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Abstract

Background. Adolescent substance use, externalizing and attention problems, and early life
stress (ELS) commonly co-occur. These psychopathologies show overlapping neural dysfunc-
tion in the form of reduced recruitment of reward processing neuro-circuitries. However, it is
unclear to what extent these psychopathologies show common v. different neural dysfunctions
as a function of symptom profiles, as no studies have directly compared neural dysfunctions
associated with each of these psychopathologies to each other.
Methods. In study 1, a latent profile analysis (LPA) was conducted in a sample of 266 ado-
lescents (aged 13–18, 41.7% female, 58.3% male) from a residential youth care facility and the
surrounding community to investigate substance use, externalizing and attention problems,
and ELS psychopathologies and their co-presentation. In study 2, we examined a subsample
of 174 participants who completed the Passive Avoidance learning task during functional
magnetic resonance imaging to examine differential and/or common reward processing
neuro-circuitry dysfunctions associated with symptom profiles based on these co-
presentations.
Results. In study 1, LPA identified profiles of substance use plus rule-breaking behaviors,
attention-deficit hyperactivity disorder, and ELS. In study 2, the substance use/rule-breaking
profile was associated with reduced recruitment of reward processing and attentional neuro-
circuitries during the Passive Avoidance task ( p < 0.05, corrected for multiple comparisons).
Conclusions. Findings indicate that there is reduced responsivity of striato-cortical regions
when receiving outcomes on an instrumental learning task within a profile of adolescents
with substance use and rule-breaking behaviors. Mitigating reward processing dysfunction
specifically may represent a potential intervention target for substance-use psychopathologies
accompanied by rule-breaking behaviors.

Introduction

The Research Domain Criteria initiative has sought to investigate the association between spe-
cific forms of neuro-cognitive function and specific symptom classes across psychiatric condi-
tions (Insel et al., 2010). This initiative was partly spurred by the frequency with which
different forms of psychopathology co-occur (Clark, Thatcher, & Martin, 2010; Moss &
Lynch, 2001). Notably, theoretical models of different psychiatric disorders make reference
to very similar forms of atypical function; e.g. dysfunctional reward processing has been related
to attention-deficit hyperactivity disorder (ADHD), conduct disorder (CD), and substance-use
disorders (SUDs) (Clark et al., 2010; Moss & Lynch, 2001). Moreover, many psychiatric dis-
orders share common potential psychosocial antecedents. In part, risk for developing a num-
ber of psychiatric disorders is significantly increased by exposure to early life stress (ELS) and
psychosocial trauma (Carliner et al., 2016; Carliner, Gary, McLaughlin, & Keyes, 2017).
However, much literature to date has examined the neural correlates of participants with pre-
defined conditions relative to those of typically developing individuals (Wetherill, Castro,
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Squeglia, & Tapert, 2013). This approach may miss conglomerates
of symptoms/risk factors that reflect specific forms of
psychopathology.

One way of identifying important conglomerates of symptoms/
risk factors is via latent profile analysis (LPA). LPA is a person-
centered structural equation modeling technique that identifies
groups of individuals based on patterns in continuous indicator
variables (McCutcheon, 1987). The technique assumes the presence
of unobserved, latent constructs ( profiles) driving observed indica-
tor values. LPA can be used to identify groups of adolescents
based on shared symptom and risk factor profiles. LPA has been
applied to examine youth mental health following a violent commu-
nity disaster, showing that the profile characterized by the highest
post-traumatic stress was the only profile with elevated conduct pro-
blems (Crum, Cornacchio, Coxe, Green, & Comer, 2018). In
another study using a related method, latent class analysis (LCA),
young adults who reported more adverse childhood experiences
were more likely to endorse SUD symptoms compared to young
adults with fewer adverse childhood experiences (Shin, McDonald,
& Conley, 2018). Among juvenile offenders, LPA-identified profiles
of increasing substance-use severity were associated with global
increases in psychiatric symptoms, including externalizing and post-
traumatic stress (Vaughn, Freedenthal, Jenson, & Howard, 2007).
To summarize, prior LPA/LCA has revealed (i) underlying latent
profiles of individuals with trauma, conduct problems, and/or
substance-use behaviors and (ii) underlying latent profiles of indivi-
duals with elevated substance-use behaviors that are associated with
ELS and externalizing symptoms.

Dysfunctional neural reward processing is common to exter-
nalizing psychopathology (e.g. CD, ADHD, SUD) and ELS
(Aloi et al., 2021; Blair, 2019; Dillon et al., 2009). Appropriate
reward processing is critical for instrumental learning (Davidow,
Insel, & Somerville, 2018), as instrumental learning requires
both a response to reward and learning from this reward
(Averbeck & O’Doherty, 2022). Systems involved in instrumental
learning include the striatum and cortical structures implicated in
subjective value representation, such as ventromedial prefrontal
cortex (vmPFC), anterior cingulate cortex, and posterior cingulate
cortex (PCC) (Clithero & Rangel, 2014).

