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Abstract. We extend the well-known Paley and Paley-Kahane-Khintchine
inequalities on lacunary series to the unit polydisk of C". Then we apply them to
obtain sharp estimates for the mean growth in weighted spaces 4( p, ), i( p, log(«)) of
Hardy—Bloch type, consisting of functions #-harmonic in the polydisk. These spaces
are closely related to the Bloch and mixed norm spaces and naturally arise as images
under some fractional operators.
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1. Introduction and main results. Let U" ={z=(z(,...,z,) e C" 1 |z5] < 1,1 <
J < n} be the unit polydisk in C", and let T" = {w = (wy, ..., w,) € C" : Jwj| = 1,1 <
J < n} be the n-dimensional torus, the distinguished boundary of U”. We will deal with
n-harmonic functions on the polydisk U”, i.e. functions harmonic in each variable z;
separately. Denote by H(U"), h(U") the sets of holomorphic and n-harmonic functions
in U", respectively.

If f(z) = f(r¢) is a measurable function in U”, then we write

Mp(f51) = W) e cmam,)s r=(r,...,m)el", 0<p<oo,
where I" = (0, 1)", dm,, is the n-dimensional Lebesgue measure on T” normalized so
that m,,(T") = 1. The collection of n-harmonic (holomorphic) functions f(z), for which
W/l = sup,epq Mpy(f57) < 400, is the usual Hardy space /#” (respectively HP).

The quasi-normed space 4(p, a)(0 < p < oo, a = (a1, ..., o), o; > 0) is the set
of those functions f(z) n-harmonic in the polydisk U”, for which the quasi-norm

n
I/l = sup [ ] = My(f:r)
rel” j=1

is finite. Corresponding little spaces /y( p, o) are defined by the conditions
(I =) Mpy(f57r) = 0o(1) as rp— 17

for each j € [1, n] separately. For the subspaces of 4( p, «) consisting of holomorphic
functions let

H(Pa“):H(Un)ﬂh(Paa)’ HO(P»“)ZH(Un)th(Paa)~
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Forn = 1 the spaces H( p, o) and A( p, @) have been studied by Flett[9, 10] in the frame
of mixed norm spaces. If the gradient of a function f belongs to A(oo, 1) or Ag(oco, 1) we
say that 1 is a Bloch or little Bloch function, respectively. See [1, 17] for basic properties
of the Bloch space including higher dimensions.

Denote by A(p,log(w)) (0 <p < o0, = (ay, ..., a,),; > 0) the set of those
functions f(z) n-harmonic in the polydisk U", for which the quasi-norm

—a;

A4f(f:r)

e

n
1./l p,1og(@) = SUp l_[ log :
rel” =1 — rj

is finite. For the subspace of /A( p, log(x)) consisting of holomorphic functions let
H(p,log()) = H(U") N h( p, log(e)). One variable spaces H(p,log(e)) and more
general “integrated” spaces of Hardy—Bloch type are studied in [11].

Recall that a sequence {n;};2, of positive integers is said to be lacunary (or
Hadamard) if there exists a constant A > 1 such that ”’ﬁ—r] >Aforall k=1,2,....
A corresponding power series is called a lacunary series.

Lacunary series in classical function spaces such as Bloch, Bergman, Besov,
Dirichlet, Q-type spaces, have been extensively studied recently ([2, 3, 11, 12, 13,
14, 18, 19]). The purpose of the present paper is to characterize lacunary series in the
weighted spaces H(p, @) and Hy(p, «) of Hardy—Bloch type (see Theorems 3 and 4)
and to estimate the mean growth in /4( p, «) and &( p, log(«)), see Theorem 5. To this
end, we begin by extending in Theorems 1 and 2 the classical inequalities of Paley ([20,
Ch. XII, Th. 7.8], [8, p. 104], [16, p. 170]) and Paley-Kahane-Khintchine ([20, Ch. V,
Th. 8.20], [16, p. 172]) to the polydisk.

