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Abstract

A famous conjecture of Hopf states that S2 × S2 does not admit a Riemannian metric

with positive sectional curvature. In this article, we prove that no manifold product

N ×N can carry a metric of positive sectional curvature admitting a certain degree of

torus symmetry.

Among compact, simply connected, even-dimensional smooth manifolds, the examples known to

admit a Riemannian metric with positive sectional curvature form a short list: spheres, complex

projective spaces, quaternionic projective spaces, the Cayley plane, the three flag manifolds

discovered by Wallach [Wal72], and the biquotient SU(2)//T 2 discovered by Eschenburg [Esc84].

In order to find additional examples, it is natural to look among metrics with symmetry.

This strategy has recently resulted in a new example in dimension seven (see Dearricott [Dea11]

and Grove et al. [GVZ11]). To narrow the search, one seeks topological obstructions to positive

curvature and symmetry. This broad research program was formulated by Grove and developed

by him and many others over the past two decades (see Grove [Gro09], Wilking [Wil07], and

Ziller [Zil07, Zil14] for surveys).

In this article, we prove further topological restrictions in the presence of torus symmetry.

Our first theorem considers the case where the positively curved Riemannian manifold M2n

(n > 2) has vanishing fourth Betti number. To motivate this assumption, recall that, if the

rank of the isometric torus action exceeds log4/3(2n − 3), then the Betti numbers of M satisfy

b2(M) 6 b4(M) 6 1 (see § 4).

Theorem A. Let M2n (n > 2) be a simply connected, closed manifold with b4(M) = 0. Assume

M admits a Riemannian metric with positive sectional curvature invariant under the action of

a torus T with dim(T ) > log4/3(2n− 3). The following hold:

(1) the Euler characteristic satisfies χ(M) = χ(S2n) = 2;

(2) the signature satisfies σ(M) = σ(S2n) = 0;

(3) the fixed-point set MT is an even-dimensional rational sphere;

(4) for g ∈ T , Mg is non-empty, and the number of components is at most two, with equality

only if g is an involution.

As an application of this result, consider an arbitrary closed manifold Nn with n > 2, and

consider its two-fold product M2n = N × N . Suppose that M admits a metric with positive

curvature and an isometric torus action of rank r > log4/3(2n − 3). By Synge’s theorem, M is
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simply connected. As mentioned above, it follows that b2(M) 6 b4(M) 6 1. By the Künneth

formulas, b4(M) = 0. By Theorem A,

2 = χ(M) = χ(N)2,

which is impossible. Hence N × N has no such metric. A similar conclusion can be drawn for

connected sums. We summarize this corollary as follows.

Corollary B. Let Nn be a closed manifold with n > 2. The product N × N does not admit

a Riemannian metric with positive sectional curvature and an isometric torus action of rank

r > log4/3(2n − 3). Similarly, if n is even and χ(N) 6= 2, the connected sum N#N does not

admit a positively curved metric invariant under a torus action of rank r > log4/3(n− 3).

Hopf conjectured that S2 × S2 does not admit a Riemannian metric with positive sectional

curvature. Corollary B can be seen as positive evidence for the generalized conjecture that no

product N ×N admits such a metric.

We also remark that Hsiang and Kleiner proved that S2 × S2 does not admit a Riemannian

metric with positive sectional curvature and an isometric circle action (see [HK89, GW14]).

Hence Corollary B also holds when n = 2, and it can be seen as a partial generalization of the

Hsiang–Kleiner result.

The conclusion of Theorem A can be improved by imposing additional topological conditions

on M . For example, suppose that M is rationally elliptic, as conjectured by Bott, Grove and

Halperin (see [Gro02, § 5]). Since χ(M) = 2, it follows that the odd Betti numbers vanish, hence

M is a rational sphere. We summarize similar corollaries here (see § 3 for proofs).

Corollary C. Let M2n be a simply connected, closed Riemannian manifold with b4(M) = 0.

Assume M admits a metric with positive sectional curvature and an isometric torus action of

rank greater than log4/3(2n− 3). The following hold:

(1) if M has vanishing odd-dimensional rational cohomology, e.g., if M is rationally elliptic,

then M is a rational S2n;

(2) if M is p-elliptic for some prime p > 2n, then M is a mod p homology S2n;

(3) if M has vanishing homology in odd degrees, then M is homeomorphic to S2n;

(4) if M is a biquotient, then M is diffeomorphic to S2n;

(5) if M admits a smooth, effective cohomogeneity-one action by a compact, connected Lie

group, and if the homology of M has no 2-torsion, then M is equivariantly diffeomorphic

to S2n equipped with a linear G-action;

(6) if M is a symmetric space, then M is isometric to Sn.

