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A new upper bound for the asymptotic
dimension of RACGs
Panagiotis Tselekidis

Abstract. Let W� be the right-angled Coxeter group with defining graph �. We show that the
asymptotic dimension of W� is smaller than or equal to dimCC(�), the clique-connected dimension
of the graph. We generalize this result to graph products of finite groups.

1 Introduction

Coxeter groups touch upon a number of areas of mathematics, such as representa-
tion theory, combinatorics, topology, and geometry. They are often considered as a
playground for many open problems in geometric group theory.

It is known by an isometric embedding theorem of Januszkiewicz (see [10])
that Coxeter groups have finite asymptotic dimension. In particular, Januszkiewicz’s
theorem shows that for any Coxeter group W� with defining graph �, we have
the following upper bound: asdimW� ≤ ♯V(�). A lower bound for the asymptotic
dimension of Coxeter groups was given by Dranishnikov in [6], vcd(W�) ≤ asdimW�.

Right-angled Coxeter groups (RACGs) are the simplest examples of Coxeter
groups; in these, the only relations between distinct generators are commuting
relations. In other words, RACGs are the Coxeter groups defined by RAAGs (Right-
angled Artin groups). Dranishnikov proved (see [5]) that the asymptotic dimension
of RACGs is bounded from above by the dimension of their Davis complex.

Question Is possible to determine the asymptotic dimension of a RACG from its
defining graph?

In many cases, Dranishnikov’s bound is far from being optimal. For example, if
the defining graph � is a clique with n vertices, then by Dranishnikov’s result, we
have that asdimW� ≤ n, however, asdimW� = 0. The aim of this paper is to provide a
new upper bound for the asymptotic dimension of RACGs treating some of the cases
in which Dranishnikov’s bound fails to be optimal. The main result of this paper and
its corollaries make some progress toward the previous question.

We prove the following theorem.
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Theorem 1.1 Let W� be the RACG with connected defining graph �. Then

asdimW� ≤ dimCC(�).

If � is not connected, then asdimW� ≤max{1, dimCC(�)}.

The clique-connected dimension of a finite graph, dimCC(�) (see Section 2.1), can
be described as an index showing how connected is the graph modulo cliques. For
example, if � is a clique, then dimCC(�) = 0. In the case of � being a clique, we have
that W� is finite, so asdimW� = dimCC(�). We will further show that if dimCC(�) ≤
2, then asdimW� = dimCC(�) (see Proposition 6.2).

Since there are cases where the dimension of the Davis complex Σ(W�) is smaller
than dimCC(�) and other cases where dimCC(�) < dimΣ(W�), we have as a corol-
lary in the following theorem.

Theorem 1.2 Let W� be the RACG with connected defining graph �. Then

asdimW� ≤min{dimCC(�), dimΣ(W�)}.

If � is not connected, then asdimW� ≤max{1, min{dimCC(�), dimΣ(W�)}}.

As a corollary of Theorem 1.1, we prove the following proposition.

Proposition 1.3 Let W� be the RACG with connected defining graph �. If dimCC(�) ≤
2, then asdimW� = dimCC(�).

Let � be a simplicial graph. We label every vertex v of the graph by a vertex
group Gv . The graph product GP(�, Gv)v∈V(�) is the free product of the vertex groups
modulo the relations x yx−1 y−1, where x ∈ Gv , y ∈ Gw , and v , w are connected by an
edge.

We generalize Theorem 1.1 to the following theorem.

Theorem 1.4 Let � be a finite connected simplicial graph along with a finite collection
of finite vertex groups. Then

asdimGP(�, Gv)v∈V(�) ≤ dimCC(�).

If � is not connected, then asdimGP(�, Gv)v∈V(�) ≤max{1, dimCC(�)}.

