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In this paper, we give necessary conditions for an N -expansive homeomorphism of a
compact metric space to be nonchaotic in the Li–Yorke sense. As application we give
a partial answer to a conjecture in [2].
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There are expansive homeomorphisms on compact metric spaces which are non-
chaotic in the sense of Li and Yorke. More precisely, the ones obtained by the
restriction of Denjoy maps to their minimal set. On the other hand, there is
a generalization of expansive homeomorphisms introduced in [8]. These are the
N -expansive homeomorphisms for a given positive integer. The case N = 1 corre-
sponds to the expansive homeomorphisms. It was proved that for every N ∈ N there
is a compact metric space exhibiting a 2N -expansive homeomorphism which is not
(2N − 1)-expansive. This was extended in [2]. Indeed, for every N ∈ N there is a
compact metric space exhibiting a (N + 1)-expansive homeomorphism which is not
N -expansive. Moreover, these examples have the shadowing property and countably
infinitely many chain recurrent classes. They motivated the study of N -expansive
homeomorphisms with the shadowing property on compact metric spaces. The
N -expansive homeomorphisms constitute together with the continuum-wise expan-
sive ones [4] the so-called levels of generalized expansivity [7].

In light of these results, we can ask about what nonchaotic N -expansive home-
omorphisms are. At first glance, we can say that these homeomorphisms exist on
totally disconnected spaces only. This follows from Kato [4] and the fact that all
N -expansive homeomorphisms are continuum-wise expansive.

In this paper, we will embed the nonchaotic N -expansive homeomorphisms into
levels of asymptotic expansivity [5]. The latter is a recent notion of expansivity
adapted to certain expansive-like examples (e.g. basin of attraction of hyperbolic
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attractors). Precisely, we will prove that every nonchaotic N -expansive is asymp-
totically N -expansive. As application, we will give a partial positive answer to a
conjecture in [2]. Let us state our result in a precise way.

Consider a map of a metric space f : X → X and x ∈ X. Given ε > 0 and x ∈ X,
we define the local stable set

Φε(x) = {y ∈ X : d(f i(x), f i(y)) � ε, ∀i � 0}
and, if f is bijective, we also define

Γε(x) = {y ∈ X : d(f i(x), f i(y)) � ε, ∀i ∈ Z}.
A bijective map f is expansive [10] if there is e > 0 (called expansivity constant)
such that Γe(x) = {x} for every x ∈ X. The following definition splits this concept
into levels of generalized expansivity [7]. Hereafter, we fix N ∈ N.

Definition 1 [8]. A bijective map f : X → X is N -expansive if there is e > 0
(called N -expansivity constant) such that Γe(x) has at most N elements for every
x ∈ X.

The case N = 1 in this definition corresponds to the expansive homeomorphism.
Another generalization studied in [5] is as follows. A homeomorphism of a metric
space f : X → X is asymptotically expansive if there is e > 0 (called asymptotic
expansivity constant) such that if x1, x2 ∈ X and d(f i(x1), f i(x2)) � ε for every
i � 0, then

lim
i→∞

d(f i(x1), f i(x2)) = 0.

Now we split this definition into levels as the ones for the classical expansivity.

Definition 2. A map of a metric space f : X → X is asymptotically N -expansive
if there is e > 0 (asymptotic N -expansivity constant) such that if x1, · · · , xN+1 ∈ X
and d(f i(xl), f i(xr)) � e, ∀i � 0 and l, r ∈ {1, · · · , N + 1}, then

lim
i→∞

d(f i(xl), f i(xr)) = 0 for some distinct l, r ∈ {1, · · · , N + 1}.

Since 1-expansivity is equivalent to expansivity (which in turn implies asymptotic
expansivity), we have that every 1-expansive homeomorphism is asymptotically
1-expansive. The question is if we can replace 1 by any positive integer N . More
precisely, we have the question below:

Question 1. Is every N -expansive homeomorphism of a compact metric space
asymptotically N -expansive?

(Actually, this is a reformulation of conjecture 4.3 in [2], see the last section.)
We will give a partial answer based on the very classical concept of Li–Yorke

chaos. Recall that a Li–Yorke pair of a map f : X → X is a pair x, y ∈ X satisfying

lim inf
i→∞

d(f i(x), f i(y)) = 0 < lim sup
i→∞

d(f i(x), f i(y)).

We say that f is chaotic (in the sense of Li–Yorke) if it has a Li–Yorke pair and
nonchaotic otherwise. The literature about this concept is very extensive. It was
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introduced by Li and Yorke in their nowadays classical paper [6]. Among the many
results about this kind of chaos, we can mention Blanchard et al. [1] proving that
it holds under positive topological entropy.

