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Political Analysis, 8:1

Estimating Legislators’ Preferred Points

John Londregan
University of California, Los Angeles

This paper shows that agnostic spatial models that simultaneously attempt to estimate
legislators’ preferred points and ideological locations for the proposals on which they vote,
such as the well-known NOMINATE model of Poole and Rosenthal, are not identified.
The problem arises because the agnostic estimators inherit the granularity of the voting
data and, so, cannot recapture the underlying continuous parameter space. I propose an
alternative estimator that achieves identification by modeling the agenda.

1 Introduction

The spatial model of legislative politics combines an analytically attractive theory with a set
of powerful behavioral predictions. The model makes the assumption that each legislator
votes for the alternative with an ideological location closest to the legislator’s preferred
outcome. When this assumption is warranted, an analyst need only know the ideological
“locations” of legislative proposals, and the preferred ideological outcomes of legislators,
to predict legislative votes with considerable confidence. These attractive features have
made the spatial model a cornerstone of the empirical analysis of legislatures.

One aspect of the foundation of empirical spatial models requires especially close at-
tention. An intuitively appealing approach to operationalizing the spatial model of voting
in a legislature is to specify a utility function that evaluates outcomes according to their
spatial locations and then simultaneously estimate legislators’ preferred outcomes and the
spatial “locations” of the bills on which they vote. Here I show that this seemingly sensible
approach contains a deadly flaw. Essentially the granularity of the data, which consist of
votes of “aye” or “nay,” imposes an artificial granularity on the parameter space of possible
preferred outcomes for legislators and possible locations for bills. This causes a lack of
identification that can lead to severely misleading parameter estimates.

These problems have not passed unnoticed by users of scaling methods. Poole and
Rosenthal (1991) use Monte Carlo techniques to evaluate the performance of their model.
They conclude that their model does a good job of recovering information about legislator
ideal points and “cut points” for bills when the number of voters and the number of bills is
large, though it is less effective at recovering information about the precise location of the
“aye” and “nay” locations for each bill.

Author’s note: I am grateful for useful comments from Larry Bartels, Henry Brady, Gary King, Keith Poole,
Howard Rosenthal, seminar participants at the 1996 Political Methodology Meetings in Ann Arbor, and from
three anonymous referees.
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The favorable Monte Carlo findings by Poole and Rosenthal notwithstanding, the results
here establish that the identification problems persist for any finite number of voters, whether
they be the 5 voters in a committee or the 435 voters on the floor of the U.S. House of
Representatives. The Monte Carlo results suggest that as the size of the legislature grows
the severity of the bias may diminish. However, whatever the reason for the favorable Monte
Carlo findings when both the number of voters and the number of bills are large, the negative
identification results here heighten the need for users of agnostic scaling methodologies to
explain how, why, and when their methods yield acceptable approximations despite their
lack of statistical consistency.

Even if large numbers can eventually be shown to render the theoretical biases small,
one has to be very careful how one counts! In legislatures where party “whipping” occurs,
such as the British Parliament, the number of independent decision makers on “whip” votes
is not the number of members in the chamber, but the number of party leaders. It is not
enough to count the number of legislators! In particular, we cannot use estimates from
agnostic models to test whether “party leadership votes” in the U.S. Congress result from
leaders exerting party discipline. If they do, estimated ideal points from agnostic models
will be biased and, so, not very useful in testing the hypothesis.

This paper is intended as constructive criticism of the application of empirical spatial
models to legislatures, and I go on to offer a solution that avoids the statistical barriers to
estimation. This comes at the “expense” of thinking more carefully about the agenda on
which legislators vote, which is something we ought to be doing anyway. The estimator
recommended here can be applied even in small “legislatures,” including legislative com-
mittees, judicial panels such as the U.S. Supreme Court, where justices take concurrent or
dissenting opinions, and other decision-making bodies that take recorded votes, such as
the U.S. International Trade Commission. Scholars interested in these settings should not
interpret the flaws of agnostic spatial models as a reason to revert to using factor analytic
procedures. Heckman and Snyder (1996) draw a close link between factor analysis and
agnostic spatial models, showing that the former coincides exactly with a particular set of
assumptions about legislator’s preferences and about the random shocks that perturb their
vote choices. Those who would avoid agnostic spatial models should, with as much rea-
son, eschew factor analysis. The recommendation here is to move in the other direction,
including the formation of the agenda as part of the model, whether this agenda comes in
the form of a stream of bills in a legislature or a flow of cases to the Supreme Court.

The genesis of this paper was a research project on Chile’s democratic transition. The
committees of the Chilean Senate are required to take recorded “roll call” votes on all bills
considered at the second reading, creating a gold mine of voting data.1 It was while writing
computer code to implement the NOMINATE model of Poole and Rosenthal in this setting
that I discovered the inconsistency argument set forth in the second section of this paper.
However, latitude and longitude confer no protection from the lack of identification for
agnostic spatial models, especially when the number of independent decision makers is
small, as it can be on party leadership votes. Students of the U.S. Congress are by no means
immune from the problems identified here, regardless of their having been discovered on
the other side of the tropics.

Section 2 of this paper highlights the connection between “self-scoring” educational tests
and “agnostic” spatial models that attempt simultaneously to estimate both the ideological

1Those interested in seeing the methods developed here at work will find an application to the Chilean Senate
given by Londregan (2000).
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content of the agenda on which legislators vote and the ideological leanings of the legislators
doing the voting. This close connection means that many results can carry over from one
literature to the other.

In Section 3 the discussion turns to the biases that plague agnostic spatial models. The
essence of the problem is that agnostic models attempt to estimate the locations of legislative
proposals located along an ideological continuum from discrete voting data. The attempt
to estimate so many parameters granularizes the space of parameters the model attempts
to estimate. It is as if analysts were trying to paint a panoramic landscape on a piece of
string. Worse, the lack of identification of the parameters describing the legislative agenda
“metastasizes” to legislator’s preference parameters, which are not identified.

Having outlined the reasons agnostic spatial models fail, in Section 4 I offer afeasible
alternative. Instead of attempting to remain almost completely agnostic about the agenda
on which the legislature votes, the approach advocated here is to pay something like as
much attention to modeling the structure of the agenda as we do to legislators’ decision of
how to vote on it. Just as we have become sophisticated at modeling legislators’ voting
decisions, so too we can model the more important activity of making legislative propos-
als. This enterprise leads to a model that simultaneously encompasses legislators’ voting
and proposing decisions. Unlike agnostic models of the agenda, this model contains a
fixed number of parameters, and it does not suffer the biases and failures of identifica-
tion that plague its agnostic cousin. The resolution of the technical problems raised by
the spatial model has the beneficial effect of forcing us to think more carefully about the
agenda being voted and about legislators’ motives for casting the votes they do. Section 5
concludes.

2 A Self-Scoring Ideology Measure

Political presure groups take an intense interest in members’ voting records, and in the
United States these groups often compute summaries of the voting records of members of
Congress, marking off points for “incorrect votes” much as teachers might grade a true–
false exam and calculating a summary score reporting the percentage of “correct” votes
cast by the legislator. This similarity is more than coincidental; in both cases evaluators
are attempting to measure a latent characteristic. This section begins with a discussion of a
family of educational testing models that is very closely connected with the spatial model
and then moves on to a parallel development of “agnostic” spatial models. Both bodies of
literature agree that while the agnostic spatial models and their psychometric counterparts
are potentially biased, these biases are not important when the number of voters (test takers)
and the number of proposals voted (test questions) are large. However both raise warning
flags about data sets in which the number of either voters or issues is small.