We remark that the torus action in this corollary need not respect the biquotient,

cohomogeneity-one, or symmetric space structure. We also remark that, whenever M is spin and

homeomorphic to S4k, its elliptic genus vanishes. Corollary C can therefore be seen as further

evidence for a conjecture by Dessai (see [Des05, Des07] and Weisskopf [Wei13]).

Note that, in Corollary C, M is a rational S2n if the torus action is equivariantly formal.

Indeed, this assumption together with Theorem A implies that the odd Betti numbers of M

vanish (see § 3).
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To prove Theorem A, we show that the fixed-point set MT of the torus action is a rational
sphere. Since the Euler characteristic and signature of M and MT agree, the first two conclusions
immediately follow. In order to prove that MT is a rational sphere, we combine two important
ideas from previous work. The first involves proving the existence of fixed-point components Ni of
isometries that are rational spheres (see [Ken14]). Smith theoretic results then imply restrictions
on the components of MT . The second main idea is to control the number of components of MT

that these submanifolds Ni contain (see [AK14]).
We conclude by remarking on the assumption that b4(M) = 0. In the presence of positive

curvature and torus symmetry as in Theorem A, the only other possibility is b4(M) = 1. Since
our results when b4(M) = 0 suggest that M might be a rational sphere, one might similarly hope
to show that b4(M) = 1 implies that M has the rational type of a projective space. In particular,
one might hope to calculate the Euler characteristic and signature of such a manifold.

1. Preliminaries

The main tool for proving Theorem A is the following proposition. This section is devoted to its
proof.

Proposition 1.1. Let Mn be a closed, positively curved Riemannian manifold with n > 21.
Assume T s acts effectively by isometries on M with s > log4/3(n − 3). If x and y are fixed by
T s, and if M is not rationally 4-periodic, then there exist an involution ι ∈ T s and a component
N ⊆M ι such that (n− 4)/4 < cod(N) 6 (n− 4)/2, dim ker(T |N ) 6 1, and x, y ∈ N .

Here, M ι denotes the fixed-point set of ι ∈ T , M ι
x the component of M ι containing x, and

ker(T |M ι
x
) the kernel of the induced T -action on M ι

x. For the definition of periodic cohomology
in this context, see [AK14, Definition 1.8]. (The only fact we will use later is that a rationally
4-periodic manifold M with b4(M) = 0 is a rational sphere.)

The proof of Proposition 1.1 requires two technical lemmas. The first is a refinement of the
proof setup for [AK14, Theorem A].

Lemma 1.2. Let M be a closed, simply connected, positively curved Riemannian n-manifold, let
T be a torus acting effectively on M , and let x be a fixed point. Fix c > 1, k0 6 (n− c)/4, and
some subset A ⊆ MT . Set j = blog2(k0)c + 1 or j = blog2(k0)c according to whether n is even
or odd. If there exist independent involutions ι1, . . . , ιj ∈ T such that M ιi

x contains A and has
codimension at most (n− c)/2 for all i, then one of the following holds:
• M has 4-periodic rational cohomology; or
• there exists an involution ι ∈ T s such that A ⊆ M ι

x, k0 < cod(M ι
x) 6 (n− c)/2, and

dim ker(T |M ι
x
) 6 1.

Proof. Assume that the second conclusion does not hold. Note that, if some involution ι ∈ T
satisfies cod(M ι

x) 6 (n− c)/2 and dim ker(T |M ι
x
) > 2, then M is rationally 4-periodic by [AK14,

Proposition 2.2]. In particular, we may assume that every involution ι ∈ T with A ⊆ M ι
x and

cod(M ι
x) 6 (n− c)/2 actually has cod(M ι

x) 6 k0.
In particular, we may assume that ιi satisfies A ⊆M ιi

x and cod(M ιi
x ) 6 k0 for all i. We claim

that στ satisfies these two properties any time σ and τ do, where σ, τ ∈ 〈ι1, . . . , ιj〉. Indeed, given
any such σ and τ , we have

cod(Mστ
x ) 6 cod(Mσ

x ) + cod(M τ
x ) 6 2k0 6

n− c
2

.
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Moreover, by Wilking’s connectedness lemma (see [Wil03, Theorem 2.1]), Mσ
x ∩M τ

x is connected,
so

A ⊆Mσ
x ∩M τ

x = M 〈σ,τ〉x ⊆Mστ
x .

