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Abstract

Let K be a field, char(K) , 2, and G a subgroup of GL(n, K). Suppose g 7→ g] is a K-linear
antiautomorphism of G, and then define G1 = {g ∈G | g]g = I}. For C being the centraliser CG(G1), or
any subgroup of the centre Z(G), define G(C) = {g ∈G | g]g ∈C}. We show that G(C) is a subgroup of
G, and study its structure. When C = CG(G1), we have that G(C) =NG(G1), the normaliser of G1 in G.
Suppose K is algebraically closed, CG(G1) consists of scalar matrices and G1 is a connected subgroup of
an affine group G. Under the latter assumptions, NG(G1) is a self-normalising subgroup of G. This holds
for a number of interesting pairs (G,G1); in particular, for those that we call parabolic pairs. As well, for
a certain specific setting we generalise a standard result about centres of Borel subgroups.
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1. Introduction

Unless specified otherwise, throughout this paper K always denotes a field of
characteristic ,2, and K its fixed algebraic closure. We denote by µl(K) the group
of lth roots of unity in K. We denote by Fp the finite field with p elements. Given a
group G, we denote byZ(G) its centre. For a subgroup G1 of G, we denote by CG(G1)
and NG(G1) the centraliser and normaliser of G1 in G, respectively. The letter I is
reserved for the identity matrix of some GL(n, K). We often identify a scalar λ ∈ K×

and the scalar matrix λI. Under this identification we consider K× as a subgroup of
GL(n, K).

An interesting problem in group theory and representation theory is to study the
normalisers NG(G1) for various pairs of groups (G,G1), where G1 ≤G. In particular,
it is worth knowing for which pairs (G,G1) the answer to the following question is
affirmative; see Remark 1.3.

Q 1.1. Is NG(G1) self-normalising in G?
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A related problem is to study the class of all self-normalising subgroups of a
given G. As one famous example of this let us mention the Chevalley normaliser
theorem, which states that every parabolic subgroup of a connected affine group is
both self-normalising and connected; see, for example, [Bor, Theorem 11.16].

Now we would like to be more precise about the pairs (G,G1) that we will study.
Let G be a closed subgroup of GL(m, K). Put G = G(K), the group of K-rational
points of G. We want to consider some interesting subgroups G1 ≤G, and obtain
some useful information concerning the normaliser NG(G1). As will be seen below,
these normalisers are often self-normalising subgroups of G. We should also say
here that our subgroups G1 will in fact always be the groups of K-points G1(K),
for certain algebraic K-subgroups G1 ≤ G. More precisely, our main interest is
when G and G1 are both either reductive or parabolic groups. As is well known,
these two kinds of algebraic groups, and the corresponding groups of their rational
points, play fundamental roles in representation theory. As another fact worthy of
mention, we also have the following: given a pair of algebraic groups (G, G1), both
of which are connected, the normaliser NG(G1) very often will not be connected; see
Proposition 3.10. This fact makes our study more interesting and complicated.

Given G, for various reasons it will be helpful to study certain ‘big’ subgroups G1.
For example, then we can expect to have good control over the restrictions of some
special G-representations to G1. For a recent work which explains why it would be
useful to understand the normaliser N =NG(G1), when G is a (complex) reductive
group and G1 is its reductive subgroup, see [Ko3, Section 2]; see also [BK, Ko1, Ko2,
Ks, LS] for some related results worth knowing. Notice that, for G and G1 as above,
N is often again reductive, and so one can repeat the procedure by computing NG(N).
But our theorem below states that in many interesting situations one has N =NG(N).
Concerning the ‘big’ subgroups mentioned, we would like to emphasise that we are
also interested in the opposite situation—that is, when G1 is a ‘small’ subgroup of G.
It turns out that for a number of such pairs (G,G1) we can describe the structure of
the corresponding normalisers NG(G1). For certain reasons why this should be so,
and some basic examples as well, we refer the reader to [S2] and [S3, Example 1.7];
see also [O1, O2]. Another related fact worth mentioning here is that distinguished
nilpotent orbits are characterised by being self-normalising. More precisely, a three-
dimensional subalgebra s of a (complex) semisimple Lie algebra g is self-normalising
if and only if it is distinguished (as shown in a paper of this author in preparation).