2.1 Self-Scoring Educational Tests

The use of statistical analysis to measure ability and other latent traits has a long history
(Thurstone 1925), but a useful point of departure is the Rasch (1961) model. This model
emerges as the response to the question, “When is the widespread practice of summarizing
a student’s performance on a test using the fraction of correct answers justified?” that is,
“When is the fraction of correct answers a sufficient statistic for the latent characteristic of
ability or subject mastery the test seeks to measure?”
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The answer to this question is surprisingly straightforward (Fischer 1995). The fraction
of correct answers is a sufficient statistic for latent ability2 if and only if the probability that
the subjectv, gives a correct answer to questionp, φvp is

φvp = eγ θv−βp

1+ eγ θv−βp
(1)

Many readers will recognize this as the logit probability. It is useful to rewrite this condition
in terms of the discriminant function. Subjectvwill give a correct answer to itemp provided
that

ξvp < γθv − βp (2)

whereξvp is a random error term that obeys the so-called “extreme value” distribution
that gives rise to logit probabilities (Maddala 1986). In this context,ξvp corresponds to
idiosyncratic factors, such as momentary distractions during the test. The parameterγ is
an arbitrary positive constant, and by convention it is set equal to 1, an assumption that is
relaxed below. This assumption of a constant and positive value for the “item discrimination
parameter,”γ , means that we know the correct answers to all of the questions and that all
of the questions are equally ambiguous.

The parameterβp measures the difficulty of the question, whileθv measures the test
taker’s ability or subject mastery. Lower values ofβp and higher values forθv correspond
to a higher probability of a correct answer.

We could easily reparameterize this model in terms of the number of times the subject
answered “true” on a test with binary options, e.g., “true” and “false.” In this case instead of
using the standard normalization ofγ = 1 for all questions,γ would vary among questions,
withγp = 1 for questions for which the correct answer was “true” andγp = −1 for questions
whose correct answer was “false”. We could then replace the difficulty parameter with a
new parameter,β∗p, equal toβp for questions whose correct answer was “true” but equal to
−βp for questions whose correct answer was “false.” This means that examineev will give
an answer of “true” to questionp when

ξvp < γpθv − β∗p (3)

This requires that the distribution ofξvp is symmetrical about 0.
An extension of the basic Rasch model takes this approach a step further. Instead

of imposing the value ofγp a priori, the “two-parameter logit model” treats this as an
additional parameter to be estimated (Birnbaum 1968), so that we have the formulation in
inequality (3) but without any restriction on the values thatγp can assume. If we knew
the examinees’ ability parameters, theθv, then estimating theγp andβp parameters would
be straightforward. The probability that examineev with high ability answers “true” to
questionp will exceed the probability of an answer of “true” from examineev′ with lower

2A few technical conditions are necessary: (i) the random variableξvp in inequality (2) can take on any value on
the real line, albeit with a very low probability; (ii) there is “no guessing,” so that at very high levels of mastery
the probability that the subject answers correctly converges to 1, while at abysmal levels it converges to 0; and
(iii) random disturbances to the subject’s response, caused by factors such as momentary distractions during
the test, are uncorrelated across questions. Of these three assumptions, the second is the most problematic: we
might expect low-ability subjects to guess.
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ability if the item discrimination parameterγp is positive, so that the correct answer is
“true,” while if the correct answer is “false,” we will haveγp < 0, and the high-ability
examinee will be less likely to answer “true.” If we knew our test takers’ ability levels, the
θv ’s, we could construct an estimate, ˆγp, of the item discrimination parameter. Not only
would this tell us the correct answer,3 something an educational tester probably already
knows, but more importantly it will alert us to ambiguous questions by returning a value of
γ̂p near 0. In tandem with our estimate ofγp the estimated value forβ∗p tells us the difficulty
of the question, with higher values forβ̂p corresponding to more difficult questions when
the correct answer is “true” and to easier questions when the appropriate answer is “false.”

Of course educators are seldom, if ever, in the position of having absolute knowledge of
examinees’ abilities. Instead testers often attempt to estimate simultaneously the examinees’
ability parameters and the question parameters. This precipitates analysts into what is called
the “parameter proliferation problem.” As the researcher adds data, for example, by giving
the exam to more subjects, she also adds more parameters to estimate (the ability parameters
of the newly added test takers). Even if one is willing to bend the definition of consistency
somewhat, the conditions needed to obtain consistent estimates in this case are somewhat
fanciful (Haberman 1977), namely, that both the the number of examinees and the number
of test questions are infinite, as must be the ratio of the number of questions to the number
of examinees. The idea behind this is that we want to have so many questions that we can,
essentially, estimate the ability of each examinee using a separate, and arbitrarily large, set
of questions.

This opens up vexing questions about whenN is really large. In a time-series context
researchers routinely estimate annual models based on a few dozen years’ of data, despite
the small sample biases to which such estimates are prey (Marriott and Pope 1954). How
severe are the biases that beset psychometric models that act as though all of the relevantN ’s
identified by Haberman are large? Lord (1983) addresses this question in the context of the
so-called “three-parameter model,” a further refinement of the two-parameter logit model
that allows for guessing by examinees. For the three-parameter model Lord calculates bias
correction formulas for item parameters on the Verbal SAT, where there are 96 questions
and several million examinees. However, the estimated biases are inversely proportional
to the number of questions. When the number of questions becomes small his formulas
indicate very large biases.

2.2 “Agnostic” Spatial Models

Now let us consider the spatial model of voting, which posits that legislators voting on a
proposal choose between alternatives associated with affirmative and negative votes, each
of which has an ideological “location.” This location might be a point on a continuum
from the political “left” to the political “right,” or it might require a more complicated
representation (if legislators’ preferences for income redistribution differed along a left-to-
right continuum, while simultaneously their views on social issues such as abortion differed
along a “religious” to “secular” continuum). According to the spatial model, legislators
have “most-preferred” policy locations and vote in favor of the alternative closest to their
most preferred location. The spatial model is most tractable when locations all lie along a
single left to right continuum, and it is on this case that I focus here.

3If γ̂p > 0, we can infer that the correct answer is “true.” If ˆγp < 0, then our estimate indicates that the correct
answer is “false.”
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The basic ingredients of the model are positions of the proposal and status quo alterna-
tives, and of legislators’ most preferred outcomes. Following Stokes (1963), we can add an
additional “valence” element of policy, call itq, about which everyone agrees, something
like greater efficiency, lower cost, or more lives saved. Both proposals and the status quo
have some level of this valence issue. We get the “plain vanilla” spatial model as a special
case of this more general model by setting the valence for the status quo and all proposals
equal. For proposalp let zp denote the location of the proposal whilezp,sq is the location
for the status quo outcome expected to result if proposalp is defeated. Likewise, letqp and
qp,sq denote the valence for the proposal and the corresponding status quo. Note that in a
data set with many votes the expected “reversion” to status quo may differ among proposals.
This might occur because the status quo changes over the course of a legislative session as
new laws are passed and old ones are repealed. If proposalzp is adopted, then a legislator
with a preferred outcome ofxv would enjoy a utility of

U (zp,qp | xv)+ ψvp (4)

Hereψvp is an idiosyncratic “shock” to preferences specific to a particular legislator, indexed
byv and a particular alternativep. This would be sensible if the spatial model captured all of
the considerations that entered legislators’ voting decisions save for the most idiosyncratic
and personal ones, such as whether the legislator has some preexisting expertise in the area,
and then only if the author does not “call in” all outstanding favors at the same time! The
utility functionU has the property thatU (zp,qp | xv) rises asqp rises and as|zp− xv| falls.

