − v�
t ‖L∞(Ω

T0
0 )

< ε;

(vi) for any nonempty open set O ⊂ Q,

ess osc
O

vx � d0,

where d0 = min[r1,r2] ω2 − max[r1,r2] ω1 = s+(r1) − s−(r2) > 0.
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For each (x, t) ∈ Ω̄ × [T0, ∞), define

z(x, t) = z�(x, t); (5.9)

then from (ii), z = (v, w) ∈W 1,∞(ΩT ; R2) for all T > 0.
For each t � 0, define

u(·, t) = vx(·, t) a.e. in Ω; (5.10)

then u ∈ L∞(ΩT ) for all T > 0. First, from (vi), (c) in theorem 3.2 is fulfilled. Also,
note from (ii) and (5.6) that for every t � 0,

∫
Ω

u(x, t) dx =
∫

Ω

vx(x, t) dx = v(L, t) − v(0, t)

= v�(L, t) − v�(0, t) =
∫

Ω

v�
x(x, t) dx =

∫
Ω

u�(x, t) dx;

hence, the first of (d) in theorem 3.2 holds. From (ii), (5.6), and (5.9), we have

u = vx = v�
x = u�∈[0, 1] in Ω∞ \ Q̄,

and from (iii) and (5.6), we get

u = vx = v�
x = u�∈[0, 1] a.e. in Ω∞ ∩ ∂Q.

In particular, (a) in theorem 3.2 is satisfied. From (i), we have

∇z ∈ K(v) a.e. in Q;

that is, a.e. in Q,

⎧⎨
⎩
u = vx ∈ [s−(r1), s−(r2)] ∪ [s+(r1), s+(r2)],
wt = ρ(vx),
wx = v.

(5.11)

In particular, we see that u ∈ [0, 1] a.e. in Ω∞, that is, u ∈ L∞(Ω∞; [0, 1]) and that
(b) in theorem 3.2 holds.

Now, we check that u is a global weak solution to problem (3.1). To do so, fix
any T > 0 and any test function ϕ ∈ C∞(Ω̄ × [0, T ]) with

ϕ = 0 on (∂Ω × [0, T ]) ∪ (Ω × {t = T}). (5.12)
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Observe from (ii), (5.7), (5.9)–(5.12), the choice of ρ�, and the integration by parts
that∫ T

0

∫ L

0

(uϕt + ρ(u)ϕxx) dxdt

=
∫ T

0

∫ L

0

(uϕt + wtϕxx) dxdt

=
∫ T

0

w�
t (L, t)ϕx(L, t) dt−

∫ T

0

w�
t (0, t)ϕx(0, t) dt+

∫ L

0

w�
x(x, 0)ϕx(x, 0) dx

=
∫ T

0

ρ�(v�
x(L, t))ϕx(L, t) dt−

∫ T

0

ρ�(v�
x(0, t))ϕx(0, t) dt+

∫ L

0

v0(x)ϕx(x, 0) dx

= −
∫ L

0

v′0(x)ϕ(x, 0) dx+ v0(L)ϕ(L, 0) − v0(0)ϕ(0, 0) = −
∫ L

0

u0(x)ϕ(x, 0) dx.

Thus, according to definition 1.2(i), u is a global weak solution to (3.1).
Since u� itself is not a global weak solution to problem (3.1), it follows from (iv)

that there are infinitely many global weak solutions to (3.1) that satisfy properties
(a)–(f) in theorem 3.2.

The proof of theorem 3.2 is now complete.

6. Proof of theorem 4.2

Following § 4, this section presents a proof of theorem 4.2 with the help of the key
lemma, lemma 6.1, to be proved in § 7.

6.1. Selection of an in-approximation to K

For each b ∈ R and 0 � λ < 1
2 , define the matrix set Uλ(b) = Uλ

ω1,ω2
(b) ⊂ M

2×2

by

Uλ(b) =
{(

s c
b r

) ∣∣∣c ∈ R, (1 − λ)r1 + λr2 < r < λr1 + (1 − λ)r2,
(1 − λ)ω1(r) + λω2(r) < s < λω1(r) + (1 − λ)ω2(r)

}
,

and let Uλ = Uλ
ω1,ω2

⊂ R
2 be given by

Uλ =
{

(s, r)
∣∣∣(1 − λ)r1 + λr2 < r < λr1 + (1 − λ)r2,
(1 − λ)ω1(r) + λω2(r) < s < λω1(r) + (1 − λ)ω2(r)

}
.

Observe that U0(b) = U(b) for every b ∈ R and that U0 = U.
Since |Q| <∞, we can select a sequence {λi}i∈N in R with

1
(2i+ 1)2

< λi <
1

(2i)2
<

1
2

∀ i ∈ N (6.1)

such that for every i ∈ N,∣∣{(x, t) ∈ Q | (v�
x(x, t), w�

t (x, t)) ∈ ∂Uλi}
∣∣ = 0.

https://doi.org/10.1017/prm.2023.129 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.129


28 Hyung Jun Choi et al.

Thanks to (4.4), we may assume

Qi := {(x, t) ∈ Q | (v�
x(x, t), w�

t (x, t)) ∈ Uλi \ Ūλi−1} �= ∅ ∀ i ∈ N,

where Uλ0 := ∅; then from (4.3), {Qi}i∈N is a sequence of disjoint open subsets of
Q whose union has measure |Q|.

For each i ∈ N, let λ′i = λi+λi+1
2 . Observe from (6.1) that for all i ∈ N,

λi − λ′i+1

λi+1 − λ′i+1

=
λi − λi+1+λi+2

2

λi+1 − λi+1+λi+2
2

=
2λi − λi+1 − λi+2

λi+1 − λi+2

�
2

(2i)2 − 1
(2(i+1)+1)2 − 1

(2(i+2)+1)2

1
(2(i+1)+1)2 − 1

(2(i+2))2

=
2(64i3 + 308i2 + 480i+ 225)(i+ 2)2

i2(2i+ 5)2(4i+ 7)
� 36

and that

λi − λ′i+1

1 − 2λ′i+1

=
λi − λi+1+λi+2

2

1 − λi+1 − λi+2
=

1
2
· 2λi − λi+1 − λi+2

1 − λi+1 − λi+2

� 1
2
·

2
(2i)2 − 1

(2(i+1)+1)2 − 1
(2(i+2)+1)2

1 − 1
(2(i+1))2 − 1

(2(i+2))2

=
(i+ 1)2(i+ 2)2(64i3 + 308i2 + 480i+ 225)

i2(2i+ 3)2(2i+ 5)2(4i4 + 24i3 + 50i2 + 42i+ 11)
.

From these observations, we deduce that for each i ∈ N,

0 < αi :=
λi − λ′i+1

1 − 2λ′i+1

� 36
λi+1 − λ′i+1

1 − 2λ′i+1

(6.2)

and that

0 < �0 :=
∞∑

i=1

αi < 1.

Fix a number κ0 ∈ (1, 1/�0), and define

β1 = 1 − 1
κ0

;

then

�0 < κ0�0 < 1 and 0 < β1 = 1 − 1/κ0 < 1 − �0 < 1.

In turn, for each i ∈ N, define

βi+1 = βi +
αi

κ0�0
; (6.3)
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then the sequence {βi}i∈N fulfils that

0 < β1 < β2 < · · · < 1, lim
i→∞

βi = 1,

and
λi − λ′i+1

1 − 2λ′i+1

= κ0�0(βi+1 − βi) � 36
λi+1 − λ′i+1

1 − 2λ′i+1

∀ i ∈ N.