THEOREM 1. (Paley’s theorem for the polydisk)
Let a holomorphic function

K
f@ =" an.xz 2, ze U,
keZ",

be of Hardy space H'. Then for any lacunary sequences {mj,kj},‘;ozl, j=12,...,n

1/2
2) < Clf (1.1)

( E ‘ann‘kl Pk

keN"
where the constant C > 0 is independent of f.
THEOREM 2. (Paley-Kahane-Khintchine inequalities for the polydisk)

Let {mj,k/,}f_l, j=1,2,...,n be arbitrary lacunary sequences and f(z) be a
=
holomorphic function in U" given by a convergent lacunary series

J@@)= Z 2y 2 ze U"

keN"
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Then for any p, 0 < p < oo, f is in Hardy space H” if and only if {a;} € €>. Moreover,
the corresponding norms are equivalent:

Cillfllar < (j{:|ahnkn

keNn

12
2) < Gl f g, (1.2)

where the constants Cy, Cy > 0 are independent of f.

Theorem 2 asserts in fact that if a lacunary series is in some Hardy space, then it is in
all Hardy spaces on the polydisk.

In the next two theorems we characterize lacunary series in the weighted spaces
H(p, a) and Hy(p, a) of Hardy—Bloch type.

THEOREM 3. Let {mj,k,,};il, j=1,2,...,n be arbitrary lacunary sequences, & =
=
(@1,...,an), aj > 0, and f(z) be a holomorphic function in U" given by a convergent
lacunary series
o oy Mk Mok n
f(z)= Z eyl My Pz ez ze U".

keNn

Then the following statements are equivalent:

(@) f(2) € H(oo, a);

(b) f(z)e H(p, @) for some p, 0 <p < oo
(c) f(z) e H(p,a) for all p, 0 <p<oo;
(d)  A{akkenr € €.

Also, corresponding norms are equivalent.

The next assertion is a “little oh” version of Theorem 3.

oo

THEOREM 4. Let {m;, } Y
ap, ..., 0y, ai > 0, and f(2) be a holomorphic function in U" given by a convergent
'j P 8 Y g
lacunary series

j=1,2,...,n be arbitrary lacunary sequences, a =

_ o «, My iy my, k, n
fl2)= E Aok, My gy Iy 2y ez ze U".
keNn

the following statements are equivalent:

(@) f(2) € Hy(oo, @);

(b) f(z) € Hy(p, @) for some pwith 0 <p < o0;
(c) f(z) € Hy(p, o) forall pwith 0<p < oo
(d) kh—I}go Ay, =0 foreach jell,n].

Finally, as an application, we establish in Theorem 5 sharp estimates for the mean
growth in the weighted spaces /( p, o), h( p, log(e)). In particular, in (1.5)—(1.6) below
we generalize and improve the well-known inequality of Clunie and MacGregor [7]
and Makarov [15], and also another inequality of Girela and Pelaez [12]. For all the
inequalities we give quick and simple proofs.
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Below we will write T : X — Y if T is a bounded operator mapping X to Y, i.e.

ITflly = Clifllx Vf € X.

THEOREM 5. If'o; > 0(1 < j < n), then the following relations hold:

() D :h(p,a) — h(p,log(1/p)), 0<p=<2,
(if) D™ h(p, ) —> h(p,log(1/2)), 2 <p < oo,
(iily D% :h(p,a) — h(co, 1/p), 0<p< oo,
(iv) D™ : h(oco, ) —> h(p,log(1/2)), 0<p< oo,

(v) D™ : h(oo, a) —> h(oo, log(1)).

(1.3)
(1.4)
(1.5)
(1.6)
(1.7)

All the relations (1.3)—(1.7) are best possible in the sense that for every relation D™ :

X —> Y there exists a function [ € h(U") such that | D~%f |y =~ | f|lx.