We can state our main result.

Theorem. Every nonchaotic N -expansive homeomorphism of a compact metric
space is asymptotically N -expansive.

We prove this result in the next section. We will give a short application related
to [2] in the last section.

1. Proof of the theorem

First remind that a bijective map of a metric space f : X → X is uniformly expan-
sive (Sears [9]) if there is e > 0 (called uniform expansivity constant) such that for
every ε > 0 there is M ∈ N such that if x1, x2 ∈ X satisfy d(f i(x1), f i(x2)) � e, for
all −M � i � M , then d(x1, x2) � ε.

This concept splits into levels depending on positive integers N ∈ N as follows [3].

Definition 3. A bijective map of a metric space f : X → X is uniformly
N -expansive if there is e > 0 (called uniform N -expansivity constant) such that
for every ε∗ > 0 there is M ∈ N such that if x∗

1, · · · , x∗
N+1 ∈ X satisfy

d(f i(x∗
l ), f

i(x∗
s)) � e, ∀ − M � i � M, ∀l, s ∈ {1, · · · , N + 1},

then

d(x∗
l , x

∗
s) � ε∗

for some distinct l, s ∈ {1, · · · , N + 1}.
Every expansive homeomorphism of a compact metric space is uniformly

expansive (lemma 2 in [11]). Likewise, we obtain the following lemma.

Lemma 1. Every N -expansive homeomorphism of a compact metric space is
uniformly N -expansive.

Proof. Let f : X → X be an N -expansive homeomorphism of a compact metric
space. We shall prove that every N -expansivity constant e of f is a uniform
N -expansivity constant of f .

Suppose not. Then, there is ε > 0 such that no M ∈ N satisfies the conclusion in
definition 3. From this, we obtain N + 1 sequences

(xM
1 )M∈N, · · · , (xM

N+1)M∈N

in X such that

d(f i(xM
l ), f i(xM

s )) � e, ∀ − M � i � M,∀l, s ∈ {1, · · · , N + 1} (1.1)

but

d(xM
l , xM

s ) > ε, ∀M ∈ N, ∀ distinct l, s ∈ {1, · · · , N + 1}. (1.2)
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Since X is compact, we can assume that ∀l ∈ {1, · · · , N + 1} ∃xl ∈ X such that
xM

l → xl as M → ∞, ∀l ∈ {1, · · · , N + 1}.
Since f is continuous, we can obtain the inequalities below by fixing i ∈ Z and

letting M → ∞ in (1.1):

d(f i(xl), f i(xr)) � e, ∀i ∈ Z, ∀l, s ∈ {1, · · · , N + 1}.

This proves

{x1, · · · , xN+1} ⊂ Γe(x1).

But e is an N -expansivity constant so Γe(x1) has at most N elements thus the
above inclusion implies

xl = xs, for some distinct l, s ∈ {1, · · · , N + 1}.

However, by letting M → ∞ in (1.2), one gets d(xl, xs) � ε hence

xl �= xs, ∀ distinct l, s ∈ {1, · · · , N + 1}.

This is a contradiction which completes the proof. �

We will need the auxiliary definition below.

Definition 4. A map of a metric space f : X → X is weak asymptotically
N -expansive if there is e > 0 (weak asymptotic N -expansivity constant) such that if
x1, · · · , xN+1 ∈ X and d(f i(xl), f i(xr)) � e, ∀i � 0 and l, r ∈ {1, · · · , N + 1}, then

lim
j→∞

inf{d(f j(xl), f j(xs)) : l, s ∈ {1, · · ·N + 1} are distinct} = 0.

The difference between this definition and that of asymptotically N -expansive
bijective maps is the limit in the corresponding conclusions. In particular, every
asymptotically N -expansive homeomorphism is weak asymptotically N -expansive.
These concepts coincide with asymptotic expansivity for N = 1.

Now we prove a lemma closely related to proposition 11 in [5]. Its proof is based
on proposition 1 in Sears [9].

Lemma 2. Every uniformly N -expansive bijective map of a metric space is weak
asymptotically N -expansive.

Proof. It suffices to prove that every uniformly N -expansive constant e of a bijective
map of a metric space f : X → X is a weak asymptotic N -expansivity constant.
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Suppose not. More precisely, that e is not a weak asymptotic N -expansivity
constant. Then, by definition 4, there are x1, · · · , xN+1 ∈ X satisfying

d(f j(xl), f j(xs)) � e, ∀j � 0, l, s ∈ {1, · · · , N + 1}, (1.3)

but

lim
i→∞

inf{d(f i(xl), f i(xs)) : l, s ∈ {1, · · ·N + 1} are distinct} �= 0.

