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Abstract

We consider stochastic replicator processes for games that are composed of finitely many
trials. Several general results on the relation between Nash equilibria and the long-run
behaviour of the stochastic processes are proved. In particular, a sufficient condition is
given for almost sure convergence to a state where everyone plays in every trial a strict
Nash equilibrium. The results are applied to multiple-trial conflicts based on wars of
attrition and on sperm competition games with fair raffles, respectively.
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1. Introduction

This paper deals with a stochastic process that describes the evolution of a population under
selection. The selection mechanism is based on a game which consists of a finite number
of trials. A pure strategy in this game determines what to do in the individual trials. The
members of the population are programmed to pure strategies and are paired at random to play
the underlying multiple-trial game. The growth rate of a population share playing a particular
strategy is given by the difference between the current payoff to that strategy and the average
payoff to the population, where payoffs are subject to stochastic shocks. The aim of the present
paper is to examine the long-run behaviour of the stochastic process.

We use a diffusion process, specifically, the stochastic replicator dynamics of Fudenberg and
Harris (1992) to model the evolution of an infinite population. The precise formulation of the
process is given in Section 2. Several general results for the stochastic replicator dynamics have
been established recently. Cabrales (2000) studied extinction of iteratively strictly dominated
strategies. Imhof (2005) gave a recurrence criterion and examined stationary distributions as
well as local stability. Khasminskii and Potsepun (2006) analysed replicator dynamics under
Stratonovich-type random perturbations. Hofbauer and Imhof (2007) considered time averages
and provided some recurrence and transience criteria. The connection between recurrence and
permanence of the deterministic analogue has been studied by Benaïm et al. (2008). Discrete
stochastic replicator dynamics have been analysed by Benaïm et al. (2004) and Schreiber (2001).

The deterministic counterpart to the present stochastic process, the replicator dynamics
of Taylor and Jonker (1978), has been extensively investigated and has found many diverse
applications in biology and economics; see Cressman (1992), (2003), Hofbauer and Sigmund
(1998), Weibull (1995), and the recent surveys by Hofbauer and Sigmund (2003) and Nowak and
Sigmund (2004). The deterministic and the stochastic dynamics can behave quite differently,
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Stochastic game dynamics 1175

though, even when the stochastic influences are small. For instance, only the states where
the whole population uses the same strategy are stationary points of the stochastic dynamics,
while every Nash equilibrium of the underlying game is a stationary point of the deterministic
dynamics.

In Section 3 we deal with the game that drives the stochastic process and, in particular,
with the corresponding Nash equilibria. Subsection 3.1 contains a brief review of the general
model for multiple-trial conflicts developed by Whittaker and Cannings (1994). Particularly
important to our analysis is their result which says that, under a certain definiteness condition,
only random strategies need to be considered. We then focus on resource allocation games.
Here every available strategy for the individual trials has a certain cost and the resources of the
players are limited. In Subsection 3.2, the individual trials model wars of attrition, as already
considered by Whittaker and Cannings (1994) and Whittaker (1996). The players distribute
their resources to the trials and the winner of a trial is the player who has allocated the larger
amount of resource to that trial. Whittaker (1996) gave an extensive analysis for the case where
resources are relatively scarce. The main result of Subsection 3.2 substantiates a conjecture
of Whittaker for the opposite case. In Subsection 3.3, the trials are sperm competition games
with fair raffles, as in Parker (1990). Here two males mate with the same females. The males
have to distribute a given amount of sperm to a fixed number of matings and in each mating
the chance of fertilizing the female is proportional to the ratio of their own sperm to the total
amount of sperm.

Section 4 builds on the setting and results of Section 3 and determines the long-run behaviour
of the corresponding stochastic replicator dynamics. In Subsection 4.1, a general theorem is
established which shows that the average distance between the stochastic process and a Nash
equilibrium is small, provided that the payoff matrix satisfies a certain definiteness condition
similar to that used by Whittaker and Cannings. This result is closely related to the folk
theorem of deterministic evolutionary game theory. However, in the stochastic setting, the
composition of the population need not converge towards a stable point even if there is a
globally asymptotically stable state in the deterministic replicator dynamics. An application
to a two-trial war of attrition shows that in the long run the population is composed mostly of
players that use up all the resources available and distribute them unevenly over the two trials,
provided the reward that can be obtained in the trials is large enough. The proportions of the
population shares of the equilibrium are given explicitly in terms of Chebyshev polynomials.
The frequency of players that allocate all resources to one trial is the largest and the frequency
of those who distribute them nearly equally is the smallest positive one. As the value of the
reward tends to ∞, the sizes of the shares become equal.

Subsection 4.2 is concerned with global asymptotic stability of strict Nash equilibria. First
a general theorem, not restricted to the multiple-trial framework, is proved, which gives a
sufficient condition for almost sure convergence to a strict Nash equilibrium for every initial
state. An application of this result to multiple-trial conflicts shows that if the payoff matrix of
the individual trials has a strict Nash equilibrium and satisfies a weak definiteness condition,
then the stochastic replicator dynamics converge almost surely to a state where every member
of the population uses the Nash equilibrium strategy in every trial. In the multiple-trial sperm
competition game, it turns out that, generically, there is a certain optimal amount of sperm to
be used in each round, and the population evolves to a state where all the males implement that
optimal choice, provided that their resources are sufficient.

Subsection 4.3 is devoted to weakly dominated strategies. It is shown that, under the
stochastic replicator dynamics, the frequency of a weakly dominated strategy is certain to
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fall below any positive threshold, which is not the case under the deterministic dynamics; see
Weibull (1995, pp. 84–85). On the other hand, a weakly dominated strategy may persist in the
stochastic model even if it becomes extinct in the deterministic model.

2. The stochastic replicator dynamics

Consider a symmetric two-player game with pure strategies 1, . . . , n and payoff matrix
A = (ajk). Thus, ajk is the payoff to a player who uses strategy j against an opponent who
plays k. In the models to be discussed in the following sections, the game will be composed of a
finite number of trials and the payoff ajk is the sum of the payoffs from the individual trials. In
specifying the replicator dynamics, no assumptions on A are made. Consider a large population
and suppose that every individual is programmed to play one fixed pure strategy. For every
point of time t ≥ 0, let ζj (t) be the size of the subpopulation of j -players. The population
state is defined as ξ(t) = (ξ1(t), . . . , ξn(t))

�, where ξj (t) = ζj (t)/(ζ1(t) + · · · + ζn(t)) is the
proportion of individuals in the population playing strategy j . The state space is given by

� = {y ∈ [0, 1]n : y1 + · · · + yn = 1}.
For j = 1, . . . , n, let ej ∈ R

n be the j th column of the unit matrix of order n. If the population
state is ξ(t) and individuals are paired at random, then e�

j Aξ(t) is the average payoff to
j -players. Suppose that the payoff represents the increase of fitness, measured as the number
of offspring per unit of time, and suppose that strategies breed true. Then

dζj (t)

dt
= ζj (t)e

�
j Aξ(t), j = 1, . . . , n. (2.1)

Hence,
dξj (t)

dt
= ξj (t)(e

�
j Aξ(t) − ξ(t)�Aξ(t)), j = 1, . . . , n. (2.2)

Equation (2.2) describes the deterministic replicator dynamics of Taylor and Jonker (1978);
see Cressman (2003), Hofbauer and Sigmund (1998), and Weibull (1995) for more detailed
explanations.

Following Fudenberg and Harris (1992), we now introduce stochastic shocks to the payoffs
and consider the following variant of (2.1):

dZj (t) = Zj (t)(e
�
j AX(t) dt + σj dWj(t)), j = 1, . . . , n, (2.3)

where σ1, . . . , σn are positive coefficients, (W1(t), . . . , Wn(t))
� = W (t) is an n-dimensional

Brownian motion, and

X(t) = (X1(t), . . . , Xn(t))
� = 1

Z1(t) + · · · + Zn(t)
(Z1(t), . . . , Zn(t))

�.

