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ALGEBRAS
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We consider associative algebras filtered by the additive monoid Np. We prove that, under quite general
conditions, the study of Gelfand-Kirillov dimension of modules over a multi-filtered algebra R can be
reduced to the associated N'-graded algebra G(R). As a consequence, we show the exactness of the Gelfand-
Kirillov dimension when the multi-filtration is finite-dimensional and G(R) is a finitely generated noetherian
algebra. Our methods apply to examples like iterated Ore extensions with arbitrary derivations and
"homothetic" automorphisms (e.g. quantum matrices, quantum Weyl algebras) and the quantum enveloping
algebra of s((v+ 1)

1991 Mathematics subject classification: 16P90, 16W60, 16W50.

Introduction

A useful technique to study the Gelfand-Kirillov dimension of an associative algebra
R over a field k is to find a "finite-dimensional" filtration {Fn(R) : n e N} on R with a
simpler associated graded ring G(R) (cf. [13, Ch. 8]). The most typical situation arises
when G(R) is commutative (the algebra R is then called "somewhat commutative").
Some interesting examples of algebras, like the quantum coordinate algebras Oq(Mn(k))
of the n x n-matrices over k or the quantum universal algebras t/,(sl(v + 1)), resist this
tool. McConnell [12] found a finite-dimensional filtration on Oq(Mn(k)) with semi-
commutative associated graded algebra (i.e., this graded algebra has finitely many
generators that commute up to nonzero scalars in k). In the case of the quantum
enveloping algebra, he found an infinite dimensional N2-filtration with semi-
commutative associated ring for which some results from [14] could be applied. The
key idea in the present work is that if we enlarge the size of the filtering monoid, then
the infinite dimensions in the filtration can be avoided.

In Section 1 we state the notion of multi-filtration for rings and modules. The
indexing of the filtrations uses a multi-index a e Np, where Np is endowed with a total
order compatible with the additive monoid structure. The associated N^-graded rings
and modules are defined and, as an easy first application of these concepts, we prove a
kind of Hilbert Basis Theorem (Theorem 1.5).
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Section 2 is the core of the paper. Essentially, it is devoted to proving that if a
fc-algebra R has a multi-filtration by finite-dimensional vector subspaces such that the
associated graded ring G(R) is a finitely generated fc-algebra, then the Gelfand-Kirillov
dimension can be computed on G(R) (Theorem 2.8). Moreover, if G(R) is finitely
generated and noetherian (e.g. if G(R) is semi-commutative), then the Gelfand-Kirillov
dimension is exact on short exact sequences of finitely generated left R-modules
(Theorem 2.10 and Corollary 2.12).

Section 3 is devoted to providing examples of finite dimensional multi-filtrations on
some algebras. We include some types of iterated Ore extensions (in particular, iterated
differential operator algebras [17], the algebras H(p, A) introduced in [1] and the multi-
parameter quantum Weyl algebras [11] are covered). The quantum universal enveloping
algebra Uq(sl(v + 1)) is also satisfactorily multi-filtered.

1. Multi-filtrations

Throughout this paper, R will denote an associative unitary ring. Let p be a positive
integer. We consider W as additive monoid with the sum defined componentwise.

Definition 1.1. An admissible order "< " on (Np, +) is a total order such that,

(a) 0 = (0 0) < a for every a e Np.

(b) For all a, 0, y, e N" with a < P it follows a + y < fi + y.

Remark 1.2. By Dickson's Lemma (see, e.g., [2, Corollary 4.48]), admissible orders
on Np are good orders (i.e., any non empty subset of N11 has a first element).

From now on, fix an admissible order "< " on (Np, +).

Definition 1.3. A multi-filtration on R is a family {Fy(R) | y e Np} of subgroups of
the additive group of R satisfying the following axioms.

2. Fy(R)Fs(R) c Fy+i(R).

3- LU> Fa(R) = R.

4. 1 g F0(R).

