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Abstract
Jannsen asked whether the rational cycle class map in continuous ℓ-adic cohomology is injective, in every
codimension for all smooth projective varieties over a field of finite type over the prime field. As recently pointed
out by Schreieder, the integral version of Jannsen’s question is also of interest. We exhibit several examples showing
that the answer to the integral version is negative in general. Our examples also have consequences for the coniveau
filtration on Chow groups and the transcendental Abel-Jacobi map constructed by Schreieder.
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1. Introduction

Let k be a field, 𝑘𝑠 ⊂ 𝑘 be a separable and an algebraic closure of k, respectively, ℓ be a prime number
invertible in k and X be a smooth projective k-variety. For all integers i and j, we denote by 𝐶𝐻𝑖 (𝑋) the
Chow group of codimension i cycles modulo rational equivalence and by 𝐻𝑖 (𝑋,Qℓ ( 𝑗)) the continuous
ℓ-adic cohomology defined by Jannsen [17] (or equivalently, the pro-étale cohomology defined by Bhatt
and Scholze [3]). Motivated by the Bloch–Beilinson conjecture on the existence of a certain functorial
filtration on 𝐶𝐻𝑖 (𝑋) ⊗Z Q and its relation to the conjectural theory of mixed motives, Jannsen [18,
Question 2.8] asked the following question.

Question 1.1 (Jannsen). Suppose that k is of finite type over its prime field. Is the ℓ-adic cycle class map

cl : 𝐶𝐻𝑖 (𝑋) ⊗Z Qℓ → 𝐻2𝑖 (𝑋,Qℓ (𝑖))

injective?

© The Author(s), 2023. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in
any medium, provided the original work is properly cited.

https://doi.org/10.1017/fms.2023.1 Published online by Cambridge University Press

doi:10.1017/fms.2023.1
https://orcid.org/0000-0002-6686-7294
https://orcid.org/0000-0001-8427-7880
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/fms.2023.1&domain=pdf
https://doi.org/10.1017/fms.2023.1


2 F. Scavia and F. Suzuki

A positive answer to Question 1.1 would imply the Bloch–Beilinson conjecture [18, Conjecture 2.1]
over k. More precisely, consider the Hochschild-Serre spectral sequence in continuous ℓ-adic
cohomology [17, Corollary 3.4]:

𝐸 𝑝,𝑞2 = 𝐻 𝑝 (𝑘, 𝐻𝑞 (𝑋𝑘𝑠 ,Qℓ (𝑖))) ⇒ 𝐻 𝑝+𝑞 (𝑋,Qℓ (𝑖)).

The spectral sequence degenerates at the 𝐸2 page, and so gives a filtration

{0} = 𝐹𝑖+1 ⊂ 𝐹𝑖 ⊂ · · · ⊂ 𝐹1 ⊂ 𝐹0 = 𝐻2𝑖 (𝑋,Qℓ (𝑖)),

where 𝐹 𝑝/𝐹 𝑝+1 � 𝐻 𝑝 (𝑘, 𝐻2𝑖−𝑝 (𝑋𝑘𝑠 ,Qℓ (𝑖))) for all 𝑝 ≥ 0. If Question 1.1 had a positive answer, then
the inverse image of 𝐹 · would be a filtration on 𝐶𝐻𝑖 (𝑋) with all properties predicted by Bloch and
Beilinson, proving the Bloch–Beilinson conjecture (see [18, Lemma 2.7]).

Of course, there is no reason to expect Question 1.1 to have an affirmative answer over an arbitrary
field. For example, if k is algebraically closed, the kernel of the cycle class map is the group of
homologically trivial cycles modulo rational equivalence, and it is often nontrivial: in particular, the
cycle class map factors through algebraic equivalence. However, the situation when k is of finite type
over its prime field is very different. Indeed, in this case, Jannsen observed that, as a consequence of
the Mordell-Weil theorem, the integral codimension 1 cycle class map Pic(𝑋) ⊗ZZℓ → 𝐻2 (𝑋,Zℓ (1)) is
injective (see [17, Remark 6.15 (a)]). This naturally leads to the following variant of Jannsen’s question.
Question 1.2. Suppose that k is of finite type over its prime field. Is the ℓ-adic cycle class map

cl : 𝐶𝐻𝑖 (𝑋) ⊗Z Zℓ → 𝐻2𝑖 (𝑋,Zℓ (𝑖))

injective?
As noted by Jannsen, Question 1.2 has an affirmative answer for 𝑖 = 1. Question 1.2 is also implicit

in work of Saito [36], who obtained some positive results for 𝑖 = 2. Colliot-Thélène–Sansuc–Soulé [12]
showed that the ℓ-adic cycle class map is injective on torsion when 𝑖 = 2 and the field k is finite.

Question 1.2 fits into a constellation of conjectural integral refinements of well-known rational cycle
conjectures. These questions go back at least to Totaro [46], who suggested that certain Lefschetz-
hyperplane properties for Chow groups, originally conjectured rationally by Hartshorne, Nori and
Paranjape, should also hold for integral Chow groups. Totaro also showed that Nori connectivity
for Chow groups fails on torsion cycles. Later, Soulé–Voisin [42] showed that Voevodsky’s smash
nilpotence conjecture fails integrally.

In contrast to these negative results, Schreieder [38] recently proved that some aspects of the rational
conjectures hold in fact integrally. For example, Schreieder proved a torsion analogue of a certain
conjecture of Jannsen, asserting that cycles in the kernel of the Abel-Jacobi map have coniveau one
(see [38, Corollary 1.3]). In his talk at the conference “Géométrie Algébrique en l’honneur de Claire
Voisin,” held in May 2022 in Paris, he used this result to motivate the general and natural question of to
which extent rational cycle conjectures hold integrally, and in particular, Question 1.2.

The purpose of the present work is to show that Question 1.2 has a negative answer in general.
We offer examples of very different natures: topological (Atiyah–Hirzebruch-style approximations of
classifying spaces), geometric (products of a Kummer threefold and an elliptic curve) and arithmetic
(quadrics, norm varieties). As we explain below, our examples exhibit new and interesting behaviour of
the coniveau filtration on Chow groups and of Schreieder’s transcendental Abel-Jacobi map over finitely
generated fields.
Theorem 1.3 (Theorem 2.3). There exist a finite field (respectively, a number field) k and a smooth
complete intersection 𝑌 ⊂ P𝑁𝑘 of dimension 15 with a free action of a finite 2-group G, such that, letting
𝑋 � 𝑌/𝐺, the cycle class map

cl : 𝐶𝐻3(𝑋) [2] → 𝐻6 (𝑋,Z2 (3))

is not injective.
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The aforementioned result of Colliot-Thélène–Sansuc–Soulé [12] shows that 3 is the least possible
codimension in which one can find a torsion counterexample over a finite field.

The dimension of the examples of Theorem 1.3 is quite large. The following theorem yields examples
of smaller dimension over a number field.

Theorem 1.4 (Theorem 4.3). There exist a number field k and a fourfold product 𝑋 = 𝑌 × 𝐸 over k,
where Y is a Kummer threefold and E is an elliptic curve, such that the cycle class map

cl : 𝐶𝐻3 (𝑋) [2] → 𝐻6(𝑋,Z2(3))

is not injective.

The examples of Theorem 1.4 are the counterexamples of smallest dimension that we could find over
number fields. Over a field of transcendence degree 1 over Q, we provide examples of one dimension
lower, in one codimension lower. Recall that a number field is said to be totally imaginary if it admits
no real places.

Theorem 1.5 (Theorem 6.3). Let k be a totally imaginary number field and 𝑘 (𝑡) be a purely transcen-
dental extension of k of transcendence degree 1. There exists a smooth quadric hypersurface 𝑋 ⊂ P4

𝑘 (𝑡)
,

such that the cycle class map

cl : 𝐶𝐻2(𝑋) [2] → 𝐻4 (𝑋,Z2 (2))

is not injective.

We also show that, if ℓ is an odd prime invertible in k, there exists a norm variety X of dimension
ℓ2 − 1 over 𝑘 (𝑡), such that cl : 𝐶𝐻2(𝑋) [ℓ] → 𝐻4(𝑋,Zℓ (2)) is not injective. Thus, Question 1.2 has a
negative answer for all prime numbers ℓ.

We now explain the relation of our examples to Schreieder’s results on the coniveau filtration on
Chow groups. By now, we have a good understanding of the filtration over the complex numbers,
especially for codimension ≤ 3 (see, for example, [38, Corollary 1.2]). Our examples show that this
filtration is still interesting when k is of finite type over its prime field. We also relate our examples to
the transcendental Abel-Jacobi map on torsion cycles constructed by Schreieder [38, Section 7.5].

Remark 1.6. We denote by 𝑁 ·𝐶𝐻𝑖 (𝑋) the coniveau filtration on Chow groups [38, Section 1.1], and
by 𝐻𝑖𝑗 ,nr (𝑋,−) Schreieder’s refined unramified cohomology [38, Section 5], which for 𝑗 = 0 coincides
with the ordinary unramified cohomology: 𝐻𝑖0,nr = 𝐻𝑖nr. In the following, we assume that k is of finite
type over its prime field.

(a) We have 𝑁 𝑖−1𝐶𝐻𝑖 (𝑋) ⊗Z Zℓ = 0 for all smooth projective k-varieties X by Jannsen’s result (see
[38, Lemma 7.5(2)]). The examples of Theorem 1.5 show that 𝑁 𝑖−2𝐶𝐻𝑖 (𝑋) ⊗Z Zℓ can be nonzero for
𝑖 = 2 (in this case, 𝑁0𝐶𝐻2 (𝑋) ⊗ZZℓ is exactly the kernel of the cycle class map). One can further analyse
the torsion part of the stage of the filtration on the examples using the transcendental Abel-Jacobi map,
and [38, Corollary 9.5, Proposition 7.16] yields

𝑁1𝐻3(𝑋,Q2/Z2 (2))div/𝑁
1𝐻3(𝑋,Q2(2)) ⊗ Q2/Z2 ≠ 0.

In other words, there is a cohomology class in 𝐻3(𝑋,Q2/Z2 (2)) of coniveau 1, which lifts to a rational
class but not to a rational class of coniveau 1.

(b) By [38, Theorem 1.8], the kernel of the cycle class map is given by

𝐻2𝑖−1
𝑖−2,nr (𝑋,Zℓ (𝑖))/𝐻

2𝑖−1(𝑋,Zℓ (𝑖)).