Analysts typically remain agnostic about the locations of the proposalzp and status
quozp,sq, and also about legislators’ most preferred outcomes, thexv, much as educational
testers attempt to calibrate the item parameters and test takers’ ability levels simultaneously.
Many analysts assume thatqp = qp,sq for every proposal, though we shall see that this
has less practical effect than one might think. In the context of legislative voting, the
basic strategy is to derive the link between the location parameters and legislators’ votes of
“aye” or “nay” and then to “read backward,” using the observed votes to infer locations for
proposals and legislators’ most preferred outcomes.

Following this development, the model tells us that legislatorv will vote in favor of
alternativezp if

U (zp,qp | xv)+ ψvp > U (zp,sq,qp | xv)+ ψvp,sq (5)

Letting εvp = ψvp,sq− ψvp denote the net “idiosyncratic shock” in favor of the status quo,
the probability that legislatorv favors proposalp equals the probability that

εvp < U (zp,qp | xv)−U (zp,sq,qp,sq | xv) (6)

To operationalize the model one needs to specify a probability distribution forεvp and a
functional form forU . Two utility functions have received special attention in the litera-
ture, the quadratic utility function and the Gaussian utility function. The quadratic utility
function,

U (z,q | xv) = −1

2
(z− xv)

2+ αq (7)
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has the appealing property that more distant departures from the preferred outcome yield
lower utility, while it leads to relatively tractable estimation formulas (Hinich and Ordeshook
1978; Brady 1991). It has has been used by several authors (Ladha 1991; Heckman and
Snyder 1996) to analyze legislative voting data. Theα term in Eq. (7) measures the weight
placed on valence.

Incorporating the valence element of policy is less straightforward for the Gaussian utility
function, and analysts using Gaussian utility typically ignore the valence aspect of policy
(Poole and Rosenthal 1991) while they add an additonal parameter,β, that calibrates how
well individuals’ voting behavior is described by the model (Poole and Rosenthal 1991):

U (z | xv, β) = βe−
1
8 (z−xv )2

(8)

Instead of describing the “yes” and “no” alternatives in terms of their locations,zp

and zp,sq, it is often convenient to represent the choice in terms of the midpoint,4 mp,
and the gap,gp, between the “yes” and the “no” alternatives associated with proposal
p,mp = (zp + zp,sq)/2 andgp = zp − zp,sq. This representation contains the same
information as the initial locations, which can readily be recovered frommp andgp,

zp = mp + gp/2 and zp,sq = mp − gp/2 (9)

One can substitute from Eq. (9) to reexpress the condition for a legislator with quadratic
utility voting in favor of a proposal given in Eq. (7) in terms of thegp andmp parameters

εvp < gp(xv −mp)+ α(qp − qp,sq) (10)

A similar condition can be derived using Gaussian utility.5 Collecting terms in Eq. (10) we
can rewrite the condition for voting in favor of proposalp as

εvp < gpxv − b∗p (11)

This condition is identical to that given in (3), although the interpretation of the variables is
quite different. The item discrimination parameter,γp, from the two-parameter logit model
of educational tests is replaced here bygp, the gap between the location of the proposal
and that of the status quo. Similarly the ability parameter,θv, is replaced here byxv, the
legislator’s most preferred policy outcome. Finally, the difficulty parameter,β∗p, is replaced
by b∗p, which is an amalgam of the proposal midpoint,mp, the gap between the proposal
and the status quo alternatives, and the valence advantage,α(qp − qp,sq), of the proposal
over the status quo. Formally

b∗p ≡ gpmp − α(qp − qp,sq) (12)

Eq. (12) tells us that we cannot separately identify the midpoint,mp, and a proposal’s
“valence advantage,”α(qp − qp,sq). A proposal that moves policy moderately rightward

4In applications in which there are no valence considerations this is often referred to as the “cut point” because,
absent valence considerations and preference shocks, all legislators with ideal points to the left ofmp will vote
one way, while those to the right will vote the other.

5This isεvp < β(1− e−
gp
4 (xv−mp))e−

1
8 (xv−mp− gp

2 )2.
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may receive wide support because it has a very high valence or because the status quo against
which it is being compared is far to the left, leading to a midpointmp that puts most voters
on the same side as the proposal. Some analysts solve this problem by settingqp = qp,sq

for every proposal. This has the effect of placing all of the weight on the midpoint. While
this is an analytically tractable solution, it leads to the implication that an unsuccessful
proposal from a political moderate failed because it was ideologically extreme, rather than
because of a low valence. In most legislatures bills sponsored by political moderates enjoy
a success rate well below 100%. The hypothesis that this imperfect success rate is due
to moderates occasionally making ideologically extreme proposals seems less plausible
than the alternative that at least some of the variation is attributable to success or failure at
crafting high valence proposals.

Similarly to the educational testing models, when both the number of voters and the
number of proposals is large but finite, the parameter estimates exhibit little bias. Poole
and Rosenthal find that for their model, which is based on Gaussian utility, and in legis-
latures with 100 or more voters, the parameter estimates from their estimator exhibit little
appreciable bias, save for “extreme” legislators at the edges of the ideological spectrum.
Likewise, both the analytical results of Lord and the Monte Carlo analysis of Poole and
Rosenthal indicate that more severe biases result if either the number of voters or the number
of proposals voted remains small as the sample size grows. Our attention now turns to the
sources of these biases and to the potential remedies.

3 Issues in Model Identification

Spatial voting models, and their psychometric cousins, the Rasch models, are not identified
without further restrictions. This is the foundation of the parameter bias results from the
legislative voting (Poole and Rosenthal 1991) and psychometrics (Lord 1983) literatures.
The problem arises because each proposal is put to a vote only one time. If two proposals
each receive the support of the same group of “aye” voters, and meet with the opposition
of the same coalition of “nay” voters, then their estimated locations will be identical. This
is a classic case of overfitting, and in the current context it has mischievous consequences,
preventing identification of any of the parameters.6 Our attention now turns to the details
of why this failure of identification occurs.

3.1 Operationalizing the Spatial Model

The agnostic spatial voting models all take some important steps in common. Each of
them posits a utility function for voters and a probability distribution for theεvp term in
Eq. (6). Three probability distributions have been suggested for this purpose: the normal,
the uniform, and the extreme-value distributions. Ladha (1991) assumes thatψvp andψvp,sq

are both normally distributed. This implies thatεvp is normally distributed as well and leads
to a probit model of voting. Heckman and Snyder (1996) posit a uniform distribution for
εvp, which leads them to a linear-probability model (LPM), though in this case theψvp

andψvp,sq terms must obey distinct probability distributions! Poole and Rosenthal posit
thatεvp follows an extreme-value distribution, leading them to a nonlinear version of the

6In addition, there is the trivial need to normalize the scale, for example, by placing one legislator on the “left,”
at−1, and another on the “right,” at 1. This resembles the arbitrary normalizations on temperatures imposed by
the Fahrenheit and Celsius scales.
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logit model. They have subsequently obtained very similar results assuming a normally
distributed error instead of a logit (Poole and Rosenthal 1996).