The notion of multi-filtered ring appears in [6, 7.4.2], although assuming a partial
ordering in the additive monoid. The canonical bases found by Lusztig in [10] give a
multi-filtration on the quantum universal enveloping algebra Uq(g) of a semi-simple Lie
algebra g (see [4, 3.10]). The filtering vector subspaces are not of finite dimension in
this case, so that the arguments developed in the next section to study the Gelfand-
Kirillov dimension do not work in this case. However, we will show how to apply our
techniques to C/,(sl(v + 1)) (see Example 3.4).
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In what follows, we assume that the ring R is endowed with a fixed multi-
filtration.

Definition 1.4. A multi-filtration on a left i?-module M is a family {Fy(M) | y e N1"}
of subgroups of M satisfying the following axioms.

1. Fy(M) C FS(M) if y < S.

2. Fy(R)Fs(M) c Fni(M).

3- LU> Fa(M) = M.

The multi-filtered ring R has an associated N^-graded ring defined as follows (see
[16] and [15] for a computational approach to this notion). Given a multi-filtered left
R-module M, and y e W, write

It is understood that Vo — {0}. Consider the additive group

Gy(M) = Fy(M)/Vy(M),

and define

For r + Vy{R) e Gy(R) and m + V^M) e GS(M), define

(r + 7y(R))(m + V6(M)) = rm+ Vy+i(M).

If M = R, then we have a product in G(R) which makes G(R) into a Np-graded ring.
Moreover, G(M) becomes an Np-graded left G(/?)-module.

In the case of N-filtered rings, several properties can be lifted from G(R) to R (see
e.g. [13]). From a heuristic viewpoint, this would be true for multi-filtered rings. The
following is a relevant first example.

Theorem 1.5 (Hilbert Basis Theorem). Let R be a multi-filtered ring. If G(R) is left
noetherian then R is left noetherian.

Proof. For a left ideal / of R,

S
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is a graded left ideal of G(R). It is enough to prove that if / c J are left ideals of R
such that G(7) = G(J), then / = J. Let 0 / r e J and set a = min{y e N" | r e Fy(R)}.
Then r £ K3(R) and, thus, r + V^R) e G(J\ = G(/)3. There is r , e / such that
r - rx e VJ^R). It is clear that r — rx e J C\ V^R), whence r - r . e J f l Fp(R) for some
/? < a. If r - ra / 0, then repeat the argument for r - r, and, after a finite number of
steps, we can write r as a finite sum of elements of /. Certainly, I — J. •

2. Gelfand-Kirillov dimension

Fix a commutative field fe and assume that R is a fc-algebra. First, while we introduce
some notation, we will recall the notion of Gelfand-Kirillov dimension of finitely
generated fe-algebras (details can be found in [13], [8], [9]). If V is a finite-dimensional
vector subspace of R and n is a natural number, then V" denotes the vector subspace
of R generated by all n-fold products u, • • • vn, where u, e V. It is understood that
V° = k. Define

Now, assume that R is finitely generated as fe-algebra by V, i.e., R = k[V]. The
Gelfand-Kirillov dimension of R (GKdim(R), for short) measures the asymptotic rate
of growth of the "dimension function" f(n) = dimt V1^. In fact, GKdim(R) is the
infimum of the real numbers r such that f(n) < nr for n » 0. It is known that this
value is independent of the choice of the generating subspace V. The GK dimension
of a finitely generated left R-module Af is given by the growth of the function
f(n) = d\mk(V

i")U), where U is any finite-dimensional vector subspace of M that
generates M as left R-module (U is a generating vector subspace of M, for short). This
dimension can be expressed by the following formula.

GKdim(M) = lim sup logn dimk(V
(n)U)

Recall that the /c-algebra R is endowed with a multi-filtration {Fa(R)}. Let M be a
multi-filtered left R-module with multi-filtration {FX(M)}. We will assume that
Fa(M), F^R) are vector subspaces of M and R, respectively, for every multi-index
aef.

Definition 2.1. A multi-index sequence for M is a map a : N -» N*1 such that

1. <x(n + m) < <x(n) + a(m), for every n, m e N.

2. V^U c F<n)(M) for every neN.

We can immediately deduce that a(n) < na(l) for every positive integer n.
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Example 2.2. The map a : N ->• N" given by

a(n) = min{y e N ' : ^ ( / c F7(Af) and F00 c Fy(R)}

is a multi-index sequence for M.

