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Abstract

Random sets with long-range dependence can be generated using a Boolean model with
power-law grain sizes. We study thinnings of such Boolean models which have the hard-
core property that no grains overlap in the resulting germ–grain model. A fundamental
question is whether long-range dependence is preserved under such thinnings. To answer
this question, we study four natural thinnings of a Poisson germ–grain model where the
grains are spheres with a regularly varying size distribution. We show that a thinning
which favors large grains preserves the slow correlation decay of the original model,
whereas a thinning which favors small grains does not. Our most interesting finding
concerns the case where only disjoint grains are retained, which corresponds to the well-
known Matérn type-I thinning. In the resulting germ–grain model, typical grains have
exponentially small sizes, but rather surprisingly, the long-range dependence property is
still present. As a byproduct, we obtain new mechanisms for generating homogeneous
and isotropic random point configurations having a power-law correlation decay.
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1. Introduction

Consider a random closed set which can be expressed as a union of compact sets in the
d-dimensional Euclidean space R

d . The compact building blocks of the random set are called
grains. This kind of random object is often called the germ–grain model. Our focus is on models
with the hard-core property, that is, the grains are disjoint with probability 1. This kind of model
(also known as random packing models) provides an important class of mathematical tools for
the natural sciences, allowing us to model and analyze the statistical features of disordered
porous materials [18], [21]. Besides natural sciences, these models have found applications
in engineering when analyzing the performance of medium access protocols in wireless data
networks (see, e.g. [2], [10], and [17]).

A key statistical feature of a random set is its covariance function, which describes how much
more or less likely it is to find matter at a given distance from a location containing matter,
compared to finding matter in an arbitrary location. While most germ–grain models studied
in the literature have a rapidly decaying covariance function, certain experimental studies
in astronomy [11] and materials science [21] display real-world data where the statistically
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estimated covariance function appears to decay exceptionally slowly, following a power law
r−β with some exponent β > 0 for large distances r . When β < d, such models are long-range
dependent in the sense that

lim sup
r→∞

var(|X ∩ Br |)
rd

= ∞, (1.1)

where |X∩Br | denotes the volume of the region covered by the random setX within the closed
ball Br with radius r centered at the origin [7, Section 12.7]. Long-range dependence causes
anomalous behavior to several statistical features of the model, as is well understood in time
series analysis [19]. Note that, for a homogeneous random set in dimension d = 1, property
(1.1) is equivalent to the usual notion of long-range dependence,

lim sup
n→∞

var(
∑n
k=1Xk)

n
= ∞,

of the time series Xk = |X ∩ (k − 1, k]|.
Our goal in this paper is to construct parsimonious germ–grain models having the hard-

core and long-range dependence property. In the presence of long-range dependence, the
requirement of parsimony, i.e. having a small number of model parameters, is especially
important because long-range dependence tends to reduce the robustness of the statistical
estimators of model parameters [5]. Long-range dependent germ–grain models are easy to
generate using a Boolean model—a germ–grain model with random power-law distributed
sizes and independently and uniformly scattered centers—but the resulting model is not hard-
core by construction. To make it hard core, we will follow Matérn’s approach [15] of thinning
out a selected collection of overlapping grains from the proposed Boolean model so that the
resulting collection of grains is disjoint. Whether this approach is feasible for obtaining hard-
core models with long-range dependence depends on the following question.

Is the power-law covariance decay of the proposed Boolean model preserved after
making it disjoint by thinning?

To answer this question, we analyze in detail the following natural thinning mechanisms.

• Large retained. Let the thinned model consist of those grains in the original Boolean
model which are not overlapped by any larger grain in the original model.

• Random retained. Assign independent random weights to the grains. Let the thinned
model consist of those grains in the original model which are not overlapped by any
heavier grain in the original model. (This thinning corresponds to Matérn type II.)

• Small retained. Let the thinned model consist of those grains in the original model which
are not overlapped by any smaller grain in the original model.

• Isolated retained. Let the thinned model be the set of grains in the original model which
do not overlap with any other grain in the original model. (This thinning corresponds to
Matérn type I.)

We remark that—unlike the Matérn type-III hard-core model [17]—the above thinnings are
local in that the decision whether a proposed grain will be retained or not is made solely by
looking at the grains which intersect it.

For simplicity, we will restrict to spherical models where the grains are closed balls. In
Figure 1 we illustrate the above four thinnings applied to a simulated sample of a Boolean
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Figure 1: Original model and its four hard-core thinnings, where the original model is generated by disks
having a Pareto distribution with tail exponent α = 2.5.

model in R
2 where the grain centers have mean density λ = 0.05 and the grain radii have a

Pareto distribution F(r) = 1 − r−α , r ≥ 1, with tail exponent α = 2.5.
The above thinnings will be analyzed collectively by viewing them as instances of a general

weight-based thinning mechanism, following Månsson and Rudemo [14]. Standard formulae of
Palm calculus allow us to write down closed-form analytical formulae for the radius distribution
of a typical grain, the covariance function of the grain union, and the two-point correlation
function of the grain centers for general hard-core germ–grain configurations generated by
weight-based thinnings. Using the theory of regular variation, we analyze the long-range
behavior of these quantities under the assumption that the grain radii in the proposed Boolean
model follow a power-law distribution with tail exponent α > d.

The main results of this paper (Theorems 5.1, 6.1, 7.1, 8.1) are summarized in Table 1. From
the table, we can draw the following conclusions:

• The power-law covariance decay and long-range dependence (when α < 2d) of the grain
union are preserved under all thinnings except small retained.

• Whereas the random point configuration (also known as the point process) of grain
centers in the proposed Boolean model is completely uncorrelated, the corresponding
point configurations in all thinned models except small retained have a power-law two-
point correlation function.

• The heavy tail of the grain radius distribution is destroyed by small retained and isolated
retained thinnings. The other two thinnings preserve the power-law structure of the tail
distribution: under large retained with the same exponent, under random retained with
a larger exponent corresponding to a lighter tail.
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Table 1: Long-range decay of key statistical characteristics of the original Boolean model and the hard-
core germ–grain models obtained by thinning.

Radius distribution Covariance function Correlation function
Model of a typical grain of grain union of grain centers

Original Power law (α) Power law (α − d) Zero
Large retained Power law (α) Power law (α − d) Power law (α − d)

Random retained Power law (α + d) Power law (α − d) Power law (α − d)

Small retained Exponential Exponential Exponential
Isolated retained Exponential Power law (α − d) Power law (α − d)

Table 1 also reveals a striking feature of the isolated retained thinning mechanism: the resulting
random set and the resulting point configuration of grain centers both exhibit long-range
dependence although the grain size distribution is light tailed. This seemingly paradoxical
phenomenon can be explained by inspecting the empty space. Any region of space not covered
by the grains of the thinned model is likely to have been contained in a big grain of the proposed
model that was removed in the thinning, and, therefore, a large neighborhood of this empty
region is likely to be empty, too.

This paper may be seen as a continuation of the works of Månsson and Rudemo [14] and
Andersson et al. [1], who analyzed first-order statistical properties of hard-core germ–grain
models obtained by weight-based thinnings. In [14, Corollary 3.1] it was also shown that large
retained thinning preserves the tail behavior of the typical grain radius whenever the proposed
grain radius distribution is continuous. A slightly more general thinning framework was recently
introduced by Nguyen and Baccelli [17], who derived differential equations characterizing the
generating functional of the random point configuration formed by the thinned grain centers.
Earlier work on the covariance analysis of random sets includes Böhm and Schmidt [4], who
derived a short-range approximation for the covariance function of a general homogeneous
random set. Snethlage et al. [22] (see also the references therein) provided a nice summary
of random point configuration models where the two-point correlation function has a power-
law behavior on short distances. Earlier works on long-range-dependent random sets appear
mostly restricted to random point configurations in dimension d = 1. Among these, Daley and
Vesilo [8] established the following elegant preservation property for many queueing systems:
the point configuration of the departure times is long-range dependent if and only if the same
is true for the arrival times. Daley [6] showed that a renewal point process is long-range
dependent if the interpoint distances have an infinite second moment, and Kulik and Szekli [13]
extended this observation to one-dimensional point configurations with positively associated
interpoint distances. Vamvakos and Anantharam [24] showed that the long-range dependence
of a point process is preserved by a leaky bucket flow control mechanism for data traffic. A study
focused on the long-range dependence of multidimensional random sets is the recent work of
Demichel et al. [9], who studied whether random sets having power-law decaying chord length
distributions, closely related to the covariance function of the random set, can be generated as
a level set of a Gaussian random field—they found that in wide generality (merely assuming
that the underlying Gaussian field is mixing), this is not possible.

Let us summarize the notational conventions used in this paper. The symbol P stands for
the probability measure on some abstract probability space which governs all randomness in
the models, and E, var, and cov denote the expectation, variance, and covariance with respect
to P, respectively. The symbol Br(x) denotes the closed unit ball with center x and radius r
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in the d-dimensional Euclidean space R
d . We use Br as shorthand for Br(o), where o is the

origin of R
d . For a Borel set B in R

d , we denote by |B| its Lebesgue measure, and by 1B(x)
or 1(x ∈ B) its indicator function. The symbols dx, dy, etc. refer to the Lebesgue measure
in R

d . The symbol R+ denotes the positive real numbers including 0. The symbol F(dr)
refers to integration with respect to a probability measure F on R+, whereas F(r) = F [0, r]
and F̄ (r) = 1 − F(r) stand for the corresponding cumulative distribution function and the
complementary cumulative distribution function, respectively. The minimum and maximum
of real numbers a and b are denoted by a ∧ b and a ∨ b, respectively. When convenient, we
write

∫ ∞
a

= ∫
(a,∞)

,
∫ b

0 = ∫
[0,b], and

∫ b
a

= ∫
(a,b] for 0 < a < b < ∞. For functions f and g

defined on the positive real line, we write f ∼ g if f (t)/g(t) → 1 as t → ∞.
The rest of the paper is organized as follows. In Section 2 we summarize preliminaries on

random Boolean models needed later in the text. In Section 3 we introduce a weight-based
thinning mechanism which produces hard-core germ–grain models from Boolean models and
list formulae for the second-order characteristics of the models so obtained. Section 4 contains
a long-range analysis of the second-order characteristics of the previous section. The main
results of Table 1 are proved case-by-case in Section 5 (isolated retained), Section 6 (random
retained), Section 7 (large retained), and Section 8 (small retained). Section 9 concludes the
paper.