It follows that X(t) satisfies the stochastic differential equation

dX(t) = a(X(t)) dt + C(X(t)) dW (t), (2.4)

where
a(y) = [diag(y1, . . . , yn) − yy�][A − diag(σ 2

1 , . . . , σ 2
n )]y

and
C(y) = [diag(y1, . . . , yn) − yy�] diag(σ1, . . . , σn).
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Equation (2.4) describes the stochastic replicator dynamics of Fudenberg and Harris (1992). For
x ∈ int(�) = {y ∈ � : yj > 0 for all j}, let Px denote the probability measure corresponding
to the process X(t) with initial condition X(0) = x, and let Ex denote expectation with respect
to Px . Note that

Px{X(t) ∈ int(�) for all t ≥ 0} = 1 if x ∈ int(�).

Thus, the stochastic model (2.4) shares with the deterministic model (2.2) the property that none
of the pure strategies that are initially present will become extinct in finite time. In the closely
related stochastic model of Foster and Young (1990), however, the boundary may be crossed
in finite time. They suggested introducing a reflecting boundary, which seems problematic in
biological applications. Therefore, in the present paper, only model (2.4) will be considered.

3. Multiple-trial conflicts

To analyse, in the next section, the long-run behaviour of the stochastic evolutionary process,
we first study stable strategies and equilibria of the game that drives the process. We focus on
a class of games that model resource allocation problems in multiple-trial conflicts. A single
game consists of a fixed number of trials; the players have a fixed amount of resources available
and must decide how to allocate the resources to the individual trials. Multiple-trial conflicts are
much more difficult to deal with than the corresponding single trials. This is because the number
of pure strategies increases rapidly as the number of trials increases, and, more importantly,
the structure of the payoff becomes more involved. Under certain conditions, a considerable
simplification can be achieved by restricting attention to so-called random strategies. These
are strategies which deliberately ignore the order of the trials. The present analysis relies on
the framework developed by Whittaker and Cannings (1994). A brief description together with
some extensions will be given in Subsection 3.1. The remainder of Section 3 is devoted to
specific applications.

3.1. A general model for multiple-trial conflicts

Suppose that a single contest consists of m trials, m ≥ 2. Each of these trials is described by
a symmetric two-player game with ν + 1 pure strategies, 0, . . . , ν, and one-trial payoff matrix
A(1) = (a

(1)
jk )νj,k=0. Playing strategy j gives rise to a certain cost, say cj ≥ 0 units of resource.

Each contestant has altogether L units of resource available to allocate to the individual trials
before the contest begins. Thus, the players are not allowed to base the choice of their strategies
for the next trial on the outcome of previous trials. The set of pure strategies for the m-trial
conflict is

U =
{
(s1, . . . , sm) ∈ {0, 1, . . . , ν}m :

m∑
µ=1

csµ ≤ L

}
,

where sµ is the strategy that is to be played in the µth trial.
Let r, s ∈ U. Then the m-trial payoff to an r-player against an s-player is M(r, s) =∑m
µ=1 a

(1)
rµ,sµ . Let P denote the set of all mixed strategies for the multiple-trial conflict, that

is, P is the set of all probability measures on U. For strategies p, q ∈ P , let M(p, q) be the
payoff to a p-player against a q-player, that is,

M(p, q) =
∑
r∈U

∑
s∈U

p(r)M(r, s)q(s).
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Strategies p, q ∈ P are said to form an evolutionarily neutral pair if

M(p, p) = M(q, p) and M(p, q) = M(q, q).

Strategy p ∈ P is said to be evolutionarily stable against q ∈ P if either

M(p, p) > M(q, p)

or
M(p, p) = M(q, p) and M(p, q) > M(q, q).

A nonempty set Q ⊂ P is said to be an evolutionarily stable set (ES set) if every p ∈ Q is
evolutionarily stable against every q ∈ P \ Q and forms an evolutionarily neutral pair with
every q ∈ Q. Note that if an ES set contains exactly one strategy then this strategy is an
evolutionarily stable strategy (ESS) in the sense of the definition of Maynard Smith and Price
(1973).

For p ∈ P , k = 0, . . . , ν, and µ = 1, . . . , m, let

fk,µ(p) =
∑
s∈U
sµ=k

p(s), fµ(p) =
⎛
⎜⎝

f0,µ(p)
...

fν,µ(p)

⎞
⎟⎠ .

That is, if p represents the frequencies with which the pure strategies in U occur in a population
then fk,µ(p) denotes the frequency with which the kth strategy is used in the µth trial. We have

M(p, q) =
m∑

µ=1

fµ(p)�A(1)fµ(q). (3.1)

A strategy p ∈ P is said to be a random strategy if

f1(p) = f2(p) = · · · = fm(p).

Thus, for a random strategy, the probability of playing any fixed pure strategy s ∈ {0, . . . , ν}
is the same for all the m trials. In this sense, a random strategy ignores the order of the trials.
Note, however, that a random strategy does not necessarily assign the same probability to all
rearrangements of a pure strategy (s1, . . . , sm) ∈ U. Consider, for example, a two-trial conflict
with ν = 2, and suppose that

p(0, 1) = p(2, 0) = p(1, 2) = 1
3 .

Then f1(p) = f2(p) = ( 1
3 , 1

3 , 1
3 )�, so that p is a random strategy, although p(0, 1) = 1

3 �=
0 = p(1, 0).

A real d × d matrix A is said to be conditionally negative definite if

y�Ay < 0 for all y ∈ R
d such that y1 + · · · + yd = 0 and y �= 0.

If y�Ay ≤ 0 for all y with y1 + · · · + yd = 0 then A is said to be conditionally negative
semidefinite.

Theorem 3.1. (Whittaker and Cannings (1994).) Suppose that the one-trial payoff matrix A(1)

is conditionally negative definite. Then the following holds.
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(a) The m-trial conflict has a unique ES set, say Q. If q is any member of Q then Q can be
written as

Q = {p ∈ P : f1(p) = · · · = fm(p) = f1(q)}.
In particular, the ES set contains only random strategies.

(b) If p ∈ P is a random strategy and

M(q, p) ≤ M(p, p) for all random strategies q ∈ P ,

then
M(q, p) ≤ M(p, p) for all strategies q ∈ P ,

that is, p is a Nash equilibrium.

(c) A strategy belongs to the ES set if and only if it is a Nash equilibrium.

Theorem 3.1 will be applied to solve an allocation problem for the war of attrition game
described in Subsection 3.2. In the sperm competition game of Subsection 3.3, the one-trial
payoff matrix A(1) is such that z�A(1)z = 0 for all z with z0 +· · ·+zν = 0, so that Theorem 3.1
cannot be applied. The following extension covers this situation when the individual trials have
a strict Nash equilibrium.

Theorem 3.2. Suppose that the one-trial payoff matrix A(1) is conditionally negative semi-
definite and that the pure strategy k ∈ {0, . . . , ν} is a strict Nash equilibrium for A(1). Suppose
that mck ≤ L. Let p∗ ∈ P denote the m-trial strategy according to which k is played in every
trial. Then p∗ is the unique strict Nash equilibrium for the m-trial game. Moreover, there
does not exist another strategy in P which forms an evolutionarily neutral pair with p∗ or is
evolutionarily stable against p∗. In particular, {p∗} is the unique ES set.