Definition 2.3. The multi-filtration {FJ^M)) is said to be finite if FJJM.) is a vector
space of finite dimension over k for every a e Np.

If the multi-filtration {Fa(M)} is finite, then it makes sense to define the sounding
map for a given multi-index sequence (a(n)} by

s(n) = min{; e N : F<n){M) c J^>£/}. (1)

Proposition 2.4. Le? {a(n)} £e any multi-index sequence for M. If the multi-filtrations
on R and M are finite, then

GKdim(Af) < lim sup logn di

/ / in addition, Fp(R)Fa(M) = Fp+ff(M) for every a, p e N",

GKdim(M) = lim sup logn di

Proof. The inequality is clear from the inclusions V^U c Fa(n)(M), n e N. To obtain
the equality, let d be such that Fa(1)(/?) c Vid'>. We will prove by induction on n that

« ' / . For n = 1, the inclusion holds by (1). If n > 1, then

This implies that s(n) < d(n — 1)+s( 1). Hence, the asymptotic rate of growth of dimt(Fcl(n)(M))
is less or equal than that of dimt K«"-'>'J+I<l»t/i which finishes the proof. •

The foregoing result can be significantly improved in the graded case. Assume that
A = ©aeNp/4a is an N^-graded /c-algebra. This algebra is immediately multi-filtered by

Analogously, every N^-graded left A-module M = ©aeN'^a c a n be canonically viewed
as a multi-filtered left module. For a nonzero homogeneous element m e Ma, we will
write deg(a) = a. Observe that if a e A and m e M are homogeneous elements such that
am 7̂  0, then deg(am) = deg(a) + deg(m). A vector subspace X of M is said to be
homogeneous if X has a basis consisting of homogeneous elements.
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Proposition 2.5. Let M be a finitely generated graded left module over an W-graded
finitely generated k-algebra A. Assume that the filtrations induced on M and A by the
gradings are finite. Let 0LQ € NP be such that A is generated as k-algebra by V= F^A).
Let U be any finite-dimensional homogeneous generating subspace of M. If {<x(n)} is any
multi-index sequence for M, then

GKdim(M) = lim sup log. dim^F^/M)) (2)

Proof. Let s: N -*• N be the sounding map for [<x(n)}. Every nonzero homogeneous
element of F^n)(M) can be written as a sum of monomials of the form u, • • • v,u, for
homogeneous elements vt e V, u e U satisfying vtvl+i 4 V and t < s(n). There exists a
nonzero homogeneous element x e F^n)(M) such that t = s(n) for at least one such
monomial. Moreover, a(n) > deg(x) = deg(i>, • • -vmu). Let r — [^f\, the integer part of
s-f. Then

na(l) > «(«) > deg(i>, • • • vMu) = deg(u, • • • v^n)) + deg(u)

o- (3)

If d<Xo < a(l) for every positive integer d, then

for every d. This implies that M is a finite-dimensional vector space and, thus, the
equality (2) is clear. So we can assume that there is a positive integer d such that
a(l) < da0. By (3),

whence

< nd.
2

This implies that s(n) < 2nd for every n € N and, thus,

< dimt

This implies that the polynomial growth of dim^K^C/) is the same as the polynomial
growth of dimk(Fa(n)M), as required. •

Let us now return to the case of a multi-filtered left module M over the multi-filtered
/c-algebra R. For any vector subspace X of M, define
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which is a vector subspace of G(M).

Proposition 2.6. (i) Let W be a vector subspace of G(R) such that G(R) = k[W]. If
V is a vector subspace of R such that W c G(V), then R = k[V].

(ii) Let U be a generating subspace of G(M). If U' is a subspace of M such that
U c G(U'), then M = RU'.

Proof. Let r e R. If r ̂  0, then let a be the first element of Np such that r e Fa(R).
Then r+ V,(R) e G(R) = k[W] and, therefore, there is i > 0 such that r+Va(R) e W®.
Now, it is not difficult to show that G(K)(0 c GiV®). Hence, there is t e V® such that
r - t e Va(R). If r - t ̂  0, then let ft be minimum with r - t & F^R). It is clear that
/? < a. This entails that after finitely many steps we must obtain that r e Vr0) for some
positive integer ;. The proof of the second part is similar. •

Lemma 2.7. IfX is a finite-dimensional vector subspace ofM, then dimt G(X) = dim* X.