Question 1.1 asks whether this group is torsion. Our examples of Theorems 1.3, 1.4 and 1.5 show that
it can be nonzero for 𝑖 = 2, 3. In the case 𝑖 = 2, we get an explicit statement on ordinary unramified
cohomology: the examples of Theorem 1.5 have an unramified class of degree 3 which does not extend
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to a class on all of X. In fact, using a restriction-corestriction argument, one sees that in this case, the
inclusion

𝐻3(𝑘,Z2 (2)) ⊂ 𝐻3
nr (𝑋,Z2 (2))

has cokernel of finite torsion order > 1, a phenomenon that does not seem to have been observed before
(in contrast, 𝐻3

nr (𝑋,Z2(2)) is torsion-free and 𝐻3(𝑘,Z2 (2)) is a direct summand of 𝐻3
nr (𝑋,Z2 (2)) if

𝑋 (𝑘) ≠ ∅).
(c) In our setting, Schreieder’s transcendental Abel-Jacobi map is of the form: 𝜆tr : 𝐶𝐻𝑖0 (𝑋){ℓ} →

𝐻2𝑖−1(𝑋,Qℓ/Zℓ (𝑖))/𝑁
𝑖−1𝐻2𝑖−1(𝑋,Qℓ (𝑖)), where 𝐶𝐻𝑖0 (𝑋){ℓ} is the kernel of cl : 𝐶𝐻𝑖 (𝑋){ℓ} →

𝐻2𝑖 (𝑋,Zℓ (𝑖)). For 𝑖 = 2, the transcendental Abel-Jacobi map is injective by [38, Corollary 9.5]. In
particular, the torsion cycles in the examples of Theorem 1.5 do not lie in the kernel of 𝜆tr. This also
shows that 𝜆tr can be nonzero. In contrast, Theorems 1.3 and 1.4 provide examples where 𝜆tr is not
injective for 𝑖 = 3 (see Remark 3.3).

We now comment on the proofs of the main theorems. In view of the discussion around Question 1.1,
it is natural to approach Question 1.2 by considering the filtration 𝐹 · on 𝐻2𝑖 (𝑋,Zℓ (𝑖)) induced by the
Hochschild-Serre spectral sequence

𝐸 𝑝,𝑞2 = 𝐻 𝑝 (𝑘, 𝐻𝑞 (𝑋𝑘𝑠 ,Zℓ (𝑖))) ⇒ 𝐻 𝑝+𝑞 (𝑋,Zℓ (𝑖)).

We start with a nonzero torsion cycle 𝛼 ∈ 𝐶𝐻𝑖 (𝑋) (producing such examples is generally quite difficult)
and try to show that cl(𝛼) ∈ 𝐹 𝑝 for all 𝑝 ≥ 0. To show that cl(𝛼) ∈ 𝐹1, we only need to show that cl(𝛼)
is geometrically trivial, but the subsequent steps of the filtration are more difficult because the groups
appearing in the spectral sequence are typically huge and the image of cl(𝛼) ∈ 𝐹 𝑝/𝐹 𝑝+1 often seems
hard to compute (see [19] for the case 𝑝 = 2). In the examples used to prove Theorems 1.3 and 1.5, we
get around this by showing that all 𝐹 𝑝/𝐹 𝑝+1 are torsion free, which forces cl(𝛼) = 0.

Theorem 1.4 lies deeper. A key result (Proposition 3.1), relating injectivity of the ℓ-adic cycle class
map to that of Bloch’s map, reduces Theorem 1.4 to finding fourfold examples defined over a number
field where the Deligne cycle class map is not injective on torsion in codimension 3. We then achieve this
in two steps: a result of Bloch–Esnault yields examples defined over a number field with nonvanishing
fourth unramified cohomology group 𝐻4

nr (𝑋C,Qℓ/Zℓ (3)), where, with extra care, one can find such
examples with a small Chow group of zero-cycles; then using the Bloch–Kato conjecture and a result
of Voisin and Ma relating 𝐻4

nr (𝑋C,Qℓ/Zℓ (3)) to the kernel of the Deligne cycle class map on torsion in
codimension 3, one deduces the desired noninjectivity. The construction is inspired by the work of Diaz.

Our work leads us to the following questions.

Question 1.7. (a) Is there a smooth projective d-dimensional variety X over a field of finite type over
its prime field, such that the ℓ-adic map cl : 𝐶𝐻𝑑 (𝑋) ⊗Z Zℓ → 𝐻2𝑑 (𝑋,Zℓ (𝑑)) is not injective?1

(b) Let i be either 2 or 3. Is there a smooth projective threefold over a number field k, such that the
ℓ-adic map cl : 𝐶𝐻𝑖 (𝑋) ⊗Z Zℓ → 𝐻2𝑖 (𝑋,Zℓ (𝑖)) is not injective? What happens over 𝑘 = Q?

The paper is organised as follows. In Section 2, we prove Theorem 1.3. In Section 3, we prove a key
result (Proposition 3.1), relating the injectivity of the ℓ-adic cycle class map to that of Bloch’s map,
which is useful in Sections 4 and 5. As first application, we give a second proof of Theorem 1.3. In
Section 4, we prove Theorem 1.4. In Section 5, we construct further examples in codimension 3 using
nontorsion type counterexamples to the integral Hodge and Tate conjectures. Finally, in Section 6, we
prove Theorem 1.5.

1After the first version of this manuscript was posted on arXiv, Alexandrou and Schreieder annouced a construction of such
d-folds for all 𝑑 ≥ 3 (see [1, Corollary 1.4]). Later, Colliot-Thélène and the first author [13] found an example for 𝑑 = 2.
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Notation

If k is a field, we write 𝐻𝑖 (𝑘,−) for continuous Galois cohomology. If X is a smooth projective
k-variety, we write 𝐻𝑖 (𝑋,−) for the continuous étale cohomology, as defined by Jannsen [17], 𝐶𝐻𝑖 (𝑋)
for the Chow group of codimension i cycles modulo rational equivalence and cl for the cycle class map
in continuous ℓ-adic cohomology; when k is algebraically closed, we write 𝜆 for Bloch’s map. If 𝑘 = C,
we denote by 𝐻𝑖D (𝑋,Z( 𝑗)) the Deligne cohomology group and by clD the Deligne cycle class map; for
𝐴 ∈ {Z,Q/Z,Z/2}, we denote by 𝐻𝑖nr (𝑋, 𝐴) the i-th unramified cohomology group.

For an abelian group A, an integer 𝑛 ≥ 1 and a prime number ℓ, we denote 𝐴[𝑛] � {𝑎 ∈ 𝐴 | 𝑛𝑎 = 0},
by 𝐴{ℓ} the subgroup of ℓ-primary torsion elements of A, by 𝐴tors the subgroup of torsion elements of
A and 𝐴tf � 𝐴/𝐴tors.

2. Proof of Theorem 1.3

In order to prove Theorem 1.3, we will make use of a construction due to Totaro [46]. Totaro’s
construction is stated over the complex numbers but works over an arbitrary field of characteristic zero.
It has been generalised to fields of characteristic not 2 by Quick [32].

Let 𝑘0 be a field of characteristic different from 2. Let H be the Heisenberg group of order 32 (see
[46, Section 5]), and set 𝐺 � 𝐻 × Z/2. We have a group homomorphism

𝜑 : 𝐺
pr1
−−→ 𝐻 ↩→ SO4,

where the map on the right is the Heisenberg representation of H (see [46, Section 5]) (Totaro works in
characteristic zero, but as observed during the proof of [32, Theorem 7.2], the Heisenberg representation
is defined over any field of characteristic different from 2). Let 𝐴 : SO4 → GL3 be the representation
given by the composition

SO4 � SO4/𝜇2
∼
−→ SO3 ×SO3

pr1
−−→ SO3 ↩→ GL3

and 𝐵 : SO4 → GL4 be the natural 4-dimensional representation of SO4. Define

𝐶 � 𝑐2 (𝐴 ◦ 𝜑) − 𝑐2 (𝐵 ◦ 𝜑) ∈ 𝐶𝐻2 (𝐵𝐺),

let 𝑐1 ∈ 𝐶𝐻1 (𝐵𝐺) be the pullback along the second projection pr2 : 𝐺 → Z/2 of the first Chern-class
of the nontrivial character of Z/2, and set

𝛼 � 𝐶𝑐1 ∈ 𝐶𝐻3(𝐵𝐺).

We have 2𝛼 = 0 because 2𝑐1 = 0.
Finally, let V be a G-representation of finite dimension over 𝑘0, 𝑈 ⊂ 𝑉 be a G-invariant open

subscheme of V, such that G acts freely on U and the codimension of 𝑉 −𝑈 in V is at least 4.
Lemma 2.1. Let (𝑘0)𝑠 be a separable closure of 𝑘0.
(a) We have cl(𝛼(𝑘0)𝑠 ) = 0 in 𝐻6 ((𝑈/𝐺)(𝑘0)𝑠 ,Z2 (3)).
(b) There exists a finite field subextension 𝑘0 ⊂ 𝑘 ⊂ (𝑘0)𝑠, such that cl(𝛼𝑘 ) = 0 in 𝐻6((𝑈/𝐺)𝑘 ,Z2(3)).
Proof. Since the codimension of 𝑉 −𝑈 in V is at least 4, we have

𝐶𝐻3(𝑈/𝐺) = 𝐶𝐻3(𝐵𝐺)

(see [47, Definition 1.2]).
(a) By the invariance of étale cohomology under purely inseparable field extensions, it suffices to

show that cl(𝛼𝑘0
) = 0 in 𝐻6((𝑈/𝐺)𝑘0

,Z2 (3)), where 𝑘0 is an algebraic closure of 𝑘0 containing (𝑘0)𝑠 .
If 𝑘0 = C, the map 𝑈/𝐺 → 𝐵𝐺 corresponding to the principal G-bundle 𝑈 → 𝑈/𝐺 induces an

https://doi.org/10.1017/fms.2023.1 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.1


6 F. Scavia and F. Suzuki

isomorphism 𝐻6((𝑈/𝐺)C,Z)
∼
−→ 𝐻6(𝐵𝐺,Z), and the cycle class of 𝛼 in 𝐻6(𝐵𝐺,Z) is zero as stated

in [46, p. 485], hence, the cycle class of 𝛼 in 𝐻6((𝑈/𝐺)C,Z) vanishes. Since Artin’s comparison
isomorphism is compatible with cycle classes in singular and ℓ-adic cohomology, this implies that (a)
holds for 𝑘0 = C. If 𝑘0 is an arbitrary field of characteristic zero, then (a) follows from the case 𝑘0 = C
and the invariance of ℓ-adic cohomology under extensions of algebraically closed fields. Finally, if 𝑘0 is
an arbitrary field of characteristic different from 2, the arguments of Totaro have been adapted by Quick
using étale cobordism (see the proof of [32, Proposition 5.3]). One could also argue more directly via a
specialisation argument from the characteristic zero case. This completes the proof of (a).