Proof. Since k is a strict Nash equilibrium, a(1)
jk < a

(1)
kk for all j �= k. Thus, for every q ∈ P ,

by (3.1),

M(q, p∗) =
m∑

µ=1

fµ(q)�A(1)fµ(p∗) =
m∑

µ=1

fµ(q)�[a(1)
0k , . . . , a

(1)
νk ]� ≤ ma

(1)
kk = M(p∗, p∗)

and M(q, p∗) = M(p∗, p∗) if and only if q = p∗. That is, p∗ is a strict Nash equilibrium. If
q ∈ P \ {p∗} then

M(q, q) − M(p∗, q) < M(q, q) − M(p∗, q) + M(p∗, p∗) − M(q, p∗)

=
m∑

µ=1

[fµ(q) − fµ(p∗)]�A(1)[fµ(q) − fµ(p∗)]

≤ 0,

which completes the proof.

Example 3.1. The assertion of Theorem 3.1 need not hold when the one-trial payoff matrix is
merely conditionally negative semidefinite. The matrix

A(1) =
(

a b

a b

)
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is conditionally negative semidefinite and it is easily seen that in the corresponding two-trial
conflict every pair of strategies is evolutionarily neutral. Thus, P is an ES set which contains
nonrandom strategies.

3.2. A two-trial war of attrition conflict

Consider a two-trial conflict with one-trial payoff matrix A(1) = (a
(1)
jk ) given by

a
(1)
jk =

{
−j, j ≤ k,

V − k, j > k,
j, k = 0, . . . , L, (3.2)

where V > 0. This game is a discrete version of the war of attrition introduced by Maynard
Smith and Price (1973). For a comprehensive discussion and extensions, see Bishop and
Cannings (1978), and for the multiple-trial case, see Cannings and Whittaker (1995) and
Whittaker (1996). Let cj = j . Then the set of pure strategies for the two-trial conflict is

U = {(s1, s2) ∈ {0, . . . , L}2 : s1 + s2 ≤ L}.
A typical interpretation is as follows. Each player chooses for each trial a strategy which
determines the maximum amount of time for which he is prepared to fight or display. In each
trial the fight ends when one of the players has reached his chosen limit, that player leaves,
and the other one gains a reward of value V , which increases his fitness. The fitness of both
players is reduced by an amount given by the length of the fight. Should both players leave
simultaneously, neither obtains a reward. As pointed out by Whittaker and Cannings (1994),
the multiple-trial war of attrition can also be regarded as a variant of the Colonel Blotto game
(Karlin (1959, pp. 82–84)). Each player has L regiments that he can assign to two posts. At
each post, the player that has more regiments gains V units and both players incur a loss given
by the minimum number of regiments assigned to the post.

The matrix A(1) is seen to be conditionally negative definite so that, in view of Theorem 3.1,
only random strategies need to be considered as candidates for the unique ES set. The following
theorem takes advantage of this fact and gives an explicit expression for the ES set under the
condition that the reward V is sufficiently large. It turns out that in this case, the ES set
contains just a single strategy, an ESS. The result substantiates a conjecture of Whittaker (1996,
Subsection 7.2) to the effect that the strategies in the ES set should use all of the resources
available when the reward is large enough. It seems that, for smaller values of V , the structure
of the ES set becomes rather more complicated.

Let Tj (x) and Uj(x) denote the Chebyshev polynomials of the first and second kind,
respectively. Thus,

Tj (x) = cos(j arccos x), Uj (x) = 1

j + 1
T ′

j+1(x), j ∈ N0.

Let U−1(x) ≡ 0.

Theorem 3.3. Suppose that the one-trial payoff matrix is given by (3.2).

(a) Suppose that L = 2K + 1, K ∈ N0. If

V > UK

(
1 + 1

V

)
(3.3)
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then the two-trial conflict has a unique ESS, namely the random strategy p with

p(k, L − k) = p(L − k, k)

= UK−k(1 + V −1) − UK−k−1(1 + V −1)

2UK(1 + V −1)
, k = 0, 1 . . . , K, (3.4)

p(s) = 0 for all s ∈ U \ {(0, L), (1, L − 1), . . . , (L, 0)}. (3.5)

(b) Suppose that L = 2K, K ∈ N. If

V >
UK−1(1 + V −1) + UK(1 + V −1) − 1

2

then the two-trial conflict has a unique ESS, namely the random strategy p with

p(k, L − k) = p(L − k, k) = TK−k(1 + V −1)

UK−1(1 + V −1) + UK(1 + V −1)
, k = 0, 1 . . . , K,

p(s) = 0 for all s ∈ U \ {(0, L), (1, L − 1), . . . , (L, 0)}.
The proof of Theorem 3.3 is given in Appendix A. Some interesting properties of the ESS p

can be derived from the explicit expressions; see Theorem 4.3, below.

3.3. A multiple-trial sperm competition conflict

Sperm competition games model competition between ejaculation strategies of males over
fertilization when several males may mate with the same females. For each male, the probability
of successful fertilization increases with the proportion of his sperm in the female tract. Here
the case where two males mate with a fixed number of females will be analysed in the above
general framework for multiple-trial conflicts. The individual trials are modelled by a discrete
version of the sperm competition games with fair raffles described by Parker (1990).

Suppose that the ν + 1 pure strategies, 0, 1, . . . , ν, correspond to the possible ejaculate
volumes (0 ≤)η0 < · · · < ην with associated costs (0 ≤)c0 < c1 < · · · < cν . Suppose further
that

cj − cj−1

ηj − ηj−1
≤ cj+1 − cj

ηj+1 − ηj

, j = 1, . . . , ν − 1. (3.6)

Condition (3.6) means that the cost per additional unit of sperm does not decrease when the
total amount used at a single trial increases. Suppose that, over the range of possible ejaculate
volumes η in the female tract, that is, for η ∈ [2η0, 2ην], the probability φ(η) of fertilization
after mating is either constant, φ(η) = α > 0, or is given by an increasing affine function,
φ(η) = α + βη, where α ≥ 0 and β > 0. If η0 = 0, let α = 0 and β > 0. Sperm
competition is assumed to obey the fair raffle principle. Thus, in the case of fertilization, the
success probability of a j -player in competition with a k-player is equal to ηj/(ηj + ηk). The
expected gain of the j -player is therefore (ηj /(ηj + ηk))φ(ηj + ηk)V , where V > 0 denotes
the value of fertilization to the successful male. This gives rise the following one-trial payoffs:

a
(1)
jk = ηj

ηj + ηk

φ(ηj + ηk)V − cj , j, k = 0, . . . , ν. (3.7)

If η0 = 0, set a
(1)
00 = −c0.

Write

ρk = 2
ck+1 − ck

ηk+1 − ηk

(
φ(ηk + ηk+1)

ηk + ηk+1
+ β

)−1

, k = 0, . . . , ν − 1,
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and ρ−1 = 0, ρν = ∞. If α > 0, it follows from (3.6) that

ρ−1 < ρ0 < ρ1 < · · · < ρν. (3.8)

If α = 0, assume for simplicity that the inequalities in (3.6) are strict, so that (3.8) continues
to hold. The next theorem gives the ES sets for the m-trial conflict under this assumption. It
would not be very difficult, but technically somewhat cumbersome, to extend the theorem to the
case where some of the inequalities in (3.8) degenerate to equalities. The proof of Theorem 3.4
is given in Appendix B.

Theorem 3.4. The matrix A(1) given by (3.7) is conditionally negative semidefinite. If V ∈
(0, ∞) \ {ρ0, . . . , ρν−1} then there is a unique k ∈ {0, . . . , ν} such that

ρk−1 < V < ρk, (3.9)

strategy k is a strict Nash equilibrium in each trial, and the unique ES set for the m-trial conflict
consists of the probability measure that assigns mass 1 to (k, k, . . . , k), provided that mck ≤ L.

If V = ρk for some k ∈ {0, . . . , ν − 1} then the unique ES set consists of all the probability
measures in P that assign mass 1 to {k, k + 1}m, provided that mck ≤ L.