Proof. Assume that X ̂  {0}. Define recursively a finite increasing sequence

as follows. We will consider F_a0(M) = {0} and fS_t = — oo. For i > 0, define

A = inf {/? e N ' I X f l F^, (M)CXn F,(M)}.

This gives a strictly increasing sequence of vector subspaces of X

{0}cxnFh(M)c...cxnFllri(M) = x.

Easy computations show that

Now the lemma follows easily. •

Theorem 2.8. Let M be a multi-filtered left module over the multi-filtered k-algebra
R. Assume G{R) is a finitely generated k-algebra and that G(M) is finitely generated as a
left G(R)-module. Then

GKdim(RM) >
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If, in addition, the multi-filtrations are finite, then

GKdim(RM) = GK d i m ^ G(M)).

Proof. We will first prove the inequality. Let W be a homogeneous finite-
dimensional subspace of G(R) such that G(R) = k[W]. It is easy to see that there is a
finite-dimensional subspace V of R such that W c G(V). By Proposition 2.6, R = k[V].
Analogously, given a finite-dimensional generating subspace U of G(M), choose an
f.d. generating vector subspace U' of M such that U c G(U'). For every natural
number n,

W(n)U c G(V)(n)G{U') C G{yin))G{Ur) c G(K<n)t/'). (4)

Thus, dim* W(n)U < dim* G^U'). By Lemma 2.7,

= dimt V^W,

which entails that GKdim(RM) > GKdim(c(R)G(M)).
Now, we will prove the equality in the "finite" case. The filtration {Fa(R)} is finite,

which implies, by Lemma 2.7, that the canonical filtration on G(R) is also finite. Since
G(R) is a finitely generated fe-algebra, there is a,, 6 Np such that W= FI0(G(R))
generates G(R) as algebra. Since G(M) is finitely generated, there is U — Fyo(G(M))
such that U generates G(M) as G(R)-module. Put K= F^R) and U' = F7o(M). It is
clear that G{V) — W and G(U') - U. By Proposition 2.6, R is generated as a fc-algebra
by V and M is generated as an R-module by U'. Let {a(n)} be a multi-index sequence
for M (choose, e.g., the sequence given in Example 2.2). First, we will prove that it is
also a multi-index sequence for G(M). By (4), W(n)U c G(K<n)[/'). The inclusion

/') c

tells us that {a(n)} is a multi-index sequence for G(M). By Proposition 2.5,

= limsuploa.dim* G(F^,(Af)). (5)

By Lemma 2.7, dimt G(Fa(n)(M)) = dimtFa(n)(M) for every n e N. This, together with
(5), gives

, G(M)) = limsuplogBdimlk(FaW(Af)).

By Proposition 2.4, limsuplogndimt(FaW) > GKdim(M). This finishes the proof. •

Remark 2.9. The proof of Theorem 2.8 gives a procedure to obtain a multi-index
sequence {a(«)} for M such that

GKdim(M) = limsuplogndim(i(Fcl(n)(M)).
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Choose a0, y0 e N" such that F^GiR)) generates G(R) as a fc-algebra and F./o{G(M))
generates G(M) as a G(/?)-module. Then any multi-index sequence {<x(n)) for [Fa(M)}
with V= F^(R) and U' = Fyo(M) works.

Theorem 2.10. Assume that the multi-filtration on R is finite and that F0(R) = k. If
G(R) is a left noetherian finitely-generated k-algebra, then the Gelfand-Kirillov dimension
is exact on short exact sequences of finitely-generated left R-modules.

