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Abstract
In this short note, we deal with complete noncompact expanding and steady Ricci solitons of dimension n ≥ 3. More
precisely, under an integrability assumption, we obtain a characterization for the generalized cigar Ricci soliton and
the Gaussian Ricci soliton.

1. Introduction

A gradient Ricci soliton is a Riemannian manifold � satisfying

Ric + ∇2f = λg,

where Ric denotes the Ricci tensor, f :�→R is a smooth function, and λ ∈R. A Ricci soliton is called
expanding, steady or shrinking if, respectively, λ< 0, λ= 0 or λ> 0. Ricci flow was introduced by
Hamilton in his seminal work [6] to study closed three manifolds with positive Ricci curvature. Ricci
solitons generate self-similar solutions to the Ricci flow and often arise as singularity models of the flow;
therefore, it is important to study and classify them in order to understand the geometry of singularities.

A standard example of expanding Ricci soliton is given by (Rn, g0, −|x|2
4

), where g0 is the Euclidean
metric. In fact, note that Ric + ∇2f = − 1

2
. We recall that an expanding Ricci soliton is related to the limit

solution of Type III singularities of the Ricci flow, see [7]. Besides, the characterization of expanding
Ricci soliton has attracted the attention of many researchers, see for instance [2, 3, 8–11].

In the steady case, Hamilton [6] discovered the first example of a complete noncompact steady soliton
on R

2 called the cigar soliton, where the metric is given by ds2 = dx2+dy2

1+x2+y2 with potential function f (x, y) =
− log(1 + x2 + y2), (x, y) ∈R

2. The cigar has positive Gaussian curvature R = 4ef and linear volume
growth, and it is asymptotic to a cylinder of finite circumference at infinity. In the three-dimensional
case, the known examples are given by quotients of R, R×�2, where �2 is the cigar soliton, and the
rotationally symmetric one constructed by Bryant [1].

We say that � is a generalized cigar soliton, if � is isometric to M ×R
n−2, where M is the cigar

soliton. Recently, Deruelle [5] obtained the following rigidity result to generalized cigar soliton

Theorem 1. Let � be a complete nonflat noncompact steady gradient Ricci soliton of dimension n ≥ 3
such that the sectional curvature is nonnegative and R ∈ L1(�). Then the universal covering of � is
isometric to M ×R

n−2, where M is the cigar soliton.
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In [2], Catino et al. obtained a suitable Bochner-type formula for the tensor
(
Ric − R

2

)
e−f , where R

is the scalar curvature, to guarantee that the condition R ∈ L1(�) in the above theorem can be relaxed to
lim infr→∞ 1

r

∫
Br (0)

R = 0. Besides, using a similar strategy they were able to prove the following rigidity
result addressed to expanding Ricci solitons

Theorem 2. Let � be a complete noncompact expanding gradient Ricci soliton of dimension n ≥ 3
such that the sectional curvature is nonnegative. If R ∈ L1(�), then � is isometric to a quotient of the
Gaussian soliton R

n.

In this paper, motivated by Deruelle [5] and Catino et al. [2], we obtain rigidity results for steady and
expanding Ricci solitons under an assumption that the scalar curvature lies in Lp(�), with respect to a
suitable volume element. We point out that our rigidity results are obtained from a different approach.
Now, we can state our first result.

Theorem 3. Let� be a complete noncompact steady gradient Ricci soliton of dimension n ≥ 3 such that
the sectional curvature is nonnegative. If Re−f ∈ Lp

−f (�), p> 1, then � is either isometric to a quotient
of Rn or M ×R

n−2, where M is the cigar soliton.

We recall that, from [4], a complete three-dimensional noncompact steady gradient Ricci soliton has
nonnegative scalar curvature. Thus, we conclude that

Corollary 1. Let� be a complete three-dimensional noncompact steady gradient Ricci soliton. If Re−f ∈
Lp

−f (�), p> 1, then � is either isometric to a quotient of R3 or M ×R, where M is the cigar soliton.

Analogously, we can apply the same ideas of Theorem 3 to guarantee a rigidity result addressed to
complete noncompact expanding gradient Ricci soliton as follows.

Theorem 4. Let� be a complete noncompact expanding gradient Ricci soliton of dimension n ≥ 3 such
that the sectional curvature is nonnegative. If Re−f ∈ Lp

−f (�), p> 1, then � is isometric to a quotient of
the Gaussian soliton R

n.

2. Proof of the theorems

Let ψ be a smooth function on �, let us define the weighted Laplacian on �n by

�ψϕ =�ϕ − 〈∇ψ , ∇ϕ〉
for all ϕ ∈ C∞(�n), where 〈, 〉 denotes the Riemannian metric on �.