For each i ∈ N, let

U+
i =

{
(s, r)

∣∣∣(1 − λi+1)r1 + λi+1r2 < r < λi+1r1 + (1 − λi+1)r2,
λiω1(r) + (1 − λi)ω2(r) < s < λi+1ω1(r) + (1 − λi+1)ω2(r)

}
,

U−
i =

{
(s, r)

∣∣∣(1 − λi+1)r1 + λi+1r2 < r < λi+1r1 + (1 − λi+1)r2,
(1 − λi+1)ω1(r) + λi+1ω2(r) < s < (1 − λi)ω1(r) + λiω2(r)

}
.

Next, for each i ∈ N, let

Ii+1 = [(1 − λi+1)r1 + λi+1r2, λi+1r1 + (1 − λi+1)r2] ⊂ R,

η1,+
i = min

r,r̄∈Ii+1
|(λ′iω1(r) + (1 − λ′i)ω2(r), r) − (λiω1(r̄) + (1 − λi)ω2(r̄), r̄)|,

η2,+
i = min

r,r̄∈Ii+1
|(λ′iω1(r) + (1 − λ′i)ω2(r), r) − (λi+1ω1(r̄) + (1 − λi+1)ω2(r̄), r̄)|,

η1,−
i = min

r,r̄∈Ii+1
|((1 − λ′i)ω1(r) + λ′iω2(r), r) − ((1 − λi)ω1(r̄) + λiω2(r̄), r̄)|,

η2,−
i = min

r,r̄∈Ii+1
|((1 − λ′i)ω1(r) + λ′iω2(r), r) − ((1 − λi+1)ω1(r̄) + λi+1ω2(r̄), r̄)|,

and

ηi = min{η1,+
i , η2,+

i , η1,−
i , η2,−

i , (λi − λi+1)(r2 − r1)} > 0.

6.2. Main lemma

Define

ζ±0 (s, r) = θ0(dist((s, r),K±)) ((s, r) ∈ R
2),

where θ0 ∈ C∞([0, ∞)) is a cutoff function such that 0 � θ0 � 1 on [0, ∞), θ0 = 1
on [0, d0/4], and θ0 = 0 on [d0/2, ∞). Then we can choose an integer i0 � 2 so large
that for all i � i0,

ζ±0 (s, r) = 1 ∀ (s, r) ∈ U±
i−1,

respectively.
We present here the key lemma to finish the proof of theorem 4.2. A proof of this

lemma is provided in § 7.

Lemma 6.1. Let ε > 0. Then there exist a sequence {zi}i∈N = {(vi, wi)}i∈N in
W 1,∞(Ωt2

t1 ; R
2), three sequences {Fi}i∈N and {F±

i }i∈N as follows, and three positive
constants c1, c2, and c3 such that for each i ∈ N, the following are satisfied:
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(a) Fi = {Dij | j ∈ N} is a countable collection of disjoint rhombic domains in
Q1 ∪ · · · ∪Qi;

(b) F+
i = {Tij | j ∈ N} is a countable collection of disjoint triangular domains in

Q1 ∪ · · · ∪Qi;

(c) F−
i = {Rij | j ∈ N} is a countable collection of disjoint rhombic domains in

Q1 ∪ · · · ∪Qi;

(d) (∪j∈NTij) ∩ (∪j∈NRij) = ∅ and

|Q1 ∪ · · · ∪Qi| = | ∪j∈N Dij | = | ∪j∈N (Tij ∪Rij)|;

(e) for each D ∈ Fi, there are four disjoint triangular domains T 1
D, T

2
D, T

3
D, T

4
D ∈

F+
i and one rhombic domain RD ∈ F−

i such that

T 1
D ∪ T 2

D ∪ T 3
D ∪ T 4

D ∪RD ⊂ D and |D| = |T 1
D ∪ T 2

D ∪ T 3
D ∪ T 4

D ∪RD|;

(f) one has

sup
j∈N

diamDij � 1
2i

;

(g) one has⎧⎪⎪⎨
⎪⎪⎩

for each T ∈ F+
i , zi ∈ C1(T̄ ; R2), and ((vi)x, (wi)t) ∈ U+

i in T,
for each R ∈ F−

i , zi ∈ C1(R̄; R2), and ((vi)x, (wi)t) ∈ U−
i in R,

zi = z0 on Ω̄t2
t1 \ (Q1 ∪ · · · ∪Qi),

∇zi = ∇z0 a.e. on Ωt2
t1 ∩ ∂Q,

where z0 = (v0, w0) := z�;

(h) one has ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(wi)x = vi a.e. in Q;
‖(vi)t − (vi−1)t‖L∞(Ω

t2
t1

)
� ε

2i+1
;

‖zi − zi−1‖L∞(Ω
t2
t1

;R2)
� ε

2i+1
;

|zi(x, t) − zi(y, s)| � c1|(x, t) − (y, s)| ∀ (x, t), (y, s) ∈ Ωt2
t1 ;

(i) if i � 2, then∫
Ω

t2
t1

|∇zi −∇zi−1|dxdt � c2((βi − βi−1)|Q| + |Qi|);

(j) if i � i0 and D ∈ Fi−1, then∫
D

ζ±0 ((vi)x, (wi)t) dxdt � c3(βi − βi−1)|D| and
∫

D

ζ±0 ((vi)x, (wi)t) dxdt � (1 − (βi − βi−1))
∫

D

ζ±0 ((vi−1)x, (wi−1)t) dxdt.
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6.3. Completion of proof

Utilizing lemma 6.1, we now complete the proof of theorem 4.2.
From the third of (h) in lemma 6.1, it follows that for all i > j � 1,

‖zi − zj‖L∞(Ω
t2
t1

;R2)
� ε
( 1

2i+1
+ · · · + 1

2j+2

)
� ε

2j+1
;

thus, {zi}i∈N is a Cauchy sequence in L∞(Ωt2
t1 ; R

2) so that from the fourth of (h)
in lemma 6.1,

zi → z in L∞(Ωt2
t1 ; R

2) as i→ ∞, (6.4)

for some z = (v, w) ∈W 1,∞(Ωt2
t1 ; R

2) satisfying

|z(x, t) − z(y, s)| � c1|(x, t) − (y, s)| ∀ (x, t), (y, s) ∈ Ωt2
t1 .

Convergence (6.4) together with the third of (g) and third of (h) in lemma 6.1
implies that

z = z0 = z� on Ω̄t2
t1 \Q

and

‖z − z�‖
L∞(Ω

t2
t1

;R2)
= ‖z − z0‖L∞(Ω

t2
t1

;R2)
� ε

2
< ε;

that is, (ii) and (iv) in theorem 4.2 hold.
From (i) in lemma 6.1, we have

‖∇zi −∇zj‖L1(Ω
t2
t1

;M2×2)
� c2

(
|βi − βj ||Q| +

∞∑
k=min{i,j}+1

|Qk|
)

→ 0

as i, j → ∞; thus, after passing to a subsequence if necessary, for a.e. (x, t) ∈ Ωt2
t1 ,

∇zi(x, t) → ∇z(x, t) in M
2×2 as i→ ∞. (6.5)

In particular, this pointwise convergence holds for a.e. (x, t) ∈ Ωt2
t1 ∩ ∂Q. Thus, (iii)

in theorem 4.2 follows from the fourth of (g) in lemma 6.1.
From (6.4), (6.5), and the first and second of (h) in lemma 6.1, we have

wx = v a.e. in Q (6.6)

and

‖vt − v�
t ‖L∞(Ω

t2
t1

)
= ‖vt − (v0)t‖L∞(Ω

t2
t1

)
� ε

2
< ε;

that is, (v) in theorem 4.2 is fulfilled.
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For each i ∈ N, observe from (b), (c), (d), and the first and second of (g) in lemma
6.1 and from the definition of U±

i and K = K+ ∪K− that

∫
Q

dist(((vi)x, (wi)t),K) dxdt =
( i∑

�=1

+
∞∑

�=i+1

)∫
Q�

dist(((vi)x, (wi)t),K) dxdt

� SM |Q|λi + d1

∞∑
�=i+1

|Q�|,

where d1 := diamU and

SM := max
[r1,r2]

(ω2 − ω1) > 0.