Since Mστ
x contains A and has codimension at most (n− c)/2, it actually has codimension at

most k0, so the proof of the claim is complete.
With the claim established, it follows that every σ ∈ 〈ι1, . . . , ιj〉 satisfies cod(Mσ

x ) 6 k0. We
conclude the proof as in the proof of [AK14, Proposition 2.1]. There is only one modification. In
the notation of that proof, the codimension kj is estimated as follows:

kj 6
kj−1

2
6 · · · 6 k1

2j−1
.

In our case, k1 6 k0, and the definition of j implies that kj < 2 if n is even and kj < 4 if n is
odd. If, in fact, kj = 0, then the proof concludes as in [AK14]. Otherwise, kj = 2 and n is odd.
It is an easy consequence of Wilking’s connectedness theorem to show in this case that Nj is a
rational sphere and hence rationally 4-periodic. One then proceeds again as in the cited proof,
using the connectedness lemma to lift the property of being rationally 4-periodic up to M . 2

To apply Lemma 1.2, one must prove the existence of the involutions ι1, . . . , ιj . To do this,
we generalize [AK14, Proposition 2.4].

Lemma 1.3. Let n > c > 0 and j > 1. Let Mn be a closed, positively curved Riemannian
manifold, assume T s acts effectively by isometries on M , and let x1, . . . , xt ∈M be fixed points.
If

t

⌊
n

2

⌋
< j − 1 +

s−j∑
i=0

⌈
2−i
⌈
t(n− c) + 1

4

⌉⌉
, (1.1)

then there exist independent involutions ι1, . . . , ιj ∈ T s such that, for all 1 6 i 6 j, the maximal
component of M ιi has codimension at most (n− c)/2 and contains at least d(t+ 1)/2e of the
points x1, . . . , xt.

Proof. Set m = bn/2c. For each xi, choose a basis of TxiM such that the image of every ι ∈ Zs2 ⊆
T s under the isotropy representation takes the form diag(ε1I, . . . , εmI) or diag(ε1I, . . . , εmI, 1)
according to whether n is even or odd. Here, the εi = ±1, and I denotes the 2×2 identity matrix.
Observe that cod(M ι

xi) equals twice the Hamming weight of (ε1, . . . , εm) ∈ Zm2 .

The direct sum of these t maps induces a homomorphism φ : Zs2 →
⊕t

i=1 Zm2 ∼= Ztm2 . Let
φu denote the composition of φ with the projection onto the uth component. For example, the
codimension of M ι

x1 is equal to twice the Hamming weight of the vector (φ1(ι), . . . , φm(ι)) ∈ Zm2 .
Consider now an integer 0 6 h 6 j − 1 such that there exist independent ι1, . . . , ιh ∈ Zs2 and

integers u1, . . . , uh such that, for all 1 6 i 6 h:

(1) there is a component Ni of M ιi with codimension at most (n− c)/2 that contains at least
d(t+ 1)/2e of the points x1, . . . , xt;

(2) φui(ιi) ∈ Z2 is non-trivial; and

(3) φui′ (ιi) ∈ Z2 is trivial for all 1 6 i′ < i.

Note that these conditions are vacuously satisfied for h = 0. We claim that, given ι1, . . . , ιh
as above, there exists ιh+1 such that all of these properties hold. By induction, this suffices to
prove the existence of ι1, . . . , ιj as in the conclusion of the lemma.
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To start, choose a Zs−h2 ⊆ ker(φu1) ∩ · · · ∩ ker(φuh) ⊆ Zs2. Note that every ι ∈ Zs−h2

automatically satisfies the last condition above. Moreover, every non-trivial ι ∈ Zs−h2 is
independent of ι1, . . . , ιh and is non-trivial since the T s action is effective. It therefore suffices to
prove that some ι ∈ Zs−h2 has a fixed-point component with codimension at most (n− c)/2 that
contains d(t+ 1)/2e of the x1, . . . , xt.

Consider the composition

Zs−h2 ⊆ Zs2
φ−→ Ztm2 −→ Ztm−h2 ,

where the last map projects away the uith components for 1 6 i 6 h. By the choice of the ui,
the Hamming weight of the image of ι ∈ Zs−h2 under this composition is half of the sum of the
codimensions ki = cod(M ι

xi). As in the proof of [AK14, Proposition 2.4], an argument based on

Frankel’s theorem implies the following. If ι ∈ Zs−h2 exists such that
∑t

i=1 ki 6 t(n− c)/2, then
there exists a component of M ι with codimension at most (n− c)/2 that contains d(t+ 1)/2e of
the x1, . . . , xt. It therefore suffices to prove that some non-trivial ι ∈ Zs−h2 exists whose image
under the above map Zs−h2 → Ztm−h2 has weight at most t(n− c)/4.