(b) The morphism 𝑈(𝑘0)𝑠 → (𝑈/𝐺)(𝑘0)𝑠 is a Galois G-cover, hence, we have the Hochschild-Serre
spectral sequence in ℓ-adic cohomology

𝐸
𝑖, 𝑗
2 = 𝐻𝑖 (𝐺, 𝐻 𝑗 (𝑈(𝑘0)𝑠 ,Z2 (3))) ⇒ 𝐻𝑖+ 𝑗 ((𝑈/𝐺)(𝑘0)𝑠 ,Z2 (3)). (2.1)

Here, 𝐻𝑖 (𝐺,−) denotes group cohomology. Since U is an open subscheme of a vector space whose
complement has codimension ≥ 4, we have 𝐻0 (𝑈(𝑘0)𝑠 ,Z2 (3)) = Z2(3) and 𝐻 𝑗 (𝑈(𝑘0)𝑠 ,Z2(3)) = 0 for all
1 ≤ 𝑗 ≤ 6. We deduce that the natural map 𝐻𝑖 (𝐺,Z2 (3)) → 𝐻𝑖 ((𝑈/𝐺)(𝑘0)𝑠 ,Z2 (3)) is an isomorphism
for all 1 ≤ 𝑖 ≤ 6. Since the group G is finite, the group

𝐻𝑖 (𝐺,Z2(3)) � 𝐻𝑖 (𝐺,Z2) � 𝐻𝑖 (𝐺,Z) ⊗Z Z2

is finite for all 𝑖 ≥ 1, hence

𝐻𝑖 ((𝑈/𝐺)(𝑘0)𝑠 ,Z2 (3)) is finite for all 1 ≤ 𝑖 ≤ 6. (2.2)

For every finite field subextension 𝑘0 ⊂ 𝑘 ⊂ (𝑘0)𝑠 , the Hochschild-Serre spectral sequence in
continuous ℓ-adic cohomology

𝐸
𝑖, 𝑗
2 = 𝐻𝑖 (𝑘, 𝐻 𝑗 ((𝑈/𝐺)(𝑘0)𝑠 ,Z2 (3))) ⇒ 𝐻𝑖+ 𝑗 ((𝑈/𝐺)𝑘 ,Z2 (3)) (2.3)

yields a filtration

{0} = 𝐹7 ⊂ 𝐹6 ⊂ · · · ⊂ 𝐹1 ⊂ 𝐹0 = 𝐻6((𝑈/𝐺)𝑘 ,Z2 (3)),

where 𝐹𝑖/𝐹𝑖+1 is a subquotient of 𝐻𝑖 (𝑘, 𝐻6−𝑖 ((𝑈/𝐺)(𝑘0)𝑠 ,Z2 (3))). When 𝑖 = 0, 1, 𝐹𝑖/𝐹𝑖+1 is even a
submodule of 𝐻𝑖 (𝑘, 𝐻6−𝑖 ((𝑈/𝐺)(𝑘0)𝑠 ,Z2 (3))).

It is a consequence of [41, I.2.2, Corollary 1] that for all 𝑖 ≥ 1 and all finite continuous Gal((𝑘0)𝑠/𝑘)-
modules M, any element of 𝐻𝑖 (𝑘, 𝑀) is killed by passage to a suitable finite extension of k. Thus,
(2.2) implies that for all 1 ≤ 𝑖 ≤ 6, any element of 𝐻𝑖 (𝑘, 𝐻6−𝑖 ((𝑈/𝐺)(𝑘0)𝑠 ,Z2 (3))) vanishes after base
change to a suitable finite extension of k. By (a), we know that cl(𝛼(𝑘0)𝑠 ) = 0, that is, cl(𝛼) ∈ 𝐹1. Using
the fact that 𝐹𝑖/𝐹𝑖+1 is a subquotient of 𝐻𝑖 (𝑘, 𝐻6−𝑖 ((𝑈/𝐺)(𝑘0)𝑠 ,Z2(3))), we may now construct finite
field extensions

𝑘0 ⊂ 𝑘1 ⊂ · · · ⊂ 𝑘6 ⊂ 𝑘7,

such that cl(𝛼𝑘𝑖 ) ∈ 𝐹𝑖 for all i. In particular, cl(𝛼𝑘7) = 0, hence, 𝑘 = 𝑘7 satisfies the conclusion of the
lemma. �

Remark 2.2. It is important to note that continuous ℓ-adic cohomology does not commute with inverse
limits of schemes, so (b) is not a formal consequence for (a).

Here is a generalised version of Theorem 1.3.

Theorem 2.3. Let 𝑘0 be a field of characteristic different from 2. There exist a finite 2-group G, a smooth
complete intersection𝑌 ⊂ P𝑁𝑘0

of dimension 15 with a free G-action and finite extension 𝑘/𝑘0, such that,
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letting 𝑋 � 𝑌/𝐺, the cycle class map

cl : 𝐶𝐻3 (𝑋𝑘 ) [2] → 𝐻6 (𝑋𝑘 ,Z2 (3))

is not injective.
Proof. Let Y be a smooth complete intersection of dimension 15 over 𝑘0 on which 𝐺 � 𝐻 × Z/2 acts
freely, and set 𝑋 � 𝑌/𝐺: (see [40, Proposition 15]). Letting G act diagonally on 𝑌 ×𝑈, the projections
of 𝑌 ×𝑈 onto its factors are G-equivariant: we write 𝜋1 : (𝑌 ×𝑈)/𝐺 → 𝑋 and 𝜋2 : (𝑌 ×𝑈)/𝐺 → 𝑈/𝐺
for the induced morphisms. We have a commutative diagram

𝐶𝐻3 (𝑋𝑘 ) 𝐶𝐻3(((𝑌 ×𝑈)/𝐺)𝑘 ) 𝐶𝐻3 ((𝑈/𝐺)𝑘 )

𝐻6 (𝑋𝑘 ,Z2(3)) 𝐻6(((𝑌 ×𝑈)/𝐺)𝑘 ,Z2 (3)) 𝐻6 ((𝑈/𝐺)𝑘 ,Z2(3)).

cl

𝜋∗1

cl cl

𝜋∗2

𝜋∗1 𝜋∗2

The projection 𝑌 ×𝑉 → 𝑌 is a G-equivariant vector bundle and the G-action on Y is free, therefore, by
descent and Grothendieck’s version of Hilbert’s Theorem 90 (see [28, Proposition III.4.9]), the induced
morphism (𝑌 × 𝑉)/𝐺 → 𝑋 is also a vector bundle. Since 𝑌 × 𝑈 → 𝑌 is a G-invariant dense open
subscheme of the G-equivariant vector bundle 𝑌 × 𝑉 → 𝑌 , 𝜋1 is a dense open subscheme of a vector
bundle. Moreover, since𝑉−𝑈 has codimension ≥ 4 in V, the codimension of the complement (𝑌×𝑈)/𝐺
inside (𝑌 ×𝑉)/𝐺 is also ≥ 4, hence, by [17, Theorem 3.23] and homotopy invariance, the maps 𝜋∗1 are
isomorphisms. We get a well-defined element

𝛽 � (𝜋∗1)
−1(𝜋∗2 (𝛼𝑘 )) ∈ 𝐶𝐻3 (𝑋𝑘 ) [2] .

By Lemma 2.1(b), we have cl(𝛽) = 0. In order to complete the proof, it remains to show that 𝛽 ≠ 0.
Suppose first that 𝑘 = C. Then Totaro showed in [46] that the class of 𝛽 in the complex cobordism

group 𝑀𝑈6 (𝑋) ⊗𝑀𝑈 ∗ (𝑋 ) Z is not zero, hence, 𝛽 ≠ 0. If k is a field of characteristic zero, the rigidity
of the 2-torsion subgroup of the Chow group [25] implies 𝛽𝑘 ≠ 0, hence, 𝛽 ≠ 0. If k has positive
characteristic (different from 2), the arguments of Totaro have been adapted by Quick (see the proof of
[32, Proposition 5.3(b)]). We conclude that 𝛽 ≠ 0, as desired. �

3. ℓ-adic cycle class map and Bloch’s map

In this section, we explain the relation between the cycle class map in continuous ℓ-adic cohomology
and a certain map defined by Bloch. The main result of this section (Proposition 3.1) will be used to
produce counterexamples to Question 1.2 in Sections 4 and 5.

Let 𝑘0 be a field, 𝑖 ≥ 0 be an integer, ℓ be a prime number invertible in 𝑘0 and X be a smooth projective
𝑘0-variety. For every finite extension 𝑘/𝑘0, we have the cycle class map cl𝑘 : 𝐶𝐻𝑖 (𝑋𝑘 ) ⊗Z Zℓ →
𝐻2𝑖 (𝑋𝑘 ,Zℓ (𝑖)) and the Bockstein homomorphism

𝛽𝑘 : 𝐻2𝑖−1(𝑋𝑘 ,Qℓ/Zℓ (𝑖)) → 𝐻2𝑖 (𝑋𝑘 ,Zℓ (𝑖)).

It will be important for us that 𝐶𝐻𝑖 (𝑋𝑘0
) = lim
−−→𝑘/𝑘0

𝐶𝐻𝑖 (𝑋𝑘 ) and

𝐻2𝑖−1(𝑋𝑘0
,Qℓ/Zℓ (𝑖)) = lim

−−→
𝑘/𝑘0

𝐻2𝑖−1(𝑋𝑘 ,Qℓ/Zℓ (𝑖)),

where the direct limits are over all finite extensions 𝑘/𝑘0 contained in 𝑘0/𝑘0. Finally, recall that Bloch
[4] (also see [10]) defined a map

𝜆 : 𝐶𝐻𝑖 (𝑋𝑘0
){ℓ} → 𝐻2𝑖−1(𝑋𝑘0

,Qℓ/Zℓ (𝑖)),
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which, for 𝑘0 = C, coincides with the Deligne cycle class map on torsion [4, Proposition 3.7]. Note
that 𝜆 is rigid, that is, it does not change under algebraically closed field extensions, because the
rigidity property holds for the torsion part of Chow groups [25] and for étale cohomology with torsion
coefficients.