Here, letting i→ ∞, we obtain from (6.5) that

∫
Q

dist((vx, wt),K) dxdt = 0;

that is,

(vx, wt) ∈ K a.e. in Q (6.7)

as K ⊂ R
2 is compact. This inclusion together with (6.6) and the definition of K(b)

(b ∈ R) implies that

∇z ∈ K(v) a.e. in Q;

hence, (i) in theorem 4.2 holds.
Finally, to verify (vi) in theorem 4.2, choose an integer i1 � i0 so large that for

all i � i1,

lim
n→∞(1 − (βn − βn−1))(1 − (βn−1 − βn−2)) · · · (1 − (βi+1 − βi)) � 1

2
.
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Fix any integer i � i1, and let D ∈ Fi−1. Then note from (6.5) and (j) in lemma
6.1 that∫

D

ζ±0 (vx, wt) dxdt = lim
n→∞

∫
D

ζ±0 ((vn)x, (wn)t) dxdt

� lim sup
n→∞

(1 − (βn − βn−1))
∫

D

ζ±0 ((vn−1)x, (wn−1)t) dxdt

� lim sup
n→∞

(1 − (βn − βn−1))(1 − (βn−1 − βn−2))

×
∫

D

ζ±0 ((vn−2)x, (wn−2)t) dxdt

...

� lim sup
n→∞

(1 − (βn − βn−1)) · · · (1 − (βi+1 − βi))

×
∫

D

ζ±0 ((vi)x, (wi)t) dxdt

� c3
2

(βi − βi−1)|D| > 0.

Next, let O ⊂ Q be any nonempty open set. Since {Qi}i∈N is a Vitali cover of Q,
we have O ∩Qi2 �= ∅ for some i2 ∈ N. Thus, from (a), (d), and (f) in lemma 6.1,
there exist an i3 > max{i1, i2} and a D3 ∈ Fi3−1 such that

D3 ⊂ O ∩Qi2 .

This inclusion and the above positivity estimate imply that∫
O

ζ±0 (vx, wt) dxdt �
∫

D3

ζ±0 (vx, wt) dxdt > 0.

So from the definition of ζ±0 , there are two disjoint sets O± ⊂ O of positive measure
such that

dist((vx, wt),K±) <
d0

2
in O±;

thus, with (6.7), we conclude that

(vx, wt) ∈ K± a.e. in O±.

Therefore, (vi) in theorem 4.2 follows from the definition of K±.
The proof of theorem 4.2 is now complete.

7. Proof of lemma 6.1

This final section is entirely devoted to a proof of lemma 6.1. First, we begin with an
elementary lemma in subsection 7.1 that provides us with a building block for our
constructions. Then we perform inductive surgeries in subsection 7.2 that complete
the proof of lemma 6.1.
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7.1. Piecewise affine maps with boundary trace 0

Although the following theorem is essential in our constructions, its proof is so
elementary that we omit it (see [17] and Fig. 4).

Lemma 7.1. Let τ± and δ be any three positive numbers, and let D = Dδ be the
interior of the convex hull of the four points (±δ, 0) and (0, ±1) in R

2; that is,

D = int co{(δ, 0), (−δ, 0), (0, 1), (0,−1)}.

Let ϕ = ϕτ+,τ−,δ : D̄ → R be the piecewise affine map defined as follows: for each
0 � t � 1, define

ϕ(x, t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

τ+(x+ δ − δt), −δ + δt � x � τ+

τ++τ−
(−δ + δt),

−τ−x, τ+

τ++τ−
(−δ + δt) � x � τ+

τ++τ−
(δ − δt),

τ+(x− δ + δt),
τ+

τ++τ−
(δ − δt) � x � δ − δt;

and for each (x, t) ∈ D̄ with t � 0, define ϕ(x, t) = ϕ(x, −t). Then ϕ satisfies the
following:

(i) ϕ ∈W 1,∞
0 (D);

(ii) there are five disjoint domains T 1, T 2, T 3, T 4, R ⊂ D which cover D in the
sense of Vitali, and ϕ is affine in each of T 1, T 2, T 3, T 4, R;

(iii) after a proper ordering of T 1, T 2, T 3, T 4, R,

∇ϕ =

⎧⎨
⎩

(τ+, δτ+) in T 1 ∪ T 2,
(τ+,−δτ+) in T 3 ∪ T 4,
(−τ−, 0) in R;

(iv) for each t ∈ [−1, 1], ∫ δ−δ|t|

−δ+δ|t|
ϕ(x, t) dx = 0;

(v) ‖ϕ‖L∞(D) = τ+τ−
τ++τ− δ;

(vi)

⎧⎪⎨
⎪⎩
∣∣{(x, t) ∈ D |ϕx(x, t) = τ+}

∣∣ = τ−

τ+ + τ−
|D|,∣∣{(x, t) ∈ D |ϕx(x, t) = −τ−}

∣∣ = τ+

τ+ + τ−
|D|.

7.2. Inductive surgeries

In this subsection, we prove lemma 6.1 by utilizing affine maps in lemma 7.1.
Fix any ε ∈ (0, 1]. Then we perform the first two surgeries in order that fulfil

(a)–(h) for i = 1 and (a)–(j) for i = 2. We do not proceed with the nth surgery
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Figure 4. Five disjoint domains T 1, T 2, T 3, T 4, R ⊂ D in lemma 7.1.

under the assumption that we have performed the surgeries up to the (n− 1)th one
as it is essentially the repetition of the second one under the fulfilment of the first
surgery.

7.2.1. The first surgery. In this first step, we construct a function z1 = (v1, w1) ∈
W 1,∞(Ωt2

t1 ; R
2), three countable collections F1 and F±

1 , and a constant c1 > 0
satisfying (a)–(h) for i = 1, where c1 is independent of the index i.

Let δ1 ∈ (0, 1] be such that

δ1 < min
{ ε

21+1
√

1 + L2SM

,
η1
4

}
, (7.1)

where the constant SM > 0 is as in subsection 6.3. Since ∇z0 is uniformly continuous
in Q1, there exists a number γ1 ∈ (0, 1

21+1 ] such that

(x, t), (y, s) ∈ Q1, |(x, t) − (y, s)| � γ1 =⇒ |∇z0(x, t) −∇z0(y, s)| � δ1. (7.2)

Consider the diamond Dδ1 . From the Vitali covering lemma, we can choose a
sequence {(x1j , t1j)}j∈N in Q1 and a sequence {ν1j}j∈N in (0, γ1] such that the
sequence {D̃1j}j∈N forms a Vitali cover of Q1, where D̃1j := (x1j , t1j) + ν1jDδ1 ⊂⊂
Q1 (j ∈ N).