Let us now present the content of this paper, and make some comments. Suppose
that G ≤ GL(n, K) is a group having an antiautomorphism δ : g 7→ g]. Then define

G1 = G(I) = {g ∈G | g]g = I}, (1.1)

a subgroup of G. For C being CG(G1), or an arbitrary subgroup ofZ(G), define a set

G(C) = {g ∈G | g]g ∈C}; (1.2)

note that, under the latter notation, G1 = G({I}). Here the above map δwill always be the
restriction to G of someK-endomorphism of Mn(K), which we also denote by δ. Let us
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also emphasise that in a number of interesting situations we will have CG(G1) =Z(G);
in particular, the last equality will obviously hold if the assumption CG(G1) ⊆ K×, from
the theorem below, also holds. Now we are ready to state that theorem, which is our
first main result. Provided we work with algebraic groups, it is a generalisation of the
corresponding results in [S3, S4].

T 1.2. If C = CG(G1), then

NG(G1) = G(C) = {g ∈G | g]g ∈ CG(G1)}.

Suppose, in particular, that the base field K is algebraically closed, and that
G1 = G(I) is a connected algebraic K-subgroup of an affine group G ≤ GL(n, K).
Suppose also that the centraliser CG(G1) is a subgroup of K×. Then the normaliser
NG(G1) is a self-normalising subgroup of G.

In Section 3 we prove the above theorem, as well as several useful preparatory facts
about G(C), that are gathered in Theorem 3.2.

R 1.3. Question 1.1 is much more difficult if we work with groups of rational
points. More precisely, suppose that K, G and G1 are as in the above theorem, and
let F ⊆ K be a subfield. Consider the corresponding groups of F-points G = G(F) and
G1 = G1(F). It seems quite complicated to say in general for which F the answer to
Question 1.1 is affirmative; see Remark 3.8.

There are many pairs of groups (G,G1), and pairs of the corresponding Lie algebras
(g, g1), for which the normalisers NG(G1), Ng(g1) and NG(g1) can be computed. For
examples of various pairs (G,G1) and (g, g1), where (G,G1) are groups of rational
points of some reductive algebraic groups (G, G1), see [S1, S2, S3, S4]. Such pairs
might be called reductive pairs. The second goal of this paper is to point out that we
also have a number of nonreductive pairs (G,G1). That is, we show in Section 4 that
there are many pairs which might be called parabolic pairs. More precisely, there
we consider G = SL(2n, K) or GL(2n, K), and a certain antiautomorphism A 7→ A] of
G which then gives the corresponding subgroup G1 of G. We have the following
proposition which shows, in particular, that the pair (Q, Q1), defined below, fits into
the setting of our theorem; for a slightly more general claim, see Proposition 4.3.

P 1.4. Let K be a field such that char(K) , 2, and which is different from F3.
Let Q be any ]-stable standard parabolic subgroup of G, and Q1 = Q ∩G1 a parabolic
subgroup of G1. Then

CQ(Q1) =Z(G) =

µ2n(K) if G = SL(2n, K),

K× if G = GL(2n, K);

and therefore, in particular, NQ(Q1) = {g ∈ Q | g]g ∈ Z(G)}.

Proposition 4.3, together with Proposition 4.2, might be understood as a technical
result that in a specific setting generalises a standard fact about centres of Borel
subgroups; see Lemma 4.1.
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2. Preliminaries

2.1. Pairs (G, G1). First we briefly explain what kind of groups G and their
subgroups G1 we are interested in; more details on what follows can be found
in [S3, S4]. For that purpose we will consider certainK-linear endomorphisms A 7→ A]

of Mn(K) satisfying the following:
(] 1) I] = I;
(] 2) (AB)] = B]A], for all A, B ∈ Mn(K).
For later applications it is useful to note that (] 1) and (] 2) imply the following:
(] 3) (A−1)] = (A])−1, for all A ∈ GL(n, K).
Let us emphasise that there will be a number of K-endomorphisms δ : A 7→ A] of a
concrete group G; a more precise statement can be found in [S3, Remark 1.2].

Let G ≤ GL(n, K) be any group. Suppose we have a K-endomorphism A 7→ A]

satisfying (] 1) and (] 2). Next suppose that G is ]-stable; that is, g] ∈G, for all g ∈G.
Then define G1 by (1.1).

2.2. Two technical conditions. For later use let us formulate the following two
technical conditions. In order to justify why we introduce them, the reader may consult
[S3, Corollary 0.2] and Section 3 below; see also Remark 2.4. Here G is again a
subgroup of some GL(n, K), while C ≤Z(G).

C (♦). There is ω ∈C \C2 for which we can find W ∈G so that W]W = ω.

C (4). Condition (♦) holds, and forω as specified in it we have C2 ∪ ωC2 = C.

Let us emphasise that for C finite and satisfying Condition (♦) we automatically
have Condition (4) fulfilled.