4. Long-run behaviour of the stochastic dynamics

4.1. Nash equilibria

According to the folk theorem of evolutionary game theory, an asymptotically stable point
of the deterministic replicator dynamics, (2.2), must be a Nash equilibrium of A. However, a
Nash equilibrium is not necessarily stable. The next theorem gives a sufficient condition on
the payoff matrix which ensures that the expected distance between the stochastic process X(t)

and a Nash equilibrium p is small. An upper bound is established for the expected time average

Ex
1

t

∫ t

0
‖X(s) − p‖2 ds, (4.1)

where ‖ · ‖ denotes the Euclidean norm. When t is large, the bound is of the order of magnitude
of σ 2

1 , . . . , σ 2
n . It will be shown in Theorem 4.4, below, that (4.1) is in fact bounded away from

0 unless p is a pure strategy.
Let supp(p) = {j : pj > 0}.

Theorem 4.1. Let X(t) be given by the stochastic replicator dynamics (2.4) with initial con-
dition X(0) = x ∈ int(�). Let p ∈ � be a Nash equilibrium for the underlying payoff matrix
A. Suppose that A satisfies the strict inequality

z�Az < 0 for all z ∈ Z, (4.2)

where

Z = {z ∈ R
n : z �= 0, z1 + · · · + zn = 0, zj ≥ 0 for all j ∈ {1, . . . , n} \ supp(p)}.

Then, for every t > 0,

Ex
1

t

∫ t

0
‖X(s) − p‖2 ds ≤ 1

|λ|
(

d(x, p)

t
− 1

2
∑n

j=1 σ−2
j

+ 1

2

n∑
j=1

pjσ
2
j

)
, (4.3)
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where d(x, p) = ∑
j : pj >0 pj log(pj /xj ) is the Kullback–Leibler distance and

λ = max{z�Az : z ∈ Z, z�z = 1}. (4.4)

Proof. The argument is a suitable modification of the method of Lyapunov functions as
described in Skorokhod (1989, Chapter III, Section 1). Note that, under the present conditions,
p will in general not be a stationary point.

Fix any initial value x ∈ int(�). Set g(y) = ∑
j : pj >0 pj log(pj /yj ) for all y ∈ int(�).

For K > g(x), let τK = inf{t > 0 : g(X(t)) = K}. Then, by Dynkin’s formula,

0 ≤ Ex g(X(t ∧ τK)) = g(x) + Ex

∫ t∧τK

0
Ag(X(s)) ds,

where the differential operator A is given by

Ah = (∇h)�a + 1
2 tr(∇2hCC�) (4.5)

with
a(y) = [diag(y1, . . . , yn) − yy�][A − diag(σ 2

1 , . . . , σ 2
n )]y

and
C(y) = [diag(y1, . . . , yn) − yy�] diag(σ1, . . . , σn).

Now

∇g(y) =
(

−p1

y1
, . . . ,−pn

yn

)�
, ∇2g(y) = diag

(
p1

y2
1

, . . . ,
pn

y2
n

)
,

and so

Ag(y) = (y − p)�[A − diag(σ 2
1 , . . . , σ 2

n )]y + 1

2

n∑
j=1

(pj + y2
j − 2yjpj )σ

2
j

= (y − p)�Ay − 1

2

n∑
j=1

y2
j σ 2

j + 1

2

n∑
j=1

pjσ
2
j .

By the Cauchy–Schwarz inequality,

1 =
( n∑

j=1

yjσjσ
−1
j

)2

≤
n∑

j=1

y2
j σ 2

j

n∑
j=1

σ−2
j ,

so that − ∑n
j=1 y2

j σ 2
j ≤ −(

∑n
j=1 σ−2

j )−1. As p is a Nash equilibrium, (y − p)�Ap ≤ 0.
Moreover, y − p ∈ Z ∪ {0}. Therefore,

(y − p)�Ay ≤ (y − p)�A(y − p) ≤ λ‖y − p‖2.

It now follows that

0 ≤ g(x) − |λ| Ex

∫ t∧τK

0
‖X(s) − p‖2 ds

+
(

− 1

2
∑n

j=1 σ−2
j

+ 1

2

n∑
j=1

pjσ
2
j

)
Ex(t ∧ τK).

If K → ∞ then t ∧ τK → t , and the assertion follows by the dominated convergence theorem.
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Remark 4.1. Under the assumptions of Theorem 4.1, p is the unique Nash equilibrium. To
see this, suppose that q is another Nash equilibrium and set z = q − p. Then p�Ap ≥ q�Ap

and q�Aq ≥ p�Aq, so that z�Az ≥ 0. If q �= p then z ∈ Z, and so, by (4.2), z�Az < 0. It
follows that q = p.

We now return to the two-trial conflict of Subsection 3.2 based on the war of attrition given
by (3.2) with reward V . Fix L, the number of units of resource available to each player. Denote
the pure strategies in U = {(s1, s2) ∈ {0, . . . , L} : s1 + s2 ≤ L} by 1, . . . , n. Thus, the indices
1, . . . , n of the components of vectors in � ⊂ R

n now correspond to the elements of U in a
fixed order. This yields an obvious one-to-one relation between the points in � and the mixed
strategies in P .

Theorem 4.2. Let X(t) be given by the stochastic replicator dynamics (2.4) for the two-trial
war of attrition game described in Subsection 3.2. Suppose that the reward V satisfies the
condition of Theorem 3.3. Let p ∈ P be the random strategy defined in Theorem 3.3, and
let p denote the corresponding point in �. Then X(t) satisfies (4.3). In particular, for every
x ∈ int(�),

lim sup
t→∞

1

t
Ex

∫ t

0
‖X(s) − p‖2 ds ≤ 1

2|λ|
n∑

j=1

pjσ
2
j ,

where λ is given by (4.4).

Proof. By Theorem 3.3, p is an ESS and, in particular, a Nash equilibrium. Thus, the
assertion follows from Theorem 4.1, provided that condition (4.2) is met. That is, using the
notation from Subsection 3.1, we have to prove that

G(z) < 0 for all z ∈ Z, (4.6)

where, for z : U → R,
G(z) =

∑
r∈U

∑
s∈U

z(r)M(r, s)z(s)

and

Z =
{
z :

∑
s∈U

z(s) = 0, z(s) �= 0 for some s ∈ U, z(s1, s2) ≥ 0 whenever s1 + s2 < L

}
.

Let z : U → R be such that
∑

s∈U
z(s) = 0. Then, since A(1) is conditionally strictly negative

definite (Whittaker and Cannings (1994, proof of Theorem 5.1.1)),

G(z) =
∑

(r1,r2)∈U

∑
(s1,s2)∈U

z(r1, r2)(a
(1)
r1,s1

+ a(1)
r2,s2

)z(s1, s2)

=
L∑

r1=0

L∑
s1=0

(L−r1∑
r2=0

z(r1, r2)

)
a(1)
r1,s1

(L−s1∑
s2=0

z(s1, s2)

)

+
L∑

r2=0

L∑
s2=0

(L−r2∑
r1=0

z(r1, r2)

)
a(1)
r2,s2

(L−s2∑
s1=0

z(s1, s2)

)

≤ 0.
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Moreover, G(z) = 0 if and only if

L−s1∑
s2=0

z(s1, s2) = 0 for all s1 = 0, . . . , L (4.7)

and
L−s2∑
s1=0

z(s1, s2) = 0 for all s2 = 0, . . . , L. (4.8)

Now assume that z ∈ Z and G(z) = 0. It will be shown by induction that, for s1 = 0, . . . , L,

z(s1, s2) = 0 for 0 ≤ s2 ≤ L − s1. (4.9)

Clearly, this would mean that z ≡ 0, contradicting the assumption that z ∈ Z, so that (4.6)
must hold. By (4.8), z(0, L) = 0. Since z(0, s2) ≥ 0 for 0 ≤ s2 < L, and since, by
(4.7),

∑L
s2=0 z(0, s2) = 0, it follows that (4.9) holds for s1 = 0. Assume that (4.9) holds for

s1 = 0, . . . , S −1, where 1 ≤ S ≤ L. Then, by (4.8), z(S, L − S) = ∑S
s1=0 z(s1, L − S) = 0.