Proposition 3.1. The composition

𝐶𝐻𝑖 (𝑋𝑘0
){ℓ}

𝜆
−→ 𝐻2𝑖−1(𝑋𝑘0

,Qℓ/Zℓ (𝑖))

lim
−→𝑘/𝑘0

𝛽𝑘

−−−−−−−−→ lim
−−→
𝑘/𝑘0

𝐻2𝑖 (𝑋𝑘 ,Zℓ (𝑖))

coincides with lim
−−→𝑘/𝑘0

cl𝑘 on torsion. If 𝑘0 is of finite type over its prime field, lim
−−→𝑘/𝑘0

𝛽𝑘 induces an
isomorphism

𝐻2𝑖−1(𝑋𝑘0
,Qℓ/Zℓ (𝑖))

∼
−→

��� lim
−−→
𝑘/𝑘0

𝐻2𝑖 (𝑋𝑘 ,Zℓ (𝑖))
���{ℓ},

hence, lim
−−→𝑘/𝑘0

cl𝑘 is injective on torsion if and only if 𝜆 is injective.

Remark 3.2. For 𝑖 ∈ {1, 2, dim 𝑋}, 𝜆 is injective: the case of 𝑖 = 1 is elementary using the Kummer
sequence [4, Proposition 3.6], the case of 𝑖 = dim 𝑋 is due to Rojtman [33] (see also [4, Theorem 4.2])
and the case of 𝑖 = 2 is a consequence of a theorem of Merkurjev–Suslin [27, Section 18]. In these
cases, if 𝑘0 is of finite type over its prime field, lim

−−→𝑘/𝑘0
cl𝑘 is injective on torsion by Proposition 3.1.

For 𝑖 = 1, this is also a direct consequence of the observation of Jannsen [17, Remark 6.15 (a)] that
cl𝑘 : 𝐶𝐻1(𝑋𝑘 ) ⊗Z Zℓ → 𝐻2(𝑋𝑘 ,Zℓ (1)) is injective. Remarkably, the kernel of cl𝑘 : 𝐶𝐻2 (𝑋𝑘 ){ℓ} →
𝐻4 (𝑋𝑘 ,Zℓ (2)) might be nonzero, as we will see in Section 6.

For 3 ≤ 𝑖 ≤ dim 𝑋 − 1, there are several known examples [34, 37, 39, 42, 46, 49] where 𝜆 is not
injective; among them, [34, 37, 39, 49] even showed that the kernel of 𝜆 may be infinite. Note that
fields of definition for [34, 37, 39, 42, 49] have positive transcendence degree over Q, while Totaro’s
15-dimensional examples in [46] may be defined over Q or F𝑝 with 𝑝 ≠ 2. In Section 4, we exhibit the
first fourfold examples defined over Q where 𝜆 is not injective over Q (4 is the least possible dimension
in which one can find such an example). In Section 5, we give further instances of noninjectivity of 𝜆
in relation to the integral Hodge and Tate conjectures. Using Proposition 3.1 and the rigidity property
of 𝜆, all of these provide counterexamples to Question 1.2 over all sufficiently large finite extensions of
fields of definition.

Proof of Proposition 3.1. The second assertion follows by observing that if 𝑘0 is of finite type over
its prime field, then for every finite extension 𝑘/𝑘0 contained in 𝑘0/𝑘0, the map 𝐻2𝑖−1(𝑋𝑘 ,Qℓ (𝑖)) →

𝐻2𝑖−1(𝑋𝑘0
,Qℓ/Zℓ (𝑖)) is zero, because it factors through 𝐻2𝑖−1(𝑋𝑘0

,Qℓ (𝑖))
Gal(𝑘0/𝑘) which vanishes by

weight reasons.
It remains to show the first assertion. By construction, 𝜆 fits into the commutative diagram:

𝐻𝑖−1(𝑋𝑘0
,H(Qℓ/Zℓ (𝑖))) 𝐶𝐻𝑖 (𝑋𝑘0

){ℓ}

𝐻2𝑖−1(𝑋𝑘0
,Qℓ/Zℓ (𝑖)),

𝑓

𝑔
−𝜆

where f is the surjection given in [12, Proposition 1], 𝐻𝑖−1(𝑋𝑘0
,H(Qℓ/Zℓ (𝑖))) is the 𝐸 𝑖−1,𝑖

2 term of the
Bloch-Ogus spectral sequence [7] and g is the edge homomorphism. Hence, the proof will follow once
we show the anticommutativity of the following diagram:
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𝐻𝑖−1(𝑋𝑘0
,H𝑖 (Qℓ/Zℓ (𝑖))) 𝐶𝐻𝑖 (𝑋𝑘0

){ℓ}

𝐻2𝑖−1(𝑋𝑘0
,Qℓ/Zℓ (𝑖)) lim

−−→𝑘/𝑘0
𝐻2𝑖 (𝑋𝑘 ,Zℓ (𝑖)).

𝑓

𝑔 lim
−→𝑘/𝑘0

cl𝑘
lim
−→𝑘/𝑘0

𝛽𝑘

(3.1)

Here, 𝐻𝑖−1(𝑋𝑘0
,H𝑖 (Qℓ/Zℓ (𝑖))) = lim

−−→𝑘/𝑘0
𝐻𝑖−1(𝑋𝑘 ,H𝑖 (Qℓ/Zℓ (𝑖))), because the Gersten complex of

H𝑖 (Qℓ/Zℓ (𝑖)) on 𝑋𝑘0
is the direct limit of Gersten complexes on 𝑋𝑘 . Hence, the anticommutativity of

(3.1) is reduced to showing, for every finite extension 𝑘/𝑘0 and every integer 𝜈 ≥ 1, the anticommuta-
tivity of

𝐻𝑖−1(𝑋𝑘 ,H𝑖 (𝜇⊗𝑖𝑙𝜈 )) 𝐶𝐻𝑖 (𝑋𝑘 ) [ℓ
𝜈]

𝐻2𝑖−1(𝑋𝑘 , 𝜇
⊗𝑖
𝑙𝜈 ) 𝐻2𝑖 (𝑋𝑘 ,Zℓ (𝑖)).

𝑓

𝑔 cl𝑘

𝛽𝑘

(3.2)

To prove that (3.2) anticommutes, we proceed as in the proof of [12, Proposition 1]. Recall that each
element 𝛼 ∈ 𝐻𝑖−1(𝑋𝑘 ,H𝑖 (𝜇⊗𝑖𝑙𝜈 )) is represented by a class 𝑎 ∈ 𝐻2𝑖−1

𝑍 (𝑋𝑘 − 𝑍 ′, 𝜇⊗𝑖𝑙𝜈 ), where (𝑍, 𝑍 ′) is a
pair of closed subsets of 𝑋𝑘 of codimension 𝑖 − 1 and i, respectively, with 𝑍 ′ ⊂ 𝑍 , that vanishes under
the connecting homomorphism 𝐻2𝑖−1

𝑍−𝑍 ′ (𝑋𝑘 − 𝑍 ′, 𝜇⊗𝑖𝑙𝜈 ) → 𝐻2𝑖
𝑍 ′ (𝑋𝑘 , 𝜇

⊗𝑖
𝑙𝜈 ). We may now associate to the

class a two classes 𝑏, 𝑐 ∈ 𝐻2𝑖
𝑍 (𝑋𝑘 ,Zℓ (𝑖)) whose images in 𝐻2𝑖 (𝑋𝑘 ,Zℓ (𝑖)) are 𝛽𝑘 ◦ 𝑔(𝛼), − cl𝑘 ◦ 𝑓 (𝛼)

respectively. The argument is as follows, using the diagram:

𝐻2𝑖
𝑍 ′ (𝑋𝑘 ,Zℓ (𝑖)) 𝐻2𝑖

𝑍 (𝑋𝑘 ,Zℓ (𝑖))

𝐻2𝑖−1
𝑍−𝑍 ′ (𝑋𝑘 − 𝑍 ′,Zℓ (𝑖)) 𝐻2𝑖

𝑍 ′ (𝑋𝑘 ,Zℓ (𝑖))

𝐻2𝑖−1
𝑍 (𝑋𝑘 , 𝜇

⊗𝑖
ℓ𝜈 ) 𝐻2𝑖−1

𝑍−𝑍 ′ (𝑋𝑘 − 𝑍 ′, 𝜇⊗𝑖ℓ𝜈 )

𝐻2𝑖
𝑍 (𝑋𝑘 ,Zℓ (𝑖)).

𝑖

ℓ𝜈

𝛿

𝑝

𝑗

𝛽𝑘

Here, the horizontal arrows are from the long exact sequences for cohomology with supports and the
vertical arrows are from the long exact sequences for 𝐻∗𝑍 ′ (𝑋𝑘 ,−), 𝐻

∗
𝑍 (𝑋𝑘 ,−) and 𝐻∗𝑍−𝑍 ′ (𝑋𝑘 ,−) induced

by the short exact sequence of inverse systems of abelian sheaves on 𝑋ét:

...
...

...

0 𝜇⊗𝑖
ℓ𝜈
′+1 𝜇⊗𝑖

ℓ𝜈
′+1+𝜈 𝜇⊗𝑖ℓ𝜈 0

0 𝜇⊗𝑖
ℓ𝜈
′ 𝜇⊗𝑖

ℓ𝜈
′+𝜈

𝜇⊗𝑖ℓ𝜈 0.

...
...

...

ℓ

ℓ𝜈
′+1

ℓ id

ℓ𝜈
′

(3.3)
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By the choice on a, there exists 𝑎1 ∈ 𝐻2𝑖−1
𝑍 (𝑋𝑘 , 𝜇

⊗𝑖
ℓ𝜈 ), such that 𝑗 (𝑎1) = 𝑎. Set 𝑏 � 𝛽𝑘 (𝑎1). Meanwhile,

after possibly enlarging 𝑍 ′ ⊂ 𝑍 , a lifts along p to a class 𝑎2 ∈ 𝐻2𝑖−1
𝑍−𝑍 ′ (𝑋𝑘 − 𝑍 ′,Zℓ (𝑖)). Indeed, we may

assume that: 𝑍 − 𝑍 ′ is smooth, thus

𝐻2𝑖−1
𝑍−𝑍 ′ (𝑋𝑘 − 𝑍 ′, 𝜇⊗𝑖ℓ𝜈 ) = 𝐻1 (𝑍 − 𝑍 ′, 𝜇ℓ𝜈 ),

𝐻2𝑖−1
𝑍−𝑍 ′ (𝑋𝑘 − 𝑍 ′,Zℓ (𝑖)) = 𝐻1 (𝑍 − 𝑍 ′,Zℓ (1))

by [17, Theorem 3.17]; 𝑎 ∈ 𝐻1(𝑍 − 𝑍 ′, 𝜇ℓ𝜈 ) lifts along the composition

𝐻0(𝑍 − 𝑍 ′,G𝑚)
Δ
−→ 𝐻1 (𝑍 − 𝑍 ′,Zℓ (1))

𝑝
−→ 𝐻1(𝑍 − 𝑍 ′, 𝜇⊗𝑖ℓ𝜈 ),

where Δ is the connecting homomorphism for the short exact sequence of inverse systems of abelian
sheaves on 𝑋ét

...
...