Proof. Let M be a finitely generated left R-module, and L be a submodule of M.
Set N = M/L. We have to prove that

GKdim(M) = max{GK dim(L), GKdim(AT)}. (6)

By Theorem 1.5, R is left noetherian and, therefore, L is finitely generated. Let X be
a finite-dimensional generating vector subspace of L and choose a generating subspace
of finite dimension U of M such that X — LC\U. Endow M with the finite multi-
filtration given by F2(M) - F,(R)U, for every a e N". Since F0(R) — k, we have that
F0(M) = U and, therefore, G(M)0 = U. It is easy to prove that G{M) is generated by U.
Let oto e N" be such that Fao(G(R)) generates G(R) as fc-algebra, and put y0 — 0. Choose
a multi-index sequence {<*(«)} according to Remark 2.9. For every a e Np, set
FJJS) = LC\FX(M) and F3(N) = (L + Fa(M))/L. In this way, we obtain multi-filtrations
on L and N which are, obviously, finite. Moreover, the exact sequence of left R-
modules

0—>-L—+M-^-N—>0

induces an exact sequence of graded left G(i?)-modules

0 —> G(L) —• G(M) —• G(N) —• 0.

Since (%RyG(M) is finitely generated and G(R) is left noetherian, G(L) and G(N) are
finitely generated. Finally, {a(n)} is a multi-index sequence for both L and N in the
conditions of Remark 2.9 (with y0 = 0). The equality (6) is now deduced from Remark
2.9 and the exactness of the sequence of vector spaces

0 —• F«n)(L) —• Fa(n)(M) - > F^(N) —> 0

for every natural number n. •

Definition 2.11 (McConnell, [12]). A fc-algebra A is called semi-commutative if A
has a set of /c-algebra generators x , , . . . , xn such that, for each i, ;, x,x, = fyXyX,-, where
0 ^ ft/ 6 fc.

Corollary 2.12. Let M be a multi-filtered left R-module over a multi-filtered k-algebra
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R such that G(M) is finitely generated over G(R). Assume that the filiations are finite
and that G(R) is semi-commutative. Then GKdim(RM) = GKdim^)G(M)) is an
integer. Moreover, if F0(R) = k, then the Gelfand-Kirillov dimension is exact on short
exact sequences of finitely generated left R-modules.

3. Examples

This final section is devoted to providing some non-trivial examples of multi-filtered
algebras by finite filtrations having a semi-commutative associated graded ring.

Definition 3.1. An admissible order < on N' is called locally finite if the interval
[0, a] = {y e N" : y < a} is finite for every a e N".

Proposition 3.2. Let R be a k-algebra finitely generated by x , , . . . , x p and set
X" — x\x ... Xpp for all a e W. If there is a locally finite admissible order '<' and nonzero
scalars qjt e K such that

1 <£/+£;

(0

where £, = (0 , . . . , 1 0), then

(i) R is endowed with a finite filtration given by

(ii) G(R) is a semi-commutative algebra with finite associated filtration. In particular,
Corollary 2.12 applies.

Proof. Let a, /? e Np. By [3, Proposition 1.7] (see also [7, Lemma 1.4]), there exists
a nonzero scalar qaf in k such that

A. A. — qa oA. •+*

From this we get that dimt Fa(R) is less than or equal to the cardinal of the finite
interval [0, a] and that [FJ is indeed a multi-filtration. It is clear that G(R) is semi-
commutative. •

Finally, we will exhibit some "non classical" examples of algebras satisfying the
hypotheses of Proposition 3.2. We will use "weighted" admissible orders on N1", defined
as follows. Let w = (w,,. . . , wp) be a vector in Rp with w, > 0 for every i = 1, . . . , p.
Consider the usual dot product (—, —) on W. By <,„ we will denote the lexicographic
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order in Np with et <e2 < ••• < ep. The binary relation in Np defined for a, fl eNp as
a <w fi if (a, w) < (/?, w> or (a, w) = (/?, w> and a <Ux f} is a locally finite admissible order
in N'. We will say that w is the weight vector for the order <„.