Prior research has shown that adolescents with SUDs display
reduced striatal responsivity to reward (Aloi et al., 2020;
Crowley et al., 2010) and reduced responsivity in brain regions
orchestrating attentional responses to reward (Aloi et al., 2020).
Moreover, other reports have indicated that reduced striatal
and/or vmPFC responsiveness to reward is seen in youths with
conduct problems (Cohn et al., 2015; White et al., 2013) and
ADHD (Norman et al., 2018). Similarly, individuals with ELS
show reduced striatal and/or vmPFC responsiveness to reward
(Dillon et al., 2009; Gerin et al., 2017). Treatments for these
forms of psychopathology and for youth exposed to ELS often
focus on altering maladaptive contingencies (Foa & McLean,
2016; Forgatch & Patterson, 2010; Stanger & Budney, 2019).
Underlying reward processing impairment likely contributes to
varied end-point manifestations at the behavioral and symptom
levels. To our knowledge, the present study is the first to examine
associations between reward processing and SUDs, externalizing
problems, and ELS in the context of instrumental learning in
the same study.

Our goals were to determine (i) the nature of any externalizing
profiles revealed by LPA in the current sample; and (ii) the extent
of differential and/or common dysfunctions within reward pro-
cessing neuro-circuitries across these profiles. In study 1, we

implemented LPA to investigate co-presentations of substance
use, externalizing, and ELS. In study 2, we investigated reward
processing neuro-circuitries using a passive avoidance learning
task (White et al., 2013). Regarding reward processing neuro-
circuitry dysfunction, we hypothesized that profiles characterized
by the indicators of interest would show reduced responsiveness
of striatal regions implicated in reward processing. We further
hypothesized that attentional regions involved in coordinating
attentional response during reinforcement learning (e.g. PCC,
parietal cortex) would show particularly reduced responsiveness
in profiles characterized by substance use.

Materials and methods

Study 1

Study 1: participants
Data were drawn from a large study of youth from clinical and
community settings. For study 1, participants included 266 youths
aged 13–18 (M = 16.05, S.D. = 1.49; 41.7% female, 58.3% male) from
a Midwestern residential treatment facility and the surrounding
community. The Boys Town National Research Hospital institu-
tional review board approved this study. Informed consent and
assent were obtained from youth and their parents. Table 1 pro-
vides demographics by profile. Regarding overall ethnicity, 9.8%
of youth identified as Hispanic/Latino. Regarding overall race,
approximately 0.8% identified as Native American/Alaska Native;
0.8% as Asian; 9.4% as Black/African American; 0% as Native
Hawaiian/Other Pacific Islander; and 79.3% as White; 8.3% as
more than one race; 1.5% did not report race. Clinical characteriza-
tion was completed through psychiatric interviews by licensed,
board-certified psychiatrists with youths and parents.

Exclusion criteria included IQ < 75 assessed with the Wechsler
Abbreviated Scale of Intelligence (Wechsler, 2011), current preg-
nancy, non-psychiatric medical conditions requiring use of medi-
cation that may have psychotropic effects (e.g. beta blockers,
steroids), current psychosis, pervasive developmental disorders,
Tourette’s disorder, neurological disorders, metallic objects in
the body (e.g. metal plates, pacemakers), and claustrophobia.

Study 1: psychiatric symptomatology and ELS exposure
assessments
Youths completed the Alcohol Use-Disorder Identification Test
(AUDIT) (Bush, Kivlahan, McDonell, Fihn, & Bradley, 1998)
and Cannabis-Use Disorder Identification Test (CUDIT)
(Adamson & Sellman, 2003). These scales assess overall alcohol/
cannabis consumption over the past year as well as symptoms
of alcohol/cannabis abuse and dependence. Youth report on the
Childhood Trauma Questionnaire (CTQ) (Bernstein et al.,
2003) was used to assess ELS (abuse and neglect) exposure. The
rule-breaking behaviors, aggressive behaviors, and attention pro-
blems subscales of the parent-report Childhood Behavior
Checklist (CBCL) were used to assess externalizing symptoms
(Achenbach & Rescorla, 2001).

Study 1: latent profile analysis
LPA was conducted using the R package tidyLPA (Rosenberg,
Beymer, Anderson, Van Lissa, & Schmidt, 2019). The subscales
entered into the LPA included: AUDIT Alcohol Consumption,
Alcohol-related Problems, Alcohol Dependence; CUDIT Cannabis
Consumption, Cannabis-related Problems, Cannabis Dependence,
Cannabis Psychological Features; CBCL Rule-breaking Behaviors,
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Aggressive Behaviors, Attention Problems; CTQ Emotional
Abuse, Physical Abuse, Sexual Abuse, Emotional Neglect, and
Physical Neglect. One- to four-profile solutions were evaluated
within tidyLPA using Bayesian information criterion (BIC),

entropy, and bootstrapped-likelihood ratio test indices. Profile clas-
sifications of participants in the chosen solution were entered as a
categorical factor in neuroimaging group analyses, as described
below.