...

0 𝜇ℓ𝜈′+1 G𝑚 G𝑚 0

0 𝜇ℓ𝜈′ G𝑚 G𝑚 0

...
...

...

ℓ

ℓ𝜈
′+1

ℓ id

ℓ𝜈
′

(to see this, note that 𝑝 ◦ Δ at the direct limit over all 𝑍 ′ ⊂ 𝑍 corresponds to the surjection ⊕𝑘 (𝑥)× �
⊕𝑘 (𝑥)×/ℓ𝜈 , where the direct sums are over the generic points of Z). Let 𝑎3 = 𝛿(𝑎2). Then there exits
𝑎4 ∈ 𝐻2𝑖

𝑍 ′ (𝑋𝑘 ,Zℓ (𝑖)), such that 𝑎3 = 𝑙𝜈𝑎4. Set 𝑐 � 𝑖(𝑎4). It is now direct to see that 𝑏, 𝑐 satisfy the
required properties.

To complete the proof, it is enough to show that 𝑏 = 𝑐. As the category of inverse systems of abelian
sheaves on 𝑋ét is an abelian category with enough injectives by [17, Proposition 1.1], we may take a
Cartan-Eilenberg injective resolution of (3.3). Now an argument analogous to [12, p. 771] concludes
the proof. �

Second Proof of Theorem 2.3. As in Section 2, let 𝐺 � 𝐻 × Z/2, where H is the Heisenberg group of
order 32, let 𝑌 ⊂ P𝑁𝑘0

be a smooth complete intersection of dimension 15 on which G acts freely, and
𝑋 � 𝑌/𝐺. By means of Proposition 3.1 and the rigidity property of 𝜆, it is enough for us to show that
𝜆 : 𝐶𝐻3(𝑋𝐹 ){2} → 𝐻5 (𝑋𝐹 ,Q2/Z2 (3)) is not injective for some algebraically closed field extension F
of a field of definition.

The assertion in characteristic zero follows from [46, Theorem 7.2]. In positive characteristic different
from 2, the assertion follows from [32, Proposition 5.3 (b)], because the group 𝐻5(𝑋𝑘0

,Z2 (3)) is torsion
by construction and the composition

𝐶𝐻2 (𝑋𝑘0
){2} 𝜆−→ 𝐻5(𝑋𝑘0

,Q2/Z2 (3))↩
𝛽𝑘0
−−−→𝐻6(𝑋𝑘0

,Z2(3))

coincides with the cycle class map. This concludes the proof. �

We conclude this section by a remark on Schreieder’s transcendental Abel-Jacobi map [38,
Section 7.5].
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Remark 3.3. Suppose that 𝑘0 is of finite type over its prime field. For every finite extension 𝑘/𝑘0, we
have the transcendental Abel-Jacobi map:

𝜆tr,𝑘 : 𝐶𝐻𝑖0(𝑋𝑘 ){ℓ} → 𝐻2𝑖−1(𝑋𝑘 ,Qℓ/Zℓ (𝑖))/𝑁
𝑖−1𝐻2𝑖−1(𝑋𝑘 ,Qℓ (𝑖)),

where 𝐶𝐻𝑖0 (𝑋𝑘 ){ℓ} is the kernel of cl𝑘 : 𝐶𝐻𝑖 (𝑋𝑘 ){ℓ} → 𝐻2𝑖 (𝑋𝑘 ,Zℓ (𝑖)). Then one can observe that
lim
−−→𝑘/𝑘0

𝜆tr,𝑘 = 0 by [38, Proposition 7.16] and weight arguments. This shows that if

lim
−−→
𝑘/𝑘0

𝐶𝐻𝑖0(𝑋𝑘 ){ℓ} = Ker���𝐶𝐻𝑖 (𝑋𝑘0
){ℓ}

lim
−→𝑘/𝑘0

cl𝑘
−−−−−−−−→ lim

−−→
𝑘/𝑘0

𝐻2𝑖 (𝑋𝑘 ,Zℓ (𝑖))
���

is not zero, or equivalently by Proposition 3.1, if 𝜆 is not injective over 𝑘0, then 𝜆tr,𝑘 is not injective for
all sufficiently large finite extensions 𝑘/𝑘0 contained in 𝑘0/𝑘0. As described in Remark 3.2, we already
have several examples with the property, and we will give further such examples in Sections 4 and 5. In
Section 6, we will provide examples with 𝜆tr,𝑘 ≠ 0.

4. Proof of Theorem 1.4

Let 𝑘0 be a number field. Let B (respectively, E) be an abelian threefold (respectively, an elliptic curve)
over 𝑘0, and set 𝐴 � 𝐵 × 𝐸 . Suppose that A has good ordinary reduction at some prime dividing 2. For
instance, one can take 𝑘0 = Q and A to be the product of 4 copies of the elliptic curve

𝑦2 + 𝑥𝑦 = 𝑥3 + 1.

Let 𝜄 be an involution acting on B by −1 and Y be the Kummer threefold associated to B, that is,
the blow up of 𝐵/𝜄 at the 64 singular points, so that Y is smooth and contains 64 disjoint copies of P2.
Finally, set 𝑋 � 𝑌 × 𝐸 . Note that the action of 𝜄 lifts to A where 𝜄 acts trivially on E, and X can also be
obtained by blowing up the quotient variety 𝐴/𝜄 along the singular locus.

In the following, we fix an embedding 𝑘0 ↩→ C.
Lemma 4.1. 𝐻4

nr (𝑋C,Z/2) ≠ 0.
Proof. We follow the method of Diaz in [15, Section 2.1]. In this proof, we write 𝐴, 𝐵, 𝐸, 𝑋 for
𝐴C, 𝐵C, 𝐸C, 𝑋C. Letting 𝐴◦ � 𝐴 − (𝐵[2] × 𝐸), 𝑈 � 𝐴◦/𝜄 and 𝜋 : 𝐴◦ → 𝑈 be the quotient map, we
have the following commutative diagram:

𝐻4 (𝐴,Z/2) 𝐻4 (𝐴◦,Z/2) 𝐻4(𝑈,Z/2)

𝐻4
nr (𝐴,Z/2) 𝐻4

nr (𝐴
◦,Z/2) 𝐻4

nr (𝑈,Z/2) 𝐻4
nr (𝑋,Z/2).

∼ 𝜋∗

𝜋∗

(4.1)

Here, the vertical arrows are the restriction maps and the horizontal arrows are the pullback maps,
the injectivity of 𝐻4

nr (𝐴,Z/2) → 𝐻4
nr (𝐴

◦,Z/2) and 𝐻4
nr (𝑋,Z/2) → 𝐻4

nr (𝑈,Z/2) is by defini-
tion of unramified cohomology, the map 𝐻4(𝐴,Z/2) → 𝐻4(𝐴◦,Z/2) is an isomorphism because
codim(𝐵[2] × 𝐸, 𝐴) = 3.

We need to check that (i) 𝜋∗ : 𝐻4 (𝑈,Z/2) � 𝐻4(𝐴◦,Z/2) and (ii) 𝐻4 (𝑈,Z/2) → 𝐻4
nr (𝑈,Z/2)

factors through 𝐻4
nr (𝑋,Z/2). As for (i), note that 𝐴◦ = (𝐵 − 𝐵[2]) × 𝐸 and 𝑈 = (𝐵 − 𝐵[2])/𝜄 × 𝐸 .

Letting 𝜌 : 𝐵 − 𝐵[2] → (𝐵 − 𝐵[2])/𝜄 be the quotient map, it is enough for us to show that 𝜌∗ : 𝐻𝑖 ((𝐵 −
𝐵[2])/𝜄,Z/2) → 𝐻𝑖 (𝐵 − 𝐵[2],Z/2) is surjective for 𝑖 = 2, 3, 4. Since codim(𝐵[2], 𝐵) = 3, the
restriction map

Λ𝑖𝐻1 (𝐵,Z/2) ∼−→ 𝐻𝑖 (𝐵,Z/2) → 𝐻𝑖 (𝐵 − 𝐵[2],Z/2)
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is an isomorphism for 𝑖 ≤ 4. So it suffices to show that 𝜌∗ : 𝐻1((𝐵−𝐵[2])/𝜄,Z/2) → 𝐻1(𝐵−𝐵[2],Z/2)
is surjective, which follows from the fact that the short exact sequence

1→ 𝜋1 (𝐵 − 𝐵[2]) → 𝜋1 ((𝐵 − 𝐵[2])/𝜄) → {±1} → 1

splits. Here, the splitting is given by the nontrivial element in the fundamental group of RP5 that appears
as the quotient of the boundary S5 of an open ball neighborhood of a 2-torsion point in B, as observed
in the first paragraph of the proof of [43, Theorem 1] (see also [15, p. 267]). Alternatively, (i) directly
follows from [15, Corollary 2.8], because the assumptions for the statement are satisfied: 𝐵[2] × 𝐸 is
smooth, codim(𝐵[2] × 𝐸, 𝐴) = 3, 𝜄 acts by −1 on the normal bundle 𝑁𝐵 [2]×𝐸/𝐴 and 𝜄 acts trivially on
𝐻1 (𝐴,Z/2). As for (ii), the direct computation of the unramified cohomology group using the Gersten
complex reduces it to the vanishing 𝐻3

nr (𝑋 −𝑈,Z/2) = 0 (see [15, Lemma 2.10]). The vanishing indeed
holds because 𝑋 −𝑈 is 64 disjoint copies of P2 × 𝐸 and

𝐻3
nr (P

2 × 𝐸,Z/2) = 𝐻3
nr (𝐸,Z/2) = 0.

Finally, a theorem of Bloch–Esnault [6, Theorem 1.2] shows that 𝐻4(𝐴,Z/2) → 𝐻4
nr (𝐴,Z/2) is

nonzero (here, we use the rigidity property for unramified cohomology with torsion coefficients [8,
Theorem 4.4.1]). This, with (4.1), concludes the proof. �

Proposition 4.2. clD : 𝐶𝐻3(𝑋C){2} → 𝐻6
D (𝑋C,Z(3)) is not injective.