REMARK 1. In the particular case n =1, « = 1 and ordinary derivatives of
holomorphic functions corresponding results are known: for the relation (1.3) see
[12, p. 461]; for the relation (1.4) see [11, Th. 1.1]; for (1.5) see [12, p. 467] (p > 1/2);

for (1.6) see [7, p. 364] and [15, p. 374]; for (1.7) see, e.g., [12, p. 460].

2. Notation and preliminaries. We will use the conventional multi-index notation:
18 =&, ..o ), dr=dry - dry, (1 = [E])* = 1_[7:1(1 - |§-j|)a,~’ [(a) = l_[;?:l 1-‘(Olj)
forceC,rel", a=(a,...,a,). Let Z",N", 7", denote the sets of all n-tuples of
integers, positive integers, nonnegative integers, respectively. Throughout the paper, the
letters C(o, B, X, . ..), C, etc. stand for positive constants possibly different at different
places and depending only on the parameters indicated. For 4, B > 0, the notation
A ~ B denotes the two-sided estimate ¢;4 < B < ¢, 4 with some inessential positive
constants ¢; and ¢, independent of the variable involved. The symbol dn,, means the
Lebesgue measure on the polydisk U” normalized so that m,,(U") = 1. For a function
f(2)=f@¢),rel", ¢ eT", given on U", we will use integro-differential operators of
two types: Riemann—Liouville fractional operators D* and D%, and also Hadamard’s

operator F* with respect to the variable r € 1":

I,C( 8 m
D™f(2) = / (=) "fm2dn, D[ =(=) D" (),
F((X) n 31’
D=f(rg) =r*D™f(rg),  Df(rg) = D f(ro)},
P = o | I <1og 1 )ajlf( \d
z)= — z)dn,
‘ P@) Jrm | nj S
8 m
P10 =(507) 100 IO =FOF ),
where (%)m = (airl)"” -~~(air”)m", m=(my,....my) €, a=(ay...,a,), o>
0,mj—1 <oy <mj(l <j<n). It is easily seen that if f is n-harmonic (or
holomorphic), then so are D*f, F*f foranya = (1, ..., oy), ; € R, and the following
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inversion formulas hold

DD () =),  FF S ()= (2). 2.1

It is evident from the definition that F*f = FR TR ]’;‘;"f, forany o = (a1, ..., ay),
where ]-'f;’ means the same operator acting in direction r; only. There is an equivalent
definition for F* suitable only for n-harmonic functions. For every function /" € A(U")
having a series expansion ]f'(z) = yep axr™e®? | where 1kl = r‘lklI sl kg =
k161 + - - - + k,,0,, we can write

Fofe) =Y []a + kD a e

kez" j=1
LEMMA 1. If o; > 0(1 <j <n),0 < p <2, then for all u € h(U")
1/p
iDeuy = ([ @ = eran,e) 22)
Un
The one variable version of (2.2) is known and can be deduced from [9, Th. 2]
and the fact that harmonic conjugation is bounded in Bergman spaces consisting of

harmonic functions in the unit disk, see [10]. The inequality (2.2) can be proved by an
iteration of that in one variable.

LEMMA 2. If a; > 0(1 <j <n),2 < p < o0, then for all u € h(U")

12
1D~ %ul < C ( / (1= M (u; r)dr) . (2.3)
In
Proof. A modification of the Littlewood-Paley type inequality ([5], [6]) gives

1Dl = Cp. )| |

o
= DUl 2y ‘ a)

for all u € A(U"). An application of Minkowski’s inequality immediately yields

ID~ullr < C(py o m)| (1 =1

L@ pagary1-n)

which coincides with (2.3). |

3. Proofs of Theorems 1-4. In the proofs of Theorems 1 and 2 we will use some
arguments of Pavlovic [16, Sec. 11] together with Littlewood-Paley type inequalities
obtained by the author in [5, 6].