Example 3.3. Let R = k[x,][x2; a2, S2].. • [xp; erp, Sp] be an iterated Ore extension of
k. Assume that Oy(x,) = g,7x,, for every i < j < p, where the g,/s are nonzero scalars in
k. The set B — {X*; a. e W) is a fe-basis of R. We retain here the notation of Proposition
3.2. For every p = £ r e N , caX*, set N(p) = {a e W \ ca ^ 0}. We will construct a weight
vector w = (w, , . . . , vvp). Set w, = 1 and define w,2 as the degree in x, of the
polynomial (52(x,). Put vv2 = max{l, w12}. Suppose we have defined w,, . . . ,w/_1 for
;' > 2. For k — 1 , . . . , j - 1, set wkj, = max{a,w, H h a,.,*^.,; a e N(5y(xt))} and choose
vv, = max{l, wkj - w,; 1 < i", k <j- 1}. Endow Np with the admissible order <w. If
i < j < q, then (e, 4- e;, w) = w, + v̂  > w,7 > (a, w> for every a e N((5y(Xj)). Therefore,
a <w £, + ey for every a e JV(^(x,-)) whenever i < _/. By Proposition 3.2, R has a finite
multi-filtration with semi-commutative associated graded ring. In particular, the
Gelfand-Kirillov dimension is exact on sequences of finitely generated modules. Some
examples of these iterated Ore extensions are the algebras H(p, k) defined in [1], which
include the quantum co-ordinate algebras of Mn(/c), and the multiparameter quantized
Weyl algebra R = A°x(k) introduced in [11] (see also [5]). The iterated differential
operator algebras of [17] are also covered.

Example 3.4. Our last example is the quantized universal enveloping algebra
C/,(sI(v +1)) , with qek non-zero and qs^\. We will follow, essentially, the
presentation of this algebra given in [18] and [12]. For our purposes, it is better to
consider R = Uq(sl(y + 1)) as a homomorphic image of the algebra S = Vq(sl(v + 1))
defined as follows. Order N2 lexicographically, i.e., (i, j) < (m, n) if i < m or i — m and
j < n. There are six possible ways to have (i, j) < (m, n):

I. i — m <j < n,

II. i < m < n <j,

III. i < m < j = n,

IV. i < m <j < n,

V. i < j = m < n,

VI. i < j < m < n.

The algebra S is generated by ftJ, Kit Lit etj, for 1 < » < j < v + 1 , where K,, L, are
semi-commutating variables and the relations for the variables fijt e{j are described as
follows. For (i, /) < (m, n),

I or III. eijenm = q^e^,

II or VI. e,/™, = emneip

IV. [e,,, e j = (q2 - , "
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V . qeimemn - q lemneim = ein,

and similar relations among the ftj (here, [x, y] = xy — yx). The relations between the
etj and ftj are:

Finally,

r fmn] =

[emn, / ,•] =

( - \)} t+iqfjnK
2... K2_, (case I)

(_iy-m + 1
 qK

2
m ... Kj_teim (case III)

(-iy-m + 1(q4 - l)fjnKl... Kj_,eim (case IV)
0 (cases II, V, VI)

(— \)'~'q~~xL2... L]_tejn (case I)
i-\)n~mq-lfimL2

m... L;_t (case III)
(-1)'-"(1 - q-'Y^Ll... Lj_tejn (case IV)
0 (cases II, V, VI)

It follows from [18, Section 3] that R is a homomorphic image of S under the mapping
fij l~*fij' eijl—> eij< Kj >->• K, and L, •-»• /Cf1. We will endow S with a finite multifiltration.
Order the variables

fn < • • • < /w+i < K, < < L, < • • • < Lv < c12 • cw+l

where the ftj and the etj are ordered by the lexicographic order in N2. For (i, j) e N2,
put w,j — i + 3/, and consider the weight vector in K"2+3v

2v

W = (W 1 2 , . . . , W v v + I , 1, . . . , 1, W12> . . . , Wv v + 1)

where the subindices of the first (v + l)v/2 and the last (v + l)v/2 components are
ordered lexicographically. Assign to any "standard" word in S

the multi-index

JU • • -Jvv-t-l

a = 0*12 flvv+!, fel, . . . . k,, /| , . . . , / „ fr|2. •••.

Some straightforward computations show that S is as in the hypotheses of Proposition
3.2 with respect to the order <w in N"2+3v. Therefore, this algebra can be endowed with
a finite multi-filtration {Fa(S)} in such a way that the associated graded algebra is
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isomorphic to a semi-commutative algebra. Now, let q>: S -> R be the afore-mentioned
surjective homomorphism of algebras. This map q> induces a finite multi-filtration on
the quantized universal enveloping algebra by defining, for every a e N*2+3v,
F2(R) = (p(F,(S)). Moreover, the associated multi-graded ring G(R) is a homomorphic
image of G(S) and, thus, it is semi-commutative.
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