Proof. One needs to relate the fourth unramified cohomology group to the kernel of the Deligne cycle
class map on torsion in codimension 3. We start with a short exact sequence given by [51, Theorem 0.2]
and [26, Remark 4.2 (1)]:

0→ Λ5 (𝑋C)tors → 𝐻4
nr (𝑋C,Q/Z)/𝐻

4
nr (𝑋C,Z) ⊗ Q/Z→ T 3(𝑋C) → 0, (4.2)

where

Λ5(𝑋C) � 𝐻5(𝑋C,Z)/𝑁
2𝐻5(𝑋C,Z),

T 3(𝑋C) � Ker
(
clD : 𝐶𝐻3(𝑋C)tors → 𝐻6

D (𝑋C,Z(3))
)
/alg

(the notation /alg in the above equation means quotient by the algebraically trivial cycles in the kernel).
It is important for us that 𝐶𝐻0 (𝑋C) is supported in dimension ≤ 3, because 𝐶𝐻0 (𝑌C) is supported in
dimension ≤ 2 by [5, Section 4 (1)]. By decomposition of the diagonal and the Bloch–Kato conjecture
proved by Voevodsky, we have

𝐻4
nr (𝑋C,Z) = 0 (4.3)

(see [14, Proposition 3.3 (i)]). Moreover, [45, Theorem 1.1] yields

Coker
(
𝐻5(𝑋C,Z)tors → Λ5(𝑋C)tors

)
� Ker

(
clD : 𝐶𝐻3 (𝑋C)alg,tors → 𝐻6

D (𝑋C,Z(3))
)
,

where we write 𝐶𝐻3(𝑋C)alg,tors ⊂ 𝐶𝐻3 (𝑋C) for the subgroup of algebraically trivial torsion cycles.
Note that 𝐻5(𝑋C,Z) is in fact torsion free, because 𝑌C and 𝐸C have torsion free cohomology (use [43,
Theorem 2] for the Kummer threefold 𝑌C), hence

Λ5 (𝑋C)tors � Ker
(
clD : 𝐶𝐻3(𝑋C)alg,tors → 𝐻6

D (𝑋C,Z(3))
)
. (4.4)
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By (4.2), (4.3) and (4.4), it remains to show that 𝐻4
nr (𝑋C,Q/Z){2} ≠ 0. This can be deduced from

Lemma 4.1, because the natural map

𝐻4
nr (𝑋C,Z/2) → 𝐻4

nr (𝑋C,Q/Z)

is injective, again, by the Bloch–Kato conjecture (see [2, Theorem 1.1]). The proof is now complete. �

We prove a strengthened version of Theorem 1.4.

Theorem 4.3. Let 𝑘0 be a field of characteristic zero. Then there exist a fourfold product 𝑋 = 𝑌 × 𝐸
over 𝑘0, where Y is a Kummer threefold and E is an elliptic curve, and a finite extension 𝑘/𝑘0, such that
the cycle class map

cl : 𝐶𝐻3 (𝑋𝑘 ) [2] → 𝐻6 (𝑋𝑘 ,Z2 (3))

is not injective.

Proof. Let 𝑋 = 𝑌 × 𝐸 be a fourfold product over a subfield 𝑘̃0 ⊂ 𝑘0 that is finite over Q, as given at the
beginning of this section. Fixing an embedding 𝑘̃0 ↩→ C, Proposition 4.2 shows that

𝜆 : 𝐶𝐻3(𝑋C){2} → 𝐻5(𝑋C,Q2/Z2 (3))

is not injective, hence, by the rigidity property of 𝜆, the same result holds over 𝑘̃0, then over 𝑘0.
Proposition 3.1 now shows that there exists a finite extension 𝑘/𝑘0, such that

cl : 𝐶𝐻3 (𝑋𝑘 ){2} → 𝐻6(𝑋𝑘 ,Z2 (3))

is not injective. This finishes the proof. �

5. Further examples in codimension three

In this section, we provide further counterexamples to Question 1.2 in codimension 3. By Proposition 3.1,
this is reduced to finding examples for which Bloch’s map 𝜆 is not injective over some algebraically
closed field extension of a field of definition. To achieve this, we use nontorsion type counterexamples
to the integral Hodge and Tate conjectures, inspired by the work of Soulé–Voisin [42].

Let 𝑘0 be a field, ℓ be a prime number invertible in 𝑘0, 𝑖 ≥ 0 be an integer and Y be a smooth
projective variety over 𝑘0. We define

𝑍2𝑖
ét,ℓ (𝑌(𝑘0)𝑠 ) � Coker

(
𝐻2𝑖 (𝑌(𝑘0)𝑠 ,Zℓ (𝑖))tors → 𝐻2𝑖 (𝑌(𝑘0)𝑠 ,Zℓ (𝑖))

(1) /𝐻2𝑖
alg(𝑌(𝑘0)𝑠 ,Zℓ (𝑖))

)
,

where 𝐻2𝑖 (𝑌(𝑘0)𝑠 ,Zℓ (𝑖))
(1) ⊂ 𝐻2𝑖 (𝑌(𝑘0)𝑠 ,Zℓ (𝑖)) is the Gal((𝑘0)𝑠/𝑘0)-submodule consisting of elements

with open stabiliser and 𝐻2𝑖
alg(𝑌(𝑘0)𝑠 ,Zℓ (𝑖)) is the image of the cycle class map cl : 𝐶𝐻𝑖 (𝑌(𝑘0)𝑠 ) ⊗Z

Zℓ → 𝐻2𝑖 (𝑌(𝑘0)𝑠 ,Zℓ (𝑖)). The group 𝑍2𝑖
ét,ℓ (𝑌(𝑘0)𝑠 ) is well-defined because 𝐻2𝑖 (𝑌(𝑘0)𝑠 ,Zℓ (𝑖))

(1) ⊂

𝐻2𝑖 (𝑌(𝑘0)𝑠 ,Zℓ (𝑖)) is saturated by [11, Lemma 4.1]. Note that 𝑍2𝑖
ét,ℓ (𝑌(𝑘0)𝑠 )tors = 0 if and only if the

sublattice

𝐻2𝑖
alg(𝑌(𝑘0)𝑠 ,Zℓ (𝑖))tf ⊂ 𝐻2𝑖 (𝑌(𝑘0)𝑠 ,Zℓ (𝑖))

(1)
tf

is saturated. When 𝑘 ⊂ C, we similarly define

𝑍2𝑖 (𝑌C) � Coker
(
𝐻2𝑖 (𝑌C,Z)tors → Hdg2𝑖 (𝑌C,Z)/𝐻

2𝑖
alg(𝑌C,Z)

)
,
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where Hdg2𝑖 (𝑌C,Z) ⊂ 𝐻2𝑖 (𝑌C,Z) is the subgroup of integral Hodge classes and 𝐻2𝑖
alg(𝑌C,Z) �

Im
(
cl : 𝐶𝐻𝑖 (𝑌C) → 𝐻2𝑖 (𝑌C,Z)

)
. Note that 𝑍2𝑖 (𝑌C)tors = 0 if and only if the sublattice

𝐻2𝑖
alg(𝑌C,Z)tf ⊂ Hdg2𝑖 (𝑌C,Z)tf

is saturated.

Lemma 5.1. With the same notation as above, suppose either: 𝑍2𝑖
ét,ℓ (𝑌(𝑘0)𝑠 ){ℓ} ≠ 0, or 𝑘0 ⊂ C and

𝑍2𝑖 (𝑌C){ℓ} ≠ 0. Then there exist a finitely generated extension 𝐾0/𝑘0 with tr deg𝑘0
𝐾0 = 1 and an

elliptic curve E over 𝐾0, such that, letting 𝑋 � 𝑌 ×𝑘0 𝐸 , the map 𝜆 : 𝐶𝐻𝑖+1(𝑋𝐾 0
){ℓ} → 𝐻2𝑖+1(𝑋𝐾 0

,Qℓ/
Zℓ (𝑖 + 1)) is not injective.

Proof. We only do the first case, the second case is similar (also see [45, Proposition 3.1]). After tensor
Qℓ/Zℓ , the short exact sequence

0→ 𝐻2𝑖
alg(𝑌(𝑘0)𝑠 ,Zℓ (𝑖)) → 𝐻2𝑖 (𝑌(𝑘0)𝑠 ,Zℓ (𝑖))

(1) → 𝐻2𝑖 (𝑌(𝑘0)𝑠 ,Zℓ (𝑖))
(1) /𝐻2𝑖

alg (𝑌(𝑘0)𝑠 ,Zℓ (𝑖)) → 0

yields an exact sequence

0→ 𝑍2𝑖
ét,ℓ (𝑌(𝑘0)𝑠 ){ℓ} → 𝐻2𝑖

alg(𝑌(𝑘0)𝑠 ,Zℓ (𝑖)) ⊗ Qℓ/Zℓ → 𝐻2𝑖 (𝑌(𝑘0)𝑠 ,Zℓ (𝑖)) ⊗ Qℓ/Zℓ .

From the assumption, we now see that there exists a nonzero 𝛼 ∈ 𝐶𝐻𝑖 (𝑌(𝑘0)𝑠 ) ⊗ Qℓ/Zℓ that vanishes in
𝐻2𝑖 (𝑌(𝑘0)𝑠 ,Zℓ (𝑖)) ⊗ Qℓ/Zℓ . Note that, by passing to the algebraic closure, we get isomorphisms

𝐶𝐻𝑖 (𝑋(𝑘0)𝑠 ) ⊗ Qℓ/Zℓ
∼
−→ 𝐶𝐻𝑖 (𝑋𝑘0

) ⊗ Qℓ/Zℓ , 𝐻
2𝑖 (𝑋(𝑘0)𝑠 ,Zℓ (𝑖))

∼
−→ 𝐻2𝑖 (𝑋𝑘0

,Zℓ (𝑖)).

Let 𝛼′ ∈ 𝐶𝐻𝑖 (𝑋𝑘0
) ⊗ Qℓ/Zℓ be the image of 𝛼.