2. Boolean models with power-law grain radii

We consider a random collection of closed spheres, where the sphere centers are indepen-
dently and uniformly scattered in R

d and the sphere radii are independent and identically
distributed random variables in R+. Mathematically, this model can be defined using a Poisson
process � on R

d × R+ with intensity measure λ dxF(dr), where λ is a positive constant and
F is a probability measure on R+ such that

∫
rdF (dr) < ∞. We identify each pair (x, r) ∈ �

with the closed ball Br(x) with center x and radius r and—conforming to the terminology of
more general germ–grain models—such pairs will be called grains. We denote by

X =
⋃

(x,r)∈�
Br(x)

the grain union of �, and by

�g = {x ∈ R
d : (x, r) ∈ � for some r}

the random point configuration in R
d formed by the grain centers of �. Note that �g is a

homogeneous Poisson process on R
d with intensity λ. The parameter λ thus equals the mean

density of grain centers, and the probability measureF is the common distribution of grain radii.
For general definitions and details about random sets and point processes, see, for example, [7],
[16], [20], and [23].

The covariance of the random set X is denoted by k(x, y) = cov(1X(x), 1X(y)), where 1X
is the indicator function of X. Because the distribution of X is shift invariant by construction,
the covariance is given by k(x, y) = k(x− y), where the covariance function k(z) = k(o, z) is
given by the well-known formula (see, e.g. [23, Section 3.1])

k(z) = (1 − p)2
(

exp

(
λ

∫
|Br(o) ∩ Br(z)|F(dr)

)
− 1

)
, (2.1)
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and where p is the volume fraction of X given by

p = 1 − exp

(
−λ

∫
|Br |F(dr)

)
.

Formula (2.1) indeed shows that k(z) depends on z only through |z|, which is evident because
X is isotropic by construction. Using this formula we may also deduce that

k(z) ∼ λ(1 − p)2
∫

|Br(o) ∩ Br(z)|F(dr) as |z| → ∞,

where we write f (z) ∼ g(z) if f (z)/g(z) → 1 as |z| → ∞. When the grain radius distribution
F follows a power law with tail exponent α > d , so that F(r) := F [0, r] = 1 − �(r)r−α for
some slowly varying function � (see Appendix A for details), it follows by using Lemma B.1
in Appendix B that

k(z) ∼ λ(1 − p)2cα,d�(|z|)|z|−(α−d) as |z| → ∞.

Thus, when the radius distribution follows a power law with tail exponent α > d, then the
covariance function k(z) follows a power law with tail exponent α − d. Especially, the grain
union X of Boolean model is long-range dependent in the sense of (1.1) for α ∈ (d, 2d).

3. Weight-based thinning

In this section we will study a weight-based thinning mechanism which maps a Boolean
model into a hard-core germ–grain model consisting of nonoverlapping grains [14], [17]. This
thinning mechanism is defined by assigning random weights to the grains of the Boolean model,
and retaining those grains which are not overlapped by any other grain in the Boolean model
with a higher or equal weight.

3.1. Thinning mechanism

A weighted spherical Boolean model is generated by a Poisson process� on R
d ×R+ ×R+

with intensity measure
�(dx, dr, dw) = λ dxF(dr)Gr(dw),

where λ > 0, F is a probability measure on R+ such that
∫
rdF (dr) < ∞, and r 
→ Gr is a

probability kernel on R+ (a family of probability measures Gr on R+ indexed by r such that
r 
→ Gr(A) is measurable for measurable A ⊂ R+). A triplet (x, r, w) ∈ � is identified as a
grain with center x, radius r , and weight w. As in Section 2, the constant λ is the mean density
of grain centers and the probability measure F is the distribution of grain radii. The probability
measure Gr is the weight distribution of a grain with radius r .

We say that two distinct grains are neighbors if they intersect each other, and we denote the
set of neighbors of a reference grain (x, r, w) by

Nx,r,w = {(x′, r ′, w′) ∈ R
d × R+ × R+ \ {(x, r, w)} : Br ′(x′) ∩ Br(x) 
= ∅}. (3.1)

The thinning of a weighted Boolean model is defined by �th = T (�), where

T (�) = {(x, r, w) ∈ � : w > w′ for all (x′, r ′, w′) ∈ � ∩Nx,r,w}.
To rephrase the definition, we say that a grain (x′, r ′, w′) obstructs grain (x, r, w) if (x′, r ′, w′)
is a neighbor of (x, r, w) andw′ ≥ w. Then, by definition, the thinned germ–grain configuration
�th consists of grains in � which are not obstructed by any other grain in �. Note that two
overlapping grains with equal weights obstruct each other, and will both be removed.
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The following choices of Gr yield the four thinnings which will be analyzed in detail in
Sections 5–8.

• Large retained. The weight of each grain is set equal to its radius, so that Gr(dw) =
δr (dw).

• Random retained. The grains are assigned independent uniformly distributed random
weights, so that Gr(dw) = 1(0,1)(w) dw.

• Small retained. The weight of each grain is set equal to the inverse of its radius, so that
Gr(dw) = δ1/r (dw).

• Isolated retained. All grains are assigned weight one, so that Gr(dw) = δ1(dw).

3.2. Retention probability

The retention probability of a reference grain (x, r, w) is defined as the probability that
(x, r, w) belongs to the germ–grain configuration obtained by thinning the union�∪{(x, r, w)}.
Because this probability does not depend on x (see Proposition 3.1), we will denote it by

h(r,w) = P((x, r, w) ∈ T (� ∪ {(x, r, w)})). (3.2)

The quantity h(r,w) may be regarded as the probability that a typical grain with radius r and
weight w in the proposed Boolean model is retained (see, e.g. [20] and [23]). Analogously, the
weight-averaged retention probability

h(r) =
∫

R+
h(r,w)Gr(dw) (3.3)

may be regarded as the probability that a typical grain of radius r in the proposed Boolean
model is retained. The following result [14, Theorem 2.2] gives a formula for the retention
probability. For the reader’s convenience, we will include the proof here.

Proposition 3.1. The retention probability of an arbitrary reference grain (x, r, w) ∈ R
d ×

R+ × R+ does not depend on x, and is given by

h(r,w) = exp

(
−λ

∫
R+

|Br+s(o)|Gs[w,∞)F (ds)

)
. (3.4)

Proof. Fix a reference grain (x, r, w) and define �′ = � ∪ {(x, r, w)}. By definition,
the reference grain belongs to the thinned configuration T (�′) if and only if w > w′ for
all (x′, r ′, w′) ∈ Nx,r,w ∩ �′, where Nx,r,w is the neighbor set of (x, r, w) defined by (3.1).
Observe that Nx,r,w ∩�′ = Nx,r,w ∩�, because no grain is its own neighbor by definition. As
a consequence, the retention probability can be expressed using the intensity measure of the
Poisson process � according to

P((x, r, w) ∈ T (�′)) = P(�(Ax,r,w) = 0) = e−�(Ax,r,w),
where

Ax,r,w = {(x′, r ′, w′) ∈ Nx,r,w : w′ ≥ w}
is the set of grains obstructing (x, r, w). The claim now follows because

�(Ax,r,w) =
∫

Rd

∫
R+

∫
R+

1(|x − x′| ≤ r + r ′) 1(w′ ≥ w)Gr ′(dw
′)F (dr ′)λ dx′

= λ

∫
R+

|Br+r ′(o)|Gr ′ [w,∞)F (dr ′).
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3.3. First-order characteristics of the thinned model

Let us summarize some key formulae about the first-order characteristics of the thinned
germ–grain model which were obtained in [1] and [14]. The mean density of grain centers in
the thinned model is given by

λth = λ

∫
R+
h(r)F (dr), (3.5)

where h(r) is the weight-averaged retention probability defined in (3.3), and the radius
distribution of a typical grain in the thinned model equals

Fth(r) = 1 − λ

λth

∫ ∞

r

h(s)F (ds). (3.6)

Moreover, the volume fraction of the thinned grain union

Xth =
⋃

(x,r,w)∈�th

Br(x)

is given by

pth = λ

∫
R+

|Br |h(r)F (dr). (3.7)

Note that the quantity
∫
h(r)F (dr) in (3.5) may be regarded as the probability that a randomly

chosen grain in the proposed Boolean model is retained by the thinning mechanism.

