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1. Introduction. Though much effort has been expended in studying the 
mean values of arithmetic functions there is one case which has not yielded a 
great deal either to elementary or analytic methods. The case to which we 
refer is that of estimating 

(1.1) *(*) = £ * ( » ) , 

where <j)(n) is the Euler function (i.e. <j>(n) = the number of integers less than 
n which are relatively prime tow). If we define the error function R(x) via 

(1.2) R(x) = *(*) - -2x\ 
IT 

the question reduces to studying the behaviour of R(x). The first result is 
due to Dirichlet [1], who proved that 

(1.3) R(x) = 0(x5) 

for some 5,1 < ô < 2. This was improved by Mertens [2] to 

(1.4) R(x) = 0(x log x). 

The proofs in both cases are very short and simple and may be found in various 
textbooks [1], [3]. It is therefore of particular interest that to date there has 
been no improvement in the estimate for R(x) beyond (1.4). 

In a different direction Pillai and Chowla [4] have proved that 

(1.5) R(x) y£ o{x log log log x), 
and 

(1.6) Z#(«)~JU 2 . 

Sylvester, [5], [6], conjectured among other things that for all integers 
x > 0, R(x) > 0. This was disproved by M. L. N. Sarma [7], by the simple 
expedient of showing that R(S20) < 0. 

In this paper we propose to prove that R(x) changes sign for infinitely many 
integers x. More precisely, there exists a positive constant c and infinitely 
many integers x such that 

(1.7) R(x) > c x log log log log x, 

and infinitely many integers x such that 
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(1 .8) R(x) < — C X log log log log X. 

2. The evaluation of certain sums. The proofs of the results mentioned 
in the introduction are obtained by first treating the error function 

n^x n T2 

The relationship between H(x) and R(x) is given by 

LEMMA 2.1. For integral x, 

(2.1) £ H(n) =*-x+(x+l) H(x) - R(x). 
n<x K 

Proof. 

n^x n^x\n^.x ™ T ) 

= £ ( * - » + 1 ) * ^ _1 X ( X + 1) 
m^x fl IT2 

= (x + 1) i%x + H(x)\ - Z *(») - - , * (* + 1) 

= - . * + ( * + 1) H(x) - R(x). 

We will need estimates for certain sums which we now provide. 

LEMMA 2.2. 

(2-2) ,S5H@ = 0(1)' 
(2.3) £ fl@-0<«), 

(2.4) £ *(f) = 0(*). 

Proof. (2.3) follows immediately from the fact that H(x) =0(logx) . 
Next we consider (2.2) : 

x + 0(1) = I 1 = I ^ E 4>(d) 
n^. x n^.x n d\n 

dd^tx ddf d^xd\ir2 d \d 
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which yields (2.2). Similarly, 

% + o(X) = I » = E I m 
" n^.x n^.x d\n 

d^x d'^x\d rf<* {K & V f 

whence (2.4) follows. 

THEOREM 2.1. 

(2.5) E # ( » ) = -2 x log x + O(x). 

Proof. From Lemma 2.1 we obtain for all x > 0 that 

(2.6) £ ff(n) = - 2 x + x H{x) - R(x) + 0(tog x). 

Replacing x by x/m in (2.5) and summing over all integral m ^ x we have 

E £ #(«) = ^ E - + x E - ^ ( - V E ^ f - ) + 0(iogx). 

Then, taking into account the estimates of Lemma 2.2 we obtain (2.5). 
Actually, Pillai and Chowla [4] have proved that 

(2.7) E # ( » ) ~ - , * , 

and we could use (2.7) instead of (2.5) in our development. However, the 
proof of (2.7) requires the prime number theorem, and we therefore introduce 
(2.5) for the sake of simplicity. 

3. The average of H(n) over arithmetic progressions. The main part of 
our proof consists of evaluating certain averages of H(n) over arithmetic 
progressions. We begin with 

LEMMA 3.1. 