Let 𝐾0/𝑘0 be a finitely generated field extension with tr deg𝑘0
𝐾0 = 1 and E be an elliptic curve over

𝐾0 with 𝑗 (𝐸) ∉ 𝑘0. Fixing a component Qℓ/Zℓ of 𝐶𝐻1(𝐸𝐾 0
){ℓ} = (Qℓ/Zℓ)2, we indentify 𝛼′ with an

element in 𝐶𝐻𝑖 (𝑌𝑘0
) ⊗ 𝐶𝐻1(𝐸𝐾 0

){ℓ}. Letting 𝑋 � 𝑌 ×𝑘0 𝐸 , a theorem of Schoen [37, Theorem 0.2]
shows that the image 𝛽 of 𝛼′ under the exterior product map

𝐶𝐻𝑖 (𝑌𝑘0
) ⊗ 𝐶𝐻1 (𝐸𝐾 0

){ℓ}
×
−→ 𝐶𝐻𝑖+1(𝑋𝐾 0

){ℓ}

is nonzero. Now it remains for us to show that 𝛽 ∈ 𝐶𝐻𝑖+1(𝑋𝐾 0
){ℓ} is in the kernel of 𝜆. This follows

from the commutative diagram:

𝐶𝐻𝑖 (𝑌𝑘0
) ⊗ 𝐶𝐻1 (𝐸𝐾 0

){ℓ} 𝐻2𝑖 (𝑌𝑘0
,Zℓ (𝑖)) ⊗ 𝐻1(𝐸𝐾 0

,Qℓ/Zℓ (1))

𝐶𝐻𝑖+1(𝑋𝐾 0
) 𝐻2𝑖+1(𝑋𝐾 0

,Qℓ/Zℓ (𝑖 + 1)).

cl ⊗𝜆

× ∪

𝜆

The proof is complete. �

Lemma 5.1 can be applied to nontorsion type counterexamples to the integral Hodge conjecture [14,
15, 22, 30, 48] or the integral Tate conjecture [31, 48]. One may take 𝑘0 = Q for the examples in [14,
15, 22, 30, 48] and 𝑘0 to be a finite field for the examples in [31].

Proposition 3.1 then produces various examples of fields K of finite type over the prime fields of
transcendence degree 1, prime numbers ℓ invertible in K and smooth projective K-varieties X, such
that cl : 𝐶𝐻3(𝑋) [ℓ] → 𝐻6(𝑋,Zℓ (3)) is not injective. Those with the best bounds are: fourfolds in
characteristic zero; eightfolds in positive characteristic.
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6. Proof of Theorem 1.5

Lemma 6.1. Let k be a field and ℓ be a prime invertible in k. Then 𝐻2(𝑘,Zℓ (1)) � 𝑇ℓ (Br(𝑘)). In
particular, 𝐻2 (𝑘,Zℓ (1)) is torsion free.

Proof. By [29, Theorem 2.7.5], we have a short exact sequence

0→ lim
←−−
𝑚

1𝐻1 (𝑘, 𝜇ℓ𝑚 ) → 𝐻2 (𝑘,Zℓ (1)) → lim
←−−
𝑚

𝐻2(𝑘, 𝜇ℓ𝑚 ) → 0.

The Kummer sequence

1→ 𝜇ℓ𝑚 → Gm → Gm → 1

gives natural identifications

𝐻1 (𝑘, 𝜇ℓ𝑚 ) = 𝑘×/𝑘×ℓ
𝑚
, 𝐻2(𝑘, 𝜇ℓ𝑚 ) = Br(𝑘) [ℓ𝑚] .

The induced maps 𝑘×/𝑘×ℓ
𝑚+1
→ 𝑘×/𝑘×ℓ

𝑚 are the natural quotient maps, and, in particular, they are
surjective. It follows that the sequence of the 𝐻1(𝑘, 𝜇ℓ𝑚 ) satisfies the Mittag-Leffler condition, and so
lim
←−−

1𝐻1 (𝑘, 𝜇ℓ𝑚 ) = 0. The induced maps Br(𝑘) [ℓ𝑚+1] → Br(𝑘) [ℓ𝑚] are given by multiplication by ℓ,
hence, lim

←−−
𝐻2 (𝑘, 𝜇ℓ𝑚 ) = 𝑇ℓ (Br(𝑘)). �

Lemma 6.2. Let k be a global field, ℓ be a prime number invertible in k and 𝑘 (𝑡)/𝑘 be a purely
transcendental extension of transcendence degree 1. If ℓ = 2, suppose that k is a totally imaginary
number field or a function field. Then 𝐻4(𝑘 (𝑡),Zℓ (2)) = 0.

Proof. By [29, Theorem 2.7.5], we have a short exact sequence

0→ lim
←−−
𝑛

1𝐻3(𝑘 (𝑡), 𝜇⊗2
ℓ𝑛 ) → 𝐻4 (𝑘 (𝑡),Zℓ (2)) → lim

←−−
𝑛

𝐻4(𝑘 (𝑡), 𝜇⊗2
ℓ𝑛 ) → 0. (6.1)

By [41, II.4.4, Proposition 13], we have cdℓ (𝑘) ≤ 2, and so [41, II.4.2, Proposition 11] im-
plies cdℓ (𝑘 (𝑡)) ≤ 3. It follows that the group 𝐻4 (𝑘 (𝑡), 𝜇⊗2

ℓ𝑛 ) is trivial for all 𝑛 ≥ 0, hence,
lim
←−−𝑛

𝐻4 (𝑘 (𝑡), 𝜇⊗2
ℓ𝑛 ) = 0. In view of (6.1), the proof will be complete once we show that

lim
←−−

1
𝑛
𝐻3 (𝑘 (𝑡), 𝜇⊗2

ℓ𝑛 ) = 0.
We regard 𝑘 (𝑡) as the function field of P1

𝑘 . By [41, p. 113], we have an exact sequence

0→ 𝐻3 (𝑘, 𝜇⊗2
ℓ𝑛 ) → 𝐻3 (𝑘 (𝑡), 𝜇⊗2

ℓ𝑛 ) → ⊕𝑥∈(P1
𝑘
) (1)𝐻

2(𝑘 (𝑥), 𝜇ℓ𝑛 )
𝐶
−→ 𝐻2(𝑘, 𝜇ℓ𝑛 ) → 0

which is functorial in 𝑛 ≥ 0. Since cdℓ (𝑘) ≤ 2, the first term 𝐻3(𝑘, 𝜇⊗2
ℓ𝑛 ) vanishes. The surjective map C

is the direct sum of the corestriction maps along the field extensions 𝑘 (𝑥)/𝑘 , and so the point at infinity
∞ ∈ P1

𝑘 determines a section of C. We obtain a decomposition

𝐻3(𝑘 (𝑡), 𝜇⊗2
ℓ𝑛 ) � ⊕𝑥∈(A1

𝑘
) (1)𝐻

2(𝑘 (𝑥), 𝜇ℓ𝑛 ) � ⊕𝑥∈(A1
𝑘
) (1) Br(𝑘 (𝑥)) [ℓ𝑛] . (6.2)

The isomorphism on the right comes from the Kummer short exact sequence. The isomorphism (6.2)
is functorial in n, where on the right, the transition maps Br(𝑘 (𝑥)) [ℓ𝑛+1] → Br(𝑘 (𝑥)) [ℓ𝑛] are given by
multiplication by ℓ.

Suppose first that k is a totally imaginary number field or a function field. Then for every closed
point x of A1

𝑘 , the residue field 𝑘 (𝑥) is also totally imaginary. It follows from the celebrated the-
orem of Albert, Brauer, Hasse and Noether [29, Theorem 8.1.17] that Br(𝑘 (𝑥)) is divisible. Thus,
the maps Br(𝑘 (𝑥)) [ℓ𝑛+1] → Br(𝑘 (𝑥)) [ℓ𝑛] given by multiplication by ℓ are surjective, hence, by
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(6.2) so are the transition maps 𝐻3(𝑘 (𝑡), 𝜇⊗2
ℓ𝑛+1
) → 𝐻3(𝑘 (𝑡), 𝜇⊗2

ℓ𝑛 ). This shows that the inverse sys-
tem {𝐻3(𝑘 (𝑡), 𝜇⊗2

ℓ𝑛 )}𝑛≥0 satisfies the Mittag-Leffler condition, and so lim
←−−

1
𝑛
𝐻3 (𝑘 (𝑡), 𝜇⊗2

ℓ𝑛 ) = 0 by [29,
Proposition 2.7.4], as desired.

Suppose now that k admits at least one real embedding. Then under our assumptions, ℓ ≠ 2. By
[29, Theorem 8.1.17], the group Br(𝑘 (𝑥)) is the direct sum of a divisible group and a finite elementary
2-group. Then, since ℓ is odd, the maps Br(𝑘 (𝑥)) [ℓ𝑛+1] → Br(𝑘 (𝑥)) [ℓ𝑛] given by multiplication by ℓ
are surjective and the conclusion follows as in the previous case. �

Theorem 1.5 is a special case of the following more general statement.
Theorem 6.3. Let k be a global field, 𝑘 (𝑡) be a purely transcendental extension of k of transcendence
degree 1 and ℓ be a prime invertible in k. If ℓ = 2, suppose that k is a totally imaginary number field or a
function field, and if ℓ is odd, suppose that char(𝑘) = 0. Then there exists a norm variety X of dimension
ℓ2 − 1 over 𝑘 (𝑡), such that

cl : 𝐶𝐻2 (𝑋) [ℓ] → 𝐻4 (𝑋,Zℓ (2))

is not injective.
Proof. By (6.2) and the theorem of Albert, Brauer, Hasse and Noether [29, Theorem 8.1.17], we have
𝐻3 (𝑘 (𝑡), 𝜇⊗2

ℓ ) ≠ 0. Let X be a norm variety associated to a nontrivial symbol 𝑠 ∈ 𝐻3(𝑘 (𝑡), 𝜇⊗2
ℓ ), as

constructed by Rost [44] (see also [21, Section 5d]). The k-variety X is a smooth projective of dimension
ℓ2 − 1. The pure Chow motive with Z(ℓ) -coefficients 𝑀 (𝑋;Z(ℓ) ) of X contains the Rost motive R of
s as a direct summand. By [21, Theorem RM.10], we have 𝐶𝐻2 (R) = Z/ℓ, hence, 𝐶𝐻2 (𝑋) [ℓ] ≠ 0
(we apply [21, Theorem RM.10] with 𝑝 = ℓ, 𝑛 = 2, 𝑘 = 1 and 𝑖 = 1. By definition 𝑏 = 1 + 𝑝, hence,
𝑗 = 𝑏𝑘 − 𝑝𝑖 + 1 = 2). Let 𝛼 ∈ 𝐶𝐻2 (R) [ℓ] be a nonzero element.