2.3. Remarks for G = SL(m, K). Let m ∈ N, m > 2, and G = SL(m, K). If m = 2n,
define J = Jeven

ε , and if m = 2n + 1, define J = Jodd, where these block matrices are

Jeven
ε =

(
0 I
εI 0

)
and Jodd =

(
1 0
0 Jeven

+

)
;

I is the identity matrix of size n, and ε = ±1. For A ∈ Mm(K) define A] = JtAt J.

L 2.1. The map A 7→ A] is a K-linear involution of Mn(K) satisfying conditions
(] 1) and (] 2). Moreover, this map is an antiautomorphism of G.

Now define G1 as in the Introduction; it turns out that G1 = Sp(m, K) or SO(m, K).
The following is a weak version of the main result of [S4].

T 2.2. Let G = SL(m, K), G1 be as above, C = CG(G1) and N =NG(G1).

(i) We have C = µm(K), and C2 = µn(K) for m = 2n, while C2 = C for m = 2n + 1.
(ii) We have

N = {g ∈G | g]g ∈ C},

and this is a self-normalising subgroup of G.
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(iii) Define
N′ = {g ∈G | g]g ∈ C2}.

Then

N′/G1 � C and

N/N′ � µ2(K) if Condition (♦) holds,

N = N′ otherwise.

R 2.3.

(a) Clearly, as for m odd we have C2 = C, this time Condition (♦) does not hold. So
N = N′, and assertion (iii) of the theorem reads as N/G1 � C.

(b) Note that now C is a finite group, and thus Condition (♦) implies Condition (4).
(c) A similar result holds for G = GL(m, K), where then C = K×.

R 2.4. Concerning the general problem on normalisers and self-normalising
subgroups, we have obtained certain definite results in [S3, S4] and the present paper.
But, as already emphasised in the two papers mentioned, a part of our research
strongly depends on Condition (♦) (for n and K arbitrary), which seems to be quite
delicate. In order to justify that condition it might be helpful to discuss briefly what
happens for prime fields, provided that we work just in the special setting of the
above theorem. Notice that then Condition (♦) takes the following form: there exists
ω ∈ µ2n(K) \ µn(K) for which we can find some W ∈G satisfying W]W = ωI.

First take K = Q. For n even, µ2n(Q) = µn(Q) = {−1, 1}, and so Condition (♦) does
not hold. On the other hand, for n odd, µ2n(Q) \ µn(Q) = {−1}. Thus, when ε = 1 (that
is, the orthogonal case), for ω = −1 we can take W =

(
0 I
−I 0

)
∈ SL(2n, Q). So, for these

ω and W, Condition (♦) holds. But when ε = −1 (that is, the symplectic case) things
seem to be less clear. Namely, for n odd satisfying n ≡ 3 (mod 4), Condition (♦) does
not hold; see [S3, Lemma 3.10] for a more general observation. But for n ≡ 1 (mod 4),
we do not know whether we have W ∈ SL(2n, Q) so that W]W = −I; however, we do
believe that there is no such W.

Now consider K = Fp, where p is an odd prime. If gcd(n, p − 1) = 1, then one
knows that µ2n(Fp) = {−1, 1} and µn(Fp) = {1}; see, for example, [Kob, Ch. II]. Thus,
here one has to check whether there exists some W ∈ SL(2n, Fp) so that W]W = −I. On
the other hand, consider the case 2n = p − 1, for example. Then we have a primitive
2nth root of unity; that is, η so that µ2n(Fp) = {η, η2, . . . , η2n = 1}. Hence we see that

µ2n(Fp) \ µn(Fp) = {η, η3, . . . , η2n−1}.

We should now check whether we have some odd power η j so that we can find for
it some W j ∈ SL(2n, Fp) satisfying W]

jW j = η jI. But all this seems to be a nontrivial
combinatorial task.

3. On the structure of G(C) and proof of Theorem 1.2

Unless otherwise stated, throughout this section G is a group having an
antiautomorphism g 7→ g]; we can take G ≤ GL(n, K). Also, C is a subgroup ofZ(G).
We begin with the following simple lemma.
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L 3.1. The set H = G(C), defined by (1.2), is a subgroup of G.

P. First note that g]g = gg], for g ∈ H. To see this, put γ1 = g]g and γ2 = gg]. Then
gγ1 = γ2g. But as we have in particular γ1 ∈ Z(G), it clearly follows that γ1 = γ2, as
we had to show.