Table 1. Demographic information and clinical variables for LPA (N = 266)

HC (N = 117) SU/RB (N = 54) ADHD (N = 62) ELS (N = 33) F/χ2

% Male 54.7% 59.2% 69.4% 48.5% 5.07

Ethnicity 5.62

Hispanic/Latino 7.7% 18.5% 8.1% 6.1%

Race 28.01*

Native American/Alaska Native 0% 1.9% 1.6% 0%

Asian 0.9% 0% 0% 3.0%

Native Hawaiian/Other Pacific Islander 0% 0% 0% 0%

Black/African-American 5.1% 11.1% 8.1% 24.2%

White 87.2% 68.5% 80.6% 66.7%

More than one race 4.3% 16.7% 9.7% 6.1%

Age (S.D.) 15.7 (1.65)a 16.7 (0.95)b 16.1 (1.37)a 16.1 (1.48)a 5.62*

IQ 105.6 (13.27)a 97.7 (9.88)b 101.8 (12.17)b 97.8 (11.69)b 6.90*

AUDIT Consumption 0.2 (0.43)a 4.3 (3.25)b 1.1 (2.09)c 1.9 (2.62)c 50.51*

AUDIT Problems 0.1 (0.47)a 3.0 (3.26)b 0.4 (1.48)c 1.0 (2.22)c 31.69*

AUDIT Dependence 0.0 (0)a 2.2 (3.18)b 0.1 (0.56)c 0.3 (0.64)c 28.50*

CUDIT Consumption 0.1 (0.44)a 6.1 (1.28)b 1.1 (1.84)c 2.2 (2.35)c 233.55*

CUDIT Problems 0.0 (0.1)a 3.5 (2.26)b 0.2 (0.61)c 0.5 (1.12)c 124.40*

CUDIT Dependence 0.0 (0.2)a 5.3 (1.98)b 0.3 (0.61)c 0.6 (1.15)c 340.60*

CUDIT Psych Features 0.3 (0.83)a 4.7 (2.35)b 1.0 (1.76)c 1.9 (2.33)c 80.77*

AUDIT Total 0.3 (0.98)a 9.5 (8.63)b 1.7 (3.70)c 3.2 (4.85)c 48.69*

CUDIT Total 0.4 (1.42)a 19.6 (5.50)b 2.5 (3.79)c 5.1 (5.34)c 329.62*

CBCL Aggression 51.5 (3.19)a 68.7 (10.73)b 71.9 (9.67)b 67.3 (13.01)b 105.63*

CBCL Rule-Breaking 52.5 (4.54)a 77.1 (8.88)b 73.1 (7.35)c 71.4 (9.17)c 219.13*

CBCL Attention Prob. 51.9 (6.41)a 65.6 (10.43)b 69.8 (8.59)c 63.9 (6.72)b,d 83.99*

CBCL Externalizing 43.5 (9.59)a 72.9 (7.80)b 72.8 (6.63)b 68.9 (10.43)c 232.41*

CTQ EA 6.3 (2.06)a 9.6 (4.62)b 7.8 (2.72)c 16.4 (4.26)d 87.74*

CTQ PA 5.6 (1.13)a 7.2 (3.33)b 6.2 (1.82)b 12.5 (4.62)c 68.77*

CTQ SA 5.1 (0.84)a 6.7 (4.52)b 6.5 (4.69)b 12.1 (7.63)c 24.86*

CTQ EN 6.6 (2.80)a 9.5 (4.38)b 8.7 (3.71)b 15.2 (4.97)c 45.95*

CTQ PN 5.7 (1.42)a 7.2 (3.38)a 6.5 (2.13)c 11.0 (3.77)d 40.14*

CTQ Total 29.2 (5.56)a 40.3 (14.18)b 35.6 (8.82)c 66.8 (11.75)d 129.50*

% ADHD 13.6%a 64.8%b,c 79.0%b 57.5%c 86.16*

% CD 3.4%a 75.9%b 64.5%b 60.6%b 116.13*

% GAD 6.8%a 33.3%b,c 22.6%b 54.5%c 40.35*

% MDD 6.0%a 16.7%b 9.7%a,b 36.4%c 22.58*

% PTSD 0.0%a 13.0%b 11.3%b 48.5%c 60.68*

ADHD, attention-deficit hyperactivity disorder profile; AUDIT, Alcohol-Use Disorder Identification Test; CBCL, Child Behavior Checklist; CBCL attention prob., CBCL attention problems; CD,
conduct disorder; CTQ, Childhood Trauma Questionnaire; CUDIT, Cannabis-Use Disorders Identification Test; CUDIT Psych, Cannabis psychological features; EA, emotional abuse; ELS, early
life stress profile; EN, emotional neglect; GAD, generalized anxiety disorder; HC, healthy comparison profile; MDD, major depressive disorder; PA, physical abuse; PN, physical neglect; PTSD,
posttraumatic stress disorder; SA, sexual abuse; S.D., standard deviation; SU/RB, Substance-Use/Rule-Breaking Profile.
* indicates significant differences at p < 0.05. Within rows, values with different superscript letters are significantly different.
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Study 2

Study 2: participants
Study 2 consisted of a subset of participants from study 1. Of the
266 youths who participated in study 1, 211 completed the Passive
Avoidance learning task during functional magnetic resonance
imaging (fMRI) scanning. Of these participants, 37 were excluded
due to motion/data quality issues, resulting in a final sample of N
= 174 participants for study 2. Exclusion criteria, IRB approval,
consent/assent, and psychiatric symptomatology assessments
were identical to study 1.