(3.1) Z ^ C ^ ) 2 + 0 ( l o g 2 ) , 

mmfi(A) 

where 

C = C{A) -£('-?)• 
Proof. 

y <t>{m) = _ n(d) 
ro<z W dd'=0(A) d 

m=p(A) dd'^z 

(d,A)\fi 
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= j Z r L ^ + 0(log2) 

^ . r|(A,/S) T (/, A ) = l * 

* E ^ + 0(logS). 
^ rl(A,/3) 7" 

THEOREM 3.1. Far 4 , J5 any integers such that A > B ^ 0 

(3.2) 

where 

E H(An - B) = •£ E ff(») + Ax + 0(log x) 
w<* ^ n^. Ax 

(3.3) M(il,B) = l 

A = A(i4, B) = M(4, B) - 3/TT2, 

_6 B _ 1 004)04) _ y ^ ( ^ , c ) 
T2 2 A /Ti (A,c) 

I MAMA) 
\2 A 

for B j* 0; 

for B = 0. 

Proof. It clearly suffices to prove (3.2) for x integral, and so we assume x 
an integer. We have 

E #04* - B) = E £ ^ - ^ E (An - B) 
n<x n<x m<An—B "* " n<x 

= ^ E 

(3.4) 

(j>{m) T 1 - L (Ax2+Ax-2Bx) 

m^Ax-B m { L ^ J / m^Ax 

<t>(m) 

B m 
m = -B(A) 

- ^r (AX2+ AX - 2BX). 

Considering the first sum of (3.4) we have 

^ 0(w)/ [m+B~]\ A-l 

m^Ax-B W> 

= {* E 

= l{{Ax~ 

| x_[^]}= x E m-z E #(m) m + 5 —a 
^ A * _ B W a = 0 m < A * - B W 

W+S=a(A) 

B m 

) A-l 

; a=0 

(B-a) - 0(w) 
^4 m < A K - 5 W 

m + £ = a ( A ) 

5 + 1) E ^ - L <t>(m)-^-2[(Ax-By+(Ax-B)]} 
v<Ax-B M m<Ax-B 
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+ B - 1 ^(w) +
 A £ (g-Jg) 0(w) 

•4 m^Ax-B m a=0 -4 m<A*-B W 
(3.5) m+B-a(A) 

3 [Q4x-£)2+ (Ax-B)] 
7T2 4 

= j E H W + ^ ^ . + E 1 ^ E ^ + O(logx). 
^ »<A*-£ * 7T a = = 0 ^ m<A*-B m 

m+B=a{A) 

Next, using Lemma 3.1, we note that 

(3.6) L 1 ( - ^ E ^ - 7 l ( « - i D C ( A ) E ^- ) +0( logx) . 
m+B=a(A) 

On the other hand, 

a=0 d|(A, a-B) <* c=-B d\(A, c) <* 

= "E_1
C E ^ + E V ^ ) E ^ 

c=0 d|(A,c) # c = A - £ d\{A,c) a 

= Z c z ^ ) _ 4 E E # 
c=0 d|(A,c) » c = A - £ d\(A,c) <* 

c = 0 dl(A.c) # c = l d|(A,c) # 

For each term of (3.7) we have in turn 

A£c E ^ = z # E * 
c=0 <*!(A,c) » rf|A a l < c < A - l 

csO(d) 

-&*>{(4)*-(4)} 

and 

(3.9) E E * g > - £ * £ $ , 
where this last sum is 0 if B = 0. 

Combining (3.6), (3.7), (3.8), and (3.9) we get 

( 3 ' 1 0 ) f=o\~A-J m<£,-B-ir = X \ - 2 - £ -3T " 2—X— 
w+5=a(A) 

: t l (4,c)J _ C ( ^ ) L ^ l ^ V + 0(logx). 
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Finally, inserting this in (3.5), noting that C(A) E ^ r = "~v a n d combining 
d\A d2 7T2' 

with (3.4) and Lemma 3.1 we obtain 

E H(An-B) = i E # ( » ) + - 2 ^4*2 - - 2 * 

T 2 2 4 c t i (A,c) 

+ C(A^X*(A^ _ <L [Ax*+Ax-2Bx]+0(log x) 
(A,B) 7T2 

= ] E H(n) + Ax + O(log x). 