Suppose now that gi ∈ H, and then denote zi = g]i gi, for i = 1, 2. Then

(g1g−1
2 )]g1g−1

2 = (g]2)−1z1g−1
2 = z1(g2g]2)−1 = z1z−1

2 ∈C;

where we use condition (] 3) and the above fact. So, H is indeed a subgroup of G. �

At this point we introduce the following notation and assumptions. Let H be as
in the previous lemma. In particular, for C = {I} we have a subgroup G1 = G(I) of G.
Also, choose an endomorphism ξ of C,

C 3 x 7→ ξ(x) = x2 ∈C.

Denote by C2 its image, and then define a subgroup H′ = G(C2) of H.
The first goal of this section is to study the structure of G(C). Concerning that, we

have the following theorem. The first statement of its part (i) has already been proved
via Lemma 3.1. The rest will be proved via Lemmas 3.3 and 3.5.

T 3.2. Suppose that G satisfies the condition

Z(G) ⊆ K×. (3.1)

(i) The set G(C) is a subgroup of G, and G(C2) is a normal subgroup of G(C). If
Condition (♦) does not hold, then G(C) = G(C2). If Condition (4) holds, then
G(C)/G(C2) � µ2(K).

(ii) We have
G(C2)/G1 �C2.

(iii) If Condition (4) holds, then
G(C)/G1 �C.

As we will see, the above condition (3.1) on centres is a reasonable one; and it holds
for a number of interesting groups G. Also, note thatZ(G) ≤ CG(S ), for any subgroup
S ≤G.

The following lemma is in fact a more general version of the second half of [S3,
Theorem 3.7(i)].

L 3.3.

(i) For a certain epimorphism σ′, we have a short exact sequence

1→G1 ↪→ H′
σ′

−−→C2→ 1.

In particular, if Condition (♦) does not hold, then H = H′.
(ii) Suppose that the group C is finite, and Condition (♦) holds. Then, for a certain

extension σ of σ′, we have a short exact sequence of groups

1→G1 ↪→ H
σ
−→C→ 1.
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P. (ii) Assume that Condition (♦) holds; note that now necessarily −I ∈C and
Ker ξ = {±I}. For any λ ∈C define a subset

Γλ = {g ∈G | g]g = λ}

of G; note that ΓI = G1. As for any c ∈C we have c] = c, it immediately follows that
c ∈ Γc2 ; here we use assumption (3.1). Thus, in particular, Γλ , ∅ for all λ ∈C2. Next
we observe that the following are equivalent.
(a) Condition (♦) holds.
(b) We have Γλ , ∅, for all λ ∈C.
To see that (a)⇒(b) we first take ω and W as in Condition (♦). Then define a
map d : C2→C \C2, d(λ) = ωλ. It is clear that d is well defined and injective.
Furthermore, C2 ∩ ωC2 = ∅. Hence it immediately follows that

C2 ∪ ωC2 = C, (3.2)

a disjoint union; here we use the fact that C is finite. Therefore d is surjective; that is,
d is bijective. Now take, for any λ ∈C2, some Uλ ∈ Γλ. Clearly, WUλ ∈ Γd(λ). Thus we
have (b).

For any λ ∈C, let Uλ ∈ Γλ be arbitrary. Then it is easy to see that the map
Ξλ : G1→ Γλ, given as Ξλ(g) = Uλg, is well defined and bijective. Hence it follows
that we have a disjoint union

H =
⋃
λ∈C

Γλ.

Next note that Γλ1Γλ2 ⊆ Γλ1λ2 , for any λ1, λ2 ∈C. Thus the map σ : H→C, σ|Γλ = λ, is
a group epimorphism with the kernel G1. This proves (ii).

(i) If Condition (♦) does not hold, then Γλ = ∅, for all λ ∈C \C2; and so H′ =⋃
λ∈C2 Γλ = H. Now (i) follows easily. �

R 3.4. (a) Note that part (ii) of the previous lemma holds for some infinite
groups C as well. But now we have to take as an assumption that (3.2) holds.
Concerning this, consider a K-endomorphism A 7→ A], of M2(K), given by

( x y
z t

)]
=( t y

z x
)
; see Section 2. Clearly, it satisfies (] 1) and (] 2). Also, G = GL(2, K) is ]-stable.

Let C =Z(G) = K×. Both for K = Q and R we have that Condition (♦) holds. For
example, for Q we can take ω = 2 and W =

(
2 0
0 1

)
, and for R we can take ω = −1 and

W =
(
−1 0

0 1

)
. But for R we have (3.2), while for Q we do not.

(b) Let K be any field of characteristic ,2, and C = µ2n(K). If n is odd, then
C ,C2 = µn(K); for example, −1 ∈C \C2. But for n even the last observation does
not have to hold; for example, take K = R and n = 2.

Claim (ii) of the following lemma generalises a part of [S3, Corollary 3.8].