Without loss of generality we may assume that n = 2 in proofs below.

Proof of Theorem 1. According to a Littlewood—Paley type inequality (see [5], [6])

H la—nFf

‘me <Clflw  forany O<p<oo. (3.1

L(dr/(1=1))
Assuming 0 < p < 2 we can apply Minkowski’s inequality to (3.1) and get

(1= 1) My(Ff ) 2y —ry < CIf o (3.2)
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For two lacunary sequences {mj,k/.},til, j =1, 2 there exist Aj, A, > 1 such that
=

mj
Mzkj for all ki=12,..., J=12
Mk

Choosing two strictly increasing sequences

1 1
r],klzl__klv r2,k2=1_7, k15k2=1725"~7
1 2

and p = 1 in (3.2), we can estimate
1,1
W= [ [ = indnar,
0 Jo

-y Y

ki=lky=1""1k

Lk +1

72.ky+1
/ (1 —r) MY(F'f; r)dr drs. (3.3)
2,ky

Consider the intervals I,g) = [Alf‘, )»/f‘“), I,g) = [)»12‘2, )»/2“2“), ki,kp=1,2,.... Each
interval 7, ,g ) contains no more than one number from {mj«,}. We may assume that each
interval I,g) contains just one such number, namely )»;(/ <mjy, < )»f’“, kieN, j=

1, 2. We can now estimate the Taylor coefficients of the series

[o elNe o}

flf(zla 22) = Z Z(l +k1)(1 +k2)ak|k3211€12§2-

k1=0 k=0

By Cauchy’s integral formula

(1 4+ &) + ko)l ag i, | < M(F'fir1,12), ki,kp=0,1,2,....

k[ kz
I
So, we can continue (3.3)

Tk +1 2. ky+1
/ (1 —r) M}(F'f; r)drydr,
2.ky

ILky

TLki+1 fT2kp+1

2
> [ + &) a1 (1= r)(1 =r) 5 drydr.  (3.4)
] 1K2 1 2

j=l Lk 12.ky

The inner integrals can be estimated as follows (j = 1, 2)

fj-kj+1(1 —r) rzkj dr; > (1—r, ) 2k o
7T j= Jiki+1 ’j_k/.(’],k/+1 rj,k,’)
l‘/',/(/.

2k;
(o),
N BN | Tk
U Al
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By taking k; = mjx, > 1, k; = 1,2, ..., we conclude that

Tjkj+1 2mjv,\./. 1
/ (l—rj)rj drjo()L/)rnT

ik; Jokj
Thus,
Tk +1 2,k +1
[ [ a=nasEanr,
I'l.ky 2.ky
2
2 C(Ap, A2) 2
2 l_[(l + mj,kj)z ‘a’ﬂ],klmlkz | ﬁ Z C()“19 )"2)|am1.klmz.k2 | (3‘5)
j:] ml,k[ mz,kz
A combination of inequalities (3.3)—(3.5) completes the proof of Theorem 1. O

Proof of Theorem 2. We distinguish three cases.

Case 1 <p <2. It is obvious that ||f|lgr < IIfllzz = ll{ax}ll;z. On the other side,
the converse inequality [{ax}ll < Clfllm < Cllfllg» follows immediately from
Theorem 1.

Case 0 <p < 1. Again the inequality ||fllm < |Iflm = | {ak}”g2 is obvious. For
proving the converse inequality, assume that f(z) is continuous in a neighborhood
of the closure of U”". Then, by the Cauchy-Schwarz inequality,

If |1 = sup /T VW) rw)| P dma(w) < LI 1022,

rel?

Since by the previous case || f ||z < Clf a1,

2 2—p)/2
Il < CUAIR AN

It follows that || f|lgr > Clf gt > Clf gz = Cll{ax}lle2. For arbitrary function f €
H(U") we apply the inequality (1.2) to the dilated function f,(z) = f(pz), p € I?, and
then the result follows by letting p;, o — 1.