The paper is organized as follows: In Section 2, we start with some basic definitions
and some preliminary results that are used in the rest of the paper. Section 3 contains
some important lemmas, for example, we show that dimCC(∗) is “monotone” in
the following sense: if �′ is a full subgraph of �, then dimCC(�

′) ≤ dimCC(�). In
Section 4, we prove that the clique-connected dimension is increasing in some cases.
In Section 5, we prove the main theorems of the paper. Finally, in Section 6, we present
some corollaries of the main results.
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2 Preliminaries

The asymptotic dimension asdimX of a metric space X is defined as follows:
asdimX ≤ n if and only if for every R > 0, there exists a uniformly bounded covering
U of X such that the R-multiplicity of U is smaller than or equal to n + 1 (i.e., every
R-ball in X intersects at most n + 1 elements of U). There are many equivalent ways
to define the asymptotic dimension of a metric space. It turns out that the asymptotic
dimension of an infinite tree is 1 and the asymptotic dimension of En is n.

By finite simplicial labeled graph, we mean a finite simplicial graph � such that
every edge [a, b] is labeled by a natural number mab > 1. The Coxeter group associated
with � is the group W� given by the following presentation:

W� = ⟨V(�)∣a2 = e for all a ∈ V(�) and ab . . .
�

mab

= ba . . .
�

mab

when a, b

are connected by an edge ⟩.

A Coxeter group is called RACG if mab = 2 when a, b are connected by an edge.
We say a simplicial graph is complete or equivalently a clique if any two vertices are

connected by an edge. An n-clique is the complete graph on n vertices. We recall that
the full subgraph defined by a subset V of the vertices of a graph � is a subgraph of �

formed from V and from all of the edges that have both endpoints in the subset V. If
G is a subgraph of �, we denote by FS�(G) the full subgraph of � defined by V(G).
The simplicial closure of � is the flag complex SC(�) defined by �.

We recall the definition of a parabolic subgroup of a Coxeter group. Let � be a
finite simplicial labeled graph, and let W� be the Coxeter group associated with �.
Let X be a subset of V(�), we denote by �X the full subgraph of � formed from X,
and by GX the subgroup of W� generated by X (we see X as a subset of the natural
generating set of W�). We consider the graph �X as a labeled graph inheriting its
labeling from �. It is known that GX is a Coxeter group, it is actually equal to W�X ,
the Coxeter group associated with �X (see [7]). The subgroup GX =W�X is called
standard parabolic subgroup of W�.

The following theorem is proved by Dranishnikov in [5].

Theorem 2.1 For any finitely generated groups A and B with a common finitely
generated subgroup C, we have:

asdimA∗C B ≤max{asdimA, asdimB, asdimC + 1}.

The following theorem is a generalization of Theorem 2.1. It was proved by the
author in [13].

Theorem 2.2 Let (G, Y) be a finite graph of groups with vertex groups {Gv ∣ v ∈ Y 0}
and edge groups {Ge ∣ e ∈ Y 1

+}. Then the following inequality holds:

asdim π1(G, Y ,T) ≤maxv∈Y 0 ,e∈Y 1
+
{asdimGv , asdim Ge + 1}.

We also need a theorem for free products from [2] (see also [1]).
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Theorem 2.3 Let A, B be two finitely generated groups. Then

asdim A∗ B =max{asdimA, asdimB, 1}.

2.1 dimCC(∗)

Let � be a connected simplicial graph. We say that a finite subset S of V(�) is a vertex
cut of � if FS�(S) separates the graph (i.e., �/FS�(S) contains at least two connected
components) and no proper subset of S does that.

Definition 2.1 Let � be a simplicial graph, and let C� = {C1 , . . . , C i , . . .} be a
collection of distinct cliques of �. We say C� is a clique twin of � if the following
conditions are satisfied:

(i) Each C i is a maximal clique in �, i.e., there is no other clique in � containing
C i .

(ii) If C is a clique of �, then there is a clique in C� containing C.

We note that the last condition can be replaced by the following:
∪C i∈C�

SC(C i) = SC(�).
Observe that a clique twin of a graph � is actually a “covering” of � with maximal

cliques. We further observe, that if a clique twin exists, then it is equal to the set of the
maximal cliques of the graph.

Definition 2.2 Let � be a simplicial graph which has at least one clique twin C�. We
set

mC(�) =min{♯C�∣ where C� is a clique twin of �}.

Definition 2.3 Let � be a connected simplicial graph. We set

CC(�) =min{mC(FS�(S))∣ where S is a vertex cut of �}.