3.4. Pair retention probability

The pair retention probability of a given pair of reference grains (x1, r1, w1) and (x2, r2, w2)

is defined as the probability that both reference grains belong to the germ–grain configuration
obtained by thinning the union�′ = �∪ {(x1, r1, w1), (x2, r2, w2)}. Because this probability
depends on x1 and x2 only through their distance (see Proposition 3.2), we will denote it by

h2(u, r1, w1, r2, w2) = P({(x1, r1, w1), (x2, r2, w2)} ∈ T (�′)), (3.8)

where u = |x1 − x2|. The weight-averaged pair retention probability is defined by

h2(u, r1, r2) =
∫

R+

∫
R+
h2(u, r1, w1, r2, w2)Gr1(dw1)Gr2(dw2). (3.9)

Proposition 3.2. The pair retention probability of two reference grains (x1, r1, w1) and (x2, r2,

w2) depends on x1 and x2 only through the distance u = |x1 − x2|. For u ≤ r1 + r2, this
probability equals 0, and, for u > r1 + r2,

h2(u, r1, w1, r2, w2) = h(r1, w1)h(r2, w2)e
τ(u,r1,w1,r2,w2),

where h(r1, w1) and h(r2, w2) are the retention probabilities defined by (3.4), and

τ(u, r1, w1, r2, w2) = λ

∫
R+

|Br+r1(x1) ∩ Br+r2(x2)|Gr [w1 ∨ w2,∞)F (dr)

is the mean number of grains in � which simultaneously obstruct both reference grains.
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Proof. Fix two reference grains (x1, r1, w1) and (x2, r2, w2), and assume that they do not
overlap, so that |x1 − x2| > r1 + r2. Denote the pair retention probability, i.e. the right-hand
side of (3.8), of these fixed grains by h∗

2 and �′ = � ∪ {(x1, r1, w1), (x2, r2, w2)}. Recall that
grain (x1, r1, w1) belongs to T (�′) if and only ifw1 > w for all (x, r, w) ∈ N(x1, r1, w1)∩�′.
Because no grain is its own neighbor by definition, and because the two reference grains are
not neighbors, we see that N(x1, r1, w1) ∩ �′ = N(x1, r1, w1) ∩ �. By symmetry, a similar
conclusion also holds for the other reference grain.

We conclude that, for i = 1, 2, grain (xi, ri , wi) is retained if and only if�(Ai) = 0, where

Ai = {(x, r, w) ∈ N(xi, ri , wi) : w ≥ wi}
is the set of grains obstructing (xi, ri , wi). Now the pair retention probability can be written
as

h∗
2 = P(�(A1 ∪ A2) = 0). (3.10)

The number of grains in � ∩ (A1 ∪ A2) is Poisson distributed with mean

�(A1 ∪ A2) = �(A1)+�(A2)−�(A1 ∩ A2).

Because e−�(Ai) equals the retention probability h(ri, wi) of grain (xi, ri , wi) (see Proposi-
tion 3.1), we see that

h∗
2 = h(r1, w1)h(r2, w2)e

�(A1∩A2).

The claim now follows after noting that

�(A1 ∩ A2) = λ

∫
R+

|Br1+r (x1) ∩ Br2+r (x2)|Gr [w1 ∨ w2,∞)F (dr).

A key quantity for analyzing the covariance function of the thinned grain union in Section 4
is the following function, which we will call the retention covariance function. It is defined by

q(u, r1, r2) = h2(u, r1, r2)− h(r1)h(r2), (3.11)

where h(r) denotes the weight-averaged retention probability defined in (3.3), and h2(u, r1, r2)

is the weight-averaged pair retention probability defined in (3.9).

Lemma 3.1. The retention covariance function satisfies

|q(u, r1, r2)| ≤ h(r1) ∧ h(r2)
for all u, r1, r2 ≥ 0.

Proof. Fix a pair of reference grains (x1, r1, w1) and (x2, r2, w2) having their centers at a
distance u = |x1 − x2| apart. Define a weight-dependent version of q by

q(u, r1, w1, r2, w2) = h2(u, r1, w1, r2, w2)− h(r1, w1)h(r2, w2).

We will first show that
|q(u, r1, w1, r2, w2)| ≤ h(r1, w1), (3.12)

by separately considering the following two cases.

(i) If u ≤ r1 + r2 then h2(u, r1, w1, r2, w2) is 0 because the reference grains overlap,
and (3.12) follows immediately.
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(ii) If u > r1 + r2 then by borrowing the notation from the proof of Proposition 3.2 we have,
by (3.10),

0 ≤ h2(u, r1, w1, r2, w2) = P(�(A1 ∪ A2) = 0) ≤ P(�(A1) = 0) = h(r1, w1).

As a consequence,

−h(r1, w1)h(r2, w2) ≤ q(u, r1, w1, r2, w2) ≤ h(r1, w1)(1 − h(r2, w2)),

from which (3.12) again follows.

After integrating both sides of (3.12) over the weights, we see that |q(u, r1, r2)| ≤ h(r1). By
symmetry, the same inequality holds with r1 replaced by r2, which proves the claim.

3.5. Covariance function of the thinned grain union

Let us now consider the covariance function

kth(z) = P(o ∈ Xth, z ∈ Xth)− P(o ∈ Xth)P(z ∈ Xth) (3.13)

of the thinned grain union Xth.

Proposition 3.3. The covariance function of the thinned grain union is given by

kth(z) = λ

∫
R+

|Br(o) ∩ Br(z)|h(r)F (dr)

+ λ2
∫

R+

∫
R+

∫
Rd

|Br1(o) ∩ Br2(x)|q(|x − z|, r1, r2) dxF(dr1)F (dr2), (3.14)

where h is the weight-averaged retention probability defined in (3.3) and q is the retention
covariance function defined in (3.11).

Proof. By using the hard-core property of the thinned configuration we can express the first
term on the right-hand side of (3.13) as

P(o ∈ Xth, z ∈ Xth) = S1(z)+ S2(z),

where S1(z) is the probability that a single grain in �th simultaneously covers o and z, and
S2(z) is the probability that o and z are covered by distinct grains in �th.

To write down an analytical expression for S1(z), recall first that, by the hard-core property,
the indicator function of Xth can be written as

1Xth(y) =
∑

(x,r,w)∈�
fy(�; x, r, w),

where fy(�; x, r, w) = 1(y ∈ Br(x)) 1T (�)(x, r, w) is the indicator for the event that a grain
(x, r, w) covers y and is contained in �th. Then

S1(z) = E
∑

(x,r,w)∈�
fo(�; x, r, w)fz(�; x, r, w).

Using Mecke’s formula [20, Theorem 3.2.5] and the definition of the retention probability given
in (3.2), we obtain

S1(z) =
∫

1Br(o)(x) 1Br(z)(x)h(r, w) d�,
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where d� = λ dxF(dr)Gr(dw) is the intensity measure of the Poisson process�. Now using
the weight-averaged retention probability defined in (3.3) and integrating over x, we see that

S1(z) = λ

∫
R+

|Br(o) ∩ Br(z)|h(r)F (dr),

which corresponds to the first integral on the right-hand side of (3.14).
The probability that o and z are covered by distinct grains in�th can analogously be written as

S2(z) = E
∑

(x1,r1,w1)∈�
(x2,r2,w2)∈�

(x1,r1,w1)
=(x2,r2,w2)

fo(�; x1, r1, w1)fz(�; x2, r2, w2).

Using the Slivnyak–Mecke formula [20, Corollary 3.2.3] and the definition of the pair retention
probability given in (3.8), the probability S2(z) can be written as

S2(z) =
∫

1Br1 (o)(x1) 1Br2 (z)(x2)h2(|x1 − x2|, r1, w1, r2, w2) d�1 d�2,

where d�i is short for λ dxiF (dri)Gri (dwi), the intensity measure of�. By making the change
of variables x2 = x1 + z − x so that 1Br2 (z)(x2) becomes 1Br2 (x)(x1) and integrating over x1,
we see that

S2(z) = λ2
∫∫∫

|Br1(o) ∩ Br2(x)|h2(|x − z|, r1, r2) dxF(dr1)F (dr2),

where we also took the weight averaging inside the pair retention probability h2 as in (3.9).
The validity of the claim now follows after representing P(z ∈ Xth) = pth using (3.7) and

the identity |Br1(o)||Br2(o)| = ∫ |Br1(o) ∩ Br2(x)| dx to note that

p2
th = λ2

∫∫∫
|Br1(o) ∩ Br2(x)|h(r1)h(r2) dxF(dr1)F (dr2),

and finally combining S2(z) and p2
th with the help of the retention covariance function (3.11).

3.6. Two-point correlation function of thinned grain centers

The two-point correlation function ξth(z) of the random point configuration �th
g =

{x : (x, r, w) ∈ �th} of the thinned grain centers is defined as a function which satisfies

cov(�th
g (A),�

th
g (B)) = λ2

th

∫
A

∫
B

ξth(x − y) dx dy (3.15)

for all disjoint and bounded measurable sets A,B ⊂ R
d , assuming that such a function exists.

This function, which in our case depends only on |z|, describes how much more (ξth(z) > 0) or
less (ξth(z) < 0) likely it is to observe a point at a distance |z| from a typical point, compared
to observing a point in an arbitrary location. The two-point correlation function is related to
the pair-correlation function gth commonly used in statistics (see, e.g. [23]), via the formula
ξth(z) = gth(z)− 1.

Proposition 3.4. The two-point correlation function of the thinned grain centers is given by

ξth(z) = λ2

λ2
th

∫
R+

∫
R+
q(|z|, r1, r2)F (dr1)F (dr2), (3.16)

where λth is the thinned germ density defined in (3.5), and q is the retention covariance function
defined in (3.11).
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Proof. First note that �th
g (A) = �th(A × R+ × R+) = ∑

(x,r,w)∈� 1((x, r, w) ∈ T (�)).
Using this, we can write, for disjoint A,B ⊂ R

d ,

E�th
g (A)�

th
g (B)

= E
∑

(x1,r1,w1)∈�
(x2,r2,w2)∈�

1A(x1) 1B(x2) 1((x1, r1, w1) ∈ T (�)) 1((x2, r2, w2) ∈ T (�)).

Because A and B are disjoint, we may now apply the Slivnyak–Mecke formula [20, Corol-
lary 3.2.3] to obtain

E�th
g (A)�

th
g (B) =

∫
1A(x1) 1B(x2)h2(|x1 − x2|, r1, w1, r2, w2) d�1 d�2,

where d�i is short for λ dxiF (dri)Gri (dwi), the intensity measure of the Poisson process �,
andh2 is the pair retention probability defined in (3.8). Using the weight-averaged pair retention
probability defined in (3.9), we may write

E�th
g (A)�

th
g (B) = λ2

∫
A

∫
B

∫
R+

∫
R+
h2(|x − y|, r1, r2)F (dr1)F (dr2) dx dy.

