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Abstract

In this short note, we deal with complete noncompact expanding and steady Ricci solitons of dimension n > 3. More
precisely, under an integrability assumption, we obtain a characterization for the generalized cigar Ricci soliton and
the Gaussian Ricci soliton.

1. Introduction

A gradient Ricci soliton is a Riemannian manifold X satisfying
Ric 4+ V*f =g,

where Ric denotes the Ricci tensor, f : ¥ — R is a smooth function, and A € R. A Ricci soliton is called
expanding, steady or shrinking if, respectively, A <0, A =0 or A > 0. Ricci flow was introduced by
Hamilton in his seminal work [6] to study closed three manifolds with positive Ricci curvature. Ricci
solitons generate self-similar solutions to the Ricci flow and often arise as singularity models of the flow;
therefore, it is important to study and classify them in order to understand the geometry of singularities.

A standard example of expanding Ricci soliton is given by (R”", g, —%), where g, is the Euclidean
metric. In fact, note that Ric + V*f = — % We recall that an expanding Ricci soliton is related to the limit
solution of Type III singularities of the Ricci flow, see [7]. Besides, the characterization of expanding
Ricci soliton has attracted the attention of many researchers, see for instance [2, 3, 8—11].

In the steady case, Hamilton [6] discovered the first example of a complete noncompact steady soliton

on R? called the cigar soliton, where the metric is given by ds* = a2 4d” with potential function f(x, y) =

14+x2 42
—log(1 + x* +%), (x,y) € R%. The cigar has positive Gaussian curi/ature R=4¢' and linear volume
growth, and it is asymptotic to a cylinder of finite circumference at infinity. In the three-dimensional
case, the known examples are given by quotients of R, R x X2, where X2 is the cigar soliton, and the
rotationally symmetric one constructed by Bryant [1].

We say that X is a generalized cigar soliton, if T is isometric to M x R"2, where M is the cigar

soliton. Recently, Deruelle [5] obtained the following rigidity result to generalized cigar soliton

Theorem 1. Let X be a complete nonflat noncompact steady gradient Ricci soliton of dimension n > 3
such that the sectional curvature is nonnegative and R € L'(X). Then the universal covering of X is
isometric to M x R"%, where M is the cigar soliton.
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In [2], Catino et al. obtained a suitable Bochner-type formula for the tensor (Ric — §) e, where R
is the scalar curvature, to guarantee that the condition R € L!(X) in the above theorem can be relaxed to
liminf,_ { /, 5,0, R = 0. Besides, using a similar strategy they were able to prove the following rigidity
result addressed to expanding Ricci solitons

Theorem 2. Let ¥ be a complete noncompact expanding gradient Ricci soliton of dimension n >3
such that the sectional curvature is nonnegative. If R € L'(Z), then X is isometric to a quotient of the
Gaussian soliton R".

In this paper, motivated by Deruelle [5] and Catino et al. [2], we obtain rigidity results for steady and
expanding Ricci solitons under an assumption that the scalar curvature lies in (%), with respect to a
suitable volume element. We point out that our rigidity results are obtained from a different approach.
Now, we can state our first result.

Theorem 3. Let X be a complete noncompact steady gradient Ricci soliton of dimension n > 3 such that
the sectional curvature is nonnegative. If Re™ € L’ (%), p > 1, then X is either isometric to a quotient
of R" or M x R"72, where M is the cigar soliton.

We recall that, from [4], a complete three-dimensional noncompact steady gradient Ricci soliton has
nonnegative scalar curvature. Thus, we conclude that

Corollary 1. Let ¥ be a complete three-dimensional noncompact steady gradient Ricci soliton. If Re™ €
L”_f(E), p > 1, then X is either isometric to a quotient of R* or M x R, where M is the cigar soliton.

Analogously, we can apply the same ideas of Theorem 3 to guarantee a rigidity result addressed to
complete noncompact expanding gradient Ricci soliton as follows.

Theorem 4. Let ¥ be a complete noncompact expanding gradient Ricci soliton of dimension n > 3 such
that the sectional curvature is nonnegative. If Re™” € L (X)), p> 1, then T is isometric to a quotient of
the Gaussian soliton R".

2. Proof of the theorems

Let ¢ be a smooth function on X, let us define the weighted Laplacian on X" by
Ay =Ap —(VY, Vo)

for all ¢ € C*(X"), where (, ) denotes the Riemannian metric on X.