For each j ∈ N, let

(s1j , r1j) = ((v0)x(x1j , t1j), (w0)t(x1j , t1j)) ∈ Uλ1 , (7.3)

τ+
1j = λ′1ω1(r1j) + (1 − λ′1)ω2(r1j) − s1j > 0, (7.4)

τ−1j = s1j − (1 − λ′1)ω1(r1j) − λ′1ω2(r1j) > 0, (7.5)

and

ϕ1j(x, t) =

⎧⎨
⎩ν1jϕτ+

1j ,τ−
1j ,δ1

(
1
ν1j

(x− x1j , t− t1j)), (x, t) ∈ D̃1j ,

0, (x, t) ∈ Ω̄t2
t1 \ D̃1j .

(7.6)
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Also, for each j ∈ N, let T 1
1j , T

2
1j , T

3
1j , T

4
1j ⊂ D̃1j denote the four disjoint triangular

domains in each of which ϕ1j is affine and has spatial derivative τ+
1j , and let R5

1j ⊂
D̃1j denote the rhombic domain in which ϕ1j is affine and has spatial derivative
−τ−1j ; then

|D̃1j | = |T 1
1j ∪ T 2

1j ∪ T 3
1j ∪ T 4

1j ∪R5
1j |. (7.7)

We write

F1 = {D̃1j | j ∈ N}, F+
1 = {T 1

1j , T
2
1j , T

3
1j , T

4
1j | j ∈ N}, and F−

1 = {R5
1j | j ∈ N};

here, let {D1j}j∈N, {T1j}j∈N, and {R1j}j∈N be enumerations of F1, F+
1 , and F−

1 ,
respectively.

Since F1 is a Vitali cover of Q1, it follows from the definition of F±
1 , (7.7), and

2ν1j � 2γ1 � 1
21 (j ∈ N) that (a), (b), (c), (d), (e), and (f) for i = 1 hold.

To check the rest, define

ϕ1 =
∞∑

j=1

ϕ1j on Ω̄t2
t1 .

Also, let N ∈ N and

ϕN
1 =

N∑
j=1

ϕ1j on Ω̄t2
t1 .

Then note from the definition of ϕ1j (j ∈ N) and (iii) in lemma 7.1 that

|ϕN
1 (x, t) − ϕN

1 (y, s)| � |(x, t) − (y, s)| max
1�j�N

max{|(τ+
1j , δ1τ

+
1j)|, τ−1j}

�
√

2SM |(x, t) − (y, s)| (7.8)

for all (x, t), (y, s) ∈ Ωt2
t1 and from D̃1j ⊂⊂ Q1 (j ∈ N) that

ϕN
1 = 0 and ∇ϕN

1 = 0 on Ω̄t2
t1 \Q1. (7.9)

Observe from (v) in lemma 7.1 that

‖ϕN
1 − ϕ1‖L1(Ω

t2
t1

)
�

∞∑
j=N+1

|D̃1j | sup
j�N+1

ν1jτ
+
1jτ

−
1j

τ+
1j + τ−1j

δ1 � SM

∞∑
j=N+1

|D̃1j | → 0 (7.10)

as N → ∞; thus, it follows from (7.8) that

|ϕ1(x, t) − ϕ1(y, s)| �
√

2SM |(x, t) − (y, s)| ∀ (x, t), (y, s) ∈ Ωt2
t1 ,

that is, ϕ1 ∈W 1,∞(Ωt2
t1), and from (7.9) that

ϕ1 = 0 on Ω̄t2
t1 \Q1. (7.11)
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From (iii) in lemma 7.1,

‖∇ϕN2
1 −∇ϕN1

1 ‖
L1(Ω

t2
t1

;R2)
�

N2∑
j=N1+1

|D̃1j | max
N1+1�j�N2

max{|(τ+
1j , δ1τ

+
1j)|, τ−1j}

�
√

2SM

N2∑
j=N1+1

|D̃1j | → 0

as N2 > N1 → ∞; thus, from (7.10),

∇ϕN
1 → ∇ϕ1 in L1(Ωt2

t1 ; R
2) as N → ∞

so that (7.9) implies that

∇ϕ1 = 0 a.e. in Ωt2
t1 \Q1. (7.12)

Next, for every (x, t) ∈ Ω̄t2
t1 , define

ψ1(x, t) =
∫ x

0

ϕ1(y, t) dy

and

ψN
1 (x, t) =

∫ x

0

ϕN
1 (y, t) dy (N ∈ N).

Then ψ1 ∈W 1,∞(Ωt2
t1),

(ψ1)x = ϕ1 in Ωt2
t1 , (7.13)

from (iv) and (v) in lemma 7.1,

‖ψN
1 − ψ1‖L1(Ω

t2
t1

)
=
∫

Ω
t2
t1

∣∣∣∣
∫ x

0

(ϕN
1 (y, t) − ϕ1(y, t)) dy

∣∣∣∣ dxdt

=
∞∑

j=N+1

∫
D̃1j

∣∣∣∣
∫ x

0

ϕ1j(y, t) dy
∣∣∣∣ dxdt

�
∞∑

j=N+1

|D̃1j |
ν2
1jδ

2
1τ

+
1jτ

−
1j

2(τ+
1j + τ−1j)

� SM

∞∑
j=N+1

|D̃1j | → 0 (7.14)
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as N → ∞, and from (iii) in lemma 7.1,

‖∇ψN2
1 −∇ψN1

1 ‖
L1(Ω

t2
t1

;R2)
=
∫

Ω
t2
t1

∣∣∣∣
∫ x

0

(∇ϕN2
1 (y, t) −∇ϕN1

1 (y, t)) dy
∣∣∣∣ dxdt

=
N2∑

j=N1+1

∫
D̃1j

∣∣∣∣
∫ x

0

∇ϕ1j(y, t) dy
∣∣∣∣ dxdt

� max
N1+1�j�N2

2ν1jδ1 max{|(τ+
1j , δ1τ

+
1j)|, τ−1j}

N2∑
j=N1+1

|D̃1j |

� SM

N2∑
j=N1+1

|D̃1j | → 0

as N2 > N1 → ∞; thus,

∇ψN
1 → ∇ψ1 in L1(Ωt2

t1 ; R
2) as N → ∞. (7.15)

Note from the definition of ψN
1 (N ∈ N) and (iii) and (iv) in lemma 7.1 that for

each N ∈ N,

ψN
1 = 0 and ∇ψN

1 = 0 on Ω̄t2
t1 \Q1;

thus, letting N → ∞, it follows from (7.14) and (7.15) that

ψ1 = 0 on Ω̄t2
t1 \Q1 and ∇ψ1 = 0 a.e. in Ωt2

t1 \Q1. (7.16)

In turn, define

z1 = (v1, w1) = z0 + (ϕ1, ψ1) on Ω̄t2
t1 ; (7.17)

then z1 ∈W 1,∞(Ωt2
t1 ; R

2) as (ϕ1, ψ1) ∈W 1,∞(Ωt2
t1 ; R

2). From (7.11) and (7.16), we
have

z1 = z0 on Ω̄t2
t1 \Q1;

hence, the third of (g) for i = 1 holds. Also, the fourth of (g) for i = 1 follows from
(7.12), (7.16), and Q1 ⊂ Q. The first of (h) for i = 1 is a consequence of (4.2) and
(7.13).

From (7.2)–(7.6), (7.17), the definition of U±
1 , λ′1, η1, and F±

1 , and lemma 7.1,
the first and second of (g) for i = 1 are fulfilled.