The assumptions made by these various authors about the probability distribution ofεvp

and the form ofU imply voting probabilities. Because they ignore the valence aspects
of policy, Heckman and Snyder, and Ladha, are able to identifymp from b∗p. For the
quadratic preferences analyzed by these authors, ignoring valence amounts to settingα = 0
in Eq. (12), so thatb∗p can then be expressed in terms ofmp,

b∗p = mpgp (13)

For Ladha’s model the probability legislatorv, with preferred policyxv, votes in favor of
proposalp, with characteristics{mp, gp}, is

pL (mp, gp | xv) = 8(xvgp −mpgp) (14)

where8(u) is the standard normal cumulative distribution function.
For the LPM the probability of a vote for the affirmative is

pLPM(mp, gp | xv) =


0 for xvgp −mpgp ≤ 0

xvgp −mpgp for 0< xvgp −mpgp < 1

1 for xvgp −mpgp ≥ 1
(15)

For the model of Poole and Rosenthal the probability legislatori votes for the “yes” alter-
native is

pPR(mp, gp | xv, β) = 1

1+ eβe− 1
8 (xv−mp− gp

2 )2(1−e−
gp
4 (xv−mp))

(16)

In what follows we can represent any of Eqs. (14)–(16) by a generic probability that
voterv votes “yes” on proposalp,7 p(mp, gp | xv, β).

3.2 “First-Order” Identifying Restrictions

A little algebra establishes that the probability of a “yes” vote in the Poole–Rosenthal model
depends only on the values ofgp(xv−mp), (xv−mp)2+ g2

p/4 andβ. While this is enough
to pin downβ, to identify the remaining parameters we need to impose the normalizations
xv = 0 andxv′ > xv. The location of legislatorv is normalized to equal zero, while
legislatorv′ is normalized as being to the right of legislatorv. This is the well-known
arbitrariness of whether to place liberals on the “left” of the spectrum and conservatives on
the “right,” or vice versa.

The predictions of the Ladha and linear probability models each hinge on the value
of xvgp − b∗p. Straightforward calculations reveal that we can pin down the remaining
coefficients if we impose the restrictions,xv = 0 andxv′ = 1, for some distinct pair (v, v′).
The first normalization is identical to the Poole–Rosenthal model, while the second places

7Theβ parameter is included to allow the notation to encompass the Poole and Rosenthal model. For the Heckman
and Snyder, and the Ladha, models, think ofβ as a known constant.
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the second voter to the right of the first, as with the model of Poole and Rosenthal, and
uses the distance between these voters as a yardstick against which the distances among the
other legislators are measured.

3.3 Insufficiency of the “First-Order” Restrictions for the Proposal Parameters

The preceding identifying restrictions do not solve a more profound set of statistical prob-
lems plaguing this class of models. Before turning to the details of this problem it is useful
to establish the following lemma.

Lemma 1. Provided that the probability density function forεvp is symmetrical about
0, the voting probability function stated in terms of themp andgp parameters will satisfy
the condition

p(mp, gp | xv, β) = 1− p(mp,−gp | xv, β) (17)

Proof. See the Appendix.

This result makes formulating the log of the likelihood function more straightforward.
Consider a legislature withV voters that considersP proposals. To keep matters simple
I focus on the case in which there are no abstentions, so that every legislator votes either
“yes” or “no” on every proposal. The log of the likelihood function is

l ∗ =
P∑

p=1

V∑
v=1

{δvpln[ p(mp, gp | xv, β)] + (1− δvp)ln[ p(mp,−gp | xv, β)]} (18)

Hereδvp is 0 if legislatorv votes against proposalp and 1 if she votes for it.
Now attention turns to a key feature in the analysis of the entire class of “agnostic”

voting models considered here: if every legislator votes the same way on each of two
proposals, then the maximum-likelihood estimates of the parameters corresponding to the
two proposals will be identical. Lemma 2 makes this precise.

Lemma 2. If δvp = δvp′ for eachv ∈ {1, 2, . . . ,V} and the log of the likelihood function
is twice continuously differentiable with a unique maximum, then the maximum-likelihood
estimates will satisfymML

p = mML
p′ andgML

p = gML
p′ .

Proof. See the Appendix.

This happens because the legislators’ votes are the only proposal-specific information
used by the maximum-likelihood algorithm. When this voting information is the same
for both proposals, the maximum-likelihood algorithm has identical information about the
two proposals and, so, arrives at identical estimates for the corresponding proposal para-
meters.

There are 2V possible voting profiles. We can create an arbitrary index

c∗(δ1, . . . , δV ) =
V∑
v=1

δv · 2v−1 (19)

which labels each possible voting profile with a different value between 0 and 2V − 1, and
let P∗(c) denote the set of all proposals that give rise to voting profilec. For any pair
(p, p′) ∈ P∗(c), Lemma 2 implies thatmML

p = mML
p′ . Let mML

c represent this common
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value for all of the proposals inP∗(c). Likewise Lemma 2 implies thatgML
p = gML

p′ ; call
this common valuegML

c .
Letting Nc denote the number of proposals inP∗(c), one can rewrite the log of the

likelihood from Eq. (18) as

l ∗ =
2V−1∑
c=0

Nc

{ ∑
v∈Yes(c)

lnp(mc, gc | xv, β)+
∑

v∈No(c)

lnp(mc,−gc | xv, β)

}
(20)

The parameter estimates corresponding to the typec votes chosen to maximize this likeli-
hood function,mML

c andgML
c , are functions of the remaining parameters of the model,β

andx = (x1, . . . , xV )′,mML
c = m∗c(x, β), andgML

c = g∗c (x, β).
Now consider whether the maximum-likelihood parameter estimates are consistent for

the proposal parametersmp andgp.8 Essentially consistency means that as the sample grows
arbitrarily large, the probability distribution over the proposal parameter estimates comes
arbitrarily close to placing all of the probability on the true parameter value. Theorem 1
establishes that this will not occur for the proposal parameters:

Theorem 1. The proposal parameters,mj andgj , are not consistently estimated.

Proof. See the Appendix.

While the probability distribution for a consistent estimator for the proposal parame-
ters,gp, andmp, would converge toward a probability mass at the true parameter values,
the probability distribution for the agnostic parameter estimates for each proposal places
discrete lumps of probability at a dispersed set of locations. For example, suppose that
there is a three-person legislature and that the voters have Gaussian utility with logistic
voting errors, as in the Poole and Rosenthal model. Suppose that the true midpoint for a
proposal ismp = 0.1, with a gap between the proposal and the status quo ofgp = 0.5,
while the preferred outcomes for the three voters arex1 = −0.3, x2 = 0 andx3 = 0.5.
Even when calculated under the overly optimistic assumption that the true values for the
x’s are known, the probability density is not centered at the true value ofmp. Instead
there is a neighborhood of the true midpoint that contains no probability of a parameter
estimate! The probability distribution function for this estimator places probability masses
of 0.130, 0.265, and 0.279 at−5.010,−0.150, and 0.254, while it has a probability of 0.13
of exploding toward∞. This is a classic case of “overfitting”; each proposal is observed
only once, and there are only eight observable voting outcomes for our three voters.