THEOREM 3.2. .For ^4, £ aw^ integers, A > B ^ 0, 

(3.12) £ JJ(4n - B) = M(A,B) x log x + 0(x). 
mn^x 

Proof. Replacing x by x/m in (3.2) and summing over all integers m ^ x, 
we have 

E H(An-B) = ^ E E # ( » ) + Ax log x + 0(x). 

Since 

we get 

E E #(») = o ( E l ) = 0(x), 
x <m^.Ax n^.Ax\m m^.Ax 

(3.13) E H{An-B) = \ E H(») + A x log * + 0{x), 

so that via (2.5) this reduces to (3.12). 
We note in passing that if we combine (3.2) with the deeper result (2.7) 

we have 

THEOREM 3.3. For A, B any integers, A > B ^ 0, 

(3.14) E H{An - B) — M(A} B)x. 

4. On the changes of sign of H(x). Merely to show that H(x) changes 
sign infinitely often is easily deduced from (3.12). We note first that if 

K 

A = AK = II pi, and K is sufficiently large 
* = i 

Bf **(££> = *£ *£) = «. {B - 1) + ff(B - 1). 
C = l (A,c) c=1 c 
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Thus we obtain easily for B ^ 0, and fixed, that 

Since 

l i m H m ^ Ç H{A.n-B)=^-H(B-l). 

6 „,„ ,, <f,(B) 
-t - H(B - 1) = ^ - ff(B), 
7T' 5 

this mav be written as 

(4.1) lim lim — — £ H(AKn - B) = ^ - H(B). 
K->CO *->oo X l o g X tnn^.x B 

From (2.5) it follows that H(n) is positive for infinitely many n, and we 
need only show that we cannot have H(n) ^ 0 for all sufficiently large n. 
For if this were so, for all sufficiently large B 

Hm Km _ ! _ £ H(AKn - B) ^ 0, 
/c-*oo K-+oo X l o g X mn^x 

so that we would have 

*(B) 
B 

> H(B) Ï 0. 

For e > 0, small, choosing a large odd number J5 such that < e, we see 
I? 

that 

lf<2» + 1) - IT<2» - ° + *£-±i> ^ . - ^ + J < 0 , 

which would provide a contradiction. 
The above argument can be improved upon if we use the analogue of (1.5) 

for H{x) in conjunction with (4.1). This analogue, also proved by Pillai and 
Chowla, asserts that 

(4.2) H{x) j* o(\og log log x). 

Thus their exist infinitely many integral x such that 

(4.3) | H(x) | > clog log log x, 

where k is some positive constant. From (4.3) we note that given any large 
number N ^ 6 we can find an integer B such that |i?(J3)| > N. We then 
examine two cases: 

Case 1. H(B) > N. 

In this case we obtain from (4.1) that 
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Hm Jim — : — £ H(AKn - B) < - N + 1; 
«-•oo *->oo X l o g X mn^x 

and for all sufficiently large k, say k ^ ko, we have 

lim — — Z H{AKn - B) < - N + 2. 
x-»oo X l o g X mn^x 

Then for each such & there exists an xo = Xo(k) such that, for all x ^ Xo, 

(4.4) £ ff(il,» - B) < ( - iV + 3) x log x; 

from (4.4) we see that for each k ^ ko we obtain an w* = w*(&) such that 

H(Ara* - B) < - N + 3 ^ - iN. 

Case 2. H(B) < - N. 

In this case we proceed exactly as in Case (1), obtaining from (4.1) that 

lim lim — — £ H{Atn - B) > N. 
K—>CQ x—•oo X l o g X m n ^ x 

This in turn yields a k0 such that for each k ^ k0 there is an n* = n*(k) such 
that 

H(A€n* - $) % hN. 

From the above we see that H{x) assumes arbitrarily large positive and 
negative values. We may restate this and its implication for R(x) as follows. 