Study 2: PA task
The Passive Avoidance task (White et al., 2013) is a paradigm
where one of four shapes is presented to participants on each
trial (online Supplementary Fig. S2). On each trial, participants
must decide whether to respond by button press to the shape. If
the participant responds to the shape, they will receive either
reward or punishment, thereby learning to respond to stimuli
that result in reward, or refrain (i.e. passively avoid) stimuli that
result in punishment. Two of the shapes are associated with an
80% probability of winning $1 or $5 and a 20% probability of los-
ing $1 or $5. The other two shapes are associated with an 80%
probability of losing $1 or $5 and a 20% probability of winning
$1 or $5. If the participant does not respond to the shape, they
receive no reinforcement/punishment. Each trial involves: (i)
presentation of one of the four shapes (1500 ms), (ii) a jittered fix-
ation interval (1000–4000 ms), (iii) reward/punishment feedback
(1500 ms), and (iv) a second jittered fixation cross interval
(1000–4000 ms). Shapes are presented in random order. There
were 27 trials for each shape (i.e. 108 trials in total).

Study 2: scanning parameters
Whole-brain blood oxygen level dependent (BOLD) data were
acquired using a 3.0 Tesla Siemens Skyra Magnetic Resonance
Scanner. A total of 313 functional images were taken over the
course of one run with a T2*-weighted gradient echo planar
imaging (EPI) sequence (repetition time = 2500 ms; echo time =
27 ms; 94 × 94 matrix; 90° flip angle; 240 mm field of view).
Whole-brain coverage was obtained with 43 axial slices (thickness
= 2.5 mm; voxel size = 2.6 × 2.6 × 2.5 mm3). A high-resolution T1
anatomical scan (MP-RAGE, repetition time = 2200 ms; echo
time = 2.48 ms; 230 mm field of view; 8° flip angle; 256 × 208
matrix) was acquired in register with the EPI dataset.
Whole-brain coverage was obtained with 176 axial slices (thick-
ness = 1 mm; voxel size = 0.9 × 0.9 × 1 mm3).

Study 2: fMRI analysis: data preprocessing and individual level
analysis
fMRI data were preprocessed and analyzed using Analysis of
Functional NeuroImages (AFNI) software (Cox, 1996). The first
four volumes in each scan were discarded. The anatomical scan
for each participant was registered with the Talairach and
Tournoux atlas (Talairach & Tournoux, 1988) using the
TT_N27 template. Each participant’s functional EPI data were
registered to their Talairach anatomical scan using AFNI.
Functional images were motion corrected and spatially smoothed
with a 6-mm full-width-at-half-maximum Gaussian kernel. The
data then underwent time series normalization by dividing the
signal intensity of a voxel at each time-point by the mean signal
intensity of that voxel for each run and multiplying by 100. The

resultant regression coefficients represent percent signal change
from the mean.

Afterward, regressors were generated by convolving the train
of stimulus events with a gamma variate hemodynamic response
function to account for the hemodynamic response rate. The four
regressors were: (i) cue phase, approach; (ii) cue phase, avoid; (iii)
feedback phase, reward; and (iv) feedback phase, punishment.
Generalized linear model (GLM) fitting was performed with
these four regressors, six motion regressors, and a regressor mod-
eling baseline drift (-polort 4). This procedure produced a
β-coefficient and an associated t statistic for each voxel and
regressor.

Study 2: behavioral data analysis
A four (profile: HC, SU/RB, ADHD, ELS)-by-two (error type:
Commission, Omission) repeated-measures analysis of variance
(ANOVA) was conducted. Commission errors occurred when
participants responded to stimuli that were probabilistically asso-
ciated with punishment while omission errors occurred when par-
ticipants did not respond to stimuli that were probabilistically
associated with reward.

Study 2: movement data
A one-way (profile: HC, SU/RB, ADHD, ELS) multivariate
ANOVA was conducted on movement variables (number of cen-
sored TRs, average motion per TR, maximum displacement dur-
ing the task).

Study 2: BOLD response data: striatal region of interest (ROI)
analysis
For the ROI analysis, a multivariate analysis of covariance
(ANCOVA) was conducted on the Reward–Punishment contrast
values within four striatal ROIs based on prior findings with
the Passive Avoidance task (Aloi et al., 2020; Blair et al., 2022;
Zhang et al., 2021): left caudate, right caudate, left nucleus accum-
bens, and right nucleus accumbens. These ROIs were defined as
voxels labeled as left caudate, right caudate, left accumbens
area, and right accumbens area, respectively, within the Desai
Maximum Probability atlas in AFNI (Destrieux, Fischl, Dale, &
Halgren, 2010). Since the profiles differed on IQ (online
Supplementary Table S1), IQ scores were included as a covariate
in this analysis.