3.4 Lack of Identification for the Legislators’ Preference Parameters

Now that it is established that the proposal parameters are not consistently estimated, our
attention turns to legislator’s preference parameters. As we shall see in Theorem 2 the
preference parameters inherit the lack of identification of the proposal parameters. Before
I state and prove this important result, it is useful to develop a few more preliminaries.

Returning to the likelihood function in Eq. (20), a close examination reveals a collinearity
problem that arises because the pair of alternatives most likely to divide any two sets of

8There are several definitions of statistical “consistency” in common use: weak consistency, strong consistency,
and Fisher consistency (Cox and Hinkely 1974). The notion used here corresponds to weak consistency: “Tn
is weakly consistentfor θ if Tn = θ + op(1),” where “op(1)” signifies “a random variableZn such that for any
ε > 0, limn→∞ pr (|Zn| > ε) = 0” (Cox and Hinkely 1974).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

93
/o

xf
or

dj
ou

rn
al

s.
pa

n.
a0

29
80

4  
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1093/oxfordjournals.pan.a029804


P1: SYV/SPH P2: SYV/UKS QC: SYV/UKS T1: SYV

WV001-03 July 13, 1999 16:29

46 John Londregan

voters will be the same, whether the first group all votes “aye” and the second group “nay,”
or vice versa. The following lemma establishes that proposal parameters associated with
these two voting profiles are perfectly collinear.

Lemma 3. Consider two voting profiles,c andc′. If the probability density function for
εvp is symmetrical about 0 and Yes(c′) = No(c), while No(c′) = Yes(c), thenmc(x, β) =
mc′ (x, β) andgc(x, β) = −gc′ (x, β).

Proof. See the Appendix.

Lemma 3 tells us that behind the 2V voting profiles there are 2V−1 coalition profiles,
each consisting of a different division of theV voters in the legislature. We can index each
coalition by the voting profile that belongs to it in which voterV casts a negative vote:
a ∈ {0, 1, 2, . . . ,2V−1 − 1}. Let the setA(a) denote the set of all proposals exhibiting
coalition profilea. Proposalp is an element ofA(a) if it exhibits either voting profilea or
its mirror image.9 We can say that two profiles,c andc′, are “mirror images” of one another
if Yes(c) = No(c′) and No(c) = Yes(c′). Coalitiona emerges a total ofN∗a = Na+ Nc′

times, where voting profilec′ is the mirror image of the voting profilea.
As a corollary of Lemmas 1 and 3, the contribution to the log of the likelihood function

by any pair of proposals with the same coalition profile is the same.

Corollary. Any proposal from eitherP∗(c) or P∗(c′) makes an identical contribution to
the likelihood function (20) provided that Yes(c′) = No(c′) and No(c′) = Yes(c).

Proof. See the Appendix.

This means that we can rewrite the log of the likelihood function in concentrated form
as

l c(x, β | N∗) =
∑

a

N∗a
∑

v∈Yes(a)

ln{p[m∗a(x, β), g∗a(x, β) | xv, β]}

+
∑

a

N∗a
∑

v∈No(a)

ln{p[m∗a(x, β),−g∗a(x, β) | xv, β]} (21)

This concentrated likelihood recognizes that the proposal parameter estimates depend
entirely on the voter parameters,x andβ, and on the observed frequencies for the various
coalition profiles. This is what allows us to rewrite the likelihood function in terms of the
voter parameters and the frequencies at which the coalitions are observed. Put another way,
the vector of coalition frequencies,N∗, is sufficient for the voter parameters,x andβ.

It is useful to characterize the “limiting” population of proposals that emerges as the sam-
ple size grows with a density function. Definef (m, g) as the relative density of proposals
with midpointm and policy gapg. I normalize this density so that∫ ∞

−∞

∫ ∞
−∞

f (m, g)dgdm= 1 (22)

This means thatf (m, g) has all of the properties of a probability density function. Here I
treat f (m, g) as continuously differentiable, though this requirement can be relaxed some-
what.

9That is,A(a) = P(a)∪ P(2V −a−1), where the labeling convention takes advantage of the fact that the indices
for any voting profile and its mirror image must sum to 2V − 1.
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The voting coalition probabilities depend on the legislators’ preference parameters, the
agenda, as represented by the density over proposals,f (m, g), and on the probability that
coalitiona emerges,λ(a | m, g, x, β), which is itself a function of the true proposal and
voting parameters,

λ(a | m, g, x, β) =
∏

v∈Yes(a)

p(m, g | xv, β) ·
∏

v∈No(a)

p(m,−g | xv, β)

+
∏

v∈No(a)

p(m, g | xv, β) ·
∏

v∈Yes(a)

p(m,−g | xv, β). (23)

Combining Eqs. (22) and (23), we obtain a compact expression for the probability that we
will observe the coalition profilea,

p∗a(x, β | f ) =
∫ ∞
−∞

∫ ∞
−∞

λ(a | m, g, x, β) f (m, g)dgdm (24)

We can stack these terms to obtain a summary of all of the coalition probabilities conditional
on a particular proposal, with true parameters (m, g) :λ(m, g, x, β), and the corresponding
coalition probabilities when the agenda can be represented by a density functionf (m, g)
over the proposal parameters:p∗(x, β | f ).

As the number of proposals tends to infinity the maximum-likelihood parameter estimates
{xML , βML } will be those that maximizel x[x, β | p∗(x, β | f )]. Hencep = p∗(x, β | f ) is
asymptotically sufficient forx andβ (Cox and Hinkely 1974). Everything that can be learned
about the legislators’ preference parameters must come via the coalition probabilities.

The problem for identification is that the sufficient statistic,p, is dependent onf (m, g)
as well as onx andβ. Since we cannot directly observef (m, g), we will not, in general,
be able to distinguish among any of an infinite number of combinations of ideal points and
agendas.

Before turning to a formal statement of the result we need to develop one bit of terminol-
ogy for describing the relationship betweenp and the underlying agenda. We say that the
coalition probability functionp∗ is fully agenda manipulableif we can move the vector of
probabilities in any direction fromp∗(x, β | f ) by manipulating the agenda. Formally, the
coalition probability functionp∗ is fully agenda manipulableif there exist 2V−1+1 distinct
probability densitiesξ0(m, g), . . . , ξ2V−1(m, g), which stack to make the vectorξ(m, g),
such thatΩ(x, β), defined as

Ω(x, β) =
[∫∞
−∞

∫∞
−∞ λ(m, g, x, β) ξ′(m, g)dgdm∫∞
−∞

∫∞
−∞ ξ(m, g)′dgdm

]
(25)

has full rank. This definition allows us to state the main result for the preference parameters.

Theorem 2. If p0 = p∗(x, β | f ) is fully agenda manipulable, then for any voter pa-
rametersx andβ, and an agenda represented by the probability density functionf (m, g),
there is another, distinct set of voter preferred pointsx′ that differs in every element from
x and another agenda represented by the probability density functionh(m, g) that leads to
the same coalition probabilities:p0 = p∗(x′, β | h).

