CORRECTIONS TO MY PAPER “ON KRULL’S
CONJECTURE CONCERNING VALUATION RINGS”

MASAYOSHI NAGATA

The proof of Theorem 1 in the paper “On Krull’s conjecture concerning
valuation rings” (vol. 4 (1952) of this journal) is not correct.” We want to
give here a corrected proof of the theorem: From p. 30,17 14 to p. 31, 1. 7
should be changed as follows.

Further we observe that if w(a—5)>2a, then (¥ +a)/(x+b) is unit in o.
Hence we may assume that w(a; — b;) <2« for any (i, 7).

Next, we will show two lemmas concerning the valuations w, and we:

Lemma A. Setd =17 (x + a)/I17 (x + b;) and assume that w(a;) = w(b;)
=c(a<o<2a) for any i and j. Let e be any element of K such that w(e)

=g. Then‘ either we(d) = w.(d) or there exists one b; such that we(d) = ws,(d).

Proof. We may use the induction argument on m/+ #n'. Obviously we.(x
+ai) =min(w(a; — e), 2a), we(x + b;) = min(w(b; — e), 2a): Let ¢ be the
maximum of these values. We renumber a; and b; so that we(x + a;) = we(x
+bj)=¢"if and only if i =7, j=s. Now it must be observed that we(x + a;)
=w(aj —a1) or w(a; — by) for i> 7, according to %0 or s=0, and that
similar fact holds for b;.

1) When 7 = n', s = m’ and 7 = s, we have obviously we(d) = w.(d).

2) When r<s and r+s=m' +n': Set d = II(x + a)/IIi(x + b;).
Then we(d') > ws(d') and therefore there exists on b; (j £s) such that we(d')
> ws;(d'). Since the values of factors of d other than those of d' are invariant
under the replacement of we by ws;, we have we(d) = ws,(d).

3) When r =#»', s=m' and r<s: Let o* be the minimum of values
wla; — air), w(a; — b;) and w(bj — b;.) and let e* be an element of K such that
w(a; — e*) = w(bj — ex) = g+ for any 4, 7.© Then since we(d) = we*(d), we
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U Prof. P. Ribenboim has communicated to the writer that the proof is not correct.
The writer is grateful to him for his kind communication.

2) Such elements ¢*, ¢” and so on exist because K is algebraically closed and there-
fore the residue class field of the valuation ring of w is algebraically closed (and con-
tains infinitely many elements).
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may replace e¢ by e+. Next, let g%* > g% be the next smallest value among
wla; — a»), wai — b;) and w(b; — b;,) if they are not all equal; otherwise, we
have obviously ws,(d) £ w.(d) for any b; and we have nothing to prove in this
case.” We separate ais and bjs to equivalent classes modulo the ideal of the
valuation ring v of w generated by an element ex* of K such that w(ex*) = g*x,
Since 7 < s, there exists a class C = {ai,, ..., @i, bjs,..., bj,} such that ¢ <u.
Let ¢” be an element of K such that w(ai, — €") = w(bj, — €") = ox*x (k=141
£u)? Then for other ais, w(a; — e") = o*; for other bjs, w(b; — €") = a*.
Hence we have we.(d) < we(d). Applying the observation in 2) to we+, we have
the required result.

4) Now we have only to treat the case when r+sxm'+ ' and r>s.
Let ¢" be the maximum of values we(x + @) (> 7) and welx + b;) (F > s)
and renumber a; and &; so that we(x + a@i) = we(x + b;) = ¢" if and only if
r<i=7v, s<j=s'. Further let ¢ be an element of K such that w(a; — ¢')
=w(b; —e') = 4" for any i <7, j=s.” Since r >s, we have we(d) £ we(d)
and we may replace ¢ by ¢'. If we are still in the case 4) with we, we repeat
the similar process and we reach after a finite number of steps to one of the

cases 1), 2), 3). Thus the lemma is proved completely.

Lemma B. Assume, in Lemma A, further that m' = n' and m' % 0. Then

there exists one b; such that wei(d) < ws(d).