From (7.1), (7.17), and (iii) in lemma 7.1, we have

‖(v1)t − (v0)t‖L∞(Ω
t2
t1

)
= ‖(ϕ1)t‖L∞(Ω

t2
t1

)
� δ1 sup

j∈N

τ+
1j � δ1SM � ε

21+1
; (7.18)

hence, the second of (h) for i = 1 holds.
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From (7.1), (7.6), (7.17), ν1j � γ1 � 1
21+1 (j ∈ N), and (v) in lemma 7.1, we have

‖z1 − z0‖L∞(Ω
t2
t1

;R2)
= ‖(ϕ1, ψ1)‖L∞(Ω

t2
t1

;R2)

� (1 + L2)
1
2 δ1 sup

j∈N

ν1jτ
+
1jτ

−
1j

τ+
1j + τ−1j

� (1 + L2)
1
2 δ1SM � ε

21+1
;

thus, the third of (h) for i = 1 is fulfilled.
Finally, to check the fourth of (h) for i = 1, note from the first and third of (h)

for i = 1, (7.12), (7.16), (7.17), and (7.18) that

‖∇z1‖L∞(Ω
t2
t1

;M2×2)
� ‖((v1)x, (w1)t)‖L∞(Ω

t2
t1

;R2)
+ ‖(v1)t‖L∞(Ω

t2
t1

)
+ ‖(w1)x‖L∞(Ω

t2
t1

)

� ‖((v0)x, (w0)t)‖L∞(Ω
t2
t1

\Q1;R2)
+ ‖((v1)x, (w1)t)‖L∞(Q1;R2)

+ ‖(v0)t‖L∞(Ω
t2
t1

)

+ ‖(ϕ1)t‖L∞(Ω
t2
t1

)
+ ‖v1‖L∞(Ω

t2
t1

)

� 2‖∇z0‖L∞(Ω
t2
t1

;M2×2)
+ CU + ‖z0‖L∞(Ω

t2
t1

;R2)
+

2
21+1

� c1

where CU := sup(s,r)∈U |(s, r)| and

c1 := 2‖∇z0‖L∞(Ω
t2
t1

;M2×2)
+ CU + ‖z0‖L∞(Ω

t2
t1

;R2)
+ 1 > 0.

Therefore, the fourth of (h) for i = 1 follows.
The first step is now finished.
The second surgery: In the second step, we construct a function z2 =

(v2, w2) ∈W 1,∞(Ωt2
t1 ; R

2), three countable collections F2 and F±
2 , and two posi-

tive constants c2 and c3 satisfying (a)–(j) for i = 2, where the constant c1 > 0 is as
in the first step, and the two constants c2 and c3 are independent of the index i.

Let δ2 ∈ (0, 1] be such that

δ2 < min
{ ε

22+1
√

1 + L2SM

,
η2
4

}
. (7.19)

Since ∇z1 is uniformly continuous in Q2, there exists a number γ2 ∈ (0, 1
22+1 ] such

that

(x, t), (y, s) ∈ Q2, |(x, t) − (y, s)| � γ2 =⇒ |∇z1(x, t) −∇z1(y, s)| � δ2. (7.20)

For each j ∈ N, since ∇z1 is uniformly continuous in T1j and in R1j , there exists
a number γ1j ∈ (0, 1

22+1 ] such that

(x, t), (y, s) ∈ T1j , |(x, t) − (y, s)| � γ1j =⇒ |∇z1(x, t) −∇z1(y, s)| � δ2 (7.21)

and that

(x, t), (y, s) ∈ R1j , |(x, t) − (y, s)| � γ1j =⇒ |∇z1(x, t) −∇z1(y, s)| � δ2. (7.22)

Consider the diamond Dδ2 . From the Vitali covering lemma, we can choose a
sequence {(x2j , t2j)}j∈N in Q2 and a sequence {ν2j}j∈N in (0, γ2] such that the
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sequence {D̃2j}j∈N forms a Vitali cover of Q2, where D̃2j := (x2j , t2j) + ν2jDδ2 ⊂⊂
Q2 (j ∈ N).

Let j ∈ N. Also, from the Vitali covering lemma, we can choose a sequence
{(x+

1jk, t
+
1jk)}k∈N in T1j and a sequence {ν+

1jk}k∈N in (0, γ1j ] such that the sequence
{D̃+

1jk}k∈N forms a Vitali cover of T1j , where D̃+
1jk := (x+

1jk, t
+
1jk) + ν+

1jkDδ2 ⊂⊂ T1j

(k ∈ N). Likewise, we can choose a sequence {(x−1jk, t
−
1jk)}k∈N in R1j and a sequence

{ν−1jk}k∈N in (0, min{γ1j , λ1SM}] such that the sequence {D̃−
1jk}k∈N forms a Vitali

cover of R1j , where D̃−
1jk := (x−1jk, t

−
1jk) + ν−1jkDδ2 ⊂⊂ R1j (k ∈ N).

For each j ∈ N, let

(s2j , r2j) = ((v1)x(x2j , t2j), (w1)t(x2j , t2j)) ∈ Uλ2 \ Ūλ1 , (7.23)

τ+
2j = λ′2ω1(r2j) + (1 − λ′2)ω2(r2j) − s2j > 0, (7.24)

τ−2j = s2j − (1 − λ′2)ω1(r2j) − λ′2ω2(r2j) > 0, (7.25)

and

ϕ2j(x, t) =

⎧⎨
⎩ν2jϕτ+

2j ,τ−
2j ,δ2

(
1
ν2j

(x− x2j , t− t2j)), (x, t) ∈ D̃2j ,

0, (x, t) ∈ Ω̄t2
t1 \ D̃2j .

(7.26)

Also, for each j ∈ N, let T 1
2j , T

2
2j , T

3
2j , T

4
2j ⊂ D̃2j denote the four disjoint triangular

domains in each of which ϕ2j is affine and has spatial derivative τ+
2j , and let R5

2j ⊂
D̃2j denote the rhombic domain in which ϕ2j is affine and has spatial derivative
−τ−2j ; then

|D̃2j | = |T 1
2j ∪ T 2

2j ∪ T 3
2j ∪ T 4

2j ∪R5
2j |. (7.27)

Let j, k ∈ N, and let

(s+1jk, r
+
1jk) = ((v1)x(x+

1jk, t
+
1jk), (w1)t(x+

1jk, t
+
1jk)) ∈ U+

1 , (7.28)

τ++
1jk = λ′2ω1(r+1jk) + (1 − λ′2)ω2(r+1jk) − s+1jk > 0, (7.29)

τ+−
1jk = s+1jk − (1 − λ′2)ω1(r+1jk) − λ′2ω2(r+1jk) > 0, (7.30)

and

ϕ+
1jk(x, t) =

⎧⎪⎨
⎪⎩
ν+
1jkϕτ++

1jk ,τ+−
1jk ,δ2

(
1
ν+
1jk

(x− x+
1jk, t− t+1jk)

)
, (x, t) ∈ D̃+

1jk,

0, (x, t) ∈ Ω̄t2
t1 \ D̃

+
1jk.