In a similar fashion we obtain

E�th
g (A) = λ

∫
A

∫
R+
h(r)F (dr) dx,

where h(r) is the weight-averaged retention probability defined in (3.3).
Combining the two expressions above and recalling the definition of the retention covariance

function (3.11) yields

cov(�th
g (A),�

th
g (B)) = λ2

∫
A

∫
B

∫
R+

∫
R+
q(|x − y|, r1, r2)F (dr1)F (dr2) dx dy.

We can now define

ξth(z) = λ2

λ2
th

∫
R+

∫
R+
q(|z|, r1, r2)F (dr1)F (dr2),

which satisfies (3.15)

4. Long-range behavior of second-order characteristics

In this section we assume that the grain radius distribution F of the proposed Boolean model
follows a power law with tail exponent α > d, by which we mean that the complementary
cumulative distribution function F̄ (r) = 1−F(r) is regularly varying at ∞ with exponent −α.
In this case we can write

F̄ (r) = �(r)r−α,

where the function � is slowly varying at ∞ (see Appendix A for details).
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4.1. Asymptotic covariance

The following result describes the covariance function of the grain union for thinnings where
large grains have a small retention probability. This result will be used to prove Theorems 5.1
and 6.1 in Sections 5 and 6.

Proposition 4.1. Assume that the radius distribution F follows a power law with tail exponent
α > d . Assume that the weight-averaged retention probability h(r) decays to 0 as r → ∞,
and that there exists a function q∞ : R+ × R+ → R such that

c = λ2|B1|2
∫

R+

∫
R+
rd1 r

d
2 q∞(r1, r2)F (dr1)F (dr2)

is finite and nonzero, and that, for any r1, r2 ≥ 0, the retention covariance function defined
in (3.11) decays according to

q(|z|, r1, r2) ∼ q∞(r1, r2)F̄ (|z|)|z|d as |z| → ∞. (4.1)

Then the covariance function of the thinned grain union decays according to

kth(z) ∼ cF̄ (|z|)|z|d as |z| → ∞.

To prove Proposition 4.1, we need detailed results about the retention probabilities. The
following lemma allows us to use dominated convergence on a part of the domain.

Lemma 4.1. Assume that the radius distribution F follows a power law with tail exponent
α > d. Then there exist constants c > 0 and m > 0 such that

0 ≤ q(|x − z|, r1, r2) ≤ c|z|d F̄ (|z|)
for all x, z ∈ R

d and all r1, r2 ≥ 0 such that |x| < r1 + r2, |x − z| ≥ 2(r1 + r2), and |z| > m.

Proof. Let c1 and u1 be the constants from Lemma B.2. Using the assumption that the
function F̄ follows a power law with tail exponent α, choose u2 such that F̄ (2/3r)/F̄ (r) ≤
2( 2

3 )
−α for all r > u1. Choose u3 such that λc1r

d F̄ (r) ≤ 1 for all r > u2. Note that |x| ≤
r1 +r2 ≤ 1

2 |x − z| implies that |z| ≤ |x|+|x−z| ≤ 3
2 |x − z|, and letm = max{u1,

3
2u2,

3
2u3}.

Using Proposition 3.2 and the definition of m, we have, for all |z| > m,

q(|x − z|, r1, r2) ≤ exp

(
λ

∫
R+

|Br1+r (o) ∩ Br2+r (|x − z|)|F(dr)
)

− 1

≤ exp(λc1|x − z|d F̄ (|x − z|))− 1

≤ 2λc1|x − z|d F̄ (|x − z|).
Note that |x − z| ≤ |x| + |z| ≤ 1

2 |x − z| + |z| implies that |x − z| ≤ 2|z|, and that F̄ is a
decreasing function. Now, for c = 4( 2

3 )
−α2dλc1 and |z| > m, we have

q(|x − z|, r1, r2) ≤ 2λc1(2|z|)d F̄ ( 2
3 |z|) ≤ c|z|d F̄ (|z|).

Lemma 4.2. Fix z ∈ R
d , and define

A(z) = {(x, r1, r2) ∈ R
d × R+ × R+ : |x − z| ≤ 2(r1 + r2)}.
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Then the retention covariance function q satisfies∫∫∫
A(z)

|Br1(o) ∩ Br2(x)||q(|x − z|, r1, r2)| dxF(dr1)F (dr2)

≤ 2|B1|2
(∫

R+
rdF (dr)

)(∫ ∞

|z|/6
rdF (dr)

)
sup

r>|z|/6
h(r),

where h(r) is the weight-averaged retention probability defined in (3.3).

Proof. Define dµ as shorthand for dxF(dr1)F (dr2), and denote the integrand byfz(x,r1,r2).
Observe that fz vanishes outside the set A0 = {(x, r1, r2) : |x| < r1 + r2}. Observe also that
A(z) ∩ A0 ⊂ A1(z) ∪ A2(z), where Ai(z) = {(x, r1, r2) : ri > |z|/6}. As a consequence,∫

A(z)

fz dµ =
∫
A(z)∩A0

fz dµ ≤
∫
A1(z)

fz dµ+
∫
A2(z)

fz dµ = 2
∫
A1(z)

fz dµ,

where the last equality is due to the symmetry of fz with respect to its last two arguments.
Recall that |q(|x − z|, r1, r2)| ≤ h(r1) by Lemma 3.1. This inequality implies that∫

A1(z)

fz dµ ≤
∫∫∫

1(|z|/6,∞)(r1) |Br1(o) ∩ Br2(x)|h(r1) dxF(dr1)F (dr2)

≤ J (z) sup
r>|z|/6

h(r),

where

J (z) =
∫∫∫

1(|z|/6,∞)(r1) |Br1(o) ∩ Br2(x)| dxF(dr1)F (dr2)

= |B1|2
(∫

R+
rdF (dr)

)(∫ ∞

|z|/6
rdF (dr)

)
.

Proof of Proposition 4.1. By Proposition 3.3 we can write

kth(z)

F̄ (|z|)|z|d = λI1(z)+ λ2(I2(z)+ I3(z)),

where

I1(z) = (F̄ (|z|)|z|d)−1
∫

R+
|Br(o) ∩ Br(z)|h(r)F (dr),

and where

I2(z) =
∫∫∫

Az

fz(x, r1, r2) dxF(dr1)F (dr2),

I3(z) =
∫∫∫

Acz

fz(x, r1, r2) dxF(dr1)F (dr2)

denote the integrals of the function

fz(x, r1, r2) = |Br1(o) ∩ Br2(x)|
(
q(|x − z|, r1, r2)
F̄ (|z|)|z|d

)

over the set
Az = {(x, r1, r2) : |x − z| ≤ 2(r1 + r2)}

and its complement, respectively.
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The integral I1(z) → 0 as |z| → ∞ by Lemma B.3, because h(r) → 0 as r → ∞ by
assumption.

We will next show that I2(z) → 0 as well. We apply Lemma 4.2 to conclude that

|I2(z)| ≤ c2(|z|d F̄ (|z|))−1
(∫ ∞

|z|/6
rdF (dr)

)
sup

r>|z|/6
h(r),

where c2 = 2|B1|2
∫
rdF (dr). The right-hand side above tends to 0 as |z| → ∞, because

h(r) → 0 as r → ∞, and because the integral on the right-hand side above is asymptotically
equivalent to a constant multiple of |z|d F̄ (|z|) by Lemma A.1.

To analyze the limiting behavior of I3(z) as |z| → ∞, note that assumption (4.1) and
Lemma A.2 imply that, for any x, r1, r2,

q(|x − z|, r1, r2) ∼ q∞(r1, r2)|x − z|d F̄ (|x − z|) ∼ q∞(r1, r2)|z|d F̄ (|z|).
By the definition of Az, it thus follows that

fz(x, r1, r2) 1Acz (x, r1, r2) → q∞(r1, r2)|Br1(o) ∩ Br2(x)|
as |z| → ∞. Moreover, by Lemma 4.1, there exists a constant c3 such that

|fz(x, r1, r2) 1Acz (x, r1, r2)| ≤ c3|Br1(o) ∩ Br2(x)|
for all x, r1, r2 and all large enough z. Because the right-hand side above is integrable with
respect to dxF(dr1)F (dr2), Lebesgue’s dominated convergence theorem shows that

lim|z|→∞ I3(z) =
∫∫∫

q∞(r1, r2)|Br1(o) ∩ Br2(x)| dxF(dr1)F (dr2)

= |B1|2
∫∫

q∞(r1, r2)rd1 rd2F(dr1)F (dr2),

which completes the proof of Proposition 4.1.

4.2. Asymptotic two-point correlation

The following result describes the two-point correlation function of the grain centers for
general weight-based thinnings. This result will be used to prove Theorems 5.1, 6.1, and 7.1
in Sections 5, 6, and 7.