Again, since z(S, s2) ≥ 0 for 0 ≤ s2 < L − S, and since, by (4.7),
∑L−S

s2=0 z(S, s2) = 0, it
follows that (4.9) holds for s1 = S.

Remark 4.2. Condition (4.2) is weaker than the condition that the payoff matrix be condi-
tionally negative definite. Indeed, the weaker condition is satisfied in the two-trial game just
considered, but the stronger one is not. In particular, the results of Imhof (2005) are not
applicable here.

Since, in view of Theorem 4.2, the random strategy p gives an accurate description of the
long-run behaviour of the process X(t) when σ1, . . . , σn are small, it seems worthwhile to
record some properties of p. Obviously, p concentrates on strategies that make use of all
available resources and it is indeed plausible that only individuals that are willing to invest all
resources play a significant role in the population, provided that the reward of winning a trial is
large enough. The next theorem shows in particular that p assigns the largest probability to the
strategies that allocate all resources to one of the two trials and the least positive probability to
the strategies that distribute the resources (nearly) evenly. Moreover, as V → ∞, p converges
weakly to the uniform distribution on the strategies that use all resources.

Theorem 4.3. If p is the random strategy from Theorem 4.2 then

p(0, L) > p(1, L − 1) > · · · > p

(⌊
L

2

⌋
,

⌊
L + 1

2

⌋)
, (4.10)

where �x� denotes the greatest integer less than or equal to x, and

lim
V →∞ p(k, L − k) = 1

L + 1
, k = 0, . . . , L.

Proof. Suppose that L = 2K + 1. Inequalities (4.10) follow from the strict total positivity
of ultraspherical polynomials; see Karlin (1968, p. 444). Set ūk = Uk(1+V −1)/(k +1). Then
the kernel (ūk+j ) is totally positive, which means in particular that

ūk <
√

ūk−1ūk+1 ≤ ūk−1 + ūk+1

2
, ūk−1 < ūk < ūk+1,
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so that
Uk+1(1 + V −1) − 2Uk(1 + V −1) + Uk−1(1 + V −1)

= (k + 1)(ūk+1 − 2ūk + uk−1) + ūk+1 − ūk−1

> 0.

The claimed inequalities (4.10) are now obvious from (3.4). Moreover, for k = 0, . . . , K ,

lim
V →∞ p(k, L − k) = lim

V →∞ p(L − k, k) = UK−k(1) − UK−k−1(1)

2UK(1)
= 1

2(K + 1)
.

The arguments are similar for L = 2K .

Theorem 4.1 raises the question of whether it is possible to show that

Ex
1

t

∫ t

0
‖X(s) − p‖2 ds → 0 as t → ∞,

perhaps by choosing a better point p or by imposing further conditions on p and A. The next
theorem states that this is not possible, unless p is a pure strategy.

Theorem 4.4. Let A be an arbitrary payoff matrix, and let X(t) be given by the stochastic
replicator dynamics (2.4) with initial condition X(0) = x ∈ int(�). Let p ∈ � be such that
| supp(p)| ≥ 2. Then

lim inf
t→∞ Ex

1

t

∫ t

0
‖X(s) − p‖2 ds > 0.

Proof. Let g ∈ C2(�) be such that g(y) = ∑
j : pj >0 pj log(pj /yj ) for all y in an open

neighbourhood U of p. Let A be defined by (4.5). For y ∈ U , we have, as in the proof of
Theorem 4.1,

Ag(y) = (y − p)�Ay − 1
2

n∑
j=1

y2
j σ 2

j + 1
2

n∑
j=1

pjσ
2
j ,

so that

Ag(p) = 1
2

n∑
j=1

pj (1 − pj )σ
2
j =: γ1,

say. Note that γ1 > 0, since | supp(p)| ≥ 2. Thus, there exists some γ2 > 0 such that

Ag(y) >
γ1

2
if ‖y − p‖2 < γ2.

Set
γ3 = max{0, max{−Ag(y) : y ∈ �}}, γ4 = max{g(y) : y ∈ �}.

Then

Ag(y) ≥ γ1

2
− γ1 + 2γ3

2γ2
‖y − p‖2 for all y ∈ �,

and so, by Dynkin’s formula,

γ4 ≥ Ex g(X(t))

= g(x) + Ex

∫ t

0
Ag(X(s)) ds

≥ g(x) + γ1t

2
− γ1 + 2γ3

2γ2
Ex

∫ t

0
‖X(s) − p‖2 ds for all t > 0.
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Hence,

lim inf
t→∞

1

t
Ex

∫ t

0
‖X(s) − p‖2 ds ≥ 2γ2

γ1 + 2γ3

(
lim

t→∞
g(x) − γ4

t
+ γ1

2

)

= γ1γ2

γ2 + 2γ3

> 0.

4.2. Strict Nash equilibria

Consider a multiple-trial game where the one-trial payoff matrix has a unique strict Nash
equilibrium, and suppose that resources are sufficient to allow the players to use this equilibrium
strategy in each trial. We now address the problem of whether the stochastic replicator dynamics
converge to the state where all the members of the population use the Nash equilibrium in every
trial. Corollary 4.1, below, provides a sufficient condition for almost sure convergence. The
result will be applied to the sperm competition conflict of Subsection 3.3.

In general, it is not clear whether, in the above situation, an evolutionary process will converge
to the state where everyone always uses the Nash equilibrium. In fact, consider the prisoner’s
dilemma game where, in every trial, players may defect or cooperate. ‘Defect’ is the unique
strict Nash equilibrium in every trial, and ‘always defect’ is the unique strict Nash equilibrium
in the repeated prisoner’s dilemma game. Imhof et al. (2005) examined a frequency-dependent
Moran process to understand the evolution of a finite population playing the repeated prisoner’s
dilemma game. It turned out that, depending on the population size and on the number of
rounds, the population may most of the time be far from playing ‘always defect’. For another
example, consider the stochastic replicator dynamics describing an infinite population playing
a one-trial prisoner’s dilemma game. Depending on the sizes of the coefficients σj , these
dynamics may converge almost surely to the state where everyone cooperates; see Fudenberg
and Harris (1992, p. 428) and Imhof (2005, pp. 1029–1030).

We first prove a general convergence theorem with conditions given in terms of the payoff
matrix A. From this we derive a convergence result for multiple-trial conflicts under conditions
on the one-trial payoff matrix A(1).

Theorem 4.5. Let X(t) be given by (2.4). Suppose that strategy k is a strict Nash equilibrium
of the underlying payoff matrix A and that

max{σ 2
1 , . . . , σ 2

n } < 2
3 min{akk − ajk : j �= k}. (4.11)

Suppose further that A satisfies the weak inequality

z�Az ≤ 0 for all z ∈ Z, (4.12)

where
Z = {z ∈ R

n : z �= 0, z1 + · · · + zn = 0, zj ≥ 0 for all j �= k}.
Then, for every initial state x ∈ int(�),

Px

{
lim

t→∞ X(t) = ek

}
= 1.

Proof. Let φ(y) = − log yk . Let A be given by (4.5). Then

Aφ(y) = (y − ek)
�Ãy + 1

2

n∑
j=1

σ 2
j (yj − y2

j ),
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where Ã = (ãij ) and ãij = aij − 1
2σ 2

i . For all y ∈ �,

1
2

n∑
j=1

σ 2
j (yj − y2

j ) ≤ 1
2σ 2

k (1 − yk) + 1
2

∑
j �=k

σ 2
j yj ≤ max{σ 2

1 , . . . , σ 2
n }(1 − yk).