If ℓ = 2, we may construct X and 𝛼 in any characteristic different from 2 as follows. Let O be the
ring of integers of k, 𝜋 ∈ O be a prime element and 𝑢 ∈ O be, such that the class of u in the residue
field O/𝜋 is not a square. The quadratic form

𝑞0 � 〈1,−𝑢〉 ⊗ 〈1,−𝜋〉 = 〈1,−𝑢,−𝜋, 𝑢𝜋〉

over k is the norm form for the quaternion algebra (𝑢, 𝜋), hence, it is anisotropic over k. By [23, VI.
Proposition 1.9], the quadratic form

𝑞 � 𝑞0 ⊥ 𝑡〈1〉 = 〈1,−𝑢,−𝜋, 𝑢𝜋, 𝑡〉

is anisotropic over 𝑘 ((𝑡)), hence, over 𝑘 (𝑡). Let 𝑋 ⊂ P4
𝑘 (𝑡)

be the smooth projective quadric hypersurface
over 𝑘 (𝑡) defined by 𝑞 = 0. By [20, Theorem 5.3], we have 𝐶𝐻2(𝑋)tors � Z/2 (in the notation of [20,
p. 120], 𝑞 = 〈〈𝑢, 𝜋〉〉 ⊥ 〈𝑡〉). We let 𝛼 ∈ 𝐶𝐻2(𝑋)tors be the generator. The quadratic form q is a neighbor
of the Pfister form 〈〈𝑢, 𝜋,−𝑡〉〉, hence, X is a norm variety for the symbol (𝑢)∪(𝜋)∪(−𝑡) ∈ 𝐻3(𝑘 (𝑡),Z/2).

We are going to prove that cl is not injective in codimension 2 by showing that cl(𝛼) = 0 in
𝐻4 (𝑋,Zℓ (2)). Consider the Hochschild-Serre spectral sequence in continuous ℓ-adic cohomology

𝐸
𝑖, 𝑗
2 = 𝐻𝑖 (𝑘 (𝑡), 𝐻 𝑗 (𝑋𝑘 (𝑡)𝑠 ,Zℓ (2))) ⇒ 𝐻𝑖+ 𝑗 (𝑋,Zℓ (2)). (6.3)

It yields a filtration

{0} = 𝐹5 ⊂ 𝐹4 ⊂ · · · ⊂ 𝐹1 ⊂ 𝐹0 = 𝐻4(𝑋,Zℓ (2)),

where 𝐹𝑖/𝐹𝑖+1 is a subquotient (respectively, a submodule) of 𝐻𝑖 (𝑘, 𝐻4−𝑖 (𝑋𝑘 (𝑡)𝑠 ,Zℓ (2))) for all
0 ≤ 𝑖 ≤ 4 (respectively, for 𝑖 = 0, 1). Let 𝜌 : 𝑀 (𝑋;Z(ℓ) ) → 𝑀 (𝑋;Z(ℓ) ) be the projector onto the
direct summand R, so that 𝛼 ∈ 𝜌∗𝐶𝐻2(𝑋) (when ℓ = 2 and X is the quadric described above,
we could also take 𝜌 = id in what follows). Since the Hochschild-Serre spectral sequence is natural
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with respect to correspondences, 𝜌 and 1 − 𝜌 respect 𝐹 · and determine a direct sum decomposi-
tion 𝐹 · = 𝜌∗𝐹 · ⊕ (1 − 𝜌∗)𝐹 ·, where 𝜌∗𝐹𝑖/𝜌∗𝐹𝑖+1 is a subquotient (respectively, a submodule) of
𝐻𝑖 (𝑘, 𝜌∗𝐻4−𝑖 (𝑋𝑘 (𝑡)𝑠 ,Zℓ (2))) for all 0 ≤ 𝑖 ≤ 4 (respectively, for 𝑖 = 0, 1).

The Rost motive R𝑘 (𝑡)𝑠 is a finite direct sum of powers of the Tate motive. Thus, for all 𝑗 ≥ 0, we have
𝜌∗𝐻2 𝑗+1 (𝑋𝑘 (𝑡)𝑠 ,Zℓ) = 0 and 𝜌∗𝐻2 𝑗 (𝑋𝑘 (𝑡)𝑠 ,Zℓ) � Zℓ (− 𝑗)

⊕𝑟2 𝑗 for some integers 𝑟2 𝑗 ≥ 0. It follows that

𝐻1(𝑘 (𝑡), 𝜌∗𝐻3(𝑋𝑘 (𝑡)𝑠 ,Zℓ (2))) = 𝐻3 (𝑘 (𝑡), 𝜌∗𝐻1(𝑋𝑘 (𝑡)𝑠 ,Zℓ (2))) = 0.

Since 𝐻0(𝑋𝑘 (𝑡)𝑠 ,Zℓ (2)) � Zℓ (2), the direct summand 𝜌∗𝐻0(𝑋𝑘 (𝑡)𝑠 ,Zℓ (2)) is either 0 or Zℓ (2) (as
𝐶𝐻0 (R) = Z(ℓ) by [21, Theorem RM.10], we actually have 𝜌∗𝐻0(𝑋𝑘 (𝑡)𝑠 ,Zℓ (2)) = Zℓ (2)). Thus, by
Lemma 6.2,

𝐻4(𝑘 (𝑡), 𝜌∗𝐻0(𝑋𝑘 (𝑡)𝑠 ,Zℓ (2))) = 0.

We deduce that 𝜌∗𝐹1 = 𝜌∗𝐹2 and 𝜌∗𝐹3 = 𝜌∗𝐹4 = 𝜌∗𝐹5 = 0. Therefore, 𝜌∗𝐹1 = 𝜌∗𝐹2/𝜌∗𝐹3, that is,
we have an exact sequence

0→ 𝜌∗𝐹2/𝜌∗𝐹3 → 𝜌∗𝐻4 (𝑋,Zℓ (2)) → 𝜌∗𝐻4(𝑋𝑘 (𝑡)𝑠 ,Zℓ (2)). (6.4)

We know that 𝜌∗𝐻4(𝑋𝑘 (𝑡)𝑠 ,Zℓ (2)) � Z
⊕𝑟4
ℓ is torsion free. By Lemma 6.1, the group

𝐻2(𝑘 (𝑡), 𝜌∗𝐻2 (𝑋𝑘 (𝑡)𝑠 ,Zℓ (2))) � 𝑇ℓ (Br(𝑘 (𝑡)))⊕𝑟2

is also torsion free. By [19, p. 262 and footnote 3] and [16] (see also the announcement in [17, Remark
6.15(b)]), all differentials in (6.3) are torsion, hence, 𝜌∗𝐹2/𝜌∗𝐹3 is torsion free. Now (6.4) implies
that 𝜌∗𝐻4 (𝑋,Zℓ (2)) is torsion free. Since cl(𝛼) ∈ 𝜌∗𝐻4(𝑋,Zℓ (2)) and ℓ cl(𝛼) = 0, we conclude that
cl(𝛼) = 0. �

Remark 6.4 (Colliot-Thélène). We sketch a more direct proof of the fact, used in the proof of
Theorem 6.3, that the group 𝐻3 (𝑘 (𝑡), 𝜇⊗2

ℓ ) is nonzero. We first note that if a symbol (𝑎, 𝑏) ∈ Br(𝑘) [ℓ] =
𝐻2 (𝑘, 𝜇ℓ) is nonzero, then the residue of (𝑎, 𝑏, 𝑡) ∈ 𝐻3(𝑘 (𝑡), 𝜇⊗2

ℓ ) is nonzero, hence, (𝑎, 𝑏, 𝑡) ≠ 0.
Therefore, it suffices to show that Br(𝑘) [ℓ] ≠ 0 for all global fields k.

One can show that Br(𝑘) [2] ≠ 0 by constructing a conic 𝑋2 − 𝑎𝑌2 − 𝑏𝑇2 = 0 over k without rational
points. If ℓ is odd, one can construct a nonzero element of Br(𝑘) [ℓ] by taking a cyclic extension 𝐾/𝑘 of
degree ℓ, a place v where 𝐾/𝑘 is inert (using the Chebotarev density theorem [50]), an element 𝑐 ∈ 𝑘×𝑣
which is not a norm from 𝐾×𝑣 and approximating c by an element of 𝑘×.

Remark 6.5. One might wonder if there exist a number field k, a prime number ℓ, a nontrivial mod ℓ
symbol s of degree 𝑛 + 1 and a norm variety X for s for which cl : 𝐶𝐻2 (𝑋) [ℓ] → 𝐻4(𝑋,Zℓ (2)) is not
injective. If ℓ is odd, this is impossible, as cdℓ (𝑘) = 2. Suppose now that ℓ = 2, so that X is the quadric
hypersurface associated to a Pfister neighbor q of rank 2𝑛 + 1. By [20, Theorem 6.1], 𝐶𝐻2(𝑋)tors is
either 0 or Z/2. Let R be the Rost motive of X: it is a direct summand of 𝑀 (𝑋;Z(2) ). By [21, Theorem
RM.10], 𝐶𝐻2 (R) [2] ≠ 0 if and only if there exists 1 ≤ 𝑖 ≤ 𝑛 − 1, such that 2𝑛 − 2𝑖 = 2, that is, if and
only if 𝑛 = 2. If this is the case, then 𝐶𝐻2(𝑋)tors � Z/2 and dim(𝑋) = 3.

By definition of norm variety, for every field extension 𝐹/𝑘 , we have 𝑋 (𝐹) ≠ ∅ (that is, 𝑞𝐹 is isotropic)
if and only if 𝑠𝐹 is trivial. Therefore, by a theorem of Rost [35, Theorem 5] (see also [52, Lemma 2.1],
or follow the construction of the isomorphisms in [21, Theorem RM.10]), the natural pullback map
𝐶𝐻∗(R) → 𝐶𝐻∗(R𝐹 ) is injective for all field extensions 𝐹/𝑘 , such that 𝑞𝐹 is anisotropic.

Recall that every form of degree 5 over a p-adic field is isotropic (see [23, Chapter XI,
Example 6.2(4)]). Thus, if q is isotropic at all real places of k, then q is isotropic at all places of k, and
so it is isotropic by the Hasse-Minkowski principle [24, Chapter VI, Principle 3.1], hence, 𝐶𝐻2 (𝑋) is
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torsion free by [20, Theorem 6.1]. Suppose now that there exists one real embedding 𝑘 ⊂ R, such that
𝑞R is not isotropic. We have a commutative square

𝐶𝐻2 (𝑋)/2 𝐶𝐻2(𝑋R)/2

𝐻4(𝑋,Z/2) 𝐻4(𝑋R,Z/2),

∼

cl cl

where the vertical maps are the cycle class maps in étale cohomology and the horizontal maps are induced
by base change. The vertical map on the right is injective by [9, Proposition 2.5]. Since𝐶𝐻2 (𝑋)tors � Z/2,
we deduce that cl : 𝐶𝐻2(𝑋)tors → 𝐻4(𝑋,Z/2) is injective, and so cl : 𝐶𝐻2(𝑋)tors → 𝐻4(𝑋,Z2(2)) is
also injective.
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