To treat the case when the set on the right-hand side is empty, we insist that
min{∅} = 0. The number CC(�) “measures” how connected is the graph � modulo
its cliques. If S is a vertex cut of � such that CC(�) = mC(FS�(S)), we say that S is a
minimal vertex cut of �.

Observe that we can generalize the previous definition to all simplicial graphs,
by setting CC(�) =min{CC(E) ∣ E is a component of �}. Finally, we can define
dimCC(∗).

Definition 2.4 Let � be a simplicial graph. We set

dimCC(�) = sup{CC(G)∣ where G is a full subgraph of �}.

The clique-connected dimension dimCC(�) “measures” how connected is the
graph � modulo its cliques by taking into account all the full subgraphs of �.
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3 Basic lemmas

Lemma 3.1 (Existence of clique twins) Let � be a finite simplicial graph. Then there
exists at least one clique twin of �.

Proof We use induction on the number of vertices of the graph. Obviously, the
lemma is true if the graph is just a vertex. We assume the lemma is true for any graph
with less than N + 1 vertices. Let � be a finite simplicial graph with N + 1 vertices.

If the graph is disconnected the lemma follows by the inductive hypothesis and the
fact that the clique twins of the components of the graph forms a clique twin of �.

So we assume that the graph is connected. We choose an arbitrary vertex say v and
we consider the graph �v = �/v. By inductive hypothesis, there exists a clique twin
C�v of �v . Since the graph is connected the link of v in � is non-empty (l k�(v) ≠ ∅).
We enumerate the vertices of the link, l k�(v) = {v1 , v2 , . . . , vk}. For every C in C�v ,
we set:

C = either C (if C ∪ v doesn’t define a clique of �), or the clique defined
by C and v (otherwise).

For every v i in l k�(v), we define:

Ci to be the collection of all maximal cliques in � containing both v and v i .

Observe then that the union C� = (∪iCi) ∪ {C∣C ∈ C�v} satisfies the conditions of
Definition 2.1, so it is a clique twin of �. ∎

We will see that every finite graph has a unique clique twin. The proof of the
previous lemma actually give us a description of how to construct the clique twin
of every graph.

Lemma 3.2 Let � be a connected finite simplicial graph. Then � is a clique if and only
if CC(�) = 0 = dimCC(�).

Proof We assume that � is a clique, then obviously, there is no vertex cut of �. So
by Definition 2.3 we have that CC(�) = 0.

We now prove the other direction, so we assume that CC(�) = 0. If � is not a
clique there exist two vertices a, b such that they are not connected by an edge, then
V(�)/{a, b} separate the graph. Obviously, then we may find a vertex cut S of �, so
by Lemma 3.1 CC(�) > 0. ∎

Lemma 3.3 (Uniqueness of clique twins) Let � be a simplicial graph. If � has a clique
twin, then it is unique.

Proof It follows from the observation that if a clique twin exists, then it is equal to
the set of the maximal cliques of the graph. ∎

Let � be a simplicial graph, and letC� be its clique twin. We note that, if no element
of C� is a vertex and every two distinct elements have at most one common vertex,
then the clique twin is a maximal-clique partition of � (see [12] for definition).
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Lemma 3.4 (Monotonicity of dimCC(∗)) Let � be a simplicial graph, and let G be a
full subgraph of �. Then

dimCC(G) ≤ dimCC(�).

Proof Since G is a full subgraph of � we have that every full subgraph of G is also
a full subgraph of �. The lemma follows by the definition of dimCC . ∎

If G is not full subgraph the previous lemma is not true. The reader may notice
some similarities between the proof of the following lemma and the paper [4].

Lemma 3.5 Let � be a connected simplicial graph such that CC(�) ≥ 2. Then
CC(G) ≤ 1, for every G, proper full subgraph of � if and only if � is a k-cycle (k ≥ 4).

Proof Suppose that CC(G) ≤ 1, for every G, proper full subgraph of �. Let S be a
vertex cut of � such that mC(FS�(S)) ≥ 2, and let CS = {C1 , . . . , Ck} be the clique
twin of FS�(S).