(7.31)
Observe from (7.28) that

τ++
1jk

τ++
1jk + τ+−

1jk

=
λ′2ω1(r+1jk) + (1 − λ′2)ω2(r+1jk) − s+1jk

(1 − 2λ′2)(ω2(r+1jk) − ω1(r+1jk))

�
(λ1 − λ′2)(ω2(r+1jk) − ω1(r+1jk))

(1 − 2λ′2)(ω2(r+1jk) − ω1(r+1jk))
=
λ1 − λ′2
1 − 2λ′2

(7.32)
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and that
τ++
1jk

τ++
1jk + τ+−

1jk

� λ2 − λ′2
1 − 2λ′2

. (7.33)

Note also that

τ+−
1jk

τ++
1jk + τ+−

1jk

=
s+1jk − (1 − λ′2)ω1(r+1jk) − λ′2ω2(r+1jk)

(1 − 2λ′2)(ω2(r+1jk) − ω1(r+1jk))

�
(1 − λ1 − λ′2)(ω2(r+1jk) − ω1(r+1jk))

(1 − 2λ′2)(ω2(r+1jk) − ω1(r+1jk))
=

1 − λ1 − λ′2
1 − 2λ′2

. (7.34)

Here, we claim that

1 − λ1 − λ′2
1 − 2λ′2

> 1 − (β2 − β1). (7.35)

To check this, we start from the inequality λ1 > λ′2. Since �0 < κ0�0 < 1, we have
1

κ0�0
− 1 > 0 so that (

1
κ0�0

− 1
)
λ1 >

(
1

κ0�0
− 1
)
λ′2;

that is,

1 − λ1 − λ′2 > 1 − 2λ′2 −
1

κ0�0
(λ1 − λ′2).

As 1 − 2λ′2 > 0, we now have

1 − λ1 − λ′2
1 − 2λ′2

> 1 − 1
κ0�0

· λ1 − λ′2
1 − 2λ′2

= 1 − α1

κ0�0
= 1 − (β2 − β1);

hence the claim holds.
Let T+,1

1jk , T
+,2
1jk , T

+,3
1jk , T

+,4
1jk ⊂ D̃+

1jk denote the four disjoint triangular domains
in each of which ϕ+

1jk is affine and has spatial derivative τ++
1jk , and let R+,5

1jk ⊂ D̃+
1jk

denote the rhombic domain in which ϕ+
1jk is affine and has spatial derivative −τ+−

1jk ;
then

|D̃+
1jk| = |T+,1

1jk ∪ T+,2
1jk ∪ T+,3

1jk ∪ T+,4
1jk ∪R+,5

1jk |. (7.36)

Let j, k ∈ N, and let

(s−1jk, r
−
1jk) = ((v1)x(x−1jk, t

−
1jk), (w1)t(x−1jk, t

−
1jk)) ∈ U−

1 , (7.37)

τ−+
1jk = λ′2ω1(r−1jk) + (1 − λ′2)ω2(r−1jk) − s−1jk > 0, (7.38)

τ−−
1jk = s−1jk − (1 − λ′2)ω1(r−1jk) − λ′2ω2(r−1jk) > 0, (7.39)

and

ϕ−
1jk(x, t) =

⎧⎪⎨
⎪⎩
ν−1jkϕτ−+

1jk ,τ−−
1jk ,δ2

(
1
ν−1jk

(x− x−1jk, t− t−1jk)

)
, (x, t) ∈ D̃−

1jk,

0, (x, t) ∈ Ω̄t2
t1 \ D̃

−
1jk.

(7.40)

https://doi.org/10.1017/prm.2023.129 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.129


42 Hyung Jun Choi et al.

Observe from (7.37) that

τ−−
1jk

τ−+
1jk + τ−−

1jk

=
s−1jk − (1 − λ′2)ω1(r−1jk) − λ′2ω2(r−1jk)

(1 − 2λ′2)(ω2(r−1jk) − ω1(r−1jk))

�
(λ1 − λ′2)(ω2(r−1jk) − ω1(r−1jk))

(1 − 2λ′2)(ω2(r−1jk) − ω1(r−1jk))
=
λ1 − λ′2
1 − 2λ′2

(7.41)

and that

τ−−
1jk

τ−+
1jk + τ−−

1jk

� λ2 − λ′2
1 − 2λ′2

. (7.42)

As above, we also have

τ−+
1jk

τ−+
1jk + τ−−

1jk

� 1 − λ1 − λ′2
1 − 2λ′2

> 1 − (β2 − β1).

Let T−,1
1jk , T

−,2
1jk , T

−,3
1jk , T

−,4
1jk ⊂ D̃−

1jk denote the four disjoint triangular domains in
each of which ϕ−

1jk is affine and has spatial derivative τ−+
1jk , and let R−,5

1jk ⊂ D̃−
1jk

denote the rhombic domain in which ϕ−
1jk is affine and has spatial derivative −τ−−

1jk ;
then

|D̃−
1jk| = |T−,1

1jk ∪ T−,2
1jk ∪ T−,3

1jk ∪ T−,4
1jk ∪R−,5

1jk |. (7.43)

We write

F2 = {D̃2j | j ∈ N} ∪ {D̃+
1jk | j, k ∈ N} ∪ {D̃−

1jk | j, k ∈ N},

F+
2 = {T 1

2j , T
2
2j , T

3
2j , T

4
2j | j ∈ N} ∪ {T+,1

1jk , T
+,2
1jk , T

+,3
1jk , T

+,4
1jk | j, k ∈ N}

∪ {T−,1
1jk , T

−,2
1jk , T

−,3
1jk , T

−,4
1jk | j, k ∈ N},

and

F−
2 = {R5

2j | j ∈ N} ∪ {R+,5
1jk | j, k ∈ N} ∪ {R−,5

1jk | j, k ∈ N};

here, let {D2j}j∈N, {T2j}j∈N, and {R2j}j∈N be enumerations of F2, F+
2 , and F−

2 ,
respectively.

Since F2 is a Vitali cover of Q1 ∪Q2, it follows from the definition of F±
2 , (7.27),

(7.36), (7.43), 2ν2j � 2γ2 � 1
22 (j ∈ N), and 2ν±1jk � 2γ1j � 1

22 (j, k ∈ N) that (a),
(b), (c), (d), (e), and (f) for i = 2 hold.

To check the rest, define

ϕ2 =
∞∑

j=1

ϕ2j +
∞∑

j=1

∞∑
k=1

ϕ+
1jk +

∞∑
j=1

∞∑
k=1

ϕ−
1jk on Ω̄t2

t1 ; (7.44)

then as in the first step, we can see that

|ϕ2(x, t) − ϕ2(y, s)| �
√

2SM |(x, t) − (y, s)| ∀ (x, t), (y, s) ∈ Ωt2
t1 ,
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that is, ϕ2 ∈W 1,∞(Ωt2
t1),

ϕ2 = 0 on Ω̄t2
t1 \ (Q1 ∪Q2), (7.45)

and

∇ϕ2 = 0 a.e. in Ωt2
t1 \ (Q1 ∪Q2). (7.46)

Next, for every (x, t) ∈ Ω̄t2
t1 , define

ψ2(x, t) =
∫ x

0

ϕ2(y, t) dy;

then as in the first step, we can check that ψ2 ∈W 1,∞(Ωt2
t1),

(ψ2)x = ϕ2 in Ωt1
t2 , (7.47)

ψ2 = 0 on Ω̄t2
t1 \ (Q1 ∪Q2), and ∇ψ2 = 0 a.e. in Ωt2

t1 \ (Q1 ∪Q2). (7.48)

In turn, define

z2 = (v2, w2) = z1 + (ϕ2, ψ2) on Ω̄t2
t1 ; (7.49)

then z2 ∈W 1,∞(Ωt2
t1 ; R

2) as (ϕ2, ψ2) ∈W 1,∞(Ωt2
t1 ; R

2). From (7.45), (7.48), and the
third of (g) for i = 1, we have

z2 = z0 on Ω̄t2
t1 \ (Q1 ∪Q2);

hence, the third of (g) for i = 2 holds. Also, the fourth of (g) for i = 2 follows from
(7.46), (7.48), and Q1 ∪Q2 ⊂ Q. The first of (h) for i = 2 is implied by (7.47) and
the first of (h) for i = 1.