If z ∈ Z then Az = Ãz, and so, by (4.12), z�Ãz ≤ 0. Hence, for all y ∈ �,

(y − ek)
�Ãy ≤ (y − ek)

�Ãek = (yk − 1)ãkk +
∑
j �=k

yj ãjk ≤ (1 − yk)
(
−ãkk + max

j �=k
ãjk

)
.

By assumption (4.11), there exists γ > 0 such that

−ãkk + max
j �=k

ãjk ≤ −akk + 1
2σ 2

k + max
j �=k

ajk

≤ − 3
2 max{σ 2

1 , . . . , σ 2
n } − γ + 1

2σ 2
k

≤ − max{σ 2
1 , . . . , σ 2

n } − γ.

It now follows that
Aφ(y) ≤ −γ (1 − yk) for all y ∈ int(�). (4.13)

Therefore, for every ε > 0, there is some δ > 0 such that

Px{X(t) → ek} ≥ 1 − ε for all x ∈ int(�) with xk ≥ 1 − δ; (4.14)

see Gichman and Skorochod (1971, p. 314). Let η := inf{t ≥ 0 : Xk(t) ≥ 1 − δ}. For K > 0,
let τK := inf{t ≥ 0 : φ(X(t)) ≥ K}. By Dynkin’s formula and (4.13), for every t > 0 and
every x ∈ int(�),

0 ≤ Ex φ(X(t ∧ τK ∧ η)) = φ(x) + Ex

∫ t∧τK∧η

0
Aφ(X(s)) ds ≤ φ(x) − γ δ Ex(t ∧ τK ∧ η).

Letting t ↗ ∞ and K ↗ ∞, we obtain, by monotone convergence, Ex η ≤ φ(x)/(γ δ) < ∞,
so that η is Px-almost surely finite. Set F = {X(t) → ek}, and let 1F denote the indicator
function of F . In view of the strong Markov property of {X(t)}, it follows from (4.14) that

Px{X(t) → ek} = Ex 1F = Ex EX(η) 1F ≥ 1 − ε.

But ε > 0 was arbitrary, and the proof is complete.

Remark 4.3. Condition (4.11) implies that ek is stochastically stable, that is, for every open
neighbourhood U of ek ,

lim
x→ek

x∈int(�)

Px{X(t) ∈ U for all t ≥ 0} = 1;

see Theorem 4.1 of Imhof (2005). Thus, under the assumptions of Theorem 4.5, ek is (stochasti-
cally asymptotically) stable in the large (Has’minskiı̆ (1980, p. 169)). Neither (4.11) nor (4.12)
is necessary for stability in the large. For example, if n = 2, k = 1, a11 = 2, a12 = 1, and
a21 = a22 = 0, then, by Proposition 1(i) of Fudenberg and Harris (1992) and Theorem 4.11(a)
of Hofbauer and Imhof (2007), e1 is stable in the large whenever σ1 = σ2 > 0. However, (4.12)
does not hold and (4.11) is violated if σ 2

1 = σ 2
2 ≥ 4

3 . A necessary condition for the weaker
conclusion that Px{X(t) → ek} > 0 for some x ∈ int(�) is that akk − ajk ≥ 1

2 (σ 2
k − σ 2

j ) for
all j �= k; see Theorem 4.11(b) of Hofbauer and Imhof (2007).
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Consider the general model for multiple-trial conflicts of Subsection 3.1. Again, denote the
pure strategies in U by 1, . . . , n. Thus, the indices 1, . . . , n of the components of vectors in
� ⊂ R

n correspond to the elements of U in a fixed order. This yields a one-to-one relation
between the points in the state space � and the mixed strategies in P . In particular, the n

vertices of � correspond to the pure strategies in the m-trial conflict.

Corollary 4.1. Let X(t) be given by the stochastic replicator dynamics (2.4) for the m-trial
model of Subsection 3.1. Suppose that the one-trial payoff matrix A(1) is conditionally
negative semidefinite and that k is a strict Nash equilibrium in each trial. Suppose also that
(k, . . . , k) ∈ U, and let e denote the corresponding vertex of �. Then, for every initial state
x ∈ int(�), Px{X(t) → e} = 1, provided that σ1, . . . , σn are sufficiently small.

Proof. The assumption that A(1) is conditionally negative semidefinite implies that the
multiple-trial payoff matrix A is conditionally negative semidefinite as well. This can be
verified using (3.1). Condition (4.12) is therefore met. Moreover, by Theorem 3.2, e is a strict
Nash equilibrium for A. In particular, condition (4.11) is satisfied when σ1, . . . , σn are small
enough. The assertion follows from Theorem 4.5.

Example 4.1. Consider the repeated prisoner’s dilemma game, where in each trial the pure
strategies are 1 = ‘cooperate’ and 2 = ‘defect’, and the one-trial payoff matrix is

A(1) =
(

3 0
5 1

)
.

The matrixA(1) is conditionally negative definite. Suppose that players do not incur any costs, so
that they can choose freely between cooperation and defection. It follows from Corollary 4.1
that the stochastic replicator dynamics converge almost surely to the state where everyone
defects in every trial, provided that the coefficients σj are sufficiently small. This result is not
at variance with the fact that, in the stochastic model of Imhof et al. (2005), the population may
show cooperative behaviour most of the time. Indeed, that this type of behaviour occurs has
been proved only for finite populations of moderate size, while the present replicator model
describes infinite populations. It can be shown that if in the finite population model the size of
the population tends to ∞, noncooperative behaviour becomes prevalent.

We now return to the multiple-trial sperm competition game. Corollary 4.1 and Theorem 3.4
yield at once the following result on the asymptotic behaviour of the stochastic dynamics.

Theorem 4.6. Let X(t) be given by the stochastic replicator dynamics (2.4) for the m-trial
sperm competition game with fair raffles described in Subsection 3.3. Let k be given by (3.9),
and suppose that mck ≤ L. Let e be the vertex of � that corresponds to the pure m-trial
strategy (k, . . . , k). Then, for every initial state x ∈ int(�), Px{X(t) → e} = 1, provided that
σ1, . . . , σn are sufficiently small.

Thus, in the sperm competition game, there is a strategy that represents an optimal compro-
mise between cost and benefit, and if the males are able to use that strategy in every round,
the population evolves towards a state where the males implement the optimal compromise in
every round. A similar result for various deterministic dynamics has been shown by Fryer et al.
(1999) for two-trial sperm competition games which accommodate the possibility that males
fail to obtain matings.
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4.3. Weakly dominated strategies

In a game with payoff matrix A, the pure strategy k is said to be weakly dominated by
strategy p ∈ � if

e�
k Aq ≤ p�Aq for all q ∈ �

with strict inequality for some q ∈ �. If the inequality is strict for all q ∈ � then k is said to
be strictly dominated by p.

For instance, in the two-trial war of attrition of Subsection 3.2 with V = L = 2, strategy
(0, 0) is weakly but not strictly dominated by the mixed strategy that assigns probability 1

2 to
(0, 1) and (2, 0).

Under the deterministic replicator dynamics, (2.2), the frequency of k-players grows if and
only if their current payoff is larger than the average payoff of the population. Even if k is strictly
dominated, the payoff to k may be above the current average. It is therefore not at all obvious
whether dominated strategies will become extinct, that is, whether their frequencies converge
to 0. Akin (1980) has shown that strictly dominated pure strategies do become extinct, and
Samuelson and Zhang (1992) have proved that even every iteratively dominated pure strategy
vanishes in the long run. It has been shown by Cabrales (2000) that these results continue to
hold for the stochastic replicator dynamics, provided that the diffusion coefficients are small
enough. If σ1 = · · · = σn then strictly dominated strategies die out exponentially quickly; see
Imhof (2005).