If no such involution exists, the Griesmer bound (see, for example, the proof of [AK14,
Proposition 2.4]) implies that

tm− h >
s−h−1∑
i=0

⌈
2−i
⌈
t(n− c) + 1

4

⌉⌉
.

Since every summand on the right-hand side is at least one, this inequality is preserved if we
replace h by h+ 1. Inductively, this inequality is preserved if we replace h by j− 1. On the other
hand, this contradicts inequality (1.1), so the proof is complete. 2

With Lemmas 1.2 and 1.3 established, Proposition 1.1 is an easy consequence.

Proof of Proposition 1.1. Set c = 4, k0 = (n− 4)/4, and j = blog2(k0)c + 1 − ε, where ε is zero
or one according to whether n is even or odd. By Lemma 1.2, it suffices to prove the existence
of independent involutions ι1, . . . , ιj ∈ T s such that each M ιi has a component of codimension
at most k0 that contains both x and y.

Set t = 2, and note that d(t+ 1)/2e = 2. By Lemma 1.3, such a collection of involutions
exists if inequality (1.1) holds. To verify this inequality for all n > 21, first observe that

s− j + 1 > dlog4/3(n− 3)e − j + 1 > log2(n− 3)

and hence that d(n− 3)/2i+1e = 1 for all i > s− j. In particular, we can estimate the right-hand
side, denoted by R, of inequality (1.1) as follows. First,

R = j − 1 +

s−j∑
i=0

⌈
2−i
⌈

2(n− 4) + 2

4

⌉⌉
> j − 1 +

s−j∑
i=0

⌈
n− 3

2i+1

⌉
=

s−1∑
i=0

⌈
n− 3

2i+1

⌉
.

Second, note that s > 6, hence

R > 5 +

s−6∑
i=0

n− 3

2i+1
> n+ 1

since s− 5 > log2(n− 3). This proves that inequality (1.1) holds. 2
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2. Proof of Theorem A

For an isometric action by a torus T on a Riemannian manifold M , the fixed-point set MT

is a union of closed, oriented, totally geodesic submanifolds of even codimension. By Synge’s
theorem, each component of MT is simply connected when M has positive sectional curvature.
In addition, we recall the following results that relate the topology of M and MT (see [Con57]
and [HBJ92, p. 72]):
• the Euler characteristics satisfy χ(M) = χ(MT );
• the signatures satisfy σ(M) = σ(MT );
• (Conner) the even Betti numbers satisfy

∑
b2i(M

T ) 6
∑
b2i(M), and likewise for the odd

Betti numbers.
Note that, if M is an even-dimensional, positively curved rational sphere, then MT is as well.

Since a positive- and even-dimensional sphere trivially has Euler characteristic two and signature
zero, the first three conclusions of Theorem A are an immediate consequence of the following
result (the fourth conclusion is proved at the end of the section).

Theorem 2.1. Let Mn be a closed, simply connected, positively curved Riemannian manifold
with b4(M) = 0. If a torus T acts effectively by isometries on M with dim(T ) > log4/3(n − 3),

then MT = NT for some totally geodesic, even-codimensional, rational sphere N ⊆M to which
the T -action restricts. Moreover, if n is even, then N may be chosen to have positive dimension.

This result can be seen as a less localized version of the main theorem in [Ken14]. Under
the assumptions of Theorem 2.1, the results in [Ken14] imply that each component of MT is
a component of the fixed-point set of some N as in this theorem. The novelty here is that the
entire fixed-point set MT is contained in this submanifold N .

The proof of Theorem 2.1 is by induction over the dimension in the style of Wilking [Wil03].
First, if n 6 3, the result is trivial since M is a homotopy sphere. Second, if n = 4, the result
is vacuous since b4(M) = 1 in this case. Third, for 5 6 n 6 20, s > n/2, hence the result of
Grove and Searle implies that M is diffeomorphic to the sphere (see [GS94]). In particular, M
is a rational sphere, so the conclusion of the theorem holds by taking N = M .

Finally, suppose that n > 21. As in the previous paragraph, if M itself is a rational sphere,
then the theorem immediately holds. We assume throughout that M is not a rational sphere.
Since b4(M) = 0, this is equivalent to assuming that M does not have 4-periodic rational
cohomology. The induction step has two parts. The first considers the case where some component
MT
x has positive dimension.