L 3.5.

(i) The subgroup H′ is normal in H.
(ii) Suppose that both Condition (♦) and (3.2) hold. Then

H/H′ � µ2(K).
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P. (i) Let h ∈ H and h0 ∈ H′ be arbitrary, and then define g = hh0h−1. As h]h =

c ∈C and h]0h0 = c2
0 ∈C2, for some c, c0 ∈C, it follows that g]g = c2

0. This means that
g ∈ H′, as required.

(ii) Let ω and W be as in Condition (♦). Suppose then that g ∈ H \ H′, and define
h = W−1g. Provided that g]g = λ ∈C \C2, we have h]h = λω−1. But (3.2) ensures that
λω−1 ∈C2, and so h ∈ H′; that is, g ∈WH′. Thus H = H′ ∪WH′. It is clear, moreover,
that the latter union is disjoint. Thus the index (H : H′) = 2, and therefore the lemma
follows. More precisely, the map τ : H→ µ2(K), τ|H′ = 1 and τ|WH′ = −1, is a group
epimorphism with the kernel H′; here we use WH′ = H′W and W2 ∈ H′. �

The following simple lemma presents our crucial auxiliary observation, which is
interesting in its own right.

L 3.6. Let G be an arbitrary group having an antiautomorphism g 7→ g], and
then define G1 as in (1.1). We have

NG(G1) = {g ∈G | g]g ∈ CG(G1)};

that is, by putting C = CG(G1),

NG(G1) = G(C).

P. Suppose that g ∈G(C); that is, g ∈G satisfies

g]g = c(g) ∈C. (3.3)

Let then x ∈G1 be arbitrary, and define y = y(x) = gxg−1. Using (3.3), we clearly have

y]y = (g])−1x]c(g)xg−1 = (g])−1x]xc(g)g−1

= (g])−1c(g)g−1 = e;

here e denotes the identity element of G. In other words, y ∈G1. Thus we have proved
that g ∈ NG(G1); and, as a conclusion, G(C) ⊆ NG(G1).

For the opposite inclusion, take any g ∈G so that the above defined y = y(x) ∈G1 for
every x ∈G1. The last condition means that y]y = e, which is, furthermore, equivalent
to g]gx = xg]g. Therefore g]g ∈C; that is, g ∈G(C). �

R 3.7. In particular, when C = CG(G1), our Theorem 3.2 gives useful
information concerning the structure of the normaliser NG(G1). At the same time, for
K algebraically closed, we have Theorem 2.2 as a special case; that is, N = G(C) and
N′ = G(C2), for G, C, N and N′ as there. In other words, Theorem 3.2, which holds for
many pairs of groups (G,G1), is a generalisation of Theorem 2.2. However, we would
like to emphasise here that for the particular setting of (G,G1), with G = SL(m, K),
we have more precise information concerning the normaliser N. Namely, by a direct
constructive argument we know that N′ �G1 >CC2, the semidirect product of G1 by
C2; see [S4, Theorem 0.1]. It turns out that the above isomorphism holds for some
other pairs (G,G1), and so one would like to see whether a more general argument is
available here.
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We are now ready to prove our main result.

P  T 1.2. We have to prove the second part of the theorem; the first
one is clear by the preceding lemma. For that purpose write C = CG(G1), and also
H instead of G(C). First notice that H =NG(G1). We proceed as in the second
half of the proof of the above lemma. Assume that g ∈ NG(H), and define h = g]g.
By definition of the normaliser, for any x ∈ G1 we have y = y(x) = gxg−1 ∈ H. And
therefore y]y = c(x) = c, for some c ∈ C. Furthermore, the last equality is equivalent to

hx = cxh. (3.4)

The key observation, which we will prove below, is that necessarily c = 1; see the
proofs of [S3, Theorem 3.7(ii)] and [S4, Theorem 2.6(ii)], where it follows by
elementary arguments. We then conclude that h ∈ C; that is, g ∈ H, and we are done.

To prove that c = 1 we argue as follows. For h as defined above, consider a map

φh : G1→ G, φh(x) = [h, x].

Let ı1 : G1→ G1 be the inversion map, ı1(x) = x−1. We denote by Ih : G1→ G the
conjugation by h. Next, let ∆1 = {(x, x) | x ∈G1} be the diagonal of G1 ×G1, and
δ1 : G1→ ∆1 be the corresponding diagonal map. Finally, let m : G × G→ G denote
the multiplication map. If we define

Ih × ı1 : G1 × G1→ G × G1,

(Ih × ı1)(x1, x2) = (Ih(x1), ı1(x2)),

then
φh = m ◦ (Ih × ı1) ◦ δ1.