From (7.20)–(7.26), (7.28)–(7.31), (7.37)–(7.40), (7.49), the definition of U±
2 , λ′2,

η2, and F±
2 , and lemma 7.1, the first and second of (g) for i = 2 are satisfied.

From (7.19), (7.49), and (iii) in lemma 7.1, we have

‖(v2)t − (v1)t‖L∞(Ω
t2
t1

)
= ‖(ϕ2)t‖L∞(Ω

t2
t1

)

� δ2 sup
j,k∈N

max{τ+
2j , τ

++
1jk , τ

−+
1jk } � δ2SM � ε

22+1
; (7.50)

hence, the second of (h) for i = 2 holds.
From (7.19), (7.26), (7.31), (7.40), (7.49), ν2j � γ2 � 1

22+1 (j ∈ N), and ν±1jk �
γ1j � 1

22+1 (j, k ∈ N), we have

‖z2 − z1‖L∞(Ω
t2
t1

;R2)

= ‖(ϕ2, ψ2)‖L∞(Ω
t2
t1

;R2)

� (1 + L2)
1
2 δ2 sup

j,k∈N

max
{
ν2jτ

+
2jτ

−
2j

τ+
2j + τ−2j

,
ν+
1jkτ

++
1jk τ

+−
1jk

τ++
1jk + τ+−

1jk

,
ν−1jkτ

−+
1jk τ

−−
1jk

τ−+
1jk + τ−−

1jk

}

� (1 + L2)
1
2 δ2SM � ε

22+1
;

thus, the third of (h) for i = 2 is satisfied.
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To check the fourth of (h) for i = 2, note from the first and third of (h) for i = 2,
(7.18), (7.46), (7.48), (7.49), and (7.50) that

‖∇z2‖L∞(Ω
t2
t1

;M2×2)
� ‖((v2)x, (w2)t)‖L∞(Ω

t2
t1

;R2)
+ ‖(v2)t‖L∞(Ω

t2
t1

)

+ ‖(w2)x‖L∞(Ω
t2
t1

)

� ‖((v0)x, (w0)t)‖L∞(Ω
t2
t1

\(Q1∪Q2);R2)

+ ‖((v2)x, (w2)t)‖L∞(Q1∪Q2;R2)

+ ‖(v0)t‖L∞(Ω
t2
t1

)
+ ‖(ϕ1)t‖L∞(Ω

t2
t1

)

+ ‖(ϕ2)t‖L∞(Ω
t2
t1

)
+ ‖v2‖L∞(Ω

t2
t1

)

� 2‖∇z0‖L∞(Ω
t2
t1

;M2×2)
+ CU + ‖z0‖L∞(Ω

t2
t1

;R2)

+ 2
( 1

21+1
+

1
22+1

)
� c1.

Hence, the fourth of (h) for i = 2 is true.
We now verify (i) for i = 2. Note from (7.44), (7.46), (7.48), and (7.49) that

∫
Ω

t2
t1

|∇z2 −∇z1|dxdt =
∫

Ω
t2
t1

|∇(ϕ2, ψ2)|dxdt =
(∫

Q1

+
∫

Q2

)
|∇(ϕ2, ψ2)|dxdt

=
⋃

j,k∈N

∫
D̃+

1jk

|∇(ϕ+
1jk, ψ2)|dxdt

+
⋃

j,k∈N

∫
D̃−

1jk

|∇(ϕ−
1jk, ψ2)|dxdt

+
⋃
j∈N

∫
D̃2j

|∇(ϕ2j , ψ2)|dxdt.

Let j, k ∈ N. Then from (6.1), (6.3), (7.31), (7.32), (7.47), and (iii), (v), and (vi)
in lemma 7.1,

∫
D̃+

1jk

|∇(ϕ+
1jk, ψ2)|dxdt =

∫
T+,1

1jk ∪T+,2
1jk ∪T+,3

1jk ∪T+,4
1jk ∪R+,5

1jk

|∇(ϕ+
1jk, ψ2)|dxdt

=
∫

T+,1
1jk ∪T+,2

1jk ∪T+,3
1jk ∪T+,4

1jk

((1 + δ22)(τ++
1jk )2

+ (ϕ+
1jk)2 + ((ψ2)t)2)

1
2 dxdt
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+
∫

R+,5
1jk

((τ+−
1jk )2 + (ϕ+

1jk)2 + ((ψ2)t)2)
1
2 dxdt

�
(

(1 + δ22)(τ++
1jk )2 +

(
δ2ν

+
1jkτ

++
1jk τ

+−
1jk

τ++
1jk + τ+−

1jk

)2

+
(
δ22ν

+
1jkτ

++
1jk τ

+−
1jk

τ++
1jk + τ+−

1jk

)2) 1
2 τ+−

1jk

τ++
1jk + τ+−

1jk

|D̃+
1jk|

+
(

(τ+−
1jk )2 +

(
δ2ν

+
1jkτ

++
1jk τ

+−
1jk

τ++
1jk + τ+−

1jk

)2

+
(
δ22ν

+
1jkτ

++
1jk τ

+−
1jk

τ++
1jk + τ+−

1jk

)2) 1
2 τ++

1jk

τ++
1jk + τ+−

1jk

|D̃+
1jk|

=
(

(1 + δ22)(τ+−
1jk )2 +

(
δ2ν

+
1jk(τ+−

1jk )2

τ++
1jk + τ+−

1jk

)2

+
(
δ22ν

+
1jk(τ+−

1jk )2

τ++
1jk + τ+−

1jk

)2) 1
2 τ++

1jk

τ++
1jk + τ+−

1jk

|D̃+
1jk|

+
(

(τ+−
1jk )2 +

(
δ2ν

+
1jkτ

++
1jk τ

+−
1jk

τ++
1jk + τ+−

1jk

)2

+
(
δ22ν

+
1jkτ

++
1jk τ

+−
1jk

τ++
1jk + τ+−

1jk

)2) 1
2 τ++

1jk

τ++
1jk + τ+−

1jk

|D̃+
1jk|

�
((

2S2
M +

2S4
M

(1 − 2λ′2)2S2
m

) 1
2

+
√

3SM

)
(β2 − β1)|D̃+

1jk|

�
(√

2
(

1 +
64
49

(
SM

Sm

)2) 1
2

+
√

3
)
SM (β2 − β1)|D̃+

1jk|,

where Sm := min[r1,r2](ω2 − ω1) > 0. Similarly, from (6.1), (6.3), (7.31), (7.41),
(7.47), and (iii), (v), and (vi) in lemma 7.1,

∫
D̃−

1jk

|∇(ϕ−
1jk, ψ2)|dxdt =

∫
T−,1

1jk ∪T−,2
1jk ∪T−,3

1jk ∪T−,4
1jk ∪R−,5

1jk

|∇(ϕ−
1jk, ψ2)|dxdt

=
∫

T−,1
1jk ∪T−,2

1jk ∪T−,3
1jk ∪T−,4

1jk

((1 + δ22)(τ−+
1jk )2

+ (ϕ−
1jk)2 + ((ψ2)t)2)