Proposition 4.2. Assume that the radius distribution F follows a power law with tail exponent
α > d. Assume also that there exists a function q∞ : R+ × R+ → R such that

c = λ2

λ2
th

∫
R+

∫
R+
q∞(r1, r2)F (dr1)F (dr2)

is finite and nonzero, and that, for any r1, r2 ≥ 0, the retention covariance function defined
in (3.11) decays according to

q(|z|, r1, r2) ∼ q∞(r1, r2)|z|d F̄ (|z|) as |z| → ∞. (4.2)

Then the two-point correlation of the thinned grain centers decays according to

ξth(z) ∼ c|z|d F̄ (|z|) as |z| → ∞.
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Proof. Using (3.16), we can write

ξth(z)

|z|d F̄ (|z|) = λ2

λ2
th

(I1(z)+ I2(z)),

where

I1(z) =
∫∫

Az

fz(r1, r2)F (dr1)F (dr2),

I2(z) =
∫∫

Acz

fz(r1, r2)F (dr1)F (dr2)

denote the integrals of

fz(r1, r2) = q(|z|, r1, r2)
|z|d F̄ (|z|)

over the set
Az = {

(r1, r2) ∈ R+ × R+ : r1 + r2 >
1
2 |z|}

and its complement, respectively.
Observe that Az ⊂ A1(z) ∪ A2(z), where Ai(z) = {(r1, r2) : ri > |z|/4}, and that |q| ≤ 1

by Lemma 3.1. As a consequence,∫
Az

|q(|z|, r1, r2)|F(dr1)F (dr2) ≤ (F × F)(A1(z))+ (F × F)(A2(z)) = 2F̄

( |z|
4

)
,

which implies that I1(z) → 0 as |z| → ∞.
Note that fz(r1, r2) 1Acz (r1, r2) → q∞(r1, r2) by assumption (4.2) and the definition of Az.

By Lemma 4.1, fz(r1, r2) 1Acz (r1, r2) is bounded for large z uniformly on r1 and r2. Lebesgue’s
dominated convergence theorem then shows that

lim|z|→∞ I2(z) =
∫∫

q∞(r1, r2)F (dr)F (ds).

5. Isolated grains retained

In this section we study the thinning where only isolated grains are retained. In the general
framework of Section 3, this is achieved by assigning unit weight to every grain, so that
Gr(dw) = δ1(dw). For nonrandom equally sized grains, this corresponds to the classical
Matérn type-I thinning.

Theorem 5.1. Assume that the radius distribution F follows a power law with tail exponent
α > d , so that 1 − F(r) = �(r)r−α for some slowly varying function �. Then the thinned
radius distribution is bounded by

F̄th(r) ≤ λ

λth
e−λ|B1|rd ,

the covariance function of the thinned grain union decays according to

kth(z) ∼ λcα,dp
2
th�(|z|)|z|−(α−d) as |z| → ∞,

and the two-point correlation function of the thinned grain centers according to

ξth(z) ∼ λcα,d�(|z|)|z|−(α−d) as |z| → ∞,

where the constant cα,d is given in (B.2).
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Proof. Because the weights are deterministic, the retention probabilities have simple
formulae:

h(r) = h(r, 1) = exp

(
−λ|B1|

∫
R+
(r + s)dF (ds)

)

and

h2(|z|, r1, r2) = h(r1)h(r2) exp

(
λ

∫
R+

|Br1+s(o) ∩ Br2+s(z)|F(ds)
)
.

The tail of the thinned radius distribution (3.6) is

F̄th(r) = λ

λth

∫ ∞

r

h(s)F (ds) ≤ λ

λth
h(r) ≤ λ

λth
e−λ|B1|rd .

To show the claim for the covariance and two-point correlation functions, we will use
Proposition 4.1 and Proposition 4.2, respectively. For that, we need to show that (4.1) holds.
By Lemma B.1 we have, for the average intersection volume in h2 above,∫

R+
|Br1+s(o) ∩ Br2+s(z)|F(ds) ∼ c|z|d F̄ (|z|).

Because the right-hand side goes to 0 as |z| → ∞, we can use the fact that limt→∞(et−1)/t = 1
to obtain (4.1) with

q∞(r1, r2) = h(r1)h(r2)λcα,d .

Using Proposition 4.1, we find that kth(z) ∼ c1|z|d F̄ (|z|). Using the formula for volume
fraction (3.7), we also find the constant c1 = λp2

thcα,d . Similarly, by Proposition 4.2 we find
that ξth(z) ∼ c2|z|d F̄ (|z|). With the help of germ density (3.5) we have c2 = λcα,d .

6. Random grains retained

Here we assume that each grain in the proposed Boolean model is assigned a random
weight independently of the other grains, according to some continuous distribution function.
Continuity ensures that there will be no tie breaks. Because the shape of the weight distribution
does not affect the retention probabilities considered here, as long as it is continuous, we may
without loss of generality assume that Gr(dw) = 1(0,1)(w) dw, the uniform distribution on
(0, 1). Note that, for nonrandom equally sized grains, this corresponds to the classical Matérn
type-II thinning.

Theorem 6.1. Assume that the radius distribution F follows a power law with tail exponent
α > d , so that 1 − F(r) = �(r)r−α for some slowly varying function �. Then the thinned
radius distribution decays according to

F̄th(r) ∼ (λth|B1|)−1 α

α + d
�(r)r−(α+d) as r → ∞,

the covariance function of the thinned grain union according to

kth(z) ∼ c1�(|z|)|z|−(α−d) as |z| → ∞,

and the two-point correlation function of the thinned grain centers according to

ξth(z) ∼ c2�(|z|)|z|−(α−d) as |z| → ∞,

for some c1, c2 ∈ (0,∞).
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Proof. The retention probability of a grain with radius r and weight w ∈ (0, 1) is

h(r,w) = exp

(
−λ

∫
R+
GR[w,∞)|Br+s(o)|F(ds)

)
= e−λ(1−w)b(r),

where

b(r) =
∫

R+
|Br+s(o)|F(ds).

The weight-averaged retention probability thus equals

h(r) =
∫ 1

0
e−λ(1−w)b(r) dw = 1 − e−λb(r)

λb(r)
.

Because b(r) → ∞ as r → ∞, it follows that limr→∞ h(r) = 0. The first condition of
Proposition 4.1 is thus satisfied.

Note that b(r)/|Br | = ∫
R+(1 + s/r)dF (ds) and so, by dominated convergence, b(r) ∼ |Br |

as r → ∞, which implies that

h(r) ∼ (λb(r))−1 ∼ (λ|B1|rd)−1.

By Lemma A.4, the thinned radius distribution (3.6) is

F̄th(r) = λ

λth

∫ ∞

r

h(s)F (ds) ∼ (λth|B1|)−1
∫ ∞

r

s−dF (ds).

Furthermore, by Lemma A.1,

F̄th(r) ∼ (λth|B1|)−1 α

α + d
r−d F̄ (r).

The pair retention probability equals

h2(|z|, r1, r2, w1, w2)

= h(r1, w1)h(r2, w2) exp

(
λ

∫
R+
GR[w1 ∨ w2,∞)|Br1+s(o) ∩ Br2+s(z)|F(ds)

)

= exp(−λ(1 − w1)b(r1)− λ(1 − w2)b(r2)+ λ(1 − w1 ∨ w2)az(r1, r2)),

where

az(r1, r2) =
∫

R+
|Br1+s(o) ∩ Br2+s(z)|F(ds).

From this expression we see that the retention covariance function defined in (3.11) equals

q(|z|, r1, r2) =
∫ 1

0

∫ 1

0
e−λb(r1)(1−w1)e−λb(r2)(1−w2)(eλ(1−w1∨w2)az(r1,r2) − 1) dw1 dw2.

As |z| → ∞, Lemma B.1 shows that the term in parentheses above is asymptotically equivalent
to

eλ(1−w1∨w2)az(r1,r2) − 1 ∼ λ(1 − w1 ∨ w2)cα,d F̄ (|z|)|z|d .
With the help of the bound |et−1| ≤ (e−1)t for t ∈ [0, 1], we may use dominated convergence
to conclude that

q(|z|, r1, r2) ∼ q∞(r1, r2)|z|d F̄ (|z|) as |z| → ∞,
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where

q∞(r1, r2) = λcα,d

∫ 1

0

∫ 1

0
(1 − w1 ∨ w2)e

−λb(r1)(1−w1)e−λb(r2)(1−w2) dw1 dw2.

Now, by Proposition 4.1, it follows that

kth(z) ∼ c1F̄ (|z|)|z|d as |z| → ∞,

where

c1 = λ2|B1|2
∫

R+

∫
R+
rd1 r

d
2 q∞(r1, r2)F (dr1)F (dr2).

The constant c1 is finite because q∞(r1, r2) ≤ λcα,d for all r1, r2. The fact that c1 is strictly
positive is easily seen by inspecting the expression of q∞(r1, r2).

Similarly, Proposition 4.2 shows that

ξth(z) ∼ c2|z|d F̄ (|z|),
where

c2 = λ2

λ2
th

∫
R+

∫
R+
q∞(r1, r2)F (dr1)F (dr2).

A similar reasoning as for c1 shows that the constant c2 is finite and strictly positive.

7. Large grains retained

A thinning which favors large grains is obtained by letting the weight of each grain be equal
to its radius, so that Gr(dw) = δr (dw).

Theorem 7.1. Assume that the radius distribution F follows a power law with tail exponent
α > d , so that 1 − F(r) = �(r)r−α for some slowly varying function �. Then the thinned
radius distribution decays according to

F̄th(r) ∼ λ

λth
�(r)r−α as r → ∞,

the covariance function of the thinned grain union according to

kth(z) ∼ λcα,d(1 − pth)
2�(|z|)|z|−(α−d) as |z| → ∞,

and the two-point correlation function of the thinned grain centers according to

ξth(z) ∼ λcα,d�(|z|)|z|−(α−d) as |z| → ∞,

where the constant cα,d is given in (B.2).

Proof. Because the weight of each grain is equal to its radius, the weight-averaged retention
probability h(r) is equal to h(r,w) with w taking on the value r . By Proposition 3.1, the
retention probability is given by

h(r) = exp

(
−λ

∫
R+

|Br+s | 1[r,∞)(s)F (ds)

)
.
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Because the integrand above tends to 0 as r → ∞, and the integrand is bounded by the
F(ds)-integrable function |B2s |, dominated convergence implies that limr→∞ h(r) = 1. By
Lemma A.4, the tail of the thinned radius distribution (3.6) satisfies

F̄th(r) = λ

λth

∫ ∞

r

h(s)F (ds) ∼ λ

λth

∫ ∞

r

F (ds) = λ

λth
F̄ (r).