Proof. See the Appendix.
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It follows immediately from Theorem 2 and sufficiency ofp0 for x andβ that the voter
parametersx are not identified.

The results summarized by Theorems 1 and 2 tell us that none of the parameters of the
agnostic spatial model are identified! No matter how many votes we observe, neither the
proposal parameters nor those for the voters can be recovered from the data. The inability
to capture the proposal parameters is not, by itself, a surprise. With very few exceptions
of bills that are reconsidered with no changes in their wording, we observe each proposal
only once, and only a finite number of legislators cast votes on that occasion. Lemma 2
makes clear why this is a problem. The finiteness of the legislature means that there is
only a fixed set of possible voting coalitions, and the number of possible values that the
proposal parameters can take on is bounded above by the number of observable voting
coalitions. It is Theorem 2 that delivers the real punch: the lack of identification for the
proposal parameters is inherited by the estimates for the voter parameters. This is because
the same set of coalition probabilities can arise from various combinations of an agenda and
a set of legislators voting on that agenda. Even with infinitely many votes we can estimate
only the coalition probabilities, and these are not enough, by themselves, to tell us which
combination of proposal and voter parameters produced the data.

4 Modeling the Agenda

A remedy for the identification problems that beset the agnostic model is to construct a
structural model of the agenda. Instead of estimating individual proposal parameters, the
analyst can construct a structural model with a finite number of agenda parameters. This
results in a likelihood function that is then maximized with respect to the voters’ unidentified
preference parameters and the parameters characterizing the agenda. In contrast to the
agnostic models, as the number of observations in the structural model grows without bound,
the number of parameters to be estimated remains fixed. This means that the estimatedm
andg parameters are no longer confined to a finite lattice of points. With enough data, and
given suitable regularity conditions, one can identify all of the parameters of the model.
The model here identifies voters’ preference parameters using the structure placed on the
agenda. This identification comes at a cost: the interpretation of the preference parameters
is contingent on the distribution of proposals posited by the structural model.

Building on the simple spatial voting model, we found that the condition for legislatorv

to vote in favor of proposalp was given by Eq. (11), which treats every proposal as entirely
unique and unrelated to any other proposal. But sometimes we see strings of amendments
in the same issue area sponsored by the same group of legislators. It would be surprising
indeed if the ideological displacements for these amendments (thegp) were in opposite
directions and of very different magnitudes. Instead we might expect that the sponsors
pursue a coherent agenda, much as we assume that voters have stable ideal points and
vote a coherent set of issue preferences. More generally, we could imagine the content of
proposals depending on other explanatory variables as well. For example, when legislators
are voting on bills related to their districts, the types of policies they propose might shift. If
we were interested in the impact of farm interests in a legislator’s district on how he or she
proposes, we could allowgp to depend on the percentage of the labor force in the member’s
district who are employed in agricultural industries. Instead of estimating a differentgp for
each proposal from a given author, we might expect that each proposal sharing a given set
of observable characteristics, including the identity of its author, was made in pursuit of a
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stable set of ideological objectives with

gp = g′wgp+ ζp (26)

whereζp is idiosyncratic to proposalp, while wgp is a vector of explanatory variables. It
might include such features as the author’s identity, or district variables, such as the fraction
of the legislator’s district employed in agriculture. The estimator might also differentiate
among proposals by issue area.

We can treat the “consensus parameter,”b∗p, similarly: b∗p = −b′wbp− ω∗p. All voters
are more attracted to proposals with low values forb∗p, which may be low either because of
a high valence advantage or because the proposals confront extreme alternatives.

We might expect variation in the valence of proposals with the same characteristics,
such as authorship. In part, this is because authors sometimes make mistakes on technical
grounds.10 Likewise, we can allow for the possibility that the mean value forεvp differs
among voters.11 Let E{εvp} = −cv and letηvp denote the deviation of the idiosyncratic
shock from its mean:ηvp = εvp − E{εvp}. As with the proposer parameters, so the
voter parameters can also depend on explanatory variables:xv = x′wxv, andcv = c′wcv.
This framework encompasses the widespread practice of attempting to scale each voter’s
preferred outcome separately.12

Substituting into Eq. (11) and rearranging terms, legislatorvwill vote in favor of proposal
p if

ηvp < (g′wgp)(x′wxv)+ (b′wbp)+ (c′wcv)+ ζp(x′wxv)+ ω∗p (27)

While many analysts use scaled locations of legislators as the dependent variables for
regressions that test competing explanations about the foundations of their ideologies, this
framework, which allows for joint estimation of the preferred outcomes and the impact of
the explanatory variables, offers an attractive alternative.

To complete the model we need to specify distributions for the random variablesηvp,
ζp, andω∗p. By allowing all three to be normally distributed we are led to a multivariate
probit model. As it is formulated, this is a multivariate dichotomous choice model with
heteroscedastic errors caused by theζp(x′wxv) term on the right-hand side of inequality
(27). Heteroscedasticity makes estimation more complex. Theζp parameter captures
variation in the ideological content of proposals with the same observed characteristics.
While we expect the technical quality of proposals to vary, even when they come from
the same legislator and pertain to the same policy area, their ideological content is another
matter: most legislators are professional ideologues with a keenly developed sense of the
ideological content of a proposal. Provided that the status quo is fairly static, we might
expect a given legislator consistently to propose moving the status quo to the same location,
implying little variation in thegp.

10See Londregan (2000) for some examples in the Chilean context.
11This would happen if there were voters who were biased on procedural grounds against amendments per se.

While this would not be consistent with rational behavior, it is straightforward to incorporate into the model,
and we are then free to test whether we could have restrained all of the means to equal 0.

12To scale each voter separately, our explanatory variables,wxv andwcv , would consist solely of legislator-specific
dummies.
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Thus we might start with a tractable model with the property thatζp = 0 for all p. We
also need to calibrate the relative importance of theηvp andω∗p terms. This can be done by
first makingηp normal with mean 0 and variance 1. This is just the standard normalization
for the error term in probit models. Then replaceω∗p with αωp, whereωp is normally
distributed with mean 0 and variance 1. This formulation allows us to capture the variance
of ω∗p as Var(ω∗p) = α2. Under these conditions, legislatorv will back proposalp from
proposera(p) if

ηvp < avp + αωp (28)

where

avp = (g′wgp)(x′wxv)+ (b′wbp)+ (c′wcv) (29)

This leads to a voting probability for voterv on proposalp of 8(avp + αωp).
Let V(p) denote the set of legislators who voted on proposalp. The function Vote(v) is

equal to 1 if legislatorv voted in favor of the proposal and is equal to−1 if, instead, she
voted against it. Using this notation we can write the log of the likelihood for this model as

l (b, c, g, x, α) =
P∑

p=1

ln

(∫ ∞
−∞

∏
v∈V(p)

8[Vote(v)avp + αωp]φ(ωp)dωp

)
(30)

Unlike its agnostic cousins, this model can be consistently estimated using maximum
likelihood methods. At some price in the form of additional complexity, the model can
be extended to include random variation in the ideological content of proposals from a
particular individual, as well as variation in their valence. Because the integration over the
common random term, theωp, in Eq. (30) can be done using numerical methods, it is easy
to alter the probability distribution that generates it.