The deterministic and the stochastic replicator dynamics differ when weakly dominated
strategies are considered: under the deterministic dynamics, the frequency of a weakly
dominated strategy may stay above a fixed positive number, but it will be shown in Theo-
rem 4.7, below, that this does not happen under the stochastic dynamics. On the other hand,
in Example 4.2, below, a weakly dominated strategy dies out in the deterministic model but
persists in the stochastic model.

Note that if k is weakly dominated by a mixed strategy p ∈ � then there must exist some
pure strategy l such that e�

k Ael < p�Ael .

Theorem 4.7. Let X(t) be given by (2.4) with initial state X(0) = x ∈ int(�), and let
σ1 = σ2 = · · · = σn > 0. Suppose that the pure strategy k is weakly dominated by some
strategy p ∈ �. Then

Px

{
lim inf
t→∞ Xk(t) = 0

}
= 1.

Moreover, if l is one of the pure strategies for which e�
k Ael < p�Ael then

Px

{
lim

t→∞ Xk(t) = 0 or lim inf
t→∞ Xl(t) = 0

}
= 1.

Proof. Let Z1(t), . . . , Zn(t) be given by (2.3). Set

Q(t) = log Zk(t) −
n∑

j=1

pj log Zj (t) = log Xk(t) −
n∑

j=1

pj log Xj(t), t ≥ 0.

We have

dQ(t) =
(

e�
k AX(s) − p�AX(s) − σ 2

k

2
+ 1

2

n∑
j=1

pjσ
2
j

)
dt + σk dWk(t) −

n∑
j=1

pjσj dWj(t).
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As k is weakly dominated by p, e�
k AX(s)−p�AX(s) ≤ 0. Furthermore,

∑n
j=1 pjσ

2
j = σ 2

k .
Hence,

log Xk(t) ≤ Q(t) ≤ Q(0) + σ1

(
Wk(t) −

n∑
j=1

pjWj (t)

)
= Q(0) + σ̃ W̃ (t),

where σ̃ = σ1((1 − pk)
2 + ∑

j �=k p2
j )

1/2 > 0 and W̃ (t) is a standard Brownian motion. This
proves the first assertion since, with probability 1, lim inf t→∞ W̃ (t) = −∞.

To prove the second assertion, let l be such that ε1 := p�Ael − e�
k Ael > 0. For every

y ∈ int(�), let z(y) := (1 − yl)
−1(y − ylel ). Clearly, z(y) ∈ �, and so

(ek − p)�Ay = (1 − yl)(ek − p)�Az(y) + yl(ek − p)�Ael

≤ yl(ek − p)�Ael

= −ε1yl. (4.15)

By the law of the iterated logarithm for Brownian motion, there is a null set �0 such that

lim sup
t→∞

W̃ (t, ω)√
2t log log t

= 1 for all ω ∈ �C
0 .

Now suppose that ω ∈ �C
0 is such that ε2 := lim inf t→∞ Xl(t, ω) > 0. Then there exists

T (ω) > 0 such that

Xl(t, ω) >
ε2

2
and W̃ (t, ω) ≤ t3/4 for all t ≥ T (ω). (4.16)

It follows from (4.15) and (4.16) that

log Xk(t, ω) ≤ Q(t, ω)

= Q(0, ω) +
∫ t

0
(ek − p)�AX(s, ω) ds + σ̃ W̃ (t, ω)

≤ Q(0, ω) − ε1

∫ t

0
Xl(s, ω) ds + σ̃ W̃ (t, ω)

≤ Q(0, ω) − ε1ε2

2
(t − T (ω)) + σ̃ t3/4 for all t ≥ T (ω).

Thus, limt→∞ Xk(t, ω) = 0.

Example 4.2. Under the assumptions of Theorem 4.7, it is not in general true that Px{Xk(t) →
0} > 0. If

A =
(

0 1
1 1

)

then strategy 1 is weakly dominated by strategy 2. It can be shown that X(t) is recurrent
(Friedman (1975, Theorem 7.1, p. 219)). In particular, Px{X1(t) → 0} = 0 for every x ∈
int(�). On the other hand, for the deterministic dynamics, (2.2), ξ1(t) → 0 for every initial
condition ξ(0) = x ∈ int(�).
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Appendix A. Proof of Theorem 3.3

The proofs of (a) and (b) are similar and so only that of (a) will be given. Thus, let L = 2K+1,
and assume that V satisfies (3.3). Define p by (3.4) and (3.5). Write ϑ = 1 + V −1 and
uk = Uk(ϑ). As ϑ > 1, u−1 < u0 < u1 < · · · , which implies that p(s) ≥ 0 for all s ∈ U.
A telescope argument shows that

∑
s∈U

p(s) = 1, so that p is indeed a probability measure on
U.

Set ⎛
⎜⎝

γ0
...

γL

⎞
⎟⎠ := A(1)f1(p) = A(1)f2(p).

It will be shown that there exists a constant c ∈ R such that

γj + γL−j = c, j = 0, . . . , K, (A.1)

and
γ0 < γ1 < · · · < γL. (A.2)

Suppose for the moment that (A.1) and (A.2) are true. Then, for every q ∈ P , by (3.1),

M(q, p) = [f1(q) + f2(q)]�(γ0, . . . , γL)�

=
∑
s∈U

q(s)(γs1 + γs2)

≤
∑
s∈U

q(s)(γs1 + γL−s1)

= c

= M(p, p).

That is, p is a Nash equilibrium. As A(1) is conditionally negative definite (Whittaker and
Cannings (1994, proof of Theorem 5.1.1)), it follows from Theorem 3.1 that p belongs to the
unique ES set. It also follows that if q is any member of the ES set then f1(q) = f2(q) = f1(p).
Thus,

fk,1(q) = p(k, L − k) = fL−k,2(q), k = 0, . . . , L. (A.3)

It will now be shown by induction that this implies that, for k = 0, . . . , L,

q(k, L − k) = p(k, L − k) and q(k, j) = 0 for all j with 0 ≤ j < L − k. (A.4)

By (A.3), q(0, L) = fL,2(q) = p(0, L) and

L∑
j=0

q(0, j) = f0,1(q) = p(0, L),

proving (A.4) for k = 0. Let κ ∈ {1, . . . , L}, and assume that (A.4) holds for k = 0, . . . , κ −1.
Then, by (A.3),

q(κ, L − κ) =
κ∑

k=0

q(k, L − κ) = fL−κ,2(q) = p(κ, L − κ) = fκ,1(q) =
L−κ∑
j=0

q(κ, j),
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proving (A.4) for k = κ . Thus, (A.4) holds for every k, which means that q = p. The ES set
therefore contains only the element p, so that p is an ES strategy.

Now, to prove (A.1), let j ∈ {0, . . . , K}. Then

γj + γL−j =
L∑

k=0

(a
(1)
jk + a

(1)
L−j,k)fk,1(p)

=
∑
k<j

(V − k)fk,1(p) +
∑
k≥j

(−j)fk,1(p)

+
∑

k<L−j

(V − k)fk,1(p) +
∑

k≥L−j

−(L − j)fk,1(p)

=: I1(j) + I2(j) + I3(j) + I4(j).

To calculate I1(j), . . . , I4(j), note first that

fk,1(p) = p(k, L − k) = uK−k − uK−k−1

2uK

, k = 0, . . . , K,

fk,1(p) = uk−K−1 − uk−K−2

2uK

, k = K + 1, . . . , L.

Hence,

I1(j) = 1

2uK

j−1∑
k=0

(V − k)(uK−k − uK−k−1)

= 1

2uK

(j−1∑
k=0

(V − k)uK−k −
j∑

k=1

(V − k)uK−k −
j∑

k=1

uK−k

)

= 1

2uK

(
V uK − (V − j)uK−j −

K−1∑
k=K−j

uk

)
.