In what follows, we denote the space of Lebesgue integrable functions on X" by

L'(Z" = {(p e C®(T"): / lpldZ < —l—oo} ,

where d¥ stands for the volume element induced by the metric of X”. Furthermore, given a smooth
function ¥ : ¥ — R, we denote by L}/,(E") the set of Lebesgue integrable functions on X" with respect
to the modified volume element

du=eVdx.

Given an oriented Riemannian manifold X" and p > 1, we can consider the following space of
integrable functions

Ly(Z") ={p e C*(E"): gl € L, (Z")}.
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From a straightforward adaptation of [12, Theorem 3], we obtain the following criterion of integra-
bility.

Lemma 1. Let X" be an n-dimensional complete oriented Riemannian manifold. If ¢ € C*(X") is a
nonnegative yr-subharmonic function on " and ¢ € L}, (X"), for some p > 1, then ¢ is constant.

Now, we can prove our main result.

Proof of Theorem 3. Let k € R be a constant. Thus, a straightforward calculation shows that

ARE") =¥ (AR 4 2k(Vf, VR) + kRAf + *R|Vf|*). 2.1
Since X is a steady gradient Ricci soliton, from Lemma 2.3 of [10], we have
AR = —2|Ric|* + (VR, Vf). 2.2)
Note that
e (VR, Vf) = (V(e'R), Vf) — Rke" | Vf|*. (2.3)

Plugging (2.3) and (2.2) into (2.1) and taking the trace of the steady soliton equation, we conclude
that:

AReE"Y — 2k + 1)(V(e"R), VF) = e (=2|Ric|* —kR®> + R|Vf|*(—k* —k)).
Finally, from the definition of weighted Laplacian, we get that
Aiyiy(Re”) = e¥(=2|Ric|* —kR* + R|Vf|*(—k* —k))
Choosing k = —1, we conclude that
A _;(Re”)= e (=2|Ric|> + R?).

Since the sectional curvature of ¥ is nonnegative, we get that —2|Ric|> + R* > 0. In fact, given A,
k=1,2, ..., n, the eigenvalue of the Ricci tensor, it is not hard to see that ). A; > A; and, therefore,

R > 2A;. Thus,
20Ric?=2» )<RY 1=R.
From above inequality, we conclude that

A_{(Re™)= e (=2|Ric|* + R*) > 0.

i#]

On the other hand, since Re™” is a nonnegative function and Re™ € L” (), from Lemma 1, we con-
clude that Re™ is a constant. If R is constant zero, from [5], X is isometric to a quotient of R". If Re ¥ =,
where ¢ is a nonzero constant, we get that ¥ has finite —f-volume and, therefore, R € L'(X). From [5],
we conclude the desired result. ]

We recall that a complete three-dimensional steady gradient Ricci soliton has nonnegative sectional
curvature. Thus, as a consequence of anterior result, we get that

Corollary 2. Let X be a complete three-dimensional noncompact steady gradient Ricci soliton. If Re™ €
L’ (%), p> 1, then X is either isometric to a quotient of R* or M x R, where M is the cigar soliton.

Now, we are able to prove our rigidity result, in the expanding case, as follows.

Proof of Theorem 4. In fact, since we are supposing that Ric + V*f = Ag, from Lemma 2.3, [10], we
conclude that

AR = —2|Ric|* + 2R% + (VR, Vf).
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Thus, following the same steps of the anterior result, we conclude from (2.1) and above equation that

ARE"Y — 2k + 1)(V(e"R), Vf) = e (=2|Ric|* + 2R\ + kR(n) — R) + R|Vf|*(—=k* —k)).

Again, choosing k = —1, we conclude that

A_;(Re”) = e (=2|Ric|> + R + R(2 — n)A) (2.4)

Since the sectional curvature is nonnegative, reasoning like the anterior result, we get that —2|Ric|* +
R?> > 0. Taking into account that A < 0, we get that

A_;(Re™)>0.

Finally, from Lemma 1, we get that Re™ is a constant and, therefore, from (2.4) we guarantee that
R =0. Since ¥ has nonnegative sectional curvature, we conclude that £ has sectional curvature equals
to zero. Thus, we conclude that 3 must be a quotient of the Gaussian soliton R”. O
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