Proof. Let e be an element of K such that w(e) = w(a; — e) = w(b; — e)
=g¢ for any ¢ and 7. Then we have we(d) = wo(d). By virtue of Lemma A,
we have only to show that there exists an element " (w(e"') = ¢) such that
wor(d) <we(d). If m! > n', then by the same process in 3) above, we see the
existence of ¢"'. Assume that m' = #' and we will make use of induction argu-
ment on m'. We apply the same process in 3) above. Then either there exists
one class C as above, which contains more b}s than ais, or any such classes
have the same number of als and bjs. In the former case, take the element
¢" as above (with respect to this class C). Then we/(d) < we(d) and the as-
sertion is proved in this case. On the other hand, let, say, C ={ai. b; (i < 7")}
be an equivalent class in the latter case. Then since 7" < m', we see the

3 If we take o**, in this case, to be any number in G which is greater than %, then
we see also the proof by the same way as below.
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existence of an element " of K sucht that we.(d") < w.(d"), where d" =
I (x + a)/TI{ (x + b;). Since there exists one b; such that w(b; — ") is
greater than some w(ai — €"') (i, j < 7"), we see that w(ai — ") and w(dj

— e") are all equal for #, /> #". Therefore we have we(d) < we(d) and
the assertion is proved.

Now we will return to the proof of the theorem.
First we assume that w,,(c) = 0 for some A (a = 4 £ 2a). Let %, 7, jo and
s be such that w(a;) = 4, if and only if i <i <4, + 7, w(b;) = A if and only if

jo<jZjo+s. Set i =max(a, w(ai,), w(b;,)), 2=min(2a, w(Giysrs,)s WBjipsssy))-

Then

wi(¢) = wlco) +iEw(a.-) —g‘;w(bj) +(n = i)k — (m— jo)h 20,

=1

wy(€) = wleo) + 2w(ai) - .Ele(bj) + (n = 4)A = (m — jo)ho = 0,

=i =4

wM(C) = w(co) +‘E‘w(ai) - .Zj’w(bj) + 70+ (B — 7 — i) — Sho
=i =
—(m—s—jdi £0.

Hence we have
wxl(C) = wn(c) — ZUA,,(C) =(n - io)(/h - X)) — (m — ]'o)(/h -4 20.

Hence, if 1o % @, we have ;< i and # — % £ m — j.

Similarly we have
wr,(¢) = wi,(c) — wy(c) = (n—7—14)(A2— ) — (m— s — o)A — 4) 20.

Hence, if 40 % 2a, we have n — v — i, = m — s — j,. Thus in the case when 2,
is equal to neither « nor 2a, we first have » £s. If s % 0, then Lemma B shows
that there exists one b; (jo <j = jo+ s) such that w(¢) > ws,(c), which is a
contradiction. Hence r=s=0. Therefore we have further that n — i =m — /.
In the case when 4 = a or 4 = 2«a, we see easily that r =s =0 and 5 — %,
=m — j, because a € G. If A % a, then there exists one a; or b; such that
w(ai) or w(b;) is equal to A;, which is a contradiction because wy(c) =0 by
the above equality. Hence 4; = «. Similarly we have 4 = 2a. From 1; = a,
we have 7%, = jo = 0, whence m = n; from A = 2«, we have ai = b; = 0 for all
i and j. Hence we have ¢ = ¢y € K and wi(¢) = 0 for any A. This proves (1).
Next we assume that ws(c) > 0. Let us consider w,(c) as a function of variable

2 (a £4<2a); it is obviously a continuous function and it takes the smallest
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and the largest values &; and 6; in « £ 1 £ 2a. By virtue of (1), we see that &
is positive. Then (2) follows easily from the fact that we(c) % wwe(c) occurs
only when w(e) is one of w(a;) or w(d;); by the symmetricity of the assertion
in Lemma A, we see that these values w.(c) are bounded by the maximum and
minimum of values wwe)(c), wa(c) and we,(c).

Since wp,(¢) & G, the minimum is not zero and (2) is proved.

Mathematical Institute
Kyoto University

https://doi.org/10.1017/5S0027763000023436 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000023436