From this limit, we get ε > 0 and a sequence

(ik)k∈N → ∞ (as k → ∞) (1.4)

such that

inf{d(f ik(xl), f ik(xs)) : l, s ∈ {1, · · ·N + 1} are distinct} > ε, ∀k ∈ N.

Then,

d(f ik(xl)f ik(xs)) > ε, (1.5)

for all k ∈ N and all distinct l, s ∈ {1, · · · , N + 1}.
Now, recall that e is a uniformly N -expansivity constant of f so we can apply

definition 3. Then, by taking

ε∗ =
ε

2
in this definition we obtain M ∈ N such that if x∗

1, · · · , x∗
N+1 ∈ X and

d(x∗
l , x

∗
s) > ε∗, ∀ distinct l, s ∈ {1, · · · , N + 1}, (1.6)

then

d(f i(x∗
l ), f

i(x∗
s)) > e,

for some −M � i � M and some l, s ∈ {1, · · · , N + 1}.
By (1.4) we can fix k ∈ N such that

ik � M

and, by (1.5),

d(f ik(xl), f ik(xs)) > ε∗, ∀ distinct l, s ∈ {1, · · · , N + 1}.
Then, defining x∗

l = f ik(xl) for 1 � l � N + 1 we obtain

x∗
1, · · · , x∗

N+1 ∈ X

satisfying (1.6). So, the choice of M implies that there are

−M � i � M

and two (necessarily distinct) indexes l, s ∈ {1, · · · , N + 1} such that

d(f i(f ik(xl)), f i(f ik(xs))) > e.

Therefore,

d(f j(xl), f j(xs)) > e where j = ik + i.

Since j = ik + i � ik − M � 0, we contradict (1.3) completing the proof. �
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Lemmas 1 and 2 reduce question 1 to the following one:

Question 2. Is every weak asymptotically N -expansive homeomorphism of a
compact metric space asymptotically N -expansive?

We can give positive answer for nonchaotic homeomorphisms.

Lemma 3. Every nonchaotic weak asymptotically N -expansive map of a metric
space is asymptotically N -expansive.

Proof. Consider a nonchaotic weak asymptotically N -expansive map of a met-
ric space f : X → X. Let e be a weak asymptotic N -expansivity constant of f .
Suppose that e

2 is not an asymptotic N -expansive constant of f . Then, there are
x1, · · · , xN+1 ∈ X such that d(f i(xl), f i(xr)) � e

2 for all i � 0, l, r ∈ {1, · · · , N + 1}
but

lim
i→∞

d(f i(xl), f i(xr)) �= 0, ∀ distinct l, r ∈ {1, · · · , N + 1}.
So, there is ε > 0 such that ∀ distinct l, r ∈ {1, · · · , N + 1} there is a sequence

(ik(l, r))k∈N → ∞ (as k → ∞) (1.7)

such that

d(f ik(l,r)(xl), f ik(l,r)(xr)) > ε, (1.8)

for all k ∈ N and all distinct l, r ∈ {1, · · · , N + 1}.
On the other hand,

d(f j(xl), f j(xr)) � e, ∀j � 0, ∀l, r ∈ {1, · · · , N + 1}.
Since e is an asymptotic N -expansivity constant,

lim
j→∞

inf{d(f j(xl), f j(xr)) : l, r ∈ {1, · · · , N + 1} are distinct} = 0.

Then, there are sequences lj �= rj ∈ {1, · · · , N + 1} such that

lim
j→∞

d(f j(xlj ), f
j(xrj

)) = 0.

By the Pigeon Principle, there is a sequence (jq)q∈N → ∞ such that ljq
= l and

rjq
= r are constant. Then,

lim
q→∞ d(f jq (xl), f jq (xr)) = 0.

This implies

lim inf
j→∞

d(f j(xl), f j(xr)) = 0.

Moreover, (1.8) implies

lim sup
j→∞

d(f j(xl), f j(xr)) � ε > 0.

Then, (xl, xr) is a Li–Yorke pair of f which is a contradiction. This completes the
proof. �
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Before proving our theorem, we observe that the converse of the above lemma
is false. More precisely, though every asymptotically N -expansive homeomor-
phism is weak asymptotically N -expansive, there are asymptotically N -expansive
homeomorphisms which are chaotic (e.g. any expansive homeomorphism with
positive entropy). Besides, examples of nonchaotic asymptotically N -expansive
homeomorphisms are the restriction of the Denjoy circle maps to its minimal set.

Finally, we prove our result.