To analyze the long-range behaviors of kth(z) and ξth(z), let us first investigate the long-
range behavior of the retention covariance function q(|z|, r1, r2) defined in (3.11). Using
Proposition 3.2, we find that

q(|z|, r1, r2) = h(r1)h(r2)(1(r1 + r2 < |z|)eτ(|z|,r1,r2) − 1), (7.1)

where

τ(|z|, r1, r2) = λ

∫
R+

1[r1∨r2,∞)(s)|Br1+s(o) ∩ Br2+s(z)|F(ds). (7.2)

When |z| > 3(r1 + r2), we may replace the region of integration above with the full positive
real line, so that with the help of Lemma B.1 we find that

τ(|z|, r1, r2) = λ

∫
R+

|Br1+s(o) ∩ Br2+s(z)|F(ds) ∼ λcα,d |z|d F̄ (|z|)

as |z| → ∞. Because et − 1 ∼ t for small t , we conclude using (7.1) that

q(|z|, r1, r2) ∼ q∞(r1, r2)|z|d F̄ (|z|), (7.3)

where
q∞(r1, r2) = λcα,dh(r1)h(r2). (7.4)

The claim for the two-point correlation function ξth(z) now follows by using Proposition 4.2,
after noting that the constant in Proposition 4.2 is

λ2

λ2
th

∫∫
q∞(r1, r2)F (dr1)F (dr2) = λλ−2

th cα,d

(
λ

∫
h(r)F (dr)

)2

= λcα,d .

We will now move on to the part concerning the covariance function kth(z) of the thinned
grain union. Note that, because h(r) does not vanish as r → ∞, we cannot use Proposition 4.1
to deduce the long-range behavior of kth(z). Instead, we will proceed by directly analyzing the
integral building blocks of kth(z) in high precision. Let us start by rewriting (3.14) as

kth(z) = λI0(z)+ λ2(I1(z)+ I2(z)+ I3(z)),

where

I0(z) =
∫

R+
|Br(o) ∩ Br(z)|h(r)F (dr),

Ij (z) =
∫∫∫

Azj

|Br1(o) ∩ Br2(x)|q(|x − z|, r1, r2) dxF(dr1)F (dr2), j = 1, 2, 3,
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and
Az1 = {

(x, r1, r2) : |x| < r1 + r2, r1 + r2 <
1
2 |x − z|},

Az2 = {
(x, r1, r2) : |x| < r1 + r2,

1
2 |x − z| < r1 + r2 < |x − z|},

Az3 = {(x, r1, r2) : |x| < r1 + r2, |x − z| < r1 + r2}.
The first term I0(z) � cα,d |z|d F̄ (|z|) by Lemma B.1. Note that the integrand in I0(z)

vanishes for r ≤ |z|/2 so that

I0(z) ≥ inf
r≥|z|/2 h(r)

∫
R+

|Br(o) ∩ Br(z)|F(dr).

Using Lemma B.1 and the fact that h(r) → 1 as r → ∞, we conclude that

I0(z) ∼ cα,d |z|d F̄ (|z|). (7.5)

Next, we will prove that

I1(z) ∼ λ−1cα,dp
2
th|z|d F̄ (|z|). (7.6)

By Lemma 4.1, the function

(x, r1, r2) 
→ q(|x − z|, r1, r2)
|z|d F̄ (|z|) 1Az1(x, r1, r2)

is positive and bounded by a constant which does not depend on z. Because |Br1(o)∩Br2(x)| is
integrable with respect to dxF(dr1)F (dr2), Lebesgue’s dominated convergence theorem shows
that

lim
z→∞

I1(z)

|z|d F̄ (|z|) =
∫∫∫

|Br1(o) ∩ Br2(x)|
(

lim
z→∞

q(|x − z|, r1, r2)
|z|d F̄ (|z|) 1Az1

)
dxF(dr1)F (dr2).

Using (7.3) and the definition ofAz1, the limit on the right-hand side equals q∞(r1, r2). Plugging
in the expression for q∞(r1, r2) given in (7.4) and recalling the formula for the volume fraction
of the thinned grain union pth given in (3.7), we find that

lim|z|→∞
I1(z)

|z|d F̄ (|z|) = λcα,d

∫∫∫
|Br1(o) ∩ Br2(x)|h(r1)h(r2) dxF(dr1)F (dr2)

= λcα,d

∫∫
|B1|2rd1 rd2 h(r1)h(r2)F (dr1)F (dr2)

= λ−1cα,dp
2
th,

which proves the validity of (7.6).
Now we will prove that

I2(z)

|z|d F̄ (|z|) → 0 as |z| → ∞. (7.7)

First, using the bound |Br1+s(o) ∩ Br2+s(x − z)| ≤ |Br1+s | ≤ |B2s | for s ≥ r1 ∨ r2, we find
that the function τ defined in (7.2) is bounded by

τ(|x − z|, r1, r2) ≤ λ|B1|2d
∫

1[r1∨r2,∞)(s)s
dF (ds).
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Observe next that
|z| ≤ 3(r1 + r2) ≤ 6(r1 ∨ r2)

for all (x, r1, r2) ∈ Az2, so that r1 ∨ r2 is large when |z| is large. As a consequence, we see, by
Lemma A.1 and Lemma A.3, that, for all (x, r1, r2) ∈ Az2 and all large enough z,

τ(|x − z|, r1, r2) ≤ 2λ|B1|2d(r1 ∨ r2)d F̄ (r1 ∨ r2) ≤ 4λ|B1|2d
( 1

6 |z|)d F̄ ( 1
6 |z|).

Because et − 1 ≤ (e − 1)t for t ∈ [0, 1], formula (7.1) combined with the above inequality
shows that, for all (x, r1, r2) ∈ Az2 and all large enough z,

0 ≤ q(|x − z|, r1, r2) ≤ c1|z|d F̄
( 1

6 |z|),
where c1 = 4(e − 1)λ|B1|3−d . Therefore,

0 ≤ I2(z) ≤ c1|z|d F̄
( |z|

6

) ∫∫∫
Az2

|Br1(o) ∩ Br2(x)| dxF(dr1)F (dr2).

Note that Az2 ⊂ Az21 ∪ Az22, where Az2i = {(x, r1, r2) : ri ≥ |z|/6}, i = 1, 2. By symmetry of
the integrand with respect to r1 and r2,

0 ≤ I2(z) ≤ 2c1|z|d F̄
( |z|

6

) ∫
R+

∫ ∞

|z|/6

∫
Rd

|Br1(o) ∩ Br2(x)| dxF(dr1)F (dr2)

= 2c1|z|d F̄
( |z|

6

)
|B1|2

(∫
rdF (dr)

)(∫ ∞

|z|/6
rdF (dr)

)
,

which shows the validity of (7.7).
It remains to be shown that

I3(z) ∼ −2
pth

λ
cα,d |z|d F̄ (|z|). (7.8)

To do that, we first fix a small ε ∈ (0, 1
4 ). Note that, by (7.1), the retention covariance function

equals q(|x − z|, r1, r2) = −h(r1)h(r2) for (x, r1, r2) ∈ Az3. Note also that, for fixed r1 and
r2, the x-slice of Az3 is

{x : (x, r1, r2) ∈ Az3} = Br1+r2(z) ∩ Br1+r2(o).
Because |Br1(o)∩Br2(x)| vanishes for x outside Br1+r2(o), we may represent I3(z) according
to

I3(z) = −
∫∫∫

Az3

|Br1(o) ∩ Br2(x)|h(r1)h(r2) dxF(dr1)F (dr2)

= −
∫∫

Cz3

∫
Br1+r2 (z)

|Br1(o) ∩ Br2(x)| dxh(r1)h(r2)F (dr1)F (dr2),

where
Cz3 = {(r1, r2) : |z| ≤ 2(r1 + r2)}.

Next we split I3(z) into three parts:

I3(z) = −(I31(z)+ I32(z)+ I33(z)).
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Here

I3j (z) =
∫∫

Cz3j

∫
Br1+r2 (z)

|Br1(o) ∩ Br2(x)| dxh(r1)h(r2)F (dr1)F (dr2)

for j = 1, 2, 3 and

Cz31 = Cz311 ∪ Cz312,

Cz311 = {
(r1, r2) : 0 ≤ r1 ≤ ε|z|, 1

2 |z| ≤ r2
}
,

Cz312 = {
(r1, r2) : 0 ≤ r2 ≤ ε|z|, 1

2 |z| ≤ r1
}
,

Cz32 = Cz331 ∪ Cz332,

Cz321 = {
(r1, r2) : 0 ≤ r1 ≤ ε|z|, 1

2 |z| − r1 ≤ r2 ≤ 1
2 |z|},

Cz322 = {
(r1, r2) : 0 ≤ r2 ≤ ε|z|, 1

2 |z| − r2 ≤ r1 ≤ 1
2 |z|},

Cz33 = [ε|z|,∞)2 ∩ Cz3.
A change of variables shows that∫

Br1+r2 (z)
|Br1(o) ∩ Br2(x)| dx =

∫
Br1 (o)

|Br2(z) ∩ Br1+r2(x)| dx,

so that we can express the integral I31(z) more conveniently as

I31(z) =
∫∫

Cz31

∫
Br1 (o)

|Br2(z) ∩ Br1+r2(x)| dxh(r1)h(r2)F (dr1)F (dr2).