Let E1 , E2 be two of the components of �/FS�(S). Observe that there are vertices
v1 , v2 ∈ FS�(S) such that they are not connected by an edge in �. Obviously, they
belong to distinct cliques. We may assume that v1 ∈ C1/C2 and v2 ∈ C2/C1. We note
that for every s ∈ S and every component E i , there exists an edge connecting s with
E i (it follows from the fact that S is a vertex cut of the graph). Thus, there exist edge
paths p i ⊆ E i ∪ C1 ∪ C2 connecting v1 with v2 such that p i ∩ (C1 ∪ C2) = {v1 , v2}. We
may assume that these paths have the minimum possible length.

Observe that the length of these edge paths is at least two. Trivially, the union p1 ∪
p2 is k-cycle, where k ≥ 4.

It remains to show that p1 ∪ p2 is a full subgraph of �. Indeed, it follows from the
choice of v1 and v2, the fact that p1, p2 are of minimum length and that p1/(C1 ∪ C2),
p2/(C1 ∪ C2) belong to distinct components of �/FS�(S).

Obviously, CC(p1 ∪ p2) = 2. By the hypothesis of lemma, we conclude that
� = p1 ∪ p2.

We assume that � is a k-cycle (k ≥ 4). Let G be a proper full subgraph of �. Then
there is a vertex v of � such that G is a full subgraph of �/v. We observe that if we
remove a vertex from �, then the resulting graph �′ is a concatenation of edges.
Trivially, CC(�′) = 1 and CC(G) ≤ 1 for every G full subgraph of �′. ∎

4 An increasing property of dimCC(∗)

Lemma 3.4 will play a vital role to prove our main theorem but it is not enough
for a complete proof; we need something stronger. The main result of this paper
is an interesting increasing property of dimCC(∗). We will show that dimCC(G) <
dimCC(�), for some full subgraphs G of �.

Lemma 4.1 Let � be a finite simplicial graph, and let G be a full subgraph of �. Then
mC(G) ≤ mC(�).
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Proof By Lemma 3.3, there exists unique clique twins CG of G and C� of �. By
condition (ii) of definition of clique twins, we observe that for every CG ∈ CG , there
exists a C� ∈ C� containing CG . Since G is a full subgraph of �, this correspondence
is 1–1 meaning there are no two distinct cliques of CG contained in the same clique of
C�. Thus, mC(G) = ♯CG ≤ ♯C� = mC(�). ∎

Proposition 4.2 Let � be a finite simplicial graph. Then

CC(�) < mC(�).

Proof It is suffices to show the proposition for connected graphs. If � is a clique,
then the proposition holds. We assume that the graph is not a clique. We denote by
C� the unique clique twin of �.

Since � is connected, there exists at least two cliques of C� intersecting each other.
Let C1 be a clique of C� such that there exists another element of C� intersecting C1.
Let F be a subclique of C1 of maximal cardinality such that there exists C2 ∈ C� and
C1 ∩ C2 = F.

We set Cc
i = C i/F (i = 1, 2) and �′ = �/(Cc

1 ∪ Cc
2). Obviously, all of them are full

subgraphs of �.
Claim 1: �′ separates �.
If not, then there exists an edge e = [v1 , v2], where v i ∈ Cc

i . But then the clique F′ =
FS�(F ∪ v1) ⊆ C1 has strictly larger cardinality from F, and the clique C3 = FS�(F′ ∪
v2) intersects � on F′, which is a contradiction by the choice of F.

Claim 2: mC(�
′) < mC(�).

We denote by C�′ , the unique clique twin of �′. Observe that distinct elements of
C�′ belong to distinct elements of C�. Thus, if the claim is not true (i.e., ∣ C�′ ∣=∣ C� ∣),
there are distinct elements B1 , B2 ∈ C�′ such that B i ⊆ C i (i = 1, 2). By the definition
of �′, we have that B i ⊆ F, but both B1 and B2 are maximal in �′, thus B1 = F = B2,
which is a contradiction.

By Claim 1 and the fact that � is finite, there exists a vertex cut S ⊆ �′. Then
CC(�) ≤ mC(FS�(S)) ≤ mC(�

′) < mC(�). ∎

Proposition 4.3 Let � be a connected finite simplicial graph, and let S be a minimal
vertex cut of �. Then

CC(FS�(S)) < CC(�).

