A NOTE ON THE JACOBSON AND BROWN-McCOY RADICALS

T. Anderson and A. Heinicke¥

1. Introduction. Let J(R) and G(R) respectively denote the
Jacobson and Brown- McCoy radicals of the ring R and recall that
R = G(R) if and only if R can not be homomorphically mapped onto
a simple ring with unity [1, p.120].

In general one knows that J(R) C G(R) [1, p.118], while there
do exist rings R for which J(R) # G(R) (see [1, p.120]). In this
note we show the inequality between J and G can be sharpened in
the following way: There exists a ring A with centre Z such that
J(A) N Z # G(A) n Z. This is perhaps a bit surprising since
J(S) = G(S) whenever S is a commutative ring [1, p.118].

Sasiada and Sulinski [3] showed by means of an example that
the Jacobson radical was not the upper radical determined by the class
of all simple primitive rings, thus answering a question of Kurosch
(see [1, p.113] for a discussion of this). It turns out that our ring
A is a very easy example to the same effect.

2. The ring A. Let D be a commutative ring without divisors
of zero which is also Jacobson radical [1, p.103]. Kaplansky has
pointed out that there is a primitive ring A whose centre is isomorphic
to D [2, p.36]. To form A, one imbeds D in its quotient field F
and then takes A to be the ring of all infinite matrices of the type

(1)

0

where- deD and M is an arbitrary finite square matrix with entries
from F. The centre Z of A consists of the matrices diag(d, ...),
hence is isomorphic to D.
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It is easy to see that the set I of all matrices of type (1)
in which d = 0 is an ideal of A which is contained in every non-zero
ideal of A,

From the above observation it follows that A = G(A). Indeed,
consider any homomorphic image A/K of A. If K =0 then A/K
is not simple. ¥ K # 0 then K D I, whence each coset of A/K
is of the form K + u, where

oco. . . O
O d . 0

u = ° ,deD
O 0

Since D is Jacobson radical, d has a quasi-inverse e and

P —

oOo.. . O
Oe . . . O

oo
is a quasi-inverse of u. This implies that A/K is Jacobson radical,
and therefore has no unity. Hence A = G(A).

Since A is primitive, J(A) =0 and J(A) N"Z =0. But
G(A) NZ =ANZ#0.

At the same time we have shown that the primitive ring A can
not be homomorphically mapped onto a simple primitive ring. Thus
J # upper radical determined by all simple primitive rings.
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