Case 2 < p < oo. The inequality |[{ax}ll2 < ||f]la» is clear. So it remains to prove the
converse inequality. Consider the identity operator (If )(z) = f(z). If g = p/(p — 1) is the
conjugate index of p, then 1 < g < 2 < p < oo and by the first case || If ||z < C|f |l 9.
In view of the self-conjugacy of the identity operator, we finally get || fllgr = | If | gr <

Cllf W e O

Proof of Theorem 4. The implication (a) = (b) is obvious because of the elementary
inclusion H(oco, o) C H(p, @).

The implication (b) = (c) follows from Theorem 2 which says that M,(f;r) ~
My(f;r)foranys, 0 < s < o0.

For proving the implication (¢) = (d), let f(z) € Ho(p, «) for any p, 0 < p < oc.
In particular, (1 — r)*M,(f;r1,2) = o(1)asr; — 1~ or r; — 17. By Cauchy’s integral

https://doi.org/10.1017/5001708950700359X Published online by Cambridge University Press


https://doi.org/10.1017/S001708950700359X

352 K. L. AVETISYAN

/ / S, ) dods
(27-”) [&1l=r1 Y1Gl=r2 1+m”cl Itz

formula

o a
|, 1Y 7, =

2
(1= rp) (1 = r)2M(f;r1, 12)
= Mk mule(f }’1,}’2)— o Lk muz
ry (I =rp)a(d =r)*2r ',

for any r=(ri,r2) € I* and ki, ky =1,2,.... Taking r;=1—1/mj, j=1,2, we
conclude that

1 —M 1 —M2 iy
|ak1k2| E (1 - ) <1 - >
m1’kl m2,k2
I \* I \* 1 1
(o) (o) - 1t o
mi .k, ma k, Mk, ma k,

as k; — oo or ky — oo.
We now turn to the proof of the implication (d) = (a). Let ax,x, = o(1) ask; — oo
or k; — oo. Given ¢ > 0 there exists a number k? € N such that

|k, | < € for all ki > k? and fixed ks.

Applying Hadamard’s operator F!~¢ to the function f(z) we get

oo 2
1— 1— o My M2k
F 7 %f(z1,22) = E n(l—l—mj,kj) "/mjfk Al 2y 2y 0
ki,kra=1 j=1

which implies that

o0 o0
— mi k my i
|F1=f 1 2)| < Clan,an) D0 | D kil mue ry ™ | mog, ry
k=1 \ki=1

Next, we break the inner sum into two sums

00 /C(l) [ee]

mi i mik
Z g e | Mgy 7y = Z + Z |y | iy Ty (3.6)
k=1 k=1 k=k%+1

For the finite sum in (3.6) we can find r? < 1 such that
K
A =r) Ytk mi )™ <& forall  r el ). (3.7)

k=1

The last sum in (3.6) can be estimated as follows. It is easily seen that

A
My 41 < —l(ml,/q-H —my i)
=
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Consequently

Mk +1 Al 1+my k 24my g
myjgpr; < [ ! !
M —1

ml,k1+l]

" +7 Tt

It follows that

o0 o0
Z M1 kg Al
|ak1k2|m1,k1 rl < ‘9)\’ o 1
ki=kd+1 ! k=1

1
A=¢ C(M)Trl. (3.8)

Combining (3.6)—(3.8), we obtain that for all r, € ({, 1)
(1 = )Mo (F'f 11, 12) < & Clay, aa, A1) Z Mo gy 12
kz:l
Hence
(1 —r)Moo(F7fsr,m) =0(1) as  r— 1.
One can show in the same manner that
(1 —r)Mo(Ffsr,m) =0(1) as  rn—>1.