1
2 dxdt

+
∫

R−,5
1jk

((τ−−
1jk )2 + (ϕ−

1jk)2 + ((ψ2)t)2)
1
2 dxdt
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�
(

(1 + δ22)(τ−+
1jk )2 +

(
δ2ν

−
1jkτ

−+
1jk τ

−−
1jk

τ−+
1jk + τ−−

1jk

)2

+
(
δ22ν

−
1jkτ

−+
1jk τ

−−
1jk

τ−+
1jk + τ−−

1jk

)2) 1
2 τ−−

1jk

τ−+
1jk + τ−−

1jk

|D̃−
1jk|

+
(

(τ−−
1jk )2 +

(
δ2ν

−
1jkτ

−+
1jk τ

−−
1jk

τ−+
1jk + τ−−

1jk

)2

+
(
δ22ν

−
1jkτ

−+
1jk τ

−−
1jk

τ−+
1jk + τ−−

1jk

)2) 1
2 τ−+

1jk

τ−+
1jk + τ−−

1jk

|D̃−
1jk|

=
(

(1 + δ22)(τ−+
1jk )2 +

(
δ2ν

−
1jkτ

−+
1jk τ

−−
1jk

τ−+
1jk + τ−−

1jk

)2

+
(
δ22ν

−
1jkτ

−+
1jk τ

−−
1jk

τ−+
1jk + τ−−

1jk

)2) 1
2 τ−−

1jk

τ−+
1jk + τ−−

1jk

|D̃−
1jk|

+
(

(τ−+
1jk )2 +

(
δ2ν

−
1jk(τ−+

1jk )2

τ−+
1jk + τ−−

1jk

)2

+
(
δ22ν

−
1jk(τ−+

1jk )2

τ−+
1jk + τ−−

1jk

)2) 1
2 τ−−

1jk

τ−+
1jk + τ−−

1jk

|D̃−
1jk|

�
(

2SM +
(
S2

M +
2S4

M

(1 − 2λ′2)2S2
m

) 1
2
)

(β2 − β1)|D̃−
1jk|

�
(

2 +
(

1 +
128
49

(
SM

Sm

)2) 1
2
)
SM (β2 − β1)|D̃−

1jk|.

Also,

∫
D̃2j

|∇(ϕ2j , ψ2)|dxdt =
∫

T 1
2j∪T 2

2j∪T 3
2j∪T 4

2j∪R5
2j

|∇(ϕ2j , ψ2)|dxdt

=
∫

T 1
2j∪T 2

2j∪T 3
2j∪T 4

2j

((1 + δ22)(τ+
2j)

2

+ (ϕ2j)2 + ((ψ2)t)2)
1
2 dxdt

+
∫

R5
2j

((τ−2j)
2 + (ϕ2j)2 + ((ψ2)t)2)

1
2 dxdt

�
(

(1 + δ22)(τ+
2j)

2 +
(
δ2ν2jτ

+
2jτ

−
2j

τ+
2j + τ−2j

)2

+
(
δ22ν2jτ

+
2jτ

−
2j

τ+
2j + τ−2j

)2) 1
2 τ−2j

τ+
2j + τ−2j

|D̃2j |
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+
(

(τ−2j)
2 +

(
δ2ν2jτ

+
2jτ

−
2j

τ+
2j + τ−2j

)2

+
(
δ22ν2jτ

+
2jτ

−
2j

τ+
2j + τ−2j

)2) 1
2 τ+

2j

τ+
2j + τ−2j

|D̃2j |

�
2SMτ−2j

τ+
2j + τ−2j

|D̃2j | +
√

3SMτ+
2j

τ+
2j + τ−2j

|D̃2j | � 2SM |D̃2j |.

Combining these estimates, we obtain that∫
Ω

t2
t1

|∇z2 −∇z1|dxdt � c2((β2 − β1)|Q1| + |Q2|) � c2((β2 − β1)|Q| + |Q2|),

where

c2 :=
6S2

M

Sm
> 0.

Thus, (i) for i = 2 holds.
In this final stage, we show that if i0 = 2, then (j) for i = 2 holds. So we assume

i0 = 2. Hence, for all i � i0 = 2,

ζ±0 (s, r) = 1 ∀ (s, r) ∈ U±
i−1. (7.51)

LetD ∈ F1. Then from (b), (c), and (e) for i = 1, there are five numbers j1, . . . , j5 ∈
N with

T1j1 ∪ T1j2 ∪ T1j3 ∪ T1j4 ∪R1j5 ⊂ D

such that

|D| = |T1j1 ∪ T1j2 ∪ T1j3 ∪ T1j4 ∪R1j5 |.

We now observe that∫
D

ζ+
0 ((v2)x, (w2)t) dxdt =

∫
T1j1∪T1j2∪T1j3∪T1j4∪R1j5

ζ+
0 ((v2)x, (w2)t) dxdt

=
∑
k∈N

(∫
D̃+

1j1k

+
∫

D̃+
1j2k

+
∫

D̃+
1j3k

+
∫

D̃+
1j4k

+
∫

D̃−
1j5k

)
ζ+
0 ((v2)x, (w2)t) dxdt.

Let k ∈ N. Then from (7.28), (7.51), the first of (g) for i = 2, and (vi) in lemma
7.1,

∫
D̃+

1jk

ζ+
0 ((v2)x, (w2)t) dxdt =

τ+−
1jk

τ++
1jk + τ+−

1jk

|D̃+
1jk| �

τ++
1jk

τ++
1jk + τ+−

1jk

|D̃+
1jk|
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for j = j1, . . . , j4, and

∫
D̃−

1j5k

ζ+
0 ((v2)x, (w2)t) dxdt =

τ−−
1j5k

τ−+
1j5k + τ−−

1j5k

|D̃−
1jk|.

Thus, from (6.2), (6.3), (7.33), and (7.42),∫
D

ζ+
0 ((v2)x, (w2)t) dxdt � λ2 − λ′2

1 − 2λ′2
|D| � c3(β2 − β1)|D|,

where c3 := κ0�0
36 > 0. Likewise, one can check that∫

D

ζ−0 ((v2)x, (w2)t) dxdt � c3(β2 − β1)|D|.

Hence, the first inequalities in (j) for i = 2 hold.
Next, for k ∈ N and j = j1, . . . , j4, it follows from (7.34) and (7.35) that

∫
D̃+

1jk

ζ+
0 ((v2)x, (w2)t) dxdt =

τ+−
1jk

τ++
1jk + τ+−

1jk

|D̃+
1jk| � (1 − (β2 − β1))|D̃+

1jk|;

thus, ∫
D

ζ+
0 ((v2)x, (w2)t) dxdt � (1 − (β2 − β1))|T1j1 ∪ T1j2 ∪ T1j3 ∪ T1j4 |.

On the other hand, from (7.51) and the first of (g) for i = 1,∫
D

ζ+
0 ((v1)x, (w1)t) dxdt = |T1j1 ∪ T1j2 ∪ T1j3 ∪ T1j4 |

so that∫
D

ζ+
0 ((v2)x, (w2)t) dxdt � (1 − (β2 − β1))

∫
D

ζ+
0 ((v1)x, (w1)t) dxdt.

Similarly, one can check that∫
D

ζ−0 ((v2)x, (w2)t) dxdt � (1 − (β2 − β1))
∫

D

ζ−0 ((v1)x, (w1)t) dxdt.

Hence, the second inequalities in (j) for i = 2 hold.
The second step is now complete.
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