Lemma 2.2. If some component MT
x of MT has positive dimension, then MT = MT

x and is a
rational sphere. In particular, the theorem holds with N = MT .

Proof. Let y ∈MT . By Proposition 1.1, there exist an ι ∈ T and a component N ⊆M ι such that
(n− 4)/4 < cod(N) 6 (n− 4)/2, dim ker(T |N ) 6 1, and x, y ∈ N . By Wilking’s connectedness
lemma, N is simply connected and b4(N) = 0. Moreover, since cod(N) > (n− 3)/4,

dim(T/ker(T |N )) > dim(T )− 1 > log4/3(n− 3)− 1 > log4/3(dimN − 3).

Since T/ker(T |N ) is a torus that acts effectively on N , a closed, simply connected, positively
curved Riemannian manifold with b4(N) = 0, the induction hypothesis applies to N . Since MT

x

and MT
y are components of NT = N ∩MT , we therefore have∑

bi(M
T
x ∪MT

y ) 6
∑

bi(N
T ) = 2.
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Observe that
∑
bi(M

T
x ) > 2 since MT

x has positive dimension. In particular, if y lies in a
component of MT different from MT

x , then the the left-hand side is at least∑
bi(M

T
x ) +

∑
bi(M

T
y ) > 2 + 1,

a contradiction. This shows that MT = MT
x . Moreover, the above argument works with x = y,

hence
∑
bi(M

T
x ) = 2, which implies that MT

x is a rational sphere. 2

The other possibility is that T has only isolated fixed points.

Lemma 2.3. If dim(MT ) = 0, then there are exactly two isolated fixed points. Moreover, there
exists a totally geodesic, positive-dimensional, and even-dimensional rational sphere N ⊆M on
which T acts such that MT = NT .

Proof. First, a theorem of Berger implies there is at least one fixed point (see [Ber66]), and there
cannot be exactly one fixed point (see Bredon [Bre72, Corollary IV.2.3, p. 178]).

Suppose for a moment that MT has exactly two isolated fixed points. By Proposition 1.1,
MT ⊆ P for some totally geodesic, even-dimensional, closed submanifold P with b4(P ) = 0 and
an isometric torus action of rank at least log4/3(dimP − 3). By the induction hypothesis applied

to P , P T = NT for some totally geodesic, even-dimensional, positive-dimensional rational sphere
N ⊆ P . Since MT ⊆ NT ⊆MT , this proves the lemma in this case.

Finally, suppose that MT has at least three (distinct) isolated fixed points, x, y, and z. Two
applications of Proposition 1.1 imply the existence of involutions σ, τ ∈ T s such that:
• Mσ

x has dim ker(T |Mσ
x

) 6 1, (n− 4)/4 < cod(Mσ
x ) 6 (n− 4)/2, and y ∈Mσ

x ; and
• M τ

x has dim ker(T |Mτ
x
) 6 1, (n− 4)/4 < cod(M τ

x ) 6 (n− 4)/2, and z ∈Mσ
x .

As before, the induction hypothesis applies to both Mσ
x and M τ

x . Since the torus action on
M has only isolated fixed points, the same is true of the torus action on Mσ

x and M τ
x . Hence

(Mσ
x )T = {x, y} and (M τ

x )T = {x, z}. This further implies

(Mσ
x ∩M τ

x )T = (Mσ
x )T ∩ (M τ

x )T = {x}.

On the other hand, Frankel’s theorem implies that Mσ
x and M τ

x intersect, and Wilking’s
connectedness lemma implies that Mσ

x ∩M τ
x is connected and simply connected. In particular,

as with M , this intersection cannot have exactly one fixed point. This concludes the proof. 2

This concludes the proof of Theorem 2.1 and hence of the first three conclusions of
Theorem A. We now prove the fourth conclusion.

Proof of Theorem A. [Conclusion (d)] Let g ∈ T . The Lefschetz number of the map g : M → M
is equal to χ(M) since g is homotopic to the identity. Hence χ(Mg) = χ(M) = 2, so Mg is
non-empty.