By symmetry we can write I31(z) = 2I311(z), where I311(z) is a modification of I31(z) with
the region of integration Cz31 replaced by Cz311. To analyze the long-range behavior of I311(z),
let us split it according to I311(z) = J1(z)+ J2(z), where

J1(z) =
∫ ε|z|

0

∫ ∞

|z|/2

∫
Br1 (o)

|Br2(z) ∩ Br2(o)| dxh(r2)F (dr2)h(r1)F (dr1),

and where J2(z) = I311(z)− J1(z). Because the integrand of J1(z) does not depend on x, we
can rewrite the integral as

J1(z) =
(∫ ε|z|

0
|Br |h(r)F (dr)

)(∫ ∞

|z|/2
|Br(z) ∩ Br(o)|h(r)F (dr)

)
.

The first integral on the right-hand side satisfies
∫ |z|ε

0
|B1|rdh(r)F (dr) ∼

∫
R+

|B1|rdh(r)F (dr) = λ−1pth,

where pth is the volume fraction of the thinned grain union given by (3.7). Note that, because
the intersection in the second integral vanishes for r < |z|/2, we can apply (7.5) to conclude
that

J1(z) ∼ λ−1pthcα,d |z|d F̄ (|z|).
The rest of the proof constitutes showing that the remaining three parts of I3(z) are negligible.

We start by showing that J2 ≥ 0 and

lim sup
|z|→∞

J2(z)

|z|d F̄ (|z|) ≤ |B1|2((1 + 2ε)d − 1)

(∫
rdF (dr)

)
α

α − d
2α−d .

https://doi.org/10.1239/aap/1377868531 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1377868531


618 • SGSA M. KURONEN AND L. LESKELÄ

First we need a bound for the difference of the intersections in J2(z). Fix x ∈ Br1(o) and
(r1, r2) ∈ Cz311. Because |x| ≤ r1, we have Br2(o) ⊂ Br1+r2(x), which implies that the
integrand in J2(z) is bounded by

0 ≤ |Br2(z) ∩ Br1+r2(x)| − |Br2(z) ∩ Br2(o)|
= |Br2(z) ∩ (Br1+r2(x) \ Br2(o))|
≤ |Br1+r2(x)| − |Br2(o)|

= |B1|
((

1 + r1

r2

)d
− 1

)
rd2

≤ |B1|((1 + 2ε)d − 1)rd2 ,

where the last inequality is due to r1 ≤ ε|z| and |z|/2 ≤ r2. This bound and h(r) ≤ 1 now
imply that

0 ≤ J2(z)

≤
∫ ε|z|

0

∫ ∞

|z|/2

∫
Br1 (o)

|B1|((1 + 2ε)d − 1)rd2 dxh(r2)F (dr2)h(r1)F (dr1)

≤ |B1|2((1 + 2ε)d − 1)

(∫ ε|z|

0
rdF (dr)

)(∫ ∞

|z|/2
rdF (dr)

)
.

Now using Lemma A.1 proves the claim.
We will now show that I32 ≥ 0 and

lim sup
|z|→∞

I32(z)

|z|d F̄ (|z|) ≤ 2

(∫
rdF (dr)

)
|B1|2[(1 − 2ε)d−α − 1] α

α − d
2α−d .

By symmetry, I32(z) = 2I321(z), where

I321(z) =
∫∫

Cz321

∫
Br1+r2 (z)

|Br1(o) ∩ Br2(x)| dxh(r1)h(r2)F (dr1)F (dr2).

Note that Cz321 ⊂ [0, ε|z|] × [|z|/2(1 − 2ε), |z|/2]. Also, approximating Br1+r2(z) by R
d and

recalling that h(r) ≤ 1 we have

I321(z) ≤
∫ |z|ε

0

∫ |z|/2

(|z|/2)(1−2ε)
|B1|2rd1 rd2F(dr2)F (dr1)

= |B1|2
(∫ |z|ε

0
rdF (dr)

)(∫ ∞

(|z|/2)(1−2ε)
rdF (dr)−

∫ ∞

|z|/2
rdF (dr)

)
.

Again, using Lemma A.1 implies the claim.
For the last part I33(z), we have first the simple bound

I33(z) ≤
∫ ∞

ε|z|

∫ ∞

ε|z|

∫
Br1+r2 (z)

|Br1(o) ∩ Br2(x)| dxh(r1)h(r2)F (dr1)F (dr2)

≤
∫ ∞

ε|z|

∫ ∞

ε|z|
|B1|2rd1 rd2F(dr1)F (dr2)

= |B1|2
(∫ ∞

ε|z|
rdF (dr)

)2

.
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Using Lemma A.1 once more, the above bound implies that

I33(z)

|z|d F̄ (z) → 0 as |z| → ∞.

Adding together all the parts of I3(z) we have

lim sup
|z|→∞

I3(z)

|z|d F̄ (|z|) = −2
pth

λ
cα,d

and

lim inf|z|→∞
I3(z)

|z|d F̄ (|z|) ≥ −2
pth

λ
cα,d − δ(ε),

where

δ(ε) = 2|B1|2
(∫

rdF (dr)

)
α

α − d
2α−d(((1 + 2ε)d − 1)+ ((1 − 2ε)d−α − 1)).

Letting ε → 0 shows the validity of (7.8) and concludes the proof.

8. Small grains retained

In this section we study a thinning which favors small grains. This thinning is obtained
by setting the weight of each grain to the inverse of its radius, so that Gr(dw) = δ1/r (dw).
The following theorem shows that the thinned radius distribution and the key second-order
characteristics decay rapidly to 0, regardless of the tail behavior of the original radius
distribution F . Note that here, unlike in Theorems 5.1–7.1, there is no need to assume anything
on the shape of the radius distribution F .

Theorem 8.1. Assume that the radius distribution F satisfies
∫
rdF (dr) < ∞. Then the

thinned radius distribution is bounded by

F̄th(r) ≤ λ

λth
e−λ|B1|rd/2,

the covariance function of the thinned grain union by

|kth(z)| ≤ e−λ|B1|c|z|d ,

and the two-point correlation function of the thinned grain centers by

|ξth(z)| ≤ e−λ|B1|c|z|d

for all large values of r and z, where c ∈ (0,∞).

Proof. Now the weight-averaged retention probability h(r) is equal to the retention
probability of a reference grain with radius r and weight 1/r . Using Proposition 3.1, we
find that

h(r) = exp

(
−λ

∫ r

0
|Br+s(o)|F(ds)

)
.
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From this expression we see that h decreases monotonically to 0 as r grows, and that h(r) ≤
exp(−1

2λ|B1|rd) for all large enough r so that F(r) ≥ 1
2 . Proposition 3.2 further shows that

the weight-averaged pair retention probability equals

h2(|z|, r1, r2) = h(r1)h(r2) exp

(
λ

∫
1[0,r1∧r2](r)|Br1+r (o) ∩ Br2+r (z)|F(dr)

)
(8.1)

for |z| > r1 + r2.
To analyze the covariance function of the thinned grain union, recall that

kth(z) = λ

∫
|Br(o) ∩ Br(z)|h(r)F (dr)

+ λ2
∫∫∫

|Br1(o) ∩ Br2(x)|q(|x − z|, r1, r2) dxF(dr1)F (dr2), (8.2)

where q(u, r1, r2) = h2(u, r1, r2) − h(r1)h(r2). Because |Br(o) ∩ Br(z)| ≤ |B1|rd 1(r >
|z|/2), the first term on the right-hand side of (8.2) is bounded from above by

λ|B1|
(∫ ∞

|z|/2
rdF (dr)

)
sup

r>|z|/2
h(r).

Note that q(|x − z|, r1, r2) vanishes for |x − z| > 2(r1 + r2), because the integral in (8.1)
vanishes for |z| ≥ 2(r1 + r2). This is why the integration of the second term in (8.2) can be
restricted to the set A(z) = {(x, r1, r2) : |x − z| ≤ 2(r1 + r2)}. Now, using Lemma 4.2, the
absolute value of the second term in (8.2) is bounded from above by

2λ2|B1|2
(∫

R+
rdF (dr)

)(∫ ∞

|z|/6
rdF (dr)

)
sup

r>|z|/6
h(r).

As consequence, we find that

|kth(z)| ≤ (λm1 + 2λ2m2
1) sup
r>|z|/6

h(r),

where m1 = |B1|
∫
rdF (dr) is the mean volume of a grain. Therefore,

|kth(z)| ≤ (λm1 + 2λ2m2
1)e

−λ|B1|(|z|/6)d/2

for all large enough z such that F(|z|) ≥ 1
2 . A similar analysis can be carried out for the

two-point correlation function.
A typical radius has tail probabilities (3.6)

F̄th(r) = λ

λth

∫ ∞

r

h(s)F (ds) ≤ λ

λth
h(r)F̄ (r) ≤ λ

λth
e−λ|B1|rd/2

for all large enough r so that F(r) ≥ 1
2 .

9. Conclusions and future work

Boolean models consisting of randomly sized spheres in R
d are long-range dependent if the

sphere radii follow a power-law distribution with tail exponent α ∈ (d, 2d). We studied second-
order statistical properties of four hard-core germ–grain models which are obtained from such
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Boolean models using natural weight-based thinning mechanisms. We found that a thinning
which favors large grains preserves the power-law covariance decay of the proposed Boolean
model, whereas a thinning which favors small grains does not. The power-law covariance
decay is even preserved under the thinning where only isolated grains are retained (Matérn
type I), and the thinning where retention is determined by independent weights (Matérn type II).
The germ–grain model obtained by the Matérn type-I thinning is an interesting example of a
homogeneous hard-sphere model where typical spheres have exponentially small sizes but the
covariance function decays slowly according to a power law.

To keep the notation simple and the paper easy to read, the analysis carried out in this
paper was restricted to spherical grains. However, we believe that this assumption can be
easily relaxed to some extent following standard techniques of stochastic geometry. Another
interesting open problem is to investigate how thinnings affect covariance decay properties
in the light-tailed setting where the grain size distribution in the proposed Boolean model is
assumed to decay rapidly.