As a conclusion, φh is a morphism of affine varieties. We claim that it is, moreover, a
homomorphism of algebraic groups. To see this, take arbitrary x1, x2 ∈ G1. By (3.4)
we have ci = c(xi) ∈ C so that hx1 = c1x1h and h−1x−1

2 = x−1
2 h−1c2. Hence we compute

φh(x1x2) = (hx1)x2(h−1x−1
2 )x−1

1

= (c1x1h)x2(x−1
2 h−1c2)x−1

1 = c1c2 = φh(x1)φh(x2).

Observe now that (3.4), together with the fact that C ≤ K×, gives that [h, x] = λ =

λ(x) for certain λ ∈ K×. By taking the determinants of both sides of the last equality
we obtain that λ ∈ µn(K). As a consequence, Im φh ⊆ D, where D = C ∩ µn(K). As G1

is connected, Im φh is a connected subgroup as well. But D is discrete, and therefore
φh is a constant map; that is, φh = 1. Thus we have proved our theorem. �

R 3.8. Concerning Theorem 1.2, notice the following interesting fact; see [S3,
Theorem 3.7(ii)] for more details. Let G = SL(2n, K), and let the map A 7→ A] be as in
Section 2.3. Define G1 = G(I) as usual. Take n = ε = 1 in particular, and consider the
pair of groups (G,G1). It turns out that, for K = F5, H =NG(G1) is self-normalising
in G. But for K = F5, NG(H) , H.
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We proceed with an analogue of Lemma 3.6, which is again interesting in its
own right. For this we need a little preparation; more details can be found in [S3,
Section 1.2]. Let G ≤ GL(n, K) again be a (connected) algebraic K-group. We
denote its Lie algebra by G ≤ gl(n, K). Suppose that we also have a connected closed
subgroup G1 ≤ G, and let G1 be its Lie algebra. Consider a pair (G,G1), where
G = G(K) ≤ GL(n, K) and G1 = G1(K) are the corresponding groups of K-points. We
also consider a pair of Lie algebras (g, g1), where g =G(K) ≤ gl(n, K) and g1 =G1(K)
are corresponding K-structures. Suppose that we have a map A 7→ A] satisfying (] 1)
and (] 2), and that both G and g are ]-stable. Furthermore, we suppose that G
operates on g via the adjoint action. Also, we suppose that G1 = G(I) as before, and
g1 = {X ∈ g | X] = −X}.

L 3.9. Suppose that the setting and assumptions of the previous paragraph hold.
Assume also that both CG(g1) ≤Z(G) and (3.1) hold. Then

NG(g1) = {g ∈G | g]g ∈ CG(g1)}.

P. We proceed in a manner similar to the proof of Lemma 3.6. Namely, if we put
C = CG(g1), we must prove that NG(g1) = G(C). Let us show only the inclusion from
right to left. For that purpose take any g ∈G(C). Let X ∈ g1 be arbitrary, and define
Y = gXg−1. Using (3.1), one can immediately check that Y ∈ g1. Hence g ∈ NG(g1). �

Assume for the moment that K is algebraically closed of characteristic zero, and
let G be a closed subgroup of GL(n, K). Let G1 be a closed subgroup of G. Suppose
that both G and G1 are connected. Let g and g1 be the Lie algebras of G and G1,
respectively. Define N =NG(G1). It is well known that N is a closed subgroup of G,
and its Lie algebra is equal to Ng(g1). It is also easy to see that

N =NG(G1) =NG(g1); (3.5)

see, for example, [Bou, Ch. III, Section 9.4]. Concerning Lemmas 3.6 and 3.9, notice
that for groups of rational points the analogue of (3.5) need not hold.

We conclude the present section with an easy proposition which contains some
useful basic facts. Loosely speaking, it points in particular to the relationship
between the classes of self-normalising (algebraic) subgroups and self-normalising
Lie subalgebras.

P 3.10. In the above setting and notation, suppose that g1 is a self-
normalising subalgebra of g.

(i) N/G1 is a finite group.
(ii) For an arbitrary closed subgroup G1 ≤ H ≤ N, we have NG(H) ≤ N.
(iii) NG(N) = N; that is, N is a self-normalising subgroup of G.

P. (i) This is clear by the fact that the Lie algebras of N and G1 are equal.
(ii) Let g ∈ NG(H) be arbitrary. For the morphism Int g, Int g(G1) is a connected

subgroup of H. As G1 = No = Ho, the connected components of the identity
element eG, we conclude that Int g(G1) = G1. Hence, g ∈ N.