Proof By Proposition 4.2, we have that CC(FS�(S)) < mC(FS�(S)) = CC(�).
∎

The next theorem is the main result of this section.

Theorem 4.4 Let � be a connected finite simplicial graph, and let S be a minimal
vertex cut of �. Then, for every full subgraph G of FS�(S), we have the following:

dimCC(G) < dimCC(�).

In particular, dimCC(FS�(S)) < dimCC(�).
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Proof Let H be a full subgraph of G, observe that H is a full subgraph of � as
well. By Proposition 4.2 and Lemma 4.1, we have that CC(H) < mC(H) ≤ mC(G) ≤
mC(FS�(S)) = CC(�). Thus CC(H) < CC(�). ∎

5 Asymptotic dimension of RACGs

Theorem 5.1 Let W� be the RACG with connected defining graph �. Then W� is the
fundamental group of a graph of groups such that asdim(Gv) ≤ dimCC(�) for every
vertex group and asdim(Ge) < dimCC(�) for every edge group. In particular,

asdimW� ≤ dimCC(�).

If � is not connected, then asdimW� ≤max{1, dimCC(�)}.

Proof We will use induction on ♯V(�). If ♯V(�) = 1, the theorem is obviously
true. We assume that for any graph with ♯V(�) < N + 1, the theorem holds. Let � be
a graph such that ♯V(�) = N + 1.

By Theorem 2.3, it is enough to prove the inequality only for RACGs with
connected defining graphs. So we assume that the graph is connected. If the graph
� is a clique, then by Lemma 3.2, the theorem holds. So we further assume that the
graph is not a clique. Since the graph is not a clique, there is a subset of its vertices
separating it, thus, there is at least one vertex cut of �. Let S be a minimal vertex cut
of the graph, and let E1 , . . . , Ek be the connected components of �/FS�(S). Observe
that since S is a vertex cut, we have that for every vertex s of S and every component E i ,
there exists at least one edge connecting them. We set E i = FS�(E i ∪ S), observe that
E i is a connected full subgraph of �; and thus, by lemma 3.4, dimCC(E i) ≤ dimCC(�).
By the inductive hypothesis asdimWE i

≤ dimCC(E i), so

asdimWE i
≤ dimCC(�),(1)

where WE i
is the parabolic subgroup of W� defined by E i (of course, WE i

is RACG).
Using Theorem 4.4, we have dimCC(FS�(S)) < dimCC(�). We distinguish two cases.

Case 1: FS�(S) is connected.
By the inductive hypothesis asdimWFS�(S) ≤ dimCC(FS�(S)), then

asdimWFS�(S) < dimCC(�),(2)

where WFS�(S) is the parabolic subgroup of W� defined by FS�(S) (of course, WFS�(S)
is RACG).

Finally, observe that W� can be obtained from WE i
after a finite sequence of

amalgamated product over WFS�(S). To be more precise,

W� = (WE 1
∗

WFS�(S)

WE2
) ∗

WFS�(S)

. . . WE k
.(3)

In other words, W� is the fundamental group of a graph of groups with vertex
groups WE i

and WFS�(S), and edge groups isomorphic to WFS�(S). Applying Theo-
rems 2.1 or 2.2, we conclude that asdimW� ≤ dimCC(�).

Case 2: FS�(S) is not connected.
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By equality (3), we observe that to complete the proof of the theorem, it’s enough
to show that asdimWFS�(S) < dimCC(�).

Let C1 , . . . , Cλ be the connected components of FS�(S) (λ ≥ 2). Without loss
of generality, we may assume that the dimCC(C i) ≤ dimCC(Cλ), for any i. By the
inductive hypothesis asdimWC i ≤ dimCC(Cλ). So, by Theorem 2.3,

asdimWFS�(S) =max{1, dimCC(Cλ)}.(4)

We distinguish two subcases.
Case 2(a): dimCC(Cλ) ≥ 1.
Then asdimWFS�(S) = dimCC(Cλ). Since dimCC(Cλ) ≤ dimCC(FS�(S)) <

dimCC(�), we conclude that asdimWFS�(S) < dimCC(�).
Case 2(b): dimCC(Cλ) = 0.
Then asdimWFS�(S) = 1. Since S is a minimal vertex cut, and FS�(S) is not

connected, we obtain that dimCC(�) ≥ 2. Thus, asdimWFS�(S) < dimCC(�). ∎

We observe that the previous theorem is also true for Coxeter groups such that
every clique in their defining graph defines a finite Coxeter subgroup. As a corollary
of Theorem 5.1, we have the following theorem.