Thus, F'=%f € Hy(co, 1). Since Hadamard’s operator is invertible, we can now
twice apply the rule of fractional integro-differentiation in mixed norm spaces (see
[10, Th. 6]) in each variable r; and r,, and obtain

f(2) = F F17f(2) € Ho(oo, 1+ (a — 1)) = Ho(00, ).

This completes proof of Theorem 4. O

Theorem 3 can be proved more easily and so we omit the details.

4. Proof of Theorem 5. Proof of (i). Let u € h(p, a) for some 0 < p <2 and
o > 0. We first apply Lemma 1 to the dilated function u,(z) = u(pz), p € I",

1/p
M, (D™ %u; pr) < C </ a- |Z|)ap_1|u(,02)|de2n(Z)> , o, rel.
U’I
Fatou’s lemma and further estimation yield

MYD“u; p) < C | (1 =" Mp(u; prdr
IH

< Cllull, A=n"", Clluly ﬁlog ‘
P o (0= pry el VT,
for any p € I". Thus,
ID™*ullp,10g(1/p) < Cllullp.a 0<p=2 (4.1)
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The inequality (4.1) is sharp because of the example

@ =]] (1_; ze U 4.2)

Z: a+1/p’°
J=1 i)

It is easy to compute that

1/p
e

A=r*My(fi;~1,  MyD*fi:r)~ |]]log -
Jj=1 J

Proof of (ii). Let u € h(p, o) for some 2 < p < oo and «; > 0. Lemma 2, together
with Fatou’s lemma, yields

MDD u;p) < C | (1 = r)** "M (u; prydr

Ill
(1 _ ,,)Za—l 5 n e
< Clully, | ——=;dr < Clul,, | [log
P S (1= pry> r E 1—p;
for any p € I". Thus,
D™ ullp,10801/2) < Cllttllpas 2<p<oo. 4.3)

The function given by the lacunary series

flz)= Y 2k gmke 2020 e U, (4.4)
keZ",

provides an example showing the sharpness of the inequality (4.3). Indeed, by

Theorem 2
172 n
M(f: 1) ~ 2ak 2441 ~_ T
o) | D2 it § e )
ke7 j=1
whenever r € I". The last estimate can be found for instance in [8, p. 66]. On the other
hand,
1 k k
D = i 2 ([t an)
['(a) ke% ”
+
and
. 1/2
—o . ~ e
M, (D~fy;1) ~ E log +— ; (4.5)
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Proof of (iii). Let u € h(p, a) for some 0 < p < oo and «; > 0. Then

Maoo(Du:) < m f (1 = 1 Moot 1)
(1—mnye!

= ”u”oo a-‘rl/Pl—w( )/ (1 _n;)a+1/17dn

< C(a, p, n)||u||oo,a+1/pm.

Consequently D™ ulloo,1/p < Clltlloo,a+1/p- According to the continuous inclusion
h(p, @) C h(oo, a + 1/p), see [4, p. 733], we deduce that

ID™*ullos,1/p < Cliullpe-

The inequality is sharp because of example (4.2), which can easily be checked.
Proof of (iv). Let u € h(oo, a) for some 0 < p < oo and «; > 0. By (1.4) and the
increasing property of M), in p,

(V2 u”p log(1/2) = (2 u”max 2.p}.]og(1/2) = C”u”max {2.p}, C”u”ooa

The inequality is sharp because of example (4.4). Indeed, estimating as in the proof of
(i1), we obtain (4.5) and

Moo(f2;1) < Z 2ok 2 A

ke’

r

1=

rel.

Hence, D™/ Ip,10g(1/2) = I f2ll00,a-
Proof of (v). Let u(z) € h(oco, «) be any function. Then

Maoo(Du;) < ﬁ [ (= Mt
SR Gl
N Rl gy

=

dn < G, ||u||m1"[log1

r;
Jj=1 J

Thus, DUl 10e1) < Clltllc,o. The inequality is sharp because of the example
f3(2) =1/(1 = 2%, a; > 0. This completes the proof of Theorem 5. O
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