THEOREM 4.1. ForJntegral x, we have 

(4.5) lim-*H(£) = °° and lim H{x) = — oo, 

— R{x) R(x) 
(4.6) • lim •- = oo and lim = — co. 

t* "~~~'\ X • X 

ProofÏ /(4.5) is clear from the above remarks. From (2.1) and (2.7) (or 
the weaker estimate £ H{n) = 0(x)), we obtain 

n^. x 

(4.7) R(x) = xH{x) +0(x), 

and (4.6) then follows from (4.5). 

5. More precise results. By refining some of our estimates the arguments 
used above may be made to yield the still more precise result that for some 
c > 0, there exist infinitely many integers x such that 

(5.1) H{x) > c log log log log x, 

and infinitely many such that 

(5.2) H(x) < — c log log log log x. 
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We shall now give a sketch of the proof of this. 
We need to obtain the dependence of many of the estimates obtained above 

on the modulus A. To begin with, a glance at the proof of Lemma 3.1 yields 

^ £ ^ r = f s # * + <>( E .'«log-2). 

Using (5.3) instead of (3.1) in the proof of Theorem 3.1 we obtain for integral x> 

(5.4) £ H(An - B) = -J £ 4(n) + A* + 0(2"(A) log 4*) , 

where v(A) = the number of distinct prime factors of A. 
Combining (5.4) and (2.7) gives 

(5.5) L H(An - B) = M(A,B)x + 0(2vW log Ax) + o(x), 

where both the 0 and o are uniform in A. Then taking x = A = II £ and 

noting that then 1 — - < C(A) < 1 — = (ci > 0, c2 > 0), we obtain (for all 

sufficiently large B) that there is a constant Z, independent of both A and £ , 
such that 

(5.6) -. £ H(An - B)+ H(B) £ I. 

The desired result now follows from (5.6). We know that for infinitely 
many B, 

\H(B)\ > clog log log B. 

There are then, two cases: 

Case (a). H(B) > k log log log B. 

In this case (5.6) implies that there exists an n* <C A such that 

H(An* - B) ^ l - clog log log B 

^ - \c log log log B 

^ — c\ log log log log (An* — B), 

for large B, since for A = U p, log A ^ B. 

Case (b). H(B) < - c log log log B. 

Then as in Case (a), (5.6) implies that there exists an n* <C A such that 

H(An* - B) % c log log log B - I 

^ \c log log log B 

^ C\ log log log log (An* — B). 
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Thus we see that there exist infinitely many integers x such that each of the 
inequalities (5.1), (5.2) hold. Combining this information with (4.7) we obtain 
the analogous result for the inequalities (1.7) and (1.8). 

University of Aberdeen 
and 
New York University 

Editor's Note: References for this paper were not available at time of going 
to press. They will appear in the following number of the Journal. 

https://doi.org/10.4153/CJM-1951-043-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1951-043-3


A CERTAIN ERROR FUNCTION 385 

REFERENCES 

1. P. Bachmann, Dit Analytische Zahlentheorie, Zweiter Teil (Leipzig, 1921). 
2. F . Mertens, tjber einige asymptotische Gesetze der Zahlentheorie, Journal fur die r.u.a. 

Math., vol. 77 (1874), 289. 
3. G. H. Hardy and E. M. Wright, Theory of Numbers (Oxford, 1938), p. 266. 
4. S. S. Pillai and S. D. Chowla, On the error term in some asymptotic formulae in the theory 

of numbers (I), Journal of the London Math. Society, vol. 5 (1930), 95-101. 
5. J. J. Sylvester, Sur le nombre de fractions ordinaires inégales qu'on peut exprimer en se 

servant de chiffres qui n'excèdent pas un nombre donné, Collected Works, vol. IV (Cambridge, 
1912), p. 84. 

6. , On the number of fractions contained in any Farey scries of which the limiting 
number is given, Collected Works, vol. IV, pp. 101-109. 

7. M. L. N. Sarma, On the error term in a certain sum, Proc. Indian Academy of Sciences, 
Section A, vol. 3 (1931), 338. 

Editor's Note: These references for the preceding paper were not available at the time the 
last issue of the Journal went to press. 

https://doi.org/10.4153/CJM-1951-043-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1951-043-3