Proof of the theorem. Let f : X → X be a nonchaotic N -expansive homeomor-
phism of a compact metric space. Since X is compact, lemma 1 implies that f
is uniformly N -expansive and so weak asymptotically N -expansive by lemma 2.
Since f is nonchaotic, f is asymptotically N -expansive by lemma 3. �

2. An application

The following definition for maps on metric spaces f : X → X is definition 4.2
in [2].

Definition 5. Given x ∈ X, the number of different stable sets of f in Φε(x) is
defined as the integer n(x, ε) satisfying the two properties below:

• There exists E = E(x, ε) ⊂ Φε(x) with n(x, ε) elements such that

y /∈ W s(z), ∀ distinct y, z ∈ E(x, ε).

• If y1, · · · , yn(x,ε)+1 are n(x, ε) + 1 distinct points of Φε(x), then there are distinct
l, r ∈ {1, · · · , n(x, ε) + 1} such that

yl ∈ W s(yr).

The following question is conjecture 4.3 in [2]:

Question 3. If f is an N -expansive homeomorphism defined in a compact metric
space X, then there exists ε > 0 such that

n(x, ε) � N, ∀x ∈ X. (2.1)

(Actually, the original question was if ∃ε > 0 such that n(x, ε̄) � N for all x ∈ X,
0 < ε̄ � ε. However, the statement above is equivalent to this original one.)

The answer looks to be positive. In fact, if we take ε as the N -expansivity constant
of f , we note that Γε(x) has at most N elements making then possible that n(x, ε) �
N (∀x ∈ X). But Φε(x) is usually bigger than Γε(x) so n(x, ε) may have more than
N elements for some x.

Proposition 4.4 in [2] gives a positive answer when f has the shadowing property.
Here we use our theorem to give a positive answer when f is nonchaotic. We need
some elementary facts.

Let f : X → X be a map of a metric space.
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Definition 6. The number of stable sets of f in A ⊂ X is defined by

n(A) = sup{n ∈ N : ∃E ⊂ A with n elements such that x /∈ W s(y)

for all distinct x, y ∈ E}.

The link with n(x, ε) is given by

n(x, ε) = n(Φε(x)), ∀x ∈ X, ε > 0. (2.2)

We obtain the following elementary lemma.

Lemma 4. A bijective map of a metric space f : X → X is asymptotically
N -expansive if and only if there is ε > 0 such that

n(Φε(x)) � N ∀x ∈ X.

Proof. Suppose that there is ε > 0 satisfying the conclusion of the lemma. Let
x1, · · · , xN+1 ∈ X such that

d(f i(xl), f i(xr)) � ε

2
∀i � 0, l, r ∈ {1, · · · , N + 1}.

Then, the triangle inequality implies x1, · · · , xN+1 ∈ Φε(x1). It follows from the
definition of n(Φε(x1)) that xl ∈ W s(xr) for some distinct l, r ∈ {1, · · · , N + 1}.
Therefore,

lim
i→∞

d(f i(xl), f i(xr)) = 0 for some distinct l, r ∈ {1, · · · , N + 1}

and so e = ε
2 is an asymptotic N -expansivity constant of f .

Conversely, let e be an asymptotic N -expansivity constant of f . Suppose that
x ∈ X and x1, · · · , xN+1 ∈ Φ e

2
(x). Then, d(f i(xl), f i(xr)) � e for all i � 0, l, r ∈

{1, · · · , N + 1} so limi→∞ d(f i(xl), f i(xr)) = 0 (i.e. xl ∈ W s(xr)) for some distinct
l, s ∈ {1, . . . , N + 1}, hence n(Φε(x1)) � N proving the result. �

Combining (2.2) and lemma 4, we obtain the following corollary.

Corollary 1. A bijective map of a metric space is asymptotically N -expansive if
and only if there is ε > 0 satisfying (2.1).

Finally, we give a partial positive answer for question 3.

Proposition 1. For every nonchaotic N -expansive homeomorphism of a compact
metric space f : X → X, there is ε > 0 satisfying (2.1).

Proof. Our theorem implies that f is asymptotically N -expansive and so the desired
ε exists by corollary 1. �

We conclude with the following remark.
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Remark 1. Every N -expansive homeomorphism with the shadowing property of
a compact metric space is asymptotically N -expansive. Indeed, for all such home-
omorphisms, there is ε > 0 satisfying (2.1) (proposition 4.4 in [2]) and so they are
asymptotically N -expansive by lemma 4. It is also worth to mention that question
1 is a mere reformulation of question 3. The answer for both questions would be
positive if the answer for question 2 were positive too.
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