Study 2: BOLD response data: whole-brain analysis
For the whole-brain analysis, an ANCOVA was conducted on the
BOLD response within all voxels contained within a gray-matter
mask. Since profiles differed on IQ, IQ scores were included as a
covariate in this analysis. Post-hoc analyses were conducted on
the percent signal change taken from all significant voxels within
each cluster generated by AFNI to examine significant main
effects and interactions with planned follow-up testing within
SPSS 25.0. Effect sizes for all clusters are reported to facilitate
future meta-analytic work.

The AFNI 3dClustSim program – which uses the autocorrel-
ation function (-acf) – was used to establish a cluster-wise family-
wise error correction for multiple comparisons for the whole-
brain analysis (Cox, Chen, Glen, Reynolds, & Taylor, 2017).
Spatial autocorrelation was estimated from residuals from the
individual-level GLMs. The whole-brain analysis yielded a thresh-
old of 16 voxels at an initial threshold of p = 0.001.
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Results

Study 1

Study 1: latent profile analysis (LPA)
LPA identified four latent profiles. See Table 1 for demographic
and clinical characteristics of the profiles. See Table 2 for fit sta-
tistics for 1-to 4-profile solutions. Scree plots of fit indices for
potential profile solutions were visually inspected for incremental
change. The solution with four profiles yielded the best overall fit,
as evidenced by the lowest BIC, high entropy, and high classifica-
tion accuracy. The 4-profile solution also mapped most closely to
the indicator variable constructs. See the online Supplementary
materials for further details on choosing the optimal profile solu-
tion. Figure 1 plots the average standardized scale/subscale means
across these four latent profiles.

Most youths (N = 117) were classified into profile 1 (healthy
comparison, ‘HC’); 54 youths were classified into profile 2 (sub-
stance use/rule breaking, ‘SU/RB’); 62 youths were classified
into profile 3 (primarily attention-deficit hyperactivity disorder,
‘ADHD’); and 33 youths were classified into profile 4 (primarily
early life stress, ‘ELS’). There were significant differences in
prevalence of ADHD, CD, generalized anxiety disorder, major
depressive disorder (MDD), and posttraumatic stress disorder
(PTSD) diagnoses across all profiles (χ2s = 22.58, ps < 0.05); see
Table 1.

Across the AUDIT, CUDIT, CBCL, and CTQ, a one-way
ANOVA showed significant differences across profiles (Fs =
28.50–232.41, ps < 0.001). The SU/RB profile had the highest
scores on both the substance-use measures and the rule-breaking
subscale of the CBCL relative to all other profiles (ts = 2.60–34.28,
ps < 0.005). The ADHD and ELS profiles had significantly higher
scores on the substance-use and rule-breaking measures than the
HC profile (ts = 2.09–23.15, ps < 0.04). The ADHD profile showed
the highest scores on the attention problems subscale of the CBCL
compared to all other profiles (ts = 2.33–15.74, ps < 0.05). The
ELS profile had the highest scores on the maltreatment exposure
measures compared to all other profiles (ts = 4.12–25.24, ps <
0.001); see Table 1.

Regarding demographic data, there were no significant differ-
ences between profiles on sex (χ2 = 5.07) or ethnicity (χ2(3) =
5.62), ps > 0.05. However, there were significant differences in
IQ [F(3,261) = 6.90, p < 0.001; youth in the HC profile had higher
IQs than the SU/RB or ELS profiles (ts = 3.04–3.90, ps < 0.005)],
in age [F(3,262) = 5.62, p = 0.001; youth in the HC profile were
younger than the SU/RB profile (t(169) = 4.04, p < 0.001)], and
in race [χ2(15) = 28.01, p < 0.05]; youth identifying as White
were more likely to be classified in the HC, SU/RB, and ELS pro-
files than youth identifying as other races.

Study 2

Study 2: demographics
Of the 266 youths from study 1, N = 174 had available/useable
fMRI scans on the Passive Avoidance task. Of these 174 youths,
N = 77 had been classified into the HC profile, N = 34 into the
SU/RB profile, N = 43 into the ADHD profile, and N = 20 into
the ELS profile. Regarding demographic data, ANOVAs revealed
significant differences across profiles on IQ [F(3,169)] = 3.75], but
not on age [F(3,169) = 2.28], sex (χ2 = 2.66), ethnicity [χ2(3) =
5.03], or race [χ2(15) = 14.06], ps > 0.05. Therefore, IQ is included
as a covariate in the Passive Avoidance task behavioral and fMRI
analyses. Profile differences were largely maintained within this
subsample. For full demographic and clinical data on the study
2 subsample, see online Supplementary Table S1.

Study 2: behavioral results
A four (profile: HC, SU/RB, ADHD, ELS) by two (error type:
Omission, Commission) ANCOVA was run on proportion of
errors with IQ as a covariate. This analysis revealed no main effect
of profile on number of errors [F(3,169) = 0.49] or profile-by-error
type interaction [F(3,169) = 0.25], ps > 0.05.