Theorem 5.2 Let W� be the RACG with defining graph �. Then

asdimW� ≤min{dimCC(�), dimΣ(W�)}.

If � is not connected, then asdimW� ≤max{1, min{dimCC(�), dimΣ(W�)}}.

5.1 Graph products of finite groups

We recall the definition of graph products of groups. Let � be a simplicial graph.
We label every vertex v of the graph by a vertex group Gv . The graph product
GP(�, Gv)v∈V(�) is the free product of the vertex groups modulo the relations
x yx−1 y−1, where x ∈ Gv , y ∈ Gw , and v , w are connected by an edge.

Graph products generalize free products, direct products, RAAGs, and RACGs.
We set G = GP(�, Gv)v∈V(�). For a full subgraph X of �, we define the graph

product G ∣X as GP(X , Gv)v∈V(X).

Theorem 5.3 Let � be a finite connected simplicial graph along with a finite collection
of finite vertex groups. Then

asdimGP(�, Gv)v∈V(�) ≤ dimCC(�).

If � is not connected, then asdimGP(�, Gv)v∈V(�) ≤max{1, dimCC(�)}.

Proof The proof of this theorem is almost identical to the proof of Theorem 5.1.
We only need the fact that if X is a full subgraph of �, then G ∣X is a subgroup
of GP(�, Gv)v∈V(�) (see [9]). The subgroups G ∣X are the analogs of the parabolic
subgroups of RACGs. ∎
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6 Corollaries of the main result

Proposition 6.1 Let � be a simplicial graph such that dimCC(�) ≥ 2. Then the RACG
W� defined by � contains a one-ended parabolic subgroup.

Proof � contains a full subgraph G such that CC(G) ≥ 2. We assume that G is a
minimal full subgraph of � such that CC(G) ≥ 2. Trivially, G is connected. Since G
is minimal, we have that CC(G′) ≤ 1 for every G′ proper full subgraph of G, so by
Lemma 3.5, G is a k-cycle (k ≥ 4).

By Theorem 8.7.2 of [3], we have that the parabolic subgroup WG of W� defined by
G is one-ended. ∎

Proposition 6.2 Let W� be the RACG with connected defining graph �. If
dimCC(�) ≤ 2, then asdimW� = dimCC(�).

Proof If dimCC(�) = 0, then � is a clique, so W� is finite. Then asdimW� = 0.
If dimCC(�) = 1, then by Theorem 5.1, we have asdimW� ≤ 1. By Lemma 3.2, � is

not a clique; and thus, there are two vertices a, b which are not connected by an edge.
This means that W� contains Z2 ∗Z2 as a parabolic subgroup, so asdimW� = 1.

If dimCC(�) = 2, then by Theorem 5.1, we have asdimW� ≤ 2. By Proposition 6.1,
we have that there exists an one-ended parabolic subgroup WG of W�. Then, by the
main theorem of [8], we obtain that 2 ≤ asdimWG . So asdimW� = 2. ∎

Corollary 1 Let W� be the RACG with connected defining graph �. Then W� is finite
if and only if dimCC(�) = 0.

Proof Suppose that W� is finite. Then � is a clique, indeed, otherwise W� contains
Z2 ∗Z2 as a parabolic subgroup, so asdimW� > 0. Which is a contradiction. Since �

is not a clique, by Lemma 3.2, we obtain dimCC(�) = 0.
The other direction follows by the previous proposition. ∎

When � is connected and has clique-connected dimension one, the graph looks
like a “thick” tree.

Proposition 6.3 Let W� be the RACG with connected defining graph �. Then W� is
virtually free if and only if dimCC(�) = 1.

Proof We assume that W� is virtually free. If dimCC(�) ≥ 2, then, by Proposition
6.1, W� contains an one-ended parabolic subgroup. Since one-ended groups have
asymptotic dimension at least two (see [8]), we have that asdimW� ≥ 2. By the fact
that the asymptotic dimension of virtually free groups is one (see [8]), we have a
contradiction.