The lack of correlation between voters’ idiosyncratic shocks and the proposal-specific
random term, theωp built into the model is most plausible when making proposals is easy
and the voting agenda is difficult to manipulate. This is the case for the Chilean legislative
data that initially led to the formulation of this model (Londregan 2000). In other settings
the agenda is manipulated by those who control it, as it is often alleged occurs in the U.S.
House of Representatives. Consider Fenno’s assertion that Ways and Means Chairman
Wilbur Mills was successful at gaining passage for his bills by knowing just how far he
could get the floor to go, that is, by tailoring their content to the values of members’
idiosyncratic shocks. In such a highly manipulated setting the model could be extended,
at some cost in complexity,13 to allow for correlation between the random variation among
proposals from the same, strategic, author and the voters’ idiosyncratic random preference
shocks.

The approach advocated here for modeling the agenda is more difficult than applying
an agnostic model, or some related factor analytic technique, but there is no ready substi-
tute. Moreover, the proposal side of the model can be extended and adapted to reflect our
understanding of the context, such as the degree of agenda control exercised over proposals.

13This amounts to allowing theα parameter to differ among voters.
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5 Conclusions

While the spatial model has been widely applied to empirical analysis of legislative voting,
the statistical foundations of this model have received little attention. The key result of
this paper is that statistical procedures that take the intuitively appealing route of jointly
estimating separate spatial “locations” for each proposal, and separate preferred outcomes
for each legislator, are not identified. The results here establish the reason these models
fail: the granularity of the voting data imposes a false granularity on the set of parameters
the model is capable of estimating. This failure is severe when the number of voters is
small.

I propose an alternative estimator which overcomes the identification failure of the
agnostic models by incorporating a model of the agenda along with the model of voting.
The approach advocated here does not come without consequences. This structural model
of legislation incorporates the proposal process, along with voting. In one sense this
is disappointing: if we misspecify the proposal process, this specification error will, in
general, contaminate our estimates of the voting parameters as well as those pertaining to
proposal making. But the agnostic approach is not an option. It results in biased estimates
of all of the parameters in question. Viewed from a different vantage, the proposal process
is an important part of legislation. How many laws are named for lawmakers who were
sponsors, and how many are named for legislators who merely joined the majority in voting
for them? The genesis of legislative proposals is part of the process political scientists seek
to explain. Sooner or later we were going to have to go beyond agnostic models of the
bill proposal process anyway. The statistical issues raised here merely add an additional
reason to move in this direction. The model of proposal making set forth here is not meant
to be the last word on how to model proposal making. Instead it is offered as a stepping-
off point on the important journey of incorporating the agenda into empirical models of
voting.

Appendix: Proofs

Proof of Lemma 1. Substituting from Eq. (9) into Eq. (6) and ignoring valence consid-
erations, which is tantamount to setting bothqp andqsq equal to zero, the condition for
legislatorv to vote in favor of proposalp is

εvp < U (mp + gp/2, 0 | xv, β)−U (mp − gp/2, 0 | xv, β) (31)

while legislatorv will vote against the proposal if, instead,

εvp > U (mp + gp/2, 0 | xv, β)−U (mp − gp/2, 0 | xv, β) (32)

which happens with a probability of 1− p(mp, gp | xv, β). However, multiplying both
sides of Eq. (32) by−1 yields

−εvp < U (mp − gp/2, 0 | xv, β)−U (mp + gp/2, 0 | xv, β) (33)

Symmetry about 0 of the probability density function forεvp means that the probability of
drawing a value of−εvp that satisfies Eq. (33) is the same as the probability of drawing a
value ofεvp that satisfies

εvp < U (mp − gp/2, 0 | xv, β)−U (mp + gp/2, 0 | xv, β) (34)
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But this is just Eq. (31) evaluated at a proposal with characteristics (−gp,mp): the prob-
ability of voting “nay” on a proposal with characteristics (gp,mp) is the probability of
voting “aye” on a proposal with characteristics (−gp,mp), namely,p(mp,−gp | xv, β).

Q.E.D.

Proof of Lemma 2. The first-order conditions for a maximum of the likelihood function
in Eq. (18) with respect tomp andgp are

∂l

∂mp
= 0

∂l

∂gp
= 0

Letting Yes(p) denote the set of legislators who voted in favor of proposalp, while No(p)
indicates the voters who opposed it, one can rewrite the first-order conditions as:

∑
v⊂Yes(p)

pmp

(
mML

p , gML
p

∣∣ xML
v , βML

)
p
(
mML

p , gML
p

∣∣ xML
v , βML

) + ∑
v⊂No(p)

pmp

(
mML

p ,−gML
p

∣∣ xML
v , βML

)
p
(
mML

p ,−gML
p

∣∣ xML
v , βML

) = 0 (35)

∑
v⊂Yes(p)

pgp

(
mML

p , gML
p

∣∣ xML
v , βML

)
p
(
mML

p , gML
p

∣∣ xML
v , βML

) − ∑
v⊂No(p)

pgp

(
mML

p ,−gML
p

∣∣ xML
v , βML

)
p
(
mML

p ,−gML
p

∣∣ xML
v , βML

) = 0 (36)

Similarly, the first-order conditions for a maximum with respect tomML
p′ andgML

p′ are

∑
v⊂Yes(p′)

pmp

(
mML

p′ , g
ML
p′
∣∣ xML

v , βML
)

p
(
mML

p′ , g
ML
p′
∣∣ xML

v , βML
) + ∑

v⊂No(p′)

pmp

(
mML

p′ ,−gML
p′
∣∣ xML

v , βML
)

p
(
mML

p′ ,−gML
p′
∣∣ xML

v , βML
) = 0 (37)

∑
v⊂Yes(p′)

pgp

(
mML

p′ , g
ML
p′
∣∣ xML

v , βML
)

p
(
mML

p′ , g
ML
p′
∣∣ xML

v , βML
) − ∑

v⊂No(p′)

pgp

(
mML

p′ ,−gML
p′
∣∣ xML

v , βML
)

p
(
mML

p′ ,−gML
p′
∣∣ xML

v , βML
) = 0 (38)

By assumption, Yes(p′) = Yes(p) and No(p′) = No(p), so Eqs. (37) and (38) can be
rewritten as:

∑
v⊂Yes(p)

pmp

(
mML

p , gML
p

∣∣ xML
v , βML

)
p
(
mML

p , gML
p

∣∣ xML
v , βML

) + ∑
v⊂No(p)

pmp

(
mML

p ,−gML
p

∣∣ xML
v , βML

)
p
(
mML

p ,−gML
p

∣∣ xML
v , βML

) = 0 (39)

∑
v⊂Yes(p)

pgp

(
mML

p , gML
p

∣∣ xML
v , βML

)
p
(
mML

p , gML
p

∣∣ xML
v , βML

) − ∑
v⊂No(p)

pgp

(
mML

p ,−gML
p

∣∣ xML
v , βML

)
p
(
mML

p ,−gML
p

∣∣ xML
v , βML

) = 0 (40)

But these equations, (39) and (40), are identical to Eqs. (35) and (36), and so any solution to
Eqs. (35) and (36) is also a solution to Eqs. (39) and (40), and vice versa. The desired result
then follows from uniqueness of the maximum-likelihood parameter estimates (gML

p ,mML
p ).