Movement data
A multivariate ANOVA was run on the number of censored
volumes, average motion per volume, and maximum
displacement with profile (HC, SU/RB, ADHD, ELS) as a
between-subjects variable. There were no differences in movement
parameters across profiles [F(9,510) = 1.69, p > 0.05].

fMRI results: striatal ROI analysis
Based on our LPA results, we ran a multivariate ANCOVA on the
difference scores for the reward–punishment contrast within left/
right caudate and nucleus accumbens. Profile (HC, SU/RB,
ADHD, ELS) was the between-subjects variable of interest with
IQ as a covariate.

Profile-by-feedback interaction: There was a main effect of
profile in reward–punishment contrast scores [F(3,169) = 3.18,
p < 0.05]. Individuals in the SU/RB profile showed reduced striatal
responsivity to reward v. punishment outcomes compared to all
other profiles (ts =−3.92 to 2.71, ps < 0.01). See Fig. 2.

fMRI results: whole-brain analysis
We ran a 4 (profile: HC, SU/RB, ADHD, ELS)-by-2 (feedback:
Reward, Punishment) repeated-measures ANCOVA on the
BOLD response data within a whole-brain mask. IQ was included
as a covariate. Clusters were considered significant if they
exceeded an extent threshold of k = 16 voxels at an initial

Table 2. LPA fit statistics (N = 266)

Profile
solution BIC Entropy

Mean probability
for profile membership

Minimum N
per profile

Bootstrapped-likelihood
ratio p value

1 11 475.61 NA NA NA NA

2 10 514.21 0.94 0.98–0.99 128 p < 0.01

3 9719.03 0.96 0.97–0.99 56 p < 0.01

4 9516.88 0.95 0.94–0.99 32 p < 0.01

BIC, Bayesian information criterion.
Entropy, mean probability, minimum N, and bootstrapped-likelihood ratio are not applicable to a 1-profile solution.
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threshold of p = 0.001. The ANCOVA revealed the following key
interactions (Table 3):

Profile-by-feedback interaction: There were significant profile-
by-feedback interaction effects within dorsolateral prefrontal

cortex (dlPFC), precuneus, and PCC. Within dlPFC, the inter-
action was primarily driven by both reduced responsiveness to
reward relative to punishment within the SU/RB profile compared
to HC [t(109) = 4.34, p < 0.001] and increased responsiveness to

Figure 1. LPA model, fit, and indicators by profile. Panel (a) is a visualization of the study 1 analytical model. Indicator measures are shown with associated error
terms. The 4-profile solution yielded HC, SU/RB, primarily ADHD (ADHD), and primarily ELS profiles. Panel (b) shows average standardized scale/subscale means
across the four latent profiles; error bars represent standard error of the mean. Panel (c) plots Bayesian information criterion values across the 1-to-4-profile solu-
tions. AUDIT, Alcohol-Use Disorder Identification Test; CBCL, Child Behavior Checklist; CBCL Attention Probs = CBCL Attention Problems subscale; CTQ, Childhood
Trauma Questionnaire; CUDIT, Cannabis-Use Disorder Identification Test; AUDIT/CUDIT Problems, Alcohol/Cannabis-Related Problems subscale; AUDIT/CUDIT Dep,
Alcohol/Cannabis Dependence subscale; AUDIT/CUDIT Use, Alcohol/Cannabis Consumption subscale; CUDIT Psych, Cannabis Psychological Features subscale; EA,
emotional abuse; EN, emotional neglect; PA, physical abuse; PN, physical neglect; SA, sexual abuse.

Figure 2. Profile-by-feedback interactions within the (a) striatum, (b) dlPFC, (c) precuneus, (d) PCC. HC, healthy comparison profile; SU/RB, substance-use/
rule-breaking profile; ADHD, primarily ADHD profile; ELS, primary ELS profile. Error bars represent standard error of the mean.
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reward relative to punishment within the ADHD profile com-
pared to HC [t(118) = 2.00, p < 0.05]. Within precuneus and
PCC, effects were primarily driven by reduced responsiveness to
reward relative to punishment within the SU/RB profile compared
to all other profiles [ts = 2.73–5.21, ps < 0.01]. See Fig. 2.

Discussion

Two studies were conducted to determine the (i) nature of any
externalizing and ELS profiles revealed by LPA in the current
sample; and (ii) extent of differential and/or common reward pro-
cessing dysfunctions across these profiles. In study 1, LPA identi-
fied four profiles in our sample: (i) healthy comparison youth
(HC), (ii) youth showing substance-use and rule-breaking beha-
viors (SU/RB), (iii) youth showing primarily ADHD symptoms
(ADHD), and (iv) youth exposed to significant ELS who were
more likely to be diagnosed with an internalizing disorder.
In study 2, the SU/RB profile was associated with reduced respon-
siveness to reward feedback within striatum, dlPFC, precuneus,
and PCC while the ADHD profile was associated with increased
responsiveness to reward within dlPFC.