Appendix A. Regular variation

A measurable function f : R+ → R is called regularly varying with exponent γ ∈ R if it is
positive for all large enough input values and, for all a > 0,

f (at)

f (t)
→ aγ

as t → ∞. A regularly varying function with exponent zero is called slowly varying. For a
good overview on the theory of regular variation, see, for example, [3]. In this section we will
summarize some key properties of regularly varying functions which are needed in the analysis.

Lemma A.1. Let F be a distribution function on R+ with a regularly varying tail of exponent
α > p. Then, for any constant a > 0,

∫ ∞

ax

rpF (dr) ∼
(

α

α − p

)
a−(α−p)F̄ (x)xp as x → ∞.

Proof. Assume first that a = 1. The case a 
= 1 reduces to that because using the definition
of regular variation F̄ (ax)(ax)p ∼ a−(α−p)F̄ (x)xp. It follows by integration by parts that

∫ ∞

x

rpF (dr) =
∫ ∞

x

F̄ (s)psp−1 ds + F̄ (x)xp.

Now using Karamata’s theorem [3, Theorem 1.5.11] (with σ = p− 1 and ρ = −α), we obtain

∫ ∞

x

F̄ (s)psp−1 ds ∼ −p 1

p − α
xpF̄ (x).

The claim now follows because 1 − p/(p − α) = α/(α − p).

Lemma A.2. Assume that � is slowly varying. Then, for any z0 ∈ R
d ,

�(|z− z0|) ∼ �(|z|) as |z| → ∞.
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Proof. Fix z0 ∈ R
d , and write |z − z0| = az|z|, where az = |z − z0|/|z|. Because az → 1

as |z| → ∞, we can fix m such that az ∈ [ 1
2 ,

3
2 ] for |z| > m. Now, for any z ∈ R

d such that
|z| > m, it follows that∣∣∣∣�(|z− z0|)

�(|z|) − 1

∣∣∣∣ =
∣∣∣∣�(az|z|)�(|z|) − 1

∣∣∣∣ ≤ sup
a∈[1/2,3/2]

∣∣∣∣�(a|z|)�(|z|) − 1

∣∣∣∣.
The right-hand side above tends to 0 as |z| → ∞ because �(a|z|)/�(|z|) → 1 locally uniformly
with respect to a [3, Theorem 1.2.1].

Lemma A.3. Assume that f is regularly varying with exponent −γ < 0. Then there exists a
constant u > 0 such that f (y) ≤ 2f (x) for all y ≥ x ≥ u.

Proof. By the uniform convergence of regularly varying functions [3, Theorem 1.5.2],
f (λx)/f (x) → λ−γ uniformly for λ ≥ 1 as x → ∞. This implies that we can find u > 0
such that f (λx) ≤ 2f (x) for all x ≥ u and all λ ≥ 1. Now because y ≥ x, we have

f (y) ≤ sup
λ≥1

f (λx) ≤ 2f (x).

Lemma A.4. Let F be a probability measure on R+, and let f and g be bounded positive
functions on R+ such that f (r) ∼ g(r) as r → ∞. Then

∫ ∞

r

f (s)F (ds) ∼
∫ ∞

r

g(s)F (ds) as r → ∞.

Proof. It holds that
∣∣∣∣1 −

∫ ∞
r
f (s)F (ds)∫ ∞

r
g(s)F (ds)

∣∣∣∣ =
∣∣∣∣
∫ ∞
r
(1 − f (s)/g(s))g(s)F (ds)∫ ∞

r
g(s)F (ds)

∣∣∣∣ ≤ sup
r≤s

∣∣∣∣1 − f (s)

g(s)

∣∣∣∣.

Appendix B. Intersections of distant balls

Lemma B.1. Let F be a probability distribution on R+ which follows a power law with tail
exponent α > d. Then, for any r1, r2 ≥ 0,∫

R+
|Br1+r (o) ∩ Br2+r (z)|F(dr) ∼ cα,d F̄ (|z|)|z|d as |z| → ∞, (B.1)

where

cα,d =
∫ ∞

0
|Br(o) ∩ Br(e1)|αr−α−1 dr, (B.2)

and e1 is the first unit vector in the standard basis of R
d .

Proof. Because the Lebesgue measure is rotation invariant, we may assume without loss of
generality that z = ue1 for u > 0. Fix r1, r2 ≥ 0, and denote the left-hand side of (B.1) by
I (u). We will prove the claim by first showing that

I1(u) =
∫

R+
|Br(o) ∩ Br(ue1)|F(dr) ∼ cα,du

dF̄ (u), (B.3)

and then showing that the remainder I2(u) = I (u) − I1(u) tends to 0 faster than udF̄ (u) as
u → ∞.
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To prove (B.3), let Fu be the distribution of a random variable obtained by dividing an
F -distributed random variable by u, so that Fu(r) = F(ur). Then a change of variables shows
that

I1(u) = ud
∫

R+
|Br/u(o) ∩ Br/u(e1)|F(dr) = ud

∫
R+
φ(r)Fu(dr),

where φ(r) = |Br(0) ∩ Br(e1)|. Because φ is continuous, r−dφ(r) ≤ |B1| for all r > 0, and
φ(r) = 0 for r ≤ 1

2 , we may apply [12, Lemma 2] (with p = d, γ = α, q = α + 1) to obtain∫
R+
φ(r)Fu(dr) ∼ F̄ (u)

∫ ∞

0
φ(r)αr−α−1 dr = cα,d F̄ (u),

which implies the validity of (B.3).
To show that I2(u) tends to 0 faster than udF̄ (u), note first that, for all u > 2(r1 + r2),

I2(u) =
∫ ∞

u/4
rdψu(r)F (dr) ≤

(
sup
r>u/4

ψu(r)
) ∫ ∞

u/4
rdF (dr), (B.4)

where

ψu(r) =
∣∣∣∣Br1/r+1(o) ∩ Br2/r+1

(
e1u

r

)∣∣∣∣ −
∣∣∣∣B1(o) ∩ B1

(
e1u

r

)∣∣∣∣.
The equality in (B.4) follows because ψu(r) = 0 when u > 2(r1 + r2) and r < u/4.

Note that, by Lemma A.1, the integral on the right-hand side of (B.4) is asymptotically
equivalent to ∫ ∞

u/4
rd F (dr) ∼ α

α − d
4α−d F̄ (u)ud .

In light of (B.4), it hence suffices to show that

sup
r>u/4

ψu(r) → 0 (B.5)

as u → ∞. This will be done by inspecting the geometry ofψu. Because the intersection of the
unit balls above is a subset of the intersection of the larger balls, we can bound the nonnegative
function ψu using the annuli around the unit balls, so that

ψu(r) =
∣∣∣∣
(
Br1/r+1(o) ∩ Br2/r+1

(
e1u

r

))∖(
B1(o) ∩ B1

(
e1u

r

))∣∣∣∣
≤

∣∣∣∣Br1/r+1(o) \ B1(o)

∣∣∣∣ +
∣∣∣∣Br2/r+1

(
e1u

r

)∖
B1

(
e1u

r

)∣∣∣∣
= |B1|

((
r1

r + 1

)d
− 1

)
+ |B1|

((
r2

r + 1

)d
− 1

)

≤ 2|B1|
((

r1 ∨ r2
r

+ 1

)d
− 1

)
.

Because this bound is valid for all u, we conclude (B.5), and the proof is complete.

Lemma B.2. Let F be a probability distribution on R+ which follows a power law with tail
exponent α > d. Then there exist constants u > 0 and c > 0 such that∫

R+
|Br1+r (o) ∩ Br2+r (z)|F(dr) ≤ cF̄ (|z|)|z|d (B.6)

whenever |z| > u and r1 + r2 ≤ |z|/2.
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Proof. Observe first using Lemma A.1 that

∫ ∞

|z|/4
rdF (dr) ∼ c1|z|d F̄ (|z|),

where c1 = 4α−dα/(α − d). Hence, we may fix a constant u > 0 such that

∫ ∞

|z|/4
rdF (dr) ≤ 2c1|z|d F̄ (|z|) (B.7)

whenever |z| > u.
Assume now that |z| > u and r1 + r2 ≤ |z|/2. In this case the intersection on the left-hand

side of (B.6) is nonempty only when r > |z|/4. For any such r > |z|/4, a crude estimate shows
that

|Br1+r (o) ∩ Br2+r (z)| ≤ |Br1+r (o)| ≤ |B1|(r1 + r2 + r)d ,

which together with the inequality r1 + r2 ≤ |z|/2 < 2r shows that

|Br1+r (o) ∩ Br2+r (z)| ≤ 3d |B1|rd .
As a consequence,

∫
R+

|Br1+r (o) ∩ Br2+r (z)|F(dr) ≤ 3d |B1|
∫ ∞

|z|/4
rdF (dr),

so that, by virtue of (B.7), the claim holds for c = 2c13d |B1|.
Lemma B.3. Let F be a probability distribution on R+ which follows a power law with tail
exponent α > d, and let h be an arbitrary positive function. Then there exist constants u > 0
and c > 0 such that

(|z|d F̄ (|z|))−1
∫

R+
|Br(o) ∩ Br(z)|h(r)F (dr) ≤ c sup

r≥|z|/2
h(r)

for |z| > u.

Proof. By using Lemma B.2, fixing the constants u and c as in the lemma, and noting that
the integrand vanishes for r ≤ |z|/2, we see that

∫
R+

|Br(o) ∩ Br(z)|h(r)F (dr) ≤ h∗(z)
∫

R+
|Br(o) ∩ Br(z)|F(dr) ≤ ch∗(z)F̄ (|z|)|z|d

for all |z| > u, where h∗(z) = supr≥|z|/2 h(r).
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