If dimCC(�) = 0, then � is a clique. In that case, W� is finite, which is a
contradiction.

Suppose that dimCC(�) = 1, then, by Proposition 6.2, we have asdimW� = 1.
Applying Gentimis’ theorem for virtually free groups (see [8]), we conclude that W�

is virtually free. ∎
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Remark 1 It is known by Lohrey and Senizergues (see [11]) that a RACG is virtually
free if and only if its defining graph � is chordal (i.e., does not contain k-cycles as a
full subgraph for k ≥ 4). We note that, in their paper, they consider finite groups as
virtually free groups.

Remark 2 It is easy to see that a graph � is chordal if and only if dimCC(�) ≤ 1.
Indeed, if a graph � is chordal and dimCC(�) ≥ 2, then there exists a full subgraph �′

such that CC(�′) ≥ 2. Thus, by Lemma 3.5, we have a contradiction.
Now, suppose that dimCC(�) ≤ 1 and that � is connected (w.l.o.g). Since cliques are

complete graphs, we further assume that � is not a clique. By Lemma 3.2, we have that
dimCC(�) = 1. Then, by the definition of the clique-connected dimension and the fact
that CC(k-cycle) = 2 (k ≥ 4), we have that � is chordal. This proves our statement.

One can also show the fact in Remark 2 by using Theorem 2.1 from [4], and the
observation that vertex cuts are minimal vertex separators in the sense of Dirac (see
[4]).

As a corollary of Proposition 6.3, we obtain the following proposition.

Proposition 6.4 Let W� be the RACG with connected defining graph �. Then
asdim(W�) ≥ 2 if and only if dimCC(�) ≥ 2.

Proof We suppose that asdim(W�) ≥ 2, then, by Theorem 5.1, we have that
dimCC(�) ≥ 2.

Conversely, we assume that dimCC(�) ≥ 2, then, by the previous proposition and
the fact that the only groups having asymptotic dimension one are the virtually free
groups (see [8]), we have that asdim(W�) ≠ 1. Obviously, asdim(W�) ≠ 0, otherwise
we have a contradiction by Corollary 1. ∎

Observe that Proposition 6.3 and Corollary 1 can be rephrased as follows:

Corollary 1: asdimW� = 0 if and only if dimCC(�) = 0.

Proposition 6.3: asdimW� = 1 if and only if dimCC(�) = 1.

We know, by Proposition 6.2, that if dimCC(�) = 2, then asdimW� = 2. One
may ask whether the converse is true. We note that by the previous proposition if
asdim(W�) = 2, then dimCC(�) ≥ 2.

Question Is there any connected graph such that the RACG defined by the graph has
asymptotic dimension two while the clique-connected dimension of the graph is greater
than two?

The answer is yes. We will construct a graph X with clique-connected dimension
equal to three while asdimWX = 2. Let X1, X2, and X3 be 4-cycles with vertices
{v1

1 , . . . , v1
4}, {v2

1 , . . . , v2
4}, and {v3

1 , . . . , v3
4}. We join the vertices v i

j , v i+1
j with edges.

The resulting graph X has clique-connected dimension equal to three. The graph X is
actually the 1-skeleton of a cube complex, thus Sim(X) = 2.
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By Sim(�), we denote the number of vertices of a maximal clique of �. It turns
out that the dimension of the Davis complex of W� is equal to Sim(�). Using the
Dranishnikov’s upper bound (see [5]) and the fact that WX is one ended, we obtain
that asdimWX = 2.

Thus, an analog of Corollary 1 and Proposition 6.3 for asymptotic dimension two
doesn’t exist. However, we have the following proposition.

Proposition 6.5 Let W� be the RACG with connected defining graph �. If asdimW� =
2, then there exists a full subgraph G of � such that dimCC(G) = 2 and asdimWG = 2.

Proof By Theorem 5.1, dimCC(�) ≥ 2. By the proof of Proposition 6.1, � contains
a k-cycle G as a full subgraph (k ≥ 4). Trivially, dimCC(G) = 2. ∎
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