(iii) This follows by (ii). �
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4. Pairs of parabolic subgroups

Recall the following well-known fact; see, for example, [Bor, Corollary 11.11].

L 4.1. Let G be a connected linear algebraic group over K. Suppose B is a Borel
subgroup of G. Then

Z(B) =Z(G).

The purpose of this section is to prove two results that in a certain sense complement
the above lemma. Consider G = GL(n, K) or SL(n, K), where n ≥ 2. Recall that
the standard Borel subgroup B of G is the subgroup consisting of upper triangular
matrices in G. A subgroup Qst of G is called standard parabolic if Qst contains B. A
subgroup B (respectively, Q) is called a Borel (respectively, parabolic) subgroup of G
if B (respectively, Q) is G-conjugate to B (respectively, some standard parabolic). We
have the following basic fact; in particular, it is an auxiliary result for Proposition 4.3
below.

P 4.2. Suppose that G is either SL(n, K), with n > 2 or K , F3, or GL(n, K).
Let Q be any parabolic subgroup of G. Then

CG(Q) =Z(Q) =Z(G).

For G = SL(2, F3) and its standard Borel subgroup B we have Z(B) = B = CG(B)
andZ(G) = {±1}.

P. Consider first the case G = GL(n, K). As will be seen below, we can assume
that Q = B, the standard Borel subgroup. Therefore, let us first show that

CG(B) =Z(B) =Z(G), (4.1)

where of courseZ(G) = K×. To see this, take some A = (ai j) ∈G so that AX = XA, for
all X = (xi j) ∈ B. We will write the matrices AX = (li j) and XA = (ri j). In particular,
we have l11 = r11, and hence

∑n
i=2 x1iai1 = 0. If we take x1i , 0 and x1 j = 0 for all

j , i, it further follows that ai1 = 0. Thus ai1 = 0 for all i , 1. Next, take x12 = 0 and
x11 = x22 in l12 = r12. Analogously, we deduce that ai2 = 0 for all i > 2. Thus the
equality l12 = r12 becomes a12(x22 − x11) = (a22 − a11)x12. By taking

x12 = 0 and x11 , x22, (4.2)

we deduce that a12 = 0, and then a11 = a22. Suppose now that for t ≤ n we have shown
aii = α, for all 1 ≤ i ≤ t − 1, and aks = 0 for all 1 ≤ s < t and 1 ≤ k ≤ n, k , s. Then we
consider the equality l1t = r1t, which boils down to

αx1t + a1t xtt =

n∑
i=1

x1iait. (4.3)

By choosing x1t = 0 and xtt = x11, (4.3) becomes
∑n

i=2 x1iait = xitatt. Hence, as
before, we have that akt = 0 for all 2 ≤ k ≤ n and k , t. Thus (4.3) in fact becomes
a1t(xtt − x11) = (att − α)x1t. As in (4.2), choose x1t = 0 and xtt , x11. Then the above
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equality gives that a1t = 0, and therefore αx1t = x1tatt. Thus clearly α = att. In this way
we have shown, by induction, that A = α ∈ K×, as we claimed.

Suppose now that Q = Qst is a standard parabolic subgroup. By (4.1), and the
inclusions Z(G) ⊆ CG(Q) ⊆ CG(B), we conclude that CG(Q) =Z(G). Next, it is clear
that alsoZ(G) ⊆Z(Q) ⊆ CG(Q). Thus we have proved our proposition.

Now let Q be conjugate to some standard parabolic Qst, via some g ∈G; that is,
Q = gQstg−1. Then take some γ ∈G, and define γ = g−1γg. Clearly, γ ∈ CG(Q) if and
only if γ ∈ CG(Qst). As we have shown that CG(Qst) =Z(G), it clearly follows that
CG(Q) =Z(G) as well. Thus we have again proved our proposition.

Now consider the case G = SL(n, K); here Z(G) = µn(K). Let B again be the
standard Borel subgroup of G. Suppose that n > 2 or K , F3. An easy inspection
shows that the above proof of (4.1), and so of the proposition, works here as well. For
this purpose it is crucial to observe that we can again ensure that we have (4.2) and the
corresponding analogues.

The second claim of the proposition is clear. �

For what follows the reader may consult [S3, Section 4], and in particular
Lemma 4.2 there. For the moment let K be arbitrary, and s = sn be the n × n matrix
having 1 on the skew diagonal and 0 elsewhere. Given M ∈ Mn(K), define

Mτ = sMt s;

that is, Mτ is the skew transpose of M. Let again ε = −1 or +1. Then, analogously to
Section 2.3, consider a map A 7→ A] = A]

ε on block matrices given by(
X Y
Z T

)
= A 7−→ A] =

(
T τ εYτ

εZτ Xτ

)
.

