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ON FACTORS OF A GRAPH 

EBAD MAHMOODIAN 

Let G be a graph with multiple edges. L e t / be a function from the vertex set 
V(G) of G to the non-negative integers. An f-factor of G is a spanning sub­
graph F of G such that the degree (valence) of each vertex x in F isf(x). A 
theorem of Fulkerson, Hoffman and McAndrew [1] gives necessary and suffi­
cient conditions to have an/-factor for a graph G with the odd-cycle property; 
i.e., if G has the property that either any two of its odd (simple) cycles have 
a common vertex, or there exists a pair of vertices, one from each cycle, which 
is joined by an edge. They proved this theorem using integer programming 
techniques, with a rather long proof. We show that this is a corollary of 
Tutte's /-factor theorem. 

The /-factor theorem of Tutte with a slight modification in notations and 
formulation is as follows. 

THEOREM [2]. Let G be a graph with multiple edges, and let f be a non-negative 
junction defined on V(G). G contains an f-factor if and only if for every partition 
(S, T, U) of vertices of G, we have 

(1) E /(<*) ̂  E /(«) + E cab- 3(5, T) 
a£T a£S a^T 

b£T U U 

where cab is the number of edges joining a to b, and q(S, T) is the number of 
components C of (U) (the induced subgraph of G on the vertices U) such that 

(2) B(C,T) = E / ( a ) - E cab 
&Ç T 

is odd. (For simplicity we write a G C instead of a G V(C).) 

COROLLARY [1]. Assume that G has the odd-cycle property. Then G has an 
f-factor if and only if 

i) Ea€7(G)/W is even, and 
ii) for every partition (S, T, U) of V(G) 

(3) E /(«) ^ E /(«) + E oab. 
a€ T a€ S a£ T 

&€ T U U 

Proof. The necessity of the conditions is trivial. 
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Define ô(S, T) to be the difference of both sides in (1), i.e. 

S(S, T) = £ f(a) - £ f(a) + £ cab - q(S, T). 
a£S aÇT a£ T 

66 T U U 

Substituting from (2) 

HS, T) = £ /(a) - £ /(«) + £ ^ 
a€ S aÇT aÇ T 

66 T7 

+ £ ( --B(c, r) + £ /(a)) - 3(5, r) 

= £ /(«) - £ /(«) + £ ca6 - £ 5(c, r) - q(s, T) 
aÇSUU a£T «6 T C<= £/ 

66 T 

or 
"B(CtT) 

2 
(4) «(5, T) = £ / (a) - 2 £ /(a) + £ ca6 - Z 2 

a6 y (G) o Ç T a6 T C e " 
6€ T 

where [X] = minimal integer ^ x. 
To prove sufficiency, we show that if G satisfies the hypothesis, then there 

exists a partition (5, T, U) for which <5(5, T) is minimal and q (5, T) ^ 1. 
If ^Haev(G) /(#) is even, then (4) implies that <5(5, T) is even; hence (1) is 
satisfied. 

Let (5, T, U) be any partition of V(G) for which <5(5, T) is minimal. Then 
at most one of the components of (U) can have any odd cycles; all the other 
components are bipartite graphs. Let C be one such component; V(C) = 
C\ U C2, where (G) and (C2) are totally disconnected subgraphs. 

Let C be any component of (U), C ^ C; then 

B(C, r U C i ) - B(C\ T) = - £ cab = 0. 
a6C" 
6 6 C I 

Hence, 

8 ( S U C2, r U C i ) - 0(5, 7') = - 2 £ /(a) + £ ca6 + E *a6 
a€Ci a£Ci a€ 71 

66 T 66C1 

+ £ cab + 2\±B(C,T)]. 
a,b£Ci 

Since G is totally disconnected, J2a,bea Cab = 0. A similar relation holds with 
C\ replaced by C2. Adding those two we find 

[5(5 \J C2,T\J Ci) - 0(5, T)] + [ô(5 W Ci, TU C2) - ô(5, T)] 

= -2B(C,T) + 4\%B(C,T)]. 

The right side is 0 if B(C, T) is even, and 2 if B(C, T) is odd. As all ô's are 
even, either <5(5 W G, I U C2) or 5 ( 5 U C2, T U G) equals ô(5, T), i.e., is 
also minimal. 
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In this manner all bipartite components of (U) can be removed, leaving a 
partition (5*, T*, U*) in which U* has at most one component. Hence g (5*, T*) 
^ 1, while 5(5*, T*) is minimal. 

There are further applications of Tutte's /-factor theorem in [3]. 
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