Since g : M → M is orientation-preserving, each component of Mg is a closed, even-
dimensional, totally geodesic submanifold of M to which the T -action restricts. Hence each
component of Mg contains a fixed point of T by Berger’s theorem. Since MT is a rational sphere,
either Mg is connected or it has two components and the T -actions on them have exactly one
fixed point each. The latter case can only occur if each component of Mg is non-orientable (see
again Bredon [Bre72, Corollary IV.2.3, p. 178]), which in turn can only occur if g2 = id. 2
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3. Proof of Corollary C

Corollary C is an easy consequence of Theorem A together with a few general classification

results. We only use Theorem A to deduce that χ(M) = 2.

First, it is immediate that, if M has vanishing odd-dimensional rational homology, then M

is a rational homology sphere. Since M is simply connected, this is equivalent to M having

the rational homotopy type of a sphere. In particular, this case applies if M is rationally

elliptic (see [FHT01, Proposition 32.10]) or if the action is equivariantly formal, that is, if the

Leray–Serre spectral sequence of the Borel construction degenerates at the E2-term (see [AP93,

Corollary 3.1.15]).

Second, we refer to Powell [Pow97] for a definition of p-elliptic for a prime p. In particular, it

follows that M is rationally elliptic and hence a rational sphere. In [Pow97, Theorem 1], Powell

classified p-elliptic rational spheres for p > dim(M), and it follows immediately that M is a mod

p homology sphere.

Third, if M has vanishing odd-dimensional integral homology, then its homology is torsion-

free. Since M is a rational homology sphere, M is, in fact, an integral homology sphere. Since

M is simply connected, it follows from the resolution of the Poincaré conjecture that M is

homeomorphic to a sphere.

Fourth, since biquotients are rationally elliptic, M is again a rational sphere. Totaro [Tot02,

Theorem 6.1] and Kapovitch and Ziller [KZ04, Theorem A] classified such biquotients, and their

results immediately imply that M is diffeomorphic to S2n.

Fifth, if M admits a cohomogeneity-one structure, it is rationally elliptic by Grove and

Halperin [GH87], hence M is a rational sphere. Since M has no 2-torsion in its homology, it

follows that M is a mod 2 homology sphere. The result now follows from Asoh’s classification

up to equivariant diffeomorphism of mod 2 homology spheres that admit a cohomogeneity-one

action (see [Aso81, Main Theorem]).

Finally, if M is a simply connected, compact symmetric space, then it factors as M1×· · ·×Mk

for some irreducible symmetric spaces Mi. Since χ(M) > 0, it follows that each χ(Mi) > 2, with

equality only if Mi is a sphere. By Theorem A, k = 1 and M = M1 is a sphere.

4. A simplified proof of a Betti number estimate

Fix n > 4. Consider a closed, simply connected, even-dimensional Riemannian manifold Mn with

positive sectional curvature. If M admits an isometric action by a torus T with r = dim(T ) >
2 log2(n) + 1, the second author showed that the Betti numbers of M satisfy b2(M) 6 b4(M) 6 1

(see [Ken14]). In this section, we provide a simplified and self-contained proof of this conclusion

under the assumption that r > log4/3(n− 3).

First, if n = 4, the bound on r implies r > 1, so the Hsiang–Kleiner result implies b2(M) 6
b4(M) = 1. If 6 6 n 6 22, the bound on r implies r > n/2, so the diffeomorphism classification

of Grove and Searle implies b2(M) = b4(M) 6 1 (see [GS94]). We proceed by induction on the

dimension n to prove the result in general. Note that, if M has 4-periodic rational cohomology,

then b2(M) 6 b4(M) 6 1 by Poincaré duality. Indeed, the subring of H∗(M ;Q) made up of

elements of even degree is isomorphic to that of Sn, CPn/2, HPn/4 or S2 × HP(n−2)/4. (See, for

example, the proofs of Wilking [Wil03, Propositions 7.3 and 7.4].) We may suppose that M is

not rationally 4-periodic.

By the Berger theorem, there is a fixed point x ∈ M of the torus action. Take y = x

in Proposition 1.1, and choose an involution ι ∈ T and a component N ⊆ M ι such that
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dim ker(T |N ) 6 1 and (n− 4)/4 < cod(N) 6 (n− 4)/2. Note that N is a closed, totally geodesic
submanifold of even codimension. Also note that N is simply connected by the connectedness
lemma. The T -action restricts to N , and T/ker(T |N ) is another torus that acts effectively on N .
Since the dimension of this torus is at least

dim(T )− 1 > log4/3(n− 3)− 1 > log4/3(dim(N)− 3),

the induction hypothesis implies that b2(N) 6 b4(N) 6 1. By the connectedness lemma again,
the inclusion N → M is 5-connected, so the Betti numbers of M satisfy the same bounds.
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