Of course, the map A 7→ A] defined above is not equal to the map A 7→ A] considered
in Section 2.3. But we now also have exactly the same statement as in Lemma 2.1.

Now let G = GL(2n, K) or SL(2n, K), and let B be the standard Borel subgroup
of G. Obviously, B is ]-stable. Define

B1 = Bε1 = {g ∈ B | g]g = I} = B ∩Gε
1,

where
G1 = Gε

1 = {A ∈G | A]A = I};

that is, B1 is the standard Borel subgroup of G1.
Analogously as before, any subgroup of G1, which contains B1, is called standard

parabolic. A subgroup Q1 of G1 is called parabolic if it is G1-conjugate to some
standard parabolic.

For G, G1 = Gε
1, B and B1 = Bε1 as above, let Q be some ]-stable standard parabolic

subgroup of G. Define

Q1 = Qε
1 = {g ∈ Q | g]g = I} = Q ∩Gε

1.

Thus we have a pair of groups (Q, Q1). As we will see below, such pairs fit into our
general setting. For that purpose we need an analogue of the previous proposition.
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P 4.3. Let K be a field different from F3. Let Q1 be any parabolic subgroup
of G1. Then

CG(Q1) =Z(Q1) =Z(G).

As a consequence, for pairs (Q, Q1) as above,

CQ(Q1) =Z(Q1) =Z(Q) =Z(G).

P. Suppose that Q1 = g1P1g−1
1 , where P1 ⊇ B1 and g1 ∈G1. The same arguments

as in the proof of Proposition 4.2 ensure the following: CG(B1) =Z(G) implies
CG(P1) =Z(G); and CG(P1) =Z(G) implies CG(Q1) =Z(G). In other words, it is
sufficient to prove the proposition for Q1 = B1.

By way of preparation, first note the following easy observation which is formulated
in a slightly more general form than we need below: a block matrix A =

(
X Y
0 T

)
satisfies

AA] = I if and only if
XT τ = I and YXτ = −εXYτ. (4.4)

Let us now take, for example, G = GL(2n, K). We will show that

CG(B1) =Z(B1) =Z(G).

For that purpose, suppose that

M =

(
M11 M12

M21 M22

)
∈G

such that AM = MA for all A ∈ B1. In particular, take A =
(

I Y
0 I

)
∈ B1, where Y satisfies

Y = −εYτ; see (4.4). Clearly, AM = MA if and only if Y M21 = M21Y = 0 and Y M22 =

M11Y . We treat the following three possibilities (see [S3, Claim 1, Theorem 3.7]).
(S) Symplectic case.
(O1) Orthogonal case, and n odd.
(O2) Orthogonal case, and n even.

For (S) we take Y = I. Thus M21 = 0 and M22 = M11; that is, M =
(

M11 M12
0 M11

)
. Next,

take A =
(

X 0
0 (X−1)τ

)
, where X belongs to the standard Borel subgroup of GL(n, K).

Now AM = MA gives, in particular, that XM11 = M11X. By Proposition 4.2 it follows
that M11 = λI, λ ∈ K×. Finally, for A =

(
X Y
0 T

)
∈ B1 we have AM = MA if and only if

XM12 = M12T . Then we choose X = uI, where u ∈ K is such that u , u−1; here we use
the fact that K , F3. It follows that M12 = 0. As a conclusion we have that M = λI.

For (O2) we take Y =
(

Ir 0
0 −Ir

)
, where r = n/2; note that Yτ = −Y , as it must be. As

Y is regular, Y M21 = 0 gives that M21 = 0. Next, for M =
(

M11 M12
0 M22

)
and A chosen as

in (S), the same argument as there gives that M11 = λ1I and M22 = λ2I, for certain
λ1, λ2 ∈ K

×. But Y M22 = M11Y implies that λ1 = λ2 = λ. It remains to note, as in (S),
that M12 = 0.

For (O1) consider a block-diagonal matrix

Y = diag(Ir−1, 0, −Ir−1),
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where 2r = n + 1. As Y M21 = M21Y = 0, it follows that M21 = qErr, for some q ∈ K.
Again take A as in (S), where X = (xi j) is an upper triangular regular matrix such
that x2

rr , 1; such X can be chosen when the field K has at least four elements. As
MA = AM implies, in particular, that XτM21X = M21, an easy calculation shows that
necessarily q = 0; that is, M21 = 0. The rest of the argument is the same as for (O2).

Thus we have proved our proposition. �
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