Q.E.D.

Proof of Theorem 1. If the maximum of the likelihood function is not uniquely valued,
then the result is established. If the likelihood does have a unique maximum, then to show
inconsistency formML

p there are two cases to consider.
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(i) mML
c → m∗ for all c as the number of proposals goes to infinity. In this case, consider

two proposals with two distinct cutpoints,mp 6= m′p. At most one of these cut points will
actually equalm∗; without loss of generality, proposalp′ does not, so that

mML
p → m∗ = mp′ + (mp −mp′ ) (41)

where (mp −mp′ ) is a constant.
(ii) There is at least one pair of voting patterns,ĉ andc′, such thatm∗ĉ 6= m∗c′ , where

mML
ĉ → m∗ĉ andmML

c′ → m∗c′ . Next defineπp using

ln(πp) = minc

{ ∑
i⊂Yes(c)

lnp(mp, gp | xv, β)+
∑

i⊂No(c)

lnp(mp,−gp | xv, β)

}
(42)

This means that every observable voting pattern has a probability of at leastπp of being
observed as a response to proposalp. Without loss of generality, suppose thatmp 6= m∗ĉ .
The probability of observinĝc is at leastπ (p), and leading to a probability ofπ (p) > 0
so that as the number of proposals goes to infinity, we observe

mML
p = m∗ĉ = mp + (m∗ĉ −mp) (43)

where (m∗ĉ −mp) is a nonzero constant andπp is notop.
To show inconsistency forgML

p there are likewise two cases to consider.
(i) gML

c → g∗ for all c as the number of proposals goes to infinity. In this case, consider
two proposals with distinct gaps,gp 6= gp′ . At most one of these gaps will actually equal
g∗; without loss of generality, let it be proposalp′. For the other proposal,p,

gML
p → gp + (g∗ − gp) 6= 0 (44)

whereg∗ − gp is a positive constant andπp is notop.
(ii) There is at least one pair of voting patterns,ĉ andc′, such thatg∗ĉ 6= g∗c′ , where

gML
ĉ → g∗ĉ andgML

c′ → g∗c′ , while eithergp 6= g∗ĉ or gp 6= g∗c′ . Suppose, without loss of
generality, thatgp 6= g∗ĉ . There is a probability of at leastπp that as the number of proposals
goes to infinity, one will observe

gML
p = g∗ĉ = gp + (g∗ĉ − gp) (45)

where (g∗ĉ − gp) is a positive constant andπp is notop. Q.E.D.

Proof of Lemma 3. The contribution to the log of the likelihood function in Eq. (30)
from proposals with voting profilec is

lc = Nc

{ ∑
v⊂Yes(c)

lnp(mc, gc | xv, β)+
∑

v⊂No(c)

lnp(mc,−gc | xv, β)

}
(46)
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while the contribution to the log of the likelihood from proposals with voting profilec′ is

lc′ = Nc′

{ ∑
v⊂Yes(c′)

lnp(mc′ , gc′ | xv, β)+
∑

v⊂No(c′)

lnp(mc′ ,−gc′ | xv, β)

}
(47)

However, by hypothesis, Yes(c′) = No(c) and No(c′) = Yes(c), so Eq. (47) becomes

lc′ = Nc′

{ ∑
v⊂No(c)

lnp(mc′ , gc′ | xv, β)+
∑

v⊂Yes(c)

ln p(mc′ ,−gc′ | xv, β)

}
(48)

By settingmc = mc′ andgc = −g′c, Eqs. (46) and (48) coincide up to a factor of propor-
tionality. Thus, ifm∗c andg∗c maximize the expression in Eq. (46), thenmc′ = m∗c and
g′c = −g∗c must maximize Eq. (48). Q.E.D.

Proof of Corollary to Lemmas 1 and 3. The contribution to the likelihood function
from proposalp in P∗(c) is

l ∗p =
∑

v∈Yes(c)

lnp(mc, gc | xv, β)+
∑

v∈No(c)

lnp(mc,−gc | xv, β) (49)

while the contribution from a proposalp′ in P∗(c′) is

l ∗p =
∑

v∈Yes(c′)

lnp(mc′ , gc′ | xv, β)+
∑

v∈No(c′)

lnp(mc′ ,−gc′ | xv, β) (50)

If voting profilec′ is a “mirror image” ofc, then we know that Yes(c′)=No(c) and No(c′)=
Yes(c), while it follows from Lemma 2 thatmc′ = mc andgc′ = −gc. Substituting into the
contribution to the likelihood from the proposal inP∗(c′), we have

l ∗p′ =
∑

v∈Yes(c)

lnp(mc, gc | xv, β)+
∑

v∈No(c)

lnp(mc,−gc | xv, β) (51)

which is identical to the contribution from a vote inP∗(c). Q.E.D.

Proof of Theorem 2. To prove the theorem it is sufficient to show that if one were to
change X by some small amountdx, one could change the density over proposal charac-
teristics to maintain the vector of coalition probabilities unchanged. Define the densityhw

as

hw(m, g) = f (m, g)+ w′ξ(m, g) (52)

wherew is a vector of weights, which can take on either positive or negative values. For
h(m, g | w) to be a probability density over proposals, it needs to integrate to 1,∫ ∞

−∞

∫ ∞
−∞

h(m, g |w)dgdm= 1 (53)
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Substituting from Eq. (52) and noting thatf (m, g) is a probability density [see Eq. (22)]
yields ∫ ∞

−∞

∫ ∞
−∞
ξ(m, g)w dgdm= 0 (54)

Suppose that atw = 0 the vector of coalition probabilities is

p = p∗(x, β | f ) = p∗(x, β | hw) (55)

For a given local change inx by dx, one can changew by dw so that both condition (54)
and condition (55) continue to be satisfied, provided thatdw simultaneously satisfies

∇x′p∗(x, β | hw)dx+∇w′p∗(x, β | hw)dw= 0 (56)

and ∫ ∞
−∞

∫ ∞
−∞
ξ(m, g)′dgdmdw = 0 (57)

Define the matrixΨ as

Ψ =
[∇x′p∗(x, β | f )

0

]
(58)

SubstitutingΨ from Eq. (58) andΩ as defined in Eq. (25), conditions (56) and (57) become

Ψ
[

dx

0

]
+2dw = 0 (59)

Provided that2 is of full rank, one can choosedw so that

dw = −2−19

[
dx

0

]
(60)

This means that, provideddw satisfies the condition in Eq. (60), we can make an arbitrary
local change in theVx1 vector of legislators’ preferred outcomesx by dx and still adjust
the 2V−1+ 1 weightsw to preserve all of the coalition profile probabilities intact. All local
perturbations ofx are consistent with the observed frequencies for the voting coalitions for
somechoice of agenda.

There is an additional feasibility condition, namely, thath(m, g) > 0 for all {m, g},
but f (m, g) > 0 for all {m, g}, guarantees that this will continue to hold provideddw is
small enough, which it will be for a sufficiently smalldx. Thus, foranychoice ofx and
its associated set of coalition probabilitiesp, one can always find another nearby set of
legislator parametersx+ dx and a probability density over proposals that will also give rise
to the samep as the asymptotic coalition probabilities. Q.E.D.
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