Adding formulae (22.12.4) and (22.12.5) of Abramowitz and Stegun (1965, p. 785), we obtain

l∑
k=0

uk =
l∑

k=0

Uk(ϑ) = Tl+1(ϑ) + Tl+2(ϑ) − 1 − ϑ

2(ϑ2 − 1)
for l ≥ 0.

Hence,

I1(j) = 1

2uK

(
V uK − (V − j)uK−j − TK(ϑ) + TK+1(ϑ) − TK−j (ϑ) − TK−j+1(ϑ)

2(ϑ2 − 1)

)
.

Also,

I2(j) = −j

2uK

( K∑
k=j

(uK−k − uK−k−1) +
2K+1∑

k=K+1

(uk−K−1 − uk−K−2)

)

= −juK−j

2uK

− j

2
,
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I3(j) = I1(j) + 1

2uK

( K∑
k=j

(V − k)(uK−k − uK−k−1)

+
2K−j∑

k=K+1

(V − k)(uk−K−1 − uk−K−2)

)

= I1(j) + 1

2uK

(
(V − j)(uK−j − uK−j−1)

+ (2V − 2K − 1)

K∑
k=j+1

(uK−k − uK−k−1)

)

= I1(j) + 1

2uK

((V − j)uK−j + (V − 2K + j − 1)uK−j−1),

and

I4(j) = j − L

2uK

2K+1∑
k=2K+1−j

(uk−K−1 − uk−K−2) = (j − L)

(
1

2
− uK−j−1

2uk

)
.

It now follows that, for j = 0, . . . , K ,

γj + γL−j = I1(j) + I2(j) + I3(j) + I4(j)

= V − L

2
+ uK−j−1 − uK−j

2uK

V

+ TK−j (ϑ) + TK−j+1(ϑ) − TK(ϑ) − TK+1(ϑ)

2uK(ϑ2 − 1)
.

By formulae (22.5.6) and (22.5.7) of Abramowitz and Stegun (1965, pp. 777–778),

TK−j (ϑ) + TK−j+1(ϑ) = (1 + ϑ)(UK−j (ϑ) − UK−j−1(ϑ)),

and so, since ϑ − 1 = V −1,

γj + γL−j = V − L

2
− TK(ϑ) + TK+1(ϑ)

2uK(ϑ2 − 1)
=: c,

which is independent of j . This proves (A.1).
It remains to prove (A.2). For j ∈ {0, . . . , K},

γj+1 − γj =
L∑

k=0

(a
(1)
j+1,k − a

(1)
jk )fk,1(p)

= Vfj,1(p) −
L∑

k=j+1

fk,1(p)

= V
uK−j − uK−j−1

2uK

− 1

2
− uK−j−1

2uK

.
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Again using (22.5.6) of Abramowitz and Stegun (1965) and assumption (3.3) on V , we obtain

γj+1 − γj = V
TK−j (ϑ)

2uK

− 1

2
≥ V

2uK

− 1

2
> 0.

That γj+1 > γj for j = K + 1, . . . , L − 1, too, is now a consequence of (A.1).

Appendix B. Proof of Theorem 3.4

It will first be shown that the matrix A(1) given by (3.7) is conditionally negative semidefinite.
If z = (z0, . . . , zν)

� is such that z0 + · · · + zν = 0 then (see Haigh (1975))

z�A(1)z =
ν−1∑
i,j=0

zibij zj ,

where

bij = a
(1)
ij + a(1)

νν − a
(1)
iν − a

(1)
νj

=
(

ηiφ(ηi + ηj )

ηi + ηj

+ φ(2ην)

2
− ηiφ(ηi + ην)

ηi + ην

− ηνφ(ηj + ην)

ηj + ην

)
V

=
(

ηi

ηi + ηj

+ 1

2
− ηi

ηi + ην

− ην

ηj + ην

)
αV.

Hence, bij + bji = 0, and so

z�A(1)z = 1
2

ν−1∑
i,j=0

zi(bij + bji)zj = 0. (B.1)

Now suppose that V ∈ (0, ∞) \ {ρ0, . . . , ρν−1}, and let k be given by (3.9). If k ≤ ν − 1
then

a
(1)
kk − a

(1)
k+1,k = ck+1 − ck +

(
φ(2ηk)

2
− ηk+1φ(ηk + ηk+1)

ηk + ηk+1

)
V.

Since
φ(2ηk)

2
− ηk+1φ(ηk + ηk+1)

ηk + ηk+1
= ηk − ηk+1

2

(
φ(ηk + ηk+1)

ηk + ηk+1
+ β

)
< 0

and V < ρk , it follows that

a
(1)
kk > a

(1)
k+1,k + ck+1 − ck + ηk − ηk+1

2

(
φ(ηk + ηk+1)

ηk + ηk+1
+ β

)
ρk = a

(1)
k+1,k, (B.2)

provided that k ≤ ν − 1. A similar calculation shows that

a
(1)
kk > a

(1)
k−1,k, (B.3)

provided that k ≥ 1. Let

g1(x) = xφ(x + ηk)

x + ηk

, η0 ≤ x ≤ ην.
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Then g′′
1 (x) = −2αηk/(x + ηk)

3, so that g1 is concave. Define a piecewise linear spline g2(x)

on the interval [η0, ην] by

g2(x) = x − ηj

ηj+1 − ηj

cj+1 + ηj+1 − x

ηj+1 − ηj

cj for x ∈ [ηj , ηj+1], j ∈ {0, . . . , ν − 1}.

Condition (3.6) ensures that g2 is convex. Thus, g(x) = g1(x)V − g2(x) is concave, and
g(ηj ) = a

(1)
jk for all j . In view of (B.2) and (B.3), it follows that

a
(1)
jk < a

(1)
kk for all j �= k.

That is, strategy k is a strict Nash equilibrium for the one-trial game, and Theorem 3.2 yields
the assertion in the present case.

Next suppose that V = ρk . Then

a
(1)
kk = a

(1)
k+1,k =: γ, a

(1)
k,k+1 = a

(1)
k+1,k+1 =: δ, (B.4)

say. It follows as above that

a
(1)
jk < γ and a

(1)
j,k+1 < δ for all j �= k, k + 1. (B.5)

Let Q ⊂ P denote the set of all mixed strategies whose support is contained in {k, k + 1}m.
Thus, p ∈ Q if and only if fj,µ(p) = 0 for all j ∈ {0, . . . , ν}\ {k, k+1} and all µ = 1, . . . , m.
If q ∈ Q then, by (3.1), for all p ∈ P ,

M(p, q) =
m∑

µ=1

fµ(p)�A(1)fµ(q) =
m∑

µ=1

ν∑
i=0

k+1∑
j=k

fi,µ(p)a
(1)
ij fj,µ(q).

Moreover, if q ∈ Q and p ∈ Q then, by (B.4),

M(p, q) =
m∑

µ=1

k+1∑
i=k

k+1∑
j=k

fi,µ(p)a
(1)
ij fj,µ(q) =

m∑
µ=1

γfk,µ(q) + δfk+1,µ(q).

This shows that every pair of strategies in Q is an evolutionarily neutral pair. If q ∈ Q and
p ∈ P \ Q then fi,µ(p) > 0 for some µ and some i �= k, k + 1. Hence, by (B.5),

M(p, q) <

m∑
µ=1

γfk,µ(q) + δfk+1,µ(q) = M(q, q).

Thus, Q is an ES set. Finally, if q ∈ Q and p ∈ P \ Q then

M(p, p) − M(q, p) < M(p, p) − M(q, p) + M(q, q) − M(p, q)

=
n∑

i=1

(fi (p) − fi (q))�A(1)(fi (p) − f (q))

= 0,

by (B.1). It follows that there cannot be another ES set.
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