In what follows, we denote the space of Lebesgue integrable functions on �n by

L1(�n) =
{
ϕ ∈ C∞(�n) :

∫
�n

|ϕ|d� <+∞
}

,

where d� stands for the volume element induced by the metric of �n. Furthermore, given a smooth
function ψ :�→R, we denote by L1

ψ
(�n) the set of Lebesgue integrable functions on �n with respect

to the modified volume element

dμ= e−ψd�.

Given an oriented Riemannian manifold �n and p> 1, we can consider the following space of
integrable functions

Lp
ψ (�n) = {ϕ ∈ C∞(�n) : |ϕ|p ∈ L1

ψ
(�n)}.
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From a straightforward adaptation of [12, Theorem 3], we obtain the following criterion of integra-
bility.

Lemma 1. Let �n be an n-dimensional complete oriented Riemannian manifold. If ϕ ∈ C∞(�n) is a
nonnegative ψ-subharmonic function on �n and ϕ ∈ Lp

ψ (�n), for some p> 1, then ϕ is constant.

Now, we can prove our main result.

Proof of Theorem 3. Let k ∈R be a constant. Thus, a straightforward calculation shows that

�(Rekf ) = ekf (�R + 2k〈∇f , ∇R〉 + kR�f + k2R|∇f |2). (2.1)

Since � is a steady gradient Ricci soliton, from Lemma 2.3 of [10], we have

�R = −2|Ric|2 + 〈∇R, ∇f 〉. (2.2)

Note that

ekf 〈∇R, ∇f 〉 = 〈∇(ekf R), ∇f 〉 − Rkekf |∇f |2. (2.3)

Plugging (2.3) and (2.2) into (2.1) and taking the trace of the steady soliton equation, we conclude
that:

�(Rekf ) − (2k + 1)〈∇(ekf R), ∇f 〉 = ekf (−2|Ric|2 −kR2 + R|∇f |2(−k2 −k)).

Finally, from the definition of weighted Laplacian, we get that

�(2k+1)f (Rekf ) = ekf (−2|Ric|2 −kR2 + R|∇f |2(−k2 −k))

Choosing k = −1, we conclude that

�−f (Re−f ) = e−f (−2|Ric|2 + R2).

Since the sectional curvature of � is nonnegative, we get that −2|Ric|2 + R2 ≥ 0. In fact, given λk,
k = 1, 2, ..., n, the eigenvalue of the Ricci tensor, it is not hard to see that

∑
i 
=j λi >λj and, therefore,

R ≥ 2λj. Thus,

2|Ric|2 = 2
∑

λ2
i ≤ R

∑
λi = R2.

From above inequality, we conclude that

�−f (Re−f ) = e−f (−2|Ric|2 + R2) ≥ 0.

On the other hand, since Re−f is a nonnegative function and Re−f ∈ Lp
−f (�), from Lemma 1, we con-

clude that Re−f is a constant. If R is constant zero, from [5],� is isometric to a quotient ofRn. If Re−f = c,
where c is a nonzero constant, we get that � has finite −f -volume and, therefore, R ∈ L1(�). From [5],
we conclude the desired result.

We recall that a complete three-dimensional steady gradient Ricci soliton has nonnegative sectional
curvature. Thus, as a consequence of anterior result, we get that

Corollary 2. Let� be a complete three-dimensional noncompact steady gradient Ricci soliton. If Re−f ∈
Lp

−f (�), p> 1, then � is either isometric to a quotient of R3 or M ×R, where M is the cigar soliton.

Now, we are able to prove our rigidity result, in the expanding case, as follows.

Proof of Theorem 4. In fact, since we are supposing that Ric + ∇2f = λg, from Lemma 2.3, [10], we
conclude that

�R = −2|Ric|2 + 2Rλ+ 〈∇R, ∇f 〉.
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Thus, following the same steps of the anterior result, we conclude from (2.1) and above equation that

�(Rekf ) − (2k + 1)〈∇(ekf R), ∇f 〉 = ekf (−2|Ric|2 + 2Rλ+ kR(nλ− R) + R|∇f |2(−k2 −k)).

Again, choosing k = −1, we conclude that

�−f (Re−f ) = e−f (−2|Ric|2 + R2 + R(2 − n)λ) (2.4)

Since the sectional curvature is nonnegative, reasoning like the anterior result, we get that −2|Ric|2 +
R2 ≥ 0. Taking into account that λ< 0, we get that

�−f (Re−f ) ≥ 0.

Finally, from Lemma 1, we get that Re−f is a constant and, therefore, from (2.4) we guarantee that
R = 0. Since � has nonnegative sectional curvature, we conclude that � has sectional curvature equals
to zero. Thus, we conclude that � must be a quotient of the Gaussian soliton R

n.
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