The largest profile identified by LPA included relatively neuro-
typically developing youth who showed the lowest levels of psy-
chiatric diagnoses and psychiatric problem scores. LPA also
identified three profiles that were defined by specific clinical fea-
tures. Externalizing problems represented an area of overlap
across profiles; all clinical profiles showed elevated externalizing
behaviors compared to the HC profile. However, there were
nuanced differences in patterns of other forms of externalizing
behavior. Youth in the ADHD profile showed the highest atten-
tion problems as indexed by the CBCL relative to other profiles.
Youth in the SU/RB profile showed the highest rule-breaking
behaviors and SUD relative to other profiles. Prior epidemio-
logical work has shown that externalizing disorders are associated
with substance use (Carliner et al., 2016, 2017; Moss & Lynch,
2001; Rodgers et al., 2015). Furthermore, a prior LCA has
shown that CD, but not necessarily ADHD or Oppositional
Defiant Disorder (ODD), was associated with a latent class under-
lying the greatest levels of substance use in adolescents (Rodgers
et al., 2015). Moreover, while ADHD predicts the onset of
SUDs by age 18, its predictive power is very significantly reduced
if CD (a strong predictor of SUD onset) is included in the model
(Elkins, McGue, & Iacono, 2007). Youth in the ELS profile had
higher levels of prior ELS exposure and were more likely than
other profiles to be diagnosed with MDD and PTSD. This is

consistent with previous reports of ELS being associated with
higher rates of depression and anxiety, even among adolescents
with externalizing disorders (Wasserman et al., 2020). In sum-
mary, our LPA revealed a total of four underlying profiles, three
of which were associated with clinically significant psychopath-
ology. Although all three had clinically significant externalizing
behaviors, one was particularly associated with SUD and
rule-breaking problems, one was particularly associated with
ADHD symptom levels, and one was particularly associated
with ELS and internalizing diagnoses of MDD and PTSD.

In study 2, youth in the SU/RB profile showed reduced respon-
siveness to reward v. punishment outcomes within striatum,
dlPFC, precuneus, and PCC. The role of striatum in processing
reinforcement information is clear (Averbeck & O’Doherty,
2022). dlPFC, precuneus, and PCC have roles in several neurocog-
nitive functions but are particularly associated with attention
(Katsuki & Constantinidis, 2012). An enhanced attentional
response to salient reinforcement information is critical in
many models of instrumental learning (Niv, 2019). Previous
work has reported that adolescents with greater levels of SUD
symptoms show reduced responsiveness to reward across a num-
ber of behavioral paradigms (Aloi et al., 2019, 2020, 2021; Crowley
et al., 2010), although some work has suggested that adults with
CUD show increased frontostriatal responsiveness to reward
(Filbey, Dunlop, & Myers, 2013). Findings are consistent with
prior reports in adolescents and suggest not only a reduced differ-
ential striatal response to reward v. punishment feedback, but also
potentially reduced attentional responsiveness to this information.
Interestingly, prior work has shown that reduced responsiveness
of the striatum to reward stimuli is specifically associated with
AUD symptoms (see online Supplementary materials) (Aloi
et al., 2019, 2020, 2021).

Reduced reward responsiveness has been observed in a variety
of psychiatric conditions including both internalizing conditions
such as MDD (Pizzagalli et al., 2009), and externalizing condi-
tions such as CD (Cohn et al., 2015; Hawes et al., 2021; Zhang
et al., 2021) and ADHD (Grimm et al., 2021). MDD was relatively
uncommonly diagnosed in the clinical profile groups (it was high-
est in the ELS profile but only in 36.4% of cases) and so conclu-
sions are difficult to draw with respect to MDD. However, ADHD
symptoms, as indexed by the CBCL, were significantly greater in
participants in the ADHD profile than in any other profiles in
study 1. Yet, adolescents in the ADHD profile showed no indica-
tion of reduced reward–punishment differential responsiveness in
striatum and even greater reward–punishment differential

Table 3. Brain regions demonstrating significant profile-by-feedback interaction effects (N = 174)

Regiona Hemisphere BA x y z F Partial η2 Voxels

Coordinates of peak activationb

Profile-by-feedback

Precuneus/PCC R/L 31 −1 −31 38 9.741 0.147 67

dlPFC L 10 −34 50 20 10.732 0.160 54

Precentral Gyrus/paracentral lobule L 4/6 −10 −28 71 10.471 0.157 46

PCC R/L 23 −1 −28 26 10.281 0.154 43

BA, Brodmann’s area; dlPFC, dorsolateral prefrontal cortex; PCC, posterior cingulate cortex.
aAccording to the Talairach Daemon Atlas (http://www.nitrc.org/projects/tal-daemon/).
bBased on the Tournoux and Talairach standard brain template.
Superscript numbers indicate specific significance patterns among groups: 1Healthy controls (HC) = ADHD, HC = early life stress (ELS), ADHD = ELS, and HC, ADHD, and ELS > substance-use/
rule-breaking (SU/RB); 2HC = ELS, ADHD > HC, and ADHD, HC, and ELS > SU/RB.
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responsiveness within dlPFC. Some prior work has found that
ADHD is associated with increased reward responsiveness
(Rubia et al., 2009). However, the majority shows that ADHD is
associated with reduced responsiveness to reward stimuli
(Carmona et al., 2012; Grimm et al., 2021). Notably, however,
prior work has typically found that reward anticipatory signaling
is disrupted in ADHD rather than responsiveness to received
reward (Grimm et al., 2021). Absence of a response to received
reward in the current study may reflect previous literature with
respect to reward receipt. It is also worth noting that most prior
work examining reward processing in ADHD has used tasks
that do not involve instrumental learning (e.g. the monetary
incentive delay task) (Carmona et al., 2012). It is possible that
dysfunctional reinforcement processing in individuals with
ADHD is reduced in instrumental contexts.

CD was a relatively common diagnosis across profiles except
for the HC profile. Yet, while reduced sensitivity to reinforcement
information has frequently been reported in patients with CD
(Hawes et al., 2021; Rubia et al., 2009; White et al., 2013;
Zhang et al., 2021), only the SU/RB profile showed reduced differ-
ential reward v. punishment responsiveness. It is unclear the
extent to which the current results are incompatible with previous
literature. Some recent work has suggested, similar to findings
with ADHD, that reduced reward responsiveness in CD is par-
ticularly marked for reward anticipation and indeed may even
be heightened for reward receipt (Hawes et al., 2021). However,
other work has indicated reduced reward receipt responsiveness
in patients with CD (Rubia et al., 2009; White et al., 2013;
Zhang et al., 2021). It should also be noted that adolescents in
the SU/RB profile showed higher levels of CD and externalizing
behaviors relative to the other two clinical groups even if compar-
isons were only statistically significant for RB. Overall, it is clear
that co-occurring SU needs to be carefully considered in future
work examining reward responsiveness in psychiatric disorders.

Youth in the ADHD profile showed increased responsiveness
to reward feedback within dlPFC compared to the HC and
SU/RB profiles, but similar striatal responsiveness to reward. A
few prior studies have shown that adolescents with ADHD
show increased responsiveness to reward (Rubia et al., 2009).
However, the majority indicates that ADHD is associated with
reduced responsiveness to reward (Carmona et al., 2012; Grimm
et al., 2021). Future work is needed to disentangle whether
there are certain reward-related circumstances in which indivi-
duals with ADHD show increased recruitment of frontal regions
implicated in attention.

Findings should be interpreted considering several limitations.
First, substance-use initiation may affect reward system develop-
ment across adolescence. Urine/breathalyzer testing for substance
use was not conducted at the time of scanning. However, all but
two participants with significant alcohol and/or cannabis use his-
tories were residents of a residential treatment program that uti-
lized random drug testing for at least 4 weeks prior to scanning.
Nevertheless, specific information regarding length of abstinence
and current craving/withdrawal level was not assessed. Regarding
ELS, timing and exposure type may influence ELS-related seque-
lae (Marshall, 2016). Future work should examine features of ELS
exposure in greater depth, especially given the nuanced differ-
ences in ELS exposure in the SU/RB group compared to other
profiles (i.e. elevated emotional and physical abuse, but compar-
able levels of other maltreatment types). Relatedly, longitudinal
work is required to examine how trajectories unfold across time.
Third, given the group design of this study, it is difficult to

disentangle whether substance-use or rule-breaking behaviors
are the predominant dimension defining the SU/RB profile.
However, given the neurochemistry of SUDs (e.g. reduced dopa-
minergic signaling within frontostriatal regions to non-substance
reward stimuli) (Volkow, Koob, & McLellan, 2016), it seems likely
that the predominant dimension is substance use. Moreover,
rule-breaking behaviors are only one dimension of conduct pro-
blems (the other being aggressive behaviors) (Achenbach &
Rescorla, 2001). Fourth, the SU/RB, ADHD, and ELS profiles
had greater proportions of individuals who were prescribed psy-
chotropic medications (antipsychotics, stimulants, and/or antide-
pressants). However, excluding these youth (see online
Supplementary Table S4) did not significantly impact results.
Finally, although the 4-profile solution had the lowest BIC, fit sta-
tistics were also favorable for the 3-profile solution. We repeated
analyses using the 3-profile solution (see online Supplementary
Tables S5 and S6). LPA identified HC and SU/RB profiles similar
to the main analysis, but the third profile reflected more general
psychopathology as opposed to differentiating between attention-
and ELS-related profiles. fMRI results replicated the main ana-
lyses, although several additional clusters were significant in the
whole-brain analysis (see online Supplementary materials).

In summary, individuals in the current study belonged to one
of four latent profiles: (i) HC youth with low levels of psychopath-
ology, (ii) adolescents showing particularly high levels of SU/RB,
(iii) adolescents showing particularly high levels of ADHD symp-
toms, and (iv) adolescents showing particularly high levels of ELS
and MDD/PTSD. Only the SU/RB profile was associated with
atypically reduced reward responsiveness within the striatum
and attentional structures to receipt of reward relative to punish-
ment. In contrast, only the ADHD profile was associated with
increased reward responsiveness within dlPFC to receipt of reward
relative to punishment. Substance use may compromise respon-
siveness to reward v. punishment beyond any independent asso-
ciations with particular psychiatric